(完整版)一元线性回归直线拟合
(完整word版)一元线性回归模型习题及答案
一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。
AA 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系 2、相关关系是指__________。
DA 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。
AA 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。
CA 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。
B A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。
B A i i ˆˆ0Y Y 0σ∑=时,(-)=B 2iiˆˆ0Y Y σ∑=时,(-)=0 C ii ˆˆ0Y Y σ∑=时,(-)为最小 D 2iiˆˆ0Y Yσ∑=时,(-)为最小 7、设样本回归模型为i 01i i ˆˆY =X +e ββ+,则普通最小二乘法确定的i ˆβ的公式中,错误的是__________。
D A ()()()i i 12iX X Y -Y ˆX X β--∑∑=B ()i iii122iin X Y -X Y ˆn X -X β∑∑∑∑∑=C ii122iX Y -nXY ˆX -nXβ∑∑= D i i ii12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i iˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。
一元线性回归
《土地利用规划学》一元线性回归分析学院:资源与环境学院班级:2013009姓名:x学号:201300926指导老师:x目录一、根据数据绘制散点图: (1)二、用最小二乘法确定回归直线方程的参数: (1)1)最小二乘法原理 (1)2)求回归直线方程的步骤 (3)三、回归模型的检验: (4)1)拟合优度检验(R2): (4)2)相关系数显著性检验: (5)3)回归方程的显著性检验(F 检验) (6)四、用excel进行回归分析 (7)五、总结 (15)一、根据数据绘制散点图:◎由上述数据,以销售额为y 轴(因变量),广告支出为X 轴(自变量)在EXCEL 可以绘制散点图如下图:◎从散点图的形态来看,广告支出与销售额之间似乎存在正的线性相关关系。
大致分布在某条直线附近。
所以假设回归方程为:x y βα+=二、用最小二乘法确定回归直线方程的参数: 1)最小二乘法原理年份 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 广告支出(万元)x 4.00 7.00 9.00 12.00 14.00 17.00 20.00 22.00 25.00 27.00销售额y7.00 12.00 17.00 20.00 23.00 26.00 29.00 32.00 35.00 40.00最小二乘法原理可以从一组测定的数据中寻求变量之间的依赖关系,这种函数关系称为经验公式。
考虑函数y=ax+b ,其中a,b 为待定常数。
如果Pi(xi,yi)(i=1,2,...,n )在一条直线上,则可以认为变量之间的关系为y=ax+b 。
但一般说来, 这些点不可能在同一直线上. 记Ei=yi-(axi+b),它反映了用直线y=ax+b 来描述x=xi ,y=yi 时,计算值y 与实际值yi 的偏差。
当然,要求偏差越小越好,但由于Ei 可正可负,所以不能认为当∑Ei=0时,函数y=ax+b 就好好地反应了变量之间的关系,因为可能每个偏差的绝对值都很大。
新教材适用2023_2024学年高中数学第7章统计案例1一元线性回归课件北师大版选择性必修第一册
∧
∧
∧
(2)线性回归方程 Y= + bX 中的只能为正实数.
∧
∧
( √ )
( × )
(3)回归直线 Y= + X 一定过实际观测值(xi,yi)的中心点(, ).
( √ )
(4)任意一组成对数据(xi,yi)都能用直线拟合.
( × )
合作探究 释疑解惑
∧
= − =4-0.7×9=-2.3,
故Y关于X的线性回归方程为Y=-2.3+0.7X.
(2)由Y=-2.3+0.7X知,当X=9时,Y=-2.3+0.7×9=4,故预测当学生的记忆力为
9时,判断力为4.
1.本例条件不变,如果某学生的判断力为4,请预测该学生的记忆力是多少.
解:由Y=-2.3+0.7X知,当Y=4时,由4=-2.3+0.7X,解得X=9.
探究一
直线拟合的判断
【例1】观察两个变量得如表7-1-2所示数据:
表7-1-2
x
-1
-2
-3
-4
-5
5
4
3
2
1
y
-9
-7
-5
-3
-1
1
5
3
7
9
画出散点图,判断它们是否能用直线拟合.
分析:可设x为自变量,y为因变量,作出散点图直接判断.
解:由数据可得相应的散点图如答图7-1-2:
答图7-1-2
由散点图可知,所有点不在一条直线附近,故不能用直线拟合.
X
0
1
Y
1
3
∧
C.(2,5) D.(2.5,5)
一元线性回归模型.ppt
4.截距为0的一元线性回归模型参数估 计式
一元线性回归模型参数估计举例( P23页)
四、估计量的统计学性质
1. 线性性:bˆ0 , bˆ1 都是Yi的线性函数。
bˆ1
xi
y i
x2 i
xi (Y i Y
x2 i
)
xiY i
ˆ 的密度函数
Var(ˆ)
0
E(ˆ )
为什么具有BLUE性质的估计量是优良的估计量?
五、 bˆ0 ,bˆ1 的分布
bˆ0
、bˆ1
都 服从正态分布
bˆ0 ˜N(b0 、
X
2 i
n
x2 i
u2
)
1
x bˆ1 ˜N(b1 、
2 i
u2
)
(证明略)
六、随机项u的方差2的估计
1(.定证理明:从略ˆu2) n e2i2 是 u2的一个无偏估计值
假定六:解释变量X 是一组确定性变量, 随机扰动项 ui与解释变量Xi无关, 即
Cov( ui,Xj )=0 。 假定七:解释变量之间不是完全线性相 关的。称无完全多重共线性。
对假定的学习思路:先结合随机项的特性,理 解假定含义,认为这些假定是成立的,学习参 数的估计、模型检验等。然后,在后面的章 节讨论这些假定是否成立?不成立会出现什 么问题?怎样检验?如何解决?
