高等有机第四章有机化学反应中间体
有机化学中的反应中间体和活化能
![有机化学中的反应中间体和活化能](https://img.taocdn.com/s3/m/1a3a3d04f6ec4afe04a1b0717fd5360cbb1a8d16.png)
有机化学中的反应中间体和活化能有机化学是研究碳及其化合物的科学,其中反应机理和反应中间体的研究对于理解有机化学反应的本质和发展有重要意义。
在有机化学反应中,中间体是指在化学反应中形成和消失的反应物和产物之间的中间物质。
活化能则是指化学反应发生所需的最小能量。
一、反应中间体反应中间体是在化学反应中暂时形成的物质,它具有较长的寿命,存在于反应物转化为产物的过程中。
反应中间体的形成和消失通常是化学反应的一个关键步骤,它们对于反应速率和产物选择性起着决定性的影响。
1.1 离子中间体离子中间体是指在有机化学反应中形成的带电离子物种。
常见的离子中间体包括碳正离子(碳正离子是在电子亲合力强的试剂作用下形成的,比如亲电取代反应)、碳负离子(碳负离子是在电子捐赠试剂作用下形成的,比如酸催化的亲核取代反应)和自由基离子(自由基离子是在自由基反应中形成的,比如自由基加成和自由基取代反应)。
1.2 中心化学键中间体中心化学键中间体是指在有机化学反应中两个化学键断裂和/或形成的过程中形成的共价中间体。
常见的中心化学键中间体包括碳-碳单键中间体(比如亲电加成反应,碳-碳双键断裂形成碳-碳单键中间体)、碳-碳双键中间体(比如亲电取代反应,碳-碳单键断裂形成碳-碳双键中间体)和碳-氢键中间体(比如氧化反应,氧化剂作用下碳-氢键断裂形成碳-氢键中间体)。
二、活化能活化能是指在化学反应中,反应物由其能量较低的状态转变为能量较高的过渡态所需要的最小能量。
它是影响化学反应速率的重要因素。
活化能较低的反应通常具有较快的反应速率,而活化能较高的反应则速率较慢。
在有机化学中,活化能的大小取决于反应的步骤和反应物之间的相互作用。
活化能的降低可以通过催化剂的添加或者调节反应条件来实现。
催化剂可以通过提供合适的反应路径、降低过渡态的能量或者提供其他交互作用来降低活化能,从而加速化学反应的进行。
三、应用和意义对于有机化学研究者和实践者来说,深入理解和掌握反应中间体和活化能的概念和特点具有重要的意义。
举例说明共轭效应对反应过程中反应中间体的稳定作用
![举例说明共轭效应对反应过程中反应中间体的稳定作用](https://img.taocdn.com/s3/m/4d79e5b2f71fb7360b4c2e3f5727a5e9846a2757.png)
共轭效应是有机化学中一种重要的分子内稳定效应,对于反应过程中的反应中间体来说,共轭效应能够起到一定的稳定作用。
下面我们将通过举例说明来详细解释共轭效应对反应中间体的稳定作用。
1. 什么是共轭效应?在有机化学中,共轭效应是指分子中含有共轭结构的化合物,通过共轭π电子体系的共享能够影响化合物的稳定性和反应性。
共轭结构通常指的是相邻的两个双键或者一个双键和一个孤对电子的相互作用。
共轭效应可以影响分子的光学性质、电子结构以及化学反应。
2. 共轭效应对反应中间体的稳定作用在有机化学反应中,反应中间体是指在反应过程中形成的、并不立即参与反应的中间物质。
共轭效应对反应中间体的稳定作用主要体现在以下几个方面:2.1 共轭效应对碳离子中间体的稳定作用当反应过程中生成了碳离子中间体时,共轭效应可以通过共轭π电子体系的电子云分布来稳定碳离子,使其形成共轭结构,减少电子孤对的紧张,降低中间体的能量,从而增加反应的速率和选择性。
1,3-丁二烯在发生负离子加成反应时,产生的负离子中间体比较稳定,主要是由于共轭效应的存在。