把握这个思路很重要哦!
四、回归分析 1.什么是回归分析? 是回归模型的建立、估计、检验理论和 方法的统称 2.回归分析的主要内容
建立模型、估计模型、检验模型 、应用
二、四种重要的关系式
• 1. 总体关系式:Yi=b0+ u b1Xi+ i
北师大版高中数学选择性必修第一册 第七章 §1 一元线性回归
年份-2 015
-4
-2
0
2
4
需求量-257
-21
-11
0
19
29
对处理的数据,设 T=X-2 015,Z=Y-257,容易算得=0,=3.2.
^
(-4)×(-21)+(-2)×(-11)+0×0+2×19+4×29-5×0×3.2
=
260
= =6.5,
40
2
2
3:Q=(y1-bx1-a)2+(y2-bx2-a)2+…+(yn-bxn-a)2.
请同学们分析比较三种模型的特点.
知识点拨
一、直线的拟合
1.如图是关于体重随身高的变化的规律,每个点对应的一对数据(xi,yi),称为
成对数据,这些点构成的图称为散点图.
2.从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个大
^ ^
线称作 Y 关于 X 的回归直线,a, b是这个线性回归方程的系数.
名师点析1.线性回归系数的求解公式还可以写成如下形式:
n
^
∑ (xi -x)(yi -y)
b = i=1 n
∑ (xi -x)2
^
^
, a = y − b x.
i=1
2.在回归分析中,利用线性回归方程求出的值不一定是真实值,很多时候只
(2)当X=200时,Y=0.72×200+6.24=150.24(微克/立方米).
所以可以预测此时PM2.5的浓度为150.24微克/立方米.
素养形成
方法优化——求线性回归方程的技巧
典例某地粮食需求量逐年上升,部分统计数据如下表:
(09)第9章 一元线性回归(2011年)
变量之间是否存在关系? 如果存在,它们之间是什么样的关系? 变量之间的关系强度如何? 样本所反映的变量之间的关系能否代表总体 变量之间的关系?
9-9 *
9.1 变量间的关系 9.1.1 变量间是什么样的关系?
统计学 STATIS TICS
函数关系
(第四版) 1. 是一一对应的确定关系 2. 设有两个变量 x 和 y ,变量 y y 随变量 x 一起变化,并完 全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量 x 3. 各观测点落在一条线上
y 是 x 的线性函数(部分)加上误差项 线性部分反映了由于 x 的变化而引起的 y 的变化 误差项 是随机变量 反映了除 x 和 y 之间的线性关系之外的随机因素 对 y 的影响 是不能由 x 和 y 之间的线性关系所解释的变异性 0 和 1 称为模型的参数
9 - 30 *
统 计 学 数据分析 (方法与案例)
作者 贾俊平
统计学 STATIS TICS
(第四版)
统计名言
不要过于教条地对待研究的结果, 尤其当数据的质量受到怀疑时。
——Damodar N.Gujarati
9-2 *
第 9 章 一元线性回归
9.1 9.2 9.3 9.4 变量间关系的度量 一元线性回归的估计和检验 利用回归方程进行预测 用残差检验模型的假定
9-7
*
第 9 章 一元线性回归
9.1 变量间的关系
9.1.1 变量间是什么样的关系? 9.1.2 用散点图描述相关关系 9.1.3 用相关系数度量关系强度
一元线性回归法linlm
b
x y xy x2 x2
101.8389 ,
a y bx -28.6883
y
[ yi (a bxi )]2 n2
0.931912
利用肖维涅舍弃判据来剔除测量值中带有粗差的数 据,列表如下(n=16时,Cu=2.15):
y'=a+bxi-Cu·σy
y"=a+bxi+Cu·σy
令Y lห้องสมุดไป่ตู้ y, X x,A lna, B b
则方程可化为:Y A BX
可求得,BA
A B
A B
Alna,Bba b
eA eAA B B
线性方程 y a bx
a y bx
xy x y
,
b
x2 x2
a b. x2
b
n(
x
1 2
x
2
)
.
y
r
xy x y
n 14 15 16 17 18 19 20 21 22 Cu 2.10 2.13 2.15 2.17 2.20 2.22 2.24 2.26 2.28
n 23 24 25 30 40 50 75 100 200 Cu 2.30 2.31 2.33 2.39 2.49 2.58 2.71 2.81 3.02
最终得到最佳的拟合直线方程(也称回归方程):
y a bx
• 需要考虑的两个问题
* 经验公式是否合适——相关系数 * 测量列是否存在粗差——肖维涅舍弃判据
附:相关系数表和肖维涅系数表
注意
*相关系数 r
1.只有当x和y之间存在线性关系时,拟合的直线才有
意义。
2.为了检验拟合的直线有无意义,引入一个叫相关系 数r来判别,r的定义为:
第十三章 一元线性回归
变量之间存在关系的两种类型: 确定性关系(函数关系) 不确定性关系(相关关系)
函数关系
1.
2.
3.
是一一对应的确定关系:一 个(或多个)确定的自变量 的值对应一个确定的因变量 的值。 y 设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完 全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量 x 各观测点落在一条线上
l xy = ( x x)( y y ) = xy N x y
则:a = y b x
b = l xy / l xx
步骤:1、由变量x求 x来自l xx (自方差) 2、由变量y求 y,l yy 3、由x、y求l xy (协方差) 4、求a、b ˆ 5、写出方程:y = a + bx
【例】有15个学生,数学和物理成绩列于表内, 现想求一个物理成绩对数学成绩的一元回归方 程。
23 8 40 19 60 69 21 66 15 46 26 32 30 58 28 22 23 33 41 57 7 57 37 68 27 41 20 30
数学(x) 31 物理(y) 32
解:
1.