2.2 共轭效应对自由基中间体的稳定作用同样地,共轭效应也能够对自由基中间体的稳定起到一定作用。
通过共轭结构中π电子的共享,可以减少自由基的不稳定性,增加其稳定性。
这种稳定性不仅能够帮助中间体保存更长时间,也能影响反应的产率和选择性。
苯的自由基取代反应中,共轭效应使得苯环上生成的自由基更加稳定,也更容易与其他分子发生反应。
3. 共轭效应的应用举例在有机合成和药物化学领域,共轭效应的稳定作用得到了广泛的应用。
药物分子中的共轭结构可以增加化合物的稳定性,提高其在体内的代谢稳定性,延长其药效持续时间。
共轭效应还可以影响有机合成反应的产率和产物选择性,为有机合成化学提供了重要的理论基础和实际指导。
通过以上例子我们可以看出,共轭效应在有机化学反应中对于稳定反应中间体起到了重要的作用。
研究共轭效应对于理解有机化学反应的机理、提高合成效率以及设计合成新药物等方面具有重要意义。
南开大学高等有机化学课件第四章有机反应机理的研究和描述
![南开大学高等有机化学课件第四章有机反应机理的研究和描述](https://img.taocdn.com/s3/m/6f87611a0b4e767f5acfced2.png)
Ea ln k ln A RT
R: 气体常数, A: 频率因数,
在不同温度下测速率常数, 可计算出 Ea: Arrhenius活化能
Ea ΔH RT ΔS Ea log k 10 .753 log T 4.576 4.576T
4.3.1 简单速率表达式的积分形式
正常情况下动力学数据用微分方程的积分形式来处理:
如简单的一级反应和二级反应:
1 C0 一级级反 : k ln( ) t C 1 b0(a) 二级反应 : k (a0 - b0)ln t a0(b)
a, b, c: 时间t时浓度
a0, b0, c0: 起始浓度
一些反应速率方程积分形式的推导:
4.2 动力学数据(Kinetic Data)
动力学数据使我们能更详细地洞察反应机理。用跟踪反 应物消失和产物出现的方法可以测定某一个反应的速度。波 谱技术提供了一个迅速又连续地监测浓度变化的方法,因而 往往被用来测量反应进行的程度。总之,任何与一种反应物 或产物的浓度有关而且能被测量的性质,都可利用来测定反 应速度。 动力学研究的目的是为了在反应物和催化剂的浓度以及 反应速度之间建立定量关系。
k1[A][B] [C] k -1
d[D] k1 k2[C] k2 [A][B] kobs.[A][B] dt k -1
大多数反应不止一步, 可以参考一些重要的多步反应例子来得出动 力学表达式, 例如在决速步之前可以有一个快速平衡:
ROH + H+
+ ROH2
快 k1 k -1
_
ROH2 RBr +H2O
计算出一个反应的自由能变化,就使反应平衡位置的计算有了 可能,也就指出了某一化学过程的可实现性。 有兴趣的反应大多数发生在溶液中,任何这种反应的焓、熵和 自由能都与溶剂介质有关。 但是,热力学数据并不能说明是否存在一个能量上有利的潜在 反应途径,即反应速度上的情报。因此,深入了解反应机理以及 有机反应进行是中间所经各步的速度和能量要求是极为重要的。
高等有机化学课件第四章 有机化合物的芳香性
![高等有机化学课件第四章 有机化合物的芳香性](https://img.taocdn.com/s3/m/739a19641eb91a37f1115ce5.png)
丁二烯的分子轨道能量
类似处理可以得到其它单环共轭体系的轨道能量为:
芳香体系的特征—芳香性是与分子轨道的“特殊 稳定性”相联系的。分子轨道理论假设,在芳香体系 中,除了碳-碳和碳-氢之间有键以外,还存在着一种 更稳定的键 (大键)。