2.
3.
相关分析中,变量 x 变量 y 处于平等的地位;回 归分析中,变量 y 称为因变量,处在被解释的地 位,x 称为自变量,用于预测因变量的变化 相关分析中所涉及的变量 x 和 y 都是随机变量; 回归分析中,因变量 y 是随机变量,自变量 x 可 以是随机变量,也可以是非随机的确定变量 相关分析主要是描述两个变量之间线性关系的密 切程度;回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归方程进行预测和控制
(完整版)一元线性回归直线拟合
y 84.33 0.516 x
如此以来,高的伸进了天,低的缩入了地。他
百思不得其解,同时又发现某人种的平均身高
是相当稳定的。最后得到结论:儿子们的身高 回复于全体男子的平均身高,即“回归”—— 见1889年F.Gallton的论文《普用回归定律》。
后人将此种方法普遍用于寻找变量之间的规律
最小二乘法的地位与作用
经验公式的线性回归
在进行经验公式的回归时,必须先确定函数的形式。确定 函数形式一般是根据理论的推断或者从实验数据的变化趋势来 推测判断。
如根据实验得到的一组数据(xi ,yi)(或其在x y坐标上的 数据点)初步判断经验公式为线性关系时,即可用最小二乘法 相关公式求出b, a值,并进而拟合出直线的线性关系式y=a+bx 的回归方程。
k
(
i1
k
xi )(
i1
yi )
b Lxy L xx
a y bx
k
k
Vi2 ( yi a bxi )2 min
i 1
i 1
a
k i1Vi 22 Nhomakorabeak i1
yi a bxi
b
k i1
Vi 2
2
k i1
yi a bxi xi
2 Vi 2
a 2
2n
2 Vi 2
一种可能是各数据点与该线偏差较小,一种可能是各数据点 与该线偏差较大。
当r 1时,sy减小,一般来说数据点就越靠近最佳直线两旁。两 变量间的关系线性相关,可以认为是线性关系,最佳直线所反应 的函数关系也越接近两变量间的客观关系。同时还说明了测量的 精密度高。
当 r 1时,sy值大,根据数据点的分布,也许能得到一条“最佳” 直线。然而,数据点与“最佳”直线的偏差过大。如图所示。这 时“最佳”二字只能说明数据点距这直线的总偏差较小,但不能 反映出数据点的分布规律。或者说,我们事先的初步判断是错误 的,数据点的分布规律不是线性的,根本就不能用一条直线表示。
回归直线方程b的两个公式
回归直线方程b的两个公式一、一元线性回归公式在一元线性回归中,我们假设只有一个自变量(x)和一个因变量(y),并试图找到一个直线方程来拟合这些数据。
直线方程的一般形式为:y = mx + b其中,m是斜率,b是截距。
1.1斜率(m)的计算公式斜率(m)表示自变量x的单位变化对应因变量y的单位变化。
斜率可以通过以下公式来计算:m = (n∑xy - ∑x∑y) / (n∑x^2 - (∑x)^2)其中,n表示数据个数,∑表示求和符号,∑xy表示x和y的乘积的和,∑x表示x的和,∑y表示y的和,∑x^2表示x的平方的和。
1.2截距(b)的计算公式截距(b)表示直线与y轴的交点的y值。
截距可以通过以下公式来计算:b=(∑y-m∑x)/n其中,n表示数据个数,∑表示求和符号,∑y表示y的和,∑x表示x的和。
二、多元线性回归公式多元线性回归用于描述两个或更多个自变量(x1,x2,...,xn)与一个因变量(y)之间的关系。
多元线性回归方程的一般形式为:y = b0 + b1*x1 + b2*x2 + ... + bn*xn其中,b0是截距,b1,b2,...,bn是自变量的系数。
2.1 系数(b1,b2,...,bn)的计算公式系数表示每个自变量对因变量的影响程度。
系数可以通过最小二乘法来计算,目标是使得预测值与实际值之间的误差最小化。
具体的计算公式如下:b=(X^T*X)^(-1)*X^T*Y其中,b表示系数向量,X表示自变量矩阵(每一列代表一个自变量,每一行代表一个数据样本),Y表示因变量向量。
2.2截距(b0)的计算公式截距表示在自变量为0时的因变量值。
截距可以通过以下公式来计算:b0 = y_mean - b1*x1_mean - b2*x2_mean - ... - bn*xn_mean其中,y_mean表示因变量的平均值,x1_mean,x2_mean,...,xn_mean表示自变量的平均值。
简单线性相关(一元线性回归分析)..
第十三讲 简单线性相关(一元线性回归分析)对于两个或更多变量之间的关系,相关分析考虑的只是变量之间是否相关、相关的程度,而回归分析关心的问题是:变量之间的因果关系如何。
回归分析是处理一个或多个自变量与因变量间线性因果关系的统计方法。
如婚姻状况与子女生育数量,相关分析可以求出两者的相关强度以及是否具有统计学意义,但不对谁决定谁作出预设,即可以相互解释,回归分析则必须预先假定谁是因谁是果,谁明确谁为因与谁为果的前提下展开进一步的分析。
一、一元线性回归模型及其对变量的要求 (一)一元线性回归模型 1、一元线性回归模型示例两个变量之间的真实关系一般可以用以下方程来表示: Y=A + BX + ε方程中的A 、B 是待定的常数,称为模型系数,ε是残差,是以X 预测Y 产生的误差。
两个变量之间拟合的直线是:y a bx ∧=+y ∧是 y 的拟合值或预测值,它是在X 条件下Y 条件均值的估计a 、b 是回归直线的系数,是总体真实直线A 、B 的估计值,a 即 constant 是截距,当自变量的值为0时,因变量的值。
b 称为回归系数,指在其他所有的因素不变时,每一单位自变量的变化引起的因变量的变化。
可以对回归方程进行标准化,得到标准回归方程:y x ∧=ββ 为标准回归系数,表示其他变量不变时,自变量变化一个标准差单位(Z X X S j jj=-),因变量Y 的标准差的平均变化。
由于标准化消除了原来自变量不同的测量单位,标准回归系数之间是可以比较的,绝对值的大小代表了对因变量作用的大小,反映自变量对Y的重要性。
(二)对变量的要求:回归分析的假定条件回归分析对变量的要求是:自变量可以是随机变量,也可以是非随机变量。
自变量X值的测量可以认为是没有误差的,或者说误差可以忽略不计。
回归分析对于因变量有较多的要求,这些要求与其它的因素一起,构成了回归分析的基本条件:独立、线性、正态、等方差。
(三)数据要求模型中要求一个因变量,一个或多个自变量(一元时为1个自变量)。
线性拟合公式
1,线性拟合原理一元线性拟合是指两个变量x 、y 之间的直线因果关系, i i i X Y εββ++=10 (i=1,2,…,n ) (式1)其中,(i X ,j Y )表示(X ,Y )的第i 个观测值,0β,1β为参数,i X 10ββ+为反映统计关系直线的分量,i ε为反映在统计关系直线周围散布的随机分量,),0(~2σεN i ,i ε服从正态分布。
式1中0β,1β均为未知数,根据样本数据对0β和1β进行统计,0β和1β的估计值为0b 和1b ,建立一元线性方程: X b b Y 10+=∧(式2) 一般而言,所求的0b 和1b 应能使每个样本观测点(i X ,j Y )与拟合直线之间的偏差尽可能小。
2,最小二乘法原理利用最小二乘法原理,可以选出一条最能反映Y 与X 之间关系规律的直线。
令∑=+-=ni i i X b b Y Q 1210)]([ (式3)其中Q 达到最小值,0b 和1b 称为最小二乘法估计量,根据微积分中极值的必要条件∑==+--=∂∂n i i i X b b Y b Q 11000)]([2 (式4) ∑==+--=∂∂n i i i i X X b b Y b Q 11010)]([2 ∑∑∑∑====--=---=n i i n i i i ni i n i i i X X Y X X X X Y Y X X b 1211211)()()())(( (式5) X b Y b 10-=残差i i i i i X b b Y Y Y e 10--=-=∧代表观测点对于拟合直线的误差可以证明:∑∑∑==∧=∧-+-=-ninii niiiiYYYYYY112122)()()(残差越小,各观测值聚焦在拟合直线周围的紧密程度就越大,说明直线与观测值的拟合越好。
一元线性回归
· · ·· ·· · · ·· ·
2 4 6 8 10
o线附 近, 这告诉我们变量x和y之间大致可看作线 性关系. 从图中还看到, 这些点又不完全在 一条直线上, 这表明x和y的关系并没有确切 到给定x就可以唯一确定y的程度.
其原因在于人有较大的个体差异, 因而身高 和体重的关系, 是既密切但又不能完全确定 的函数关系.
类似的变量间的关系在大自然和社会中 屡见不鲜.
例如 , 小麦的穗长与穗重的关系 ; 某班学生最 后一次考试分数与第一次考试分数的关系;温 度、降雨量与农作物产量间的关系;人的年龄 与血压的关系;最大积雪深度与灌溉面积间的 关系;家庭收入与支出的关系等等.
这种大量存在的变量间既互相联系但又不 是完全确定的关系,称为相关关系. 从数量的角度去研究这种关系,是数 理统计的一个任务. 这包括通过观察和试 验数据去判断变量之间有无关系,对其关 系大小作出数量上的估计 , 对互有关系的 变量通过其一去推断和预测其它,等等. 回归分析就是研究相关关系的一种重 要的数理统计方法.
V=I. R
以上两例的共同点在于,三个量中任意 两个已知,其余一个就可以完全确定. 也就 是说,变量之间存在着确定性的关系,并且 可以用数学表达式来表示这种关系. 然而,在大量的实际问题中,变量之 间虽有某种关系,但这种关系很难找到一 种精确的表示方法来描述.
例如,人的身高与体重之间有一定的关系, 知道一个人的身高可以大致估计出他的体重, 但并不能算出体重的精确值.