Hü ckel对芳香化合物的特征用简单分子轨道理论 作了满意的解释,提出以sp2杂化的原子形成的含有 4n+2个电子的单环平面体系,具有相应的电子稳定性。 通常把这个规律称为4n+2规律。
光谱研究的结果表明苯分子具有六重对称性,其 中六个碳原子位于平面正六边形的角顶,六个碳-碳 键彼此相当。X-射线分析、电子衍射和偶极矩测定, 也都证明了苯的平面六边形结构。
苯的实验结构数据
共价键理论对苯结构的解释: 苯分子的各个键角都是120,因而碳原子必须采 取sp2杂化轨道,构成六个C-C 键和六个C-H 键。而 每一个碳原子的另外一个p电子轨道,则在与环垂直的 方向形成8字形的轨道相继重叠,均匀对称地配布在整 个环上,形成一个环状共轭体系。这里,电子公共化, 电子密度平均化,环上没有单键复键的区别。因而, 经典的定域化的价键结构式(环己三烯式)不能代表苯 的结构。
NMR研究证明蓝烃的芳香性。蓝烃分子的化学活 性相当于一个活泼的芳香化合物。亲电取代很容易地 发生在1(3)位置上,亲核取代发生在4(8)位置上。蓝烃 似乎不发生加成反应。这样的化学活性也表明此烃的 芳香性。 理论计箅的结果和测定的数值是一致。以此键长 与苯的键长(1.395Å)相比就表明了蓝烃的芳香性。9, 10-键显然没有参加共轭体系,因此可以把蓝烃看作 [10]轮烯。蓝烃的共轭能是302千卡/摩尔。
(3)富烯衍生物 富烯不很稳定,但是它的寿命和偶极矩 可以被环丙基和胺基所提高。富烯、6,6—二环丙基富 烯和6,6—二(二甲胺基)富烯的偶极矩分别为1.1,1.7和 5.4D。
第四章 碳碳双键的加成反应
![第四章 碳碳双键的加成反应](https://img.taocdn.com/s3/m/73906dcda1c7aa00b52acbf4.png)
+
CH3 CH3
反式( ) 顺式( ) 反式(dl) 顺式(dl) 50% 50% 4.2.3 不对称加成规则 不对称烯烃与不对称试剂的加成具有区域选择性, 不对称烯烃与不对称试剂的加成具有区域选择性 , 马氏加成。形成了较稳定的碳正离子。 为马氏加成。形成了较稳定的碳正离子。 试剂中带部分正电的原子或基团加到具有较多负 电荷双键碳上。 电荷双键碳上。
第四章 碳碳双键的加成反应
高等有机化学
加成反应:催化氢化、亲电加成、 加成反应:催化氢化、亲电加成、亲核加成和自由基 加成。 加成。 4.1 催化氢化 催化氢化分为非均相催化(多相催化) 均相催化。 催化氢化分为非均相催化(多相催化)和均相催化。 非均相催化 非均相催化的催化剂为固体, 非均相催化的催化剂为固体,均相催化的催化剂溶于 介质成液相,整个反应体系为一相。 介质成液相,整个反应体系为一相。 4.1.1 多相催化氢化 氢和烯烃吸附在催化剂表面, 键和H-H键断裂,形 键断裂, 氢和烯烃吸附在催化剂表面,使π键和 键和 键断裂 成金属氢化物和配合物, 成金属氢化物和配合物,氢原子再分别转移到双键碳 原子. 原子 立体化学为顺式加成,反应收率高,速度快。 立体化学为顺式加成,反应收率高,速度快。
CH3CH CH2 + HBr
过氧化 物
CH3CH2CH2Br
稳定性: 稳定性 旋转. 旋转
CH3CHCH2Br > CH3CHBrCH2
H3 C
CH2Br
溴亚甲基为供电子基:+C’ > -I 溴亚甲基为供电子基:
4.2.4 烯烃的羟汞化-脱汞反应 烯烃的羟汞化-
加成方向为马氏加成,是合成醇一种常用方法。 加成方向为马氏加成,是合成醇一种常用方法。
有机反应活性中间体
![有机反应活性中间体](https://img.taocdn.com/s3/m/f57ebdcb6aec0975f46527d3240c844769eaa0ca.png)