y=a+bx+ε, ε ~N(0, )
2
(1)
现对模型(1)中的变量x , y进行了n次独 立观察, 得样本 (x1,y1),…,(xn,yn) (3)
第2章一元线性回归模型
布图上的点接近于一条曲线时,称为非线性相关。简单相关按
符号又可分为 正相关 (见图2.3.4 )、负相关 (见图2.3.8 )和零 相关 (见图2.3.6 )。两个变量趋于在同一个方向变化时,即同
增或同减,称为变量之间存在正相关;当两个变量趋于在相反
方向变化时,即当一个变量增加,另一个变量减少时,称为变 量之间存在负相关;当两个变量的变化相互没有关系时,称为
4、普通最小二乘法
为什么要使用OLS? (1)OLS的应用相对简便; (2)以最小化残差平方和为目标在理论很合理; (3)OLS估计量有很多有用的性质。 1)估计的回归线通过Y和X的均值。下列等式总是
ˆ ˆX 严格成立的:设下,可以证明,OLS是 “最优”的估计方法。
2.2.2 最小二乘估计量的性质
一个用于考察总体的估计量,可从如下几个方面考察其
优劣性: (1)线性。即它是否是另一个随机变量的线性函数;
(2)无偏性。即它的均值或期望是否等于总体的真实值;
(3)有效性。即它是否在所有的线性无偏估计量中具有 最小方差; (4)渐近无偏性。 即样本容量趋于无穷大时,它的均值 序列趋于总体的真值; (5)一致性。即样本容量趋于无穷大时,它是否依概率 收敛于总体的真值;
1.总变差的分解
ˆ b ˆX ˆ b Yt的估计值位于估计的回归线 Y t 0 1 t 上,Y围绕其均值的变异 (Y Y )可被分解为两部分:
ˆ Y ) (1) (Y t
ˆ) (2) (Yt Y t
样本回归函数:
3.相关系数检验
(1)变量相关的定义和分类
相关:指两个或两个以上变量间相互关系的程度或强度。
2 2 ˆ e ( Y Y ) i i OLS 最小化 i i 1 i 1
2024-2025年北师大版数学选择性必修第一册7.1.1-1.2一元线性回归(带答案)
第七章统计案例§1一元线性回归1.1 直线拟合1.2 一元线性回归方程必备知识基础练知识点一直线拟合1.下表提供了某厂利用节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.(1)(2)从散点图中可以看出,甲产品的产量和相应的生产能耗近似呈什么关系?(3)如果甲产品的产量为7吨,预测相应的生产能耗的吨数.知识点二一元线性回归方程2.[多选题]已知一组样本点(x i,y i),其中i=1,2,3,…,30,根据最小二乘法求得的回归方程是y=bx+a,则下列说法正确的是( )A.回归方程y=bx+a经过点(x,y )B.至少有一个样本点落在回归直线y=bx+a上C.对所有的x i(i=1,2,3,…,30),预报变量bx i+a的值一定与y i有误差D.若y=bx+a的斜率b>0,则变量x与y正相关3.已知变量x,y之间的一组数据如下表所示:若根据表中数据得出y+0.76x,则表中a的值为________.4.某电商平台为某工厂的产品开设直播带货专场.为了对该产品进行合理定价,用不同的单价在平台试销,得到的数据如下表所示:(1)(2)若该产品成本是4元/件,假设该产品全部卖出,预测把单价定为多少时,工厂获得最大利润?关键能力综合练一、选择题1.一位母亲记录了自己儿子3~9岁的身高数据(略),由此建立的身高与年龄的线性回归方程为Y=7.19X+73.93,用这个方程预测这个孩子10岁时的身高,则正确的叙述是( )A.身高一定是145.83 cmB.身高在145.83 cm以上C.身高在145.83 cm左右D.身高在145.83 cm以下2.下表显示出样本中y随x变化的一组数据,由此判断它最可能是( )A.C.指数函数模型D.对数函数模型3.为了规定工时定额,需要确定加工某种零件所需的时间,为此进行了5次试验,得到5组数据:(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),由最小二乘法求得回归方程为y=0.67x+54.9.若已知x1+x2+x3+x4+x5=150,则y1+y2+y3+y4+y5=( ) A.75 B.155.4C.375 D.466.24.某青少年成长关爱机构为了调研所在地区青少年的年龄与身高状况,随机抽取6岁,9岁,12岁,15岁,18岁的青少年身高数据各1 000个,根据各年龄段平均身高作出如图所示的散点图和回归直线L.根据图中数据,下列选项中对该样本描述错误的是( )A.据样本数据估计,该地区青少年的身高与年龄成正相关B.所抽取数据中,5 000名青少年的平均身高约为145 cmC.直线L的斜率的值近似等于样本中青少年平均身高每年的增量D.从这5种年龄的青少年中各取一人的身高数据,由这5人的平均年龄和平均身高数据作出的点一定在直线L上5.已知变量x与y负相关,且由观测数据算得样本平均数x=4,y=5.6,则由该观测的数据算得的线性回归方程可能是( )A.y=0.4x+4 B.y=1.2x+0.7C.y=-0.6x+8 D.y=-0.7x+8.2二、填空题6.[易错题]某公司过去五个月的广告费支出x(单位:万元)与销售额y(单位:万元)之间有下列对应数据:且回归方程为y =6.5x +17.5,则下列说法:①销售额y 与广告费支出x 正相关;②丢失的数据(表中▲处)为30;③该公司广告费支出每增加1万元,销售额一定增加6.5万元;④若该公司下月广告费投入7万元,则销售额估计为60万元.其中,说法正确的是________.7.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:∧y=0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.8.[双空题]为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间X(单位:h )与当天投篮命中率Y 之间的关系:小李这56号打6小时篮球的投篮命中率为________.三、解答题9.记录某产品的单价x(元)与销售量y(件)的数据如下表所示:其中(1)已知y 与x 具有线性相关关系,求出y 关于x 的线性回归方程;(2)预测当单价为12元时,该产品的销售量.学科素养升级练1.[多选题]某企业节能降耗技术改造后,在生产某产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据如表,现发现表中有个数据看不清,已知线性回归方程为∧y=6.3x +6.8,下列说法正确的是( )A .B .回归直线∧y =6.3x+6.8必经过样本点(4,★)C .回归系数6.3的含义是产量每增加1吨,相应的生产能耗一定增加6.3吨D .据此模型预测产量为7吨时,相应的生产能耗为50.9吨2.[学科素养——数据分析]某地随着经济的发展,居民收入逐年增长,该地一银行连续五年年底的储蓄存款情况如下表所示:为了计算方便,工作人员将上表的数据进行了处理,令t=x-2014,z=y-5,得到下表:(1)求z关于t(2)通过(1)中的方程,求出y关于x的线性回归方程;(3)用所求线性回归方程预测到2024年年底,该地此银行储蓄存款额可达到多少?§1一元线性回归1.1 直线拟合1.2 一元线性回归方程必备知识基础练1.解析:(1)由题中所给数据,可得散点图如图所示.(2)从散点图可以发现甲产品的产量和相应的生产能耗近似呈线性关系.(3)甲产品的产量为7吨时,相应的生产能耗大约为5吨.2.解析:线性回归方程y =bx +a 经过样本中心点(x ,y ),故A 正确;样本点可能都不在回归直线上,故B 错误;样本点可能在直线y =bx +a 上,即可以存在x i 对应的预报变量bx i +a 与y i 没有误差,故C 错误;若y =bx +a 的斜率b >0,则样本点的分布从左至右上升,变量x 与y 正相关,故D 正确.故选AD.答案:AD3.解析:由题意,可知x =14(5+6+7+8)=6.5.由回归直线过样本点的中心(x ,y ),得y =0.26+0.76x =0.26+0.76×6.5=5.2,由y =14(4+5+5.4+a )=5.2,解得a =6.4.答案:6.44.解析:(1)x =8+8.2+8.4+8.6+8.8+96 =8.5, y =90+84+83+80+75+686=80,=80+20×8.5=250,∴y 关于x 的线性回归方程为y =-20x +250.(2)设工厂获得的利润为L 万元,则L =(x -4)(-20x +250)=-20(x -8.25)2+361.25,∴预测把单价定为8.25元时,工厂获得最大利润,最大利润为361.25万元.关键能力综合练1.解析:由线性回归方程可得Y 0=7.19×10+73.93=145.83,所以预测这个孩子10岁时的身高在145.83 cm 左右.答案:C2.解析:画出散点图(图略),可以得到这些样本点在某一条直线上或该直线附近,故最可能是线性函数模型.答案:A3.解析:由题意,可得x =1505=30,代入回归方程中,可得y =0.67×30+54.9=75,所以y 1+y 2+y 3+y 4+y 5=5×y =375,故选C .答案:C4.解析:在给定范围内,随着年龄的增加,年龄越大身高越高,故该地区青少年的身高与年龄成正相关,故A 正确;用样本数据估计总体可得平均数大约是145 cm ,故B 正确;根据直线斜率的意义可知斜率的值近似等于样本中青少年平均身高每年的增量,故C 正确;各取一人具有随机性,根据数据做出的点可能在直线附近,不一定在直线上,故D 错误.故选D .答案:D5.解析:因为变量x 与y 负相关,所以b<0,排除A 、B 选项;将x =4,y =5.6代入检验即可得到C 是正确选项,故选C .答案:C6.解析:由回归方程为y =6.5x +17.5,可知b =6.5,则销售额y 与广告费支出x 正相关,所以①是正确的;设丢失的数据为a ,由表中的数据可得x =5,y =220+a 5,把点(5,220+a 5 )代入回归方程,可得220+a 5=6.5×5+17.5,解得a =30,所以②是正确的;该公司广告费支出每增加1万元,销售额应平均增加6.5万元,所以③不正确;若该公司下月广告费投入7万元,则销售额估计为y =6.5×7+17.5=63万元,所以④不正确.答案:①②7.解析:由题意知,[0.254(x +1)+0.321]-(0.254x +0.321)=0.254.答案:0.2548.解析:小李这5天的平均投篮命中率Y - =15×(0.4+0.5+0.6+0.6+0.4)=0.5,X - =3,∧b =0.110 =0.01,∧a =Y - -∧bX - =0.5-0.03=0.47. ∴线性回归方程为Y =0.01X +0.47,则当X 0=6时,Y 0=0.53.∴预测小李该月6号打6小时篮球的投篮命中率为0.53.答案:0.5 0.539.解析:(1)由题意,得x =15(6+7+8+9+10)=8, y =15(55+48+44+38+25)=42,∴b=1 610-5×8×42330-5×82 =-7,a =42-(-7)×8=98, ∴y 关于x 的线性回归方程为y =-7x +98.(2)当x =12时,y =-7×12+98=14,即当单价为12元时,该产品的销售量约为14件.学科素养升级练1.