常用氧化还原剂: Fe2+/Fe3+、Cu+/Cu2+、Ti2+/Ti3+、Co3+/Co2+等。
H2O2 + Fe2+ RCOOH + Fe2+
HO + OH- + Fe3+ RCO + OH- + Fe3+
采用电解法也能够产生自由基。
阳极:RCOO- -e R + CO2
阴极:2 R C R +e 2 R C R
可能填充方式:a)2个电子占据1个轨道,自旋相反; b)2个电子各自占据1个轨道,其自旋方宾
三线态卡宾
单线态、三线态是光谱学上旳术语。
一般以为:单线态卡宾中心碳原子采用sp2杂化,三线态 卡宾中心碳原子采用sp杂化,可被看成是双自由基。理 论上,单线态键角应为120º,三线态键角应为180º,实 际并非如此。
R H2O
b、对不饱和键旳加成
CZ H
C ZH
Z: O,C,S,N
CC
HCl
CC
Cl
C O H C OH
C OH
c、由其他正离子转化而生成
NH2 NaNO3
N2
HCl
HH
Ph3CSbF6
N2
SbF6
(3)非经典碳正离子
Brown和Schleyer以为:假如能用个别旳路易斯构 造式来表达,其碳正离子旳价电子层有六个电子, 与三个原子或原子团相连,如+CH3,R3C+等称为 经典碳正离子。
三线态卡宾
(2)卡宾旳生成
能形成卡宾旳化合物:HCCl3、CH2=C=O、CH2N2
主要有下列几种方式: 1)-消除反应
高等有机化学第四章有机反应中间体解析
![高等有机化学第四章有机反应中间体解析](https://img.taocdn.com/s3/m/f44a1e80eefdc8d377ee3221.png)
正电荷分散程度大
共轭体系的数目越多,正碳离子越稳定:
CH2 CH 3C > CH2 CH 2CH > CH2 CHCH2
当共轭体系上连有取代基时,供电子基团使正碳离子 稳定性增加;吸电子基团使其稳定性减弱:
CH3
CH2 >
CH2 > O2N
CH2
环丙甲基正离子比苄基正离子还稳定:
3C >
2CH > CH2 >
含有带负电荷的三价碳原子的原子团。 是最早被确认的活性中间体
1、碳负离子的结构
两种构型: 未共用电子对占据p轨道
未共用电子对占据sp3杂化轨道
有利构型!
桥头碳负离子 角锥结构可以快速翻转,不具有手性
三元环碳负离子难于翻转 得到构型保持的氘代产物
当碳负离子与相邻的不饱和体系共轭时,平面结 构变为有利结构
CH2
环丙甲基正离子的结构:
C
其结果是使正电荷分散
CH2
空的 p 轨道与弯曲轨道的交盖
随着环丙基的数目增多,
CH2
CH2
正碳离子稳定性提高。
直接与杂原子相连的碳正离子结构:
氧上未共有电子对所 占 p 轨道 与中心碳原子上的空的 p轨道 侧面交盖,未共有电子对离域, 正电荷分散。
CH3 O CH2
CH3O CH2
HC CH
NaNH3 液 NH3
HC CNa
NH3
Ph3C H
NaNH3 液 NH3
Ph3CNa
NH3
CH3COCH2COOEt NaOEt CH3COCHCOOEt
常用的碱 ■ 有机锂试剂:n-BuLi, PhLi, MeLi ■ KOBut ■ LDA
浅谈有机化学反应中的活性中间体
![浅谈有机化学反应中的活性中间体](https://img.taocdn.com/s3/m/01c42b3c87c24028915fc34d.png)
浅谈有机化学反应中的活性中间体王敏 2005110031 西北大学化学系化学专业摘要:有机反应活性中间体在有机化学中占有极其重要的地位。
本文简要的介绍了基础有机化学反应中涉及到的几种反应活性中间体——碳正离子、碳负离子和自由基。
关键词:活性中间体,碳正离子,碳负离子,自由基学习《有机化学》有一学期了,我个人觉得有机化学反应的机理非常有趣