解析:设看不清的数字为a ,计算x - =15 ×(2+3+4+5+6)=4,y - =15×(19+25+a +38+44)=126+a 5 ,代入线性回归方程∧y =6.3x +6.8中,得126+a 5=6.3×4+6.8,解得a =34,所以y - =32,所以看不清的数据★的值为34,A 正确;又回归直线∧y=6.3x +6.8过样本点(4,32),所以B 错误;回归系数6.3的含义是产量每增加1吨,相应的生产能耗预测增加6.3吨,所以C 错误;x =7时,∧y=6.3x +6.8=6.3×7+6.8=50.9,所以据此模型预测产量为7吨时,相应的生产能耗为50.9吨,D 正确.故选AD .答案:AD2.解析:(1)t - =3,z - =2.2,所以z 关于t 的线性回归方程为∧z=1.2t -1.4. (2) ∧z=1.2t -1.4, 代入t =x -2014,z =y -5,得∧y-5=1.2(x -2014)-1.4, 即∧y=1.2x -2 413.2. 故y 关于x 的线性回归方程为∧y=1.2x -2 413.2. (3)由(1)中的线性回归方程,预测到2024年年底,该地此银行储蓄存款额可达到1.2×2024-2 413.2=15.6(千亿元).。
第二节一元线性回归分析
第二节一元线性回归分析本节主要内容:回归是分析变量之间关系类型的方法,按照变量之间的关系,回归分析分为:线性回归分析和非线性回归分析。
本节研究的是线性回归,即如何通过统计模型反映两个变量之间的线性依存关系.回归分析的主要内容:1.从样本数据出发,确定变量之间的数学关系式;2.估计回归模型参数;3.对确定的关系式进行各种统计检验,并从影响某一特定变量的诸多变量中找出影响显著的变量。
一、一元线性回归模型:一元线性模型是指两个变量x、y之间的直线因果关系。
理论回归模型:理论回归模型中的参数是未知的,但是在观察中我们通常用样本观察值估计参数值,通常用分别表示的估计值,即称回归估计模型:回归估计模型:二、模型参数估计:用最小二乘法估计:【例3】实测某地四周岁至十一岁女孩的七个年龄组的平均身高(单位:厘米)如下表所示某地女孩身高的实测数据建立身高与年龄的线性回归方程。
根据上面公式求出b0=80。
84,b1=4。
68。
三.回归系数的含义(2)回归方程中的两个回归系数,其中b0为回归直线的启动值,在相关图上变现为x=0时,纵轴上的一个点,称为y截距;b1是回归直线的斜率,它是自变量(x)每变动一个单位量时,因变量(y)的平均变化量。
(3)回归系数b1的取值有正负号。
如果b1为正值,则表示两个变量为正相关关系,如果b1为负值,则表示两个变量为负相关关系。
[例题·判断题]回归系数b的符号与相关系数r的符号,可以相同也可以不同.( )答案:错误解析:回归系数b的符号与相关系数r的符号是相同的=a+bx,b<0,则x与y之间的相关系数( )[例题·判断题]在回归直线yca。
r=0 b.r=1 c。
0<r〈1 d.—1<r〈0答案:d解析:b〈0,则x与y之间的相关系数为负即—1〈r〈0[例题·单选题]回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )a。
线性相关还是非线性相关 b.正相关还是负相关c。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 1
(2)
k
由于 Vi2 最小,(2)式对a和b求偏导应为0。
i 1
a
k i1
Vi 2
2
k i1
yi a bxi
0
b
k i1
Vi 2
2
k i 1
yi a bxi
xi 0
整理后得
k
k
yi ka b xi 0
i 1
i 1
k
k
k
xi yi a xi b xi2 0
i 1
b. 回归方程的精密度和相关系数
最小二乘法确定a,b有没有误差?
总结经验公式时,我们初步判断所假定的函数关系是否正确?
为了解决这些问题,就需要讨论回归方程的精度和相关性。为了估计回归方 程的精度,进一步计算数据点(xi ,yi)偏离最佳直线y=a+bx的大小,我们引入 概念—剩余标准偏差,它反映着回归方程与各数据点的拟合程度。
➢ 于是可以运用求极值的原理,将求最好拟合直线问题转换为求
误差平方和最小。
小结:最小二乘法拟合
y=a+bx
若实际校准测试点有n个,则第i 个校设拟准合数直据线与方拟程合:直线上响应 值之间的残差为
y yi
y=a+bx
0
xI
x
最小二乘拟合法
Vi yi yi (a bxi )
最小二乘法拟合直线的原理就是使Vi2为最小值,即
代入(1)式,等式两边并不相等。 等式两端的差值用 V1,V2......Vk 表示,则
V1 y1 (a bx1)
V2 y2 (a bx2 )
…...
Vk yk (a bxk )
按最小二乘法原理,a、b最佳值应满足:
k
k
Vi2 ( yi a bxi )2 min
i 1
y 84.33 0.516 x
如此以来,高的伸进了天,低的缩入了地。他
百思不得其解,同时又发现某人种的平均身高
是相当稳定的。最后得到结论:儿子们的身高 回复于全体男子的平均身高,即“回归”—— 见1889年F.Gallton的论文《普用回归定律》。
后人将此种方法普遍用于寻找变量之间的规律
最小二乘法的地位与作用
测量值 sy 斜率 sb 截距 sa
k
(yi
a
bx i
)2
i1
k2
sy
sy
k(x2
2
x)
L xx
x2 L xx
sy
x2 sb
(1 r2 )Lyy k2
r Lxy Lxx Lyy
L xx
k
x
2 i
i1
1 k
k
(
x
i
)2
i1
Lyy
k
yi2
i1
1 k
k
( yi
i1
)2
相关系数r
定量描述x、y变量之间线性相关程度的好坏(寻找经验公式用)
r
Lxy LxxLyy
,a
y - bx, b
L xy L xx
,sy
(1 r 2 )L y y k2
讨论: (1) r称为相关系数。其值可正可负,一般有 0 r 1
(2)r=0时,
Lxy 0,因Lyy 0,Lxx 0,故b 0,a y,即y a bx y
即y与x无线性关系,说明数据点的分布规律非线性。 r>0,拟合曲线斜率为正,r<0 斜率为负。 (3)r=±1时, Sy=0,即各数据点与最佳直线完全重合, x,y 完全线性相关。 (4) 0<r<1时,各数据点与最佳直线不完全重合。有两种情况:
经验公式的线性回归
在进行经验公式的回归时,必须先确定函数的形式。确定 函数形式一般是根据理论的推断或者从实验数据的变化趋势来 推测判断。
如根据实验得到的一组数据(xi ,yi)(或其在x y坐标上的 数据点)初步判断经验公式为线性关系时,即可用最小二乘法 相关公式求出b, a值,并进而拟合出直线的线性关系式y=a+bx 的回归方程。
2
x
x2
a
x xy y.x2
2
x
x2
y bx
为了计算方便,引入符号:
Lxx
k i 1
( xi
x)2
k i1
x
2 i
1k (
k i1
xi )2
Lyy
k i 1
( yi
y)2
k i1
yi2
1 k
k
(
i1
yi )2
Lxy
k i 1
( xi
x )( yi
y)
k i1
xiyi
1 k
普通物理实验绪论课(下)
授课教师:黄育红 E-mail: huangyh@
课程导入
列表法
作图法 直观、简便。但主观随意性大(粗略)
逐差法 粗略的近似计算方法(自变量等间隔变化, 对一次逐差必须是线性关系,否则先进行 曲线改直)
回归分析法(最小二乘为基础) 最准确的计算方法
一、最小二乘法的历史、地位和作用 二、一元线性回归
a.一元线性回归及最小二乘法的原理
由于实验数据总是存在着误差,所以把各组数据 代入y=a+bx时,两边并不相等,作图时,数据点 也不能准确地落在公式对应的直线上,如图所示, 从中还可看出第i个数据点与直线的偏差为
Vi yi2 xi2
Y
yi * *
* **
*
Vi
x i
*
O
x
a.一元线性回归及最小二乘法的原理
何谓“回归分析”?
若两个变量x和y之间存在一定的关系, 并通过试验获得x和y的一系列数据,用 数学处理的方法得出这两个变量之间的 关系式,这就是回归分析,也称拟合问 题,所得关系式称为经验公式,或称回 归方程、拟合方程。
1、物理量y和x间函数关系已定,拟合函数中的待定常数
2、y和x间函数关系未知,从函数点拟合出经验公式
现在回归分析法已远非道尔顿的本意。
已成为探索变量之间关系最重要的方法, 用以找出变量间关系的具体表现形式。
后来,回归分析法从其方法的数学原 理——误差平方和最小(平方是一个数 的自乘,也叫二乘)出发,改称为最小 二乘法。
一、最小二乘法的历史、地位和作用 二、一元线性回归
a.一元线性回归及最小二乘法的原理 b. 回归方程的精密度和相关系数 c. 回归分析法的运算步骤和实例分析 三、二元线性回归 四、非线性回归
坏值,式中ks为置信限,s为测量列的标准偏差,
k值与测量次数n有关。
剔除步骤:计算测量列的s,按准则判断并剔除坏数据;再计算 剔除坏值后的测量列的s(新),进一步剔除坏值,直至坏值全 部剔除,最后根据剩下的数据计算测量结果和估算误差。
2020年8月9日2时17分
28
总结:相关系数
xy x y
Lxy
[x2 (x)2 ][ y2 ( y)2 ] LxxLyy
工程应用中的问题
例1 在研究单分子化学反应速度时,得到下列数据:
i 12345678
i 3 6 9 12 15 18 21 24
yi 57.6 41.9 31.0 22.7 16.6 12.2 8.9 6.5
其中 表示从实验开始算起的时间,y 表示时刻 反应物的量.试定出经验公式 y f ( ).
** **
*
*
O
x
测量列中坏值的剔除
拉依达准则(3σ准则):以3σ为置信限(概率为99.7%),凡
超过此值的偏差均看作粗差,与之
相应的测量值为坏值,应剔除。 肖维涅准则:此准则规定误差出现的概率小于1/2n时,认为与
此误差对应的测量值为坏值,应剔除。即若测量
列中的测量值x满足 xi x ks 时,则 xi 是一
试根据上面的试验数据建立 y 和 t 之间的经验公 式 y f (t).
例3 某种合金的含铅量百分比(%)为 p,其溶解温度0C
为,由实验测得 p 与 的数据如下表:
p% 36.9 46.7 63.7 77.8 84.0 87.5 0C 181 197 235 270 283 292
试用最小二乘法建立 与 p 之间的经验公式 ap b.
由上述分析可知,Sy的数值表明了线性回归方程的精密 度,或者,形象地说,描绘了回归线的“宽度”。可以
证明,数据点落在y a bx 3Sy 范围内的机会
是99.7%,按照多次直接测量中讨论的相同标准,也可 判别其是否有粗差,要否剔除。(参考p12的3σ准则, 复习见ppt下页)
Y
3Sy
*
* **
儿子们身高向着平均身高“回归”,以保持种族的稳定
185
180
Y
175
170
y
165
x
160 140 150 160 170 180 190 200
X
“回归”一词的由来
从图上虽可看出,个子高的父亲确有生出个子
高的儿子的倾向,同样地,个子低的父亲确有
生出个子低的儿子的倾向。得到的具体规律如
下:
y a bx u
由化学反应速度的理论知道,y f ( ) 应是 指数函数:y kem , 其中 k 和m 是待定常数
例2 为了测定刀具的磨损速度,我们做这样的实验: 经过一定时间(如每隔一小时),测量一次刀具的 厚度,得到一组试验数据如下:
顺序编号i 0 1 2 3 4 5 6 7 时间ti (小时) 0 1 2 3 4 5 6 7 刀具厚度 yi(毫米) 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.3
k
(
i1
k
xi )(
i1
yi )
b Lxy L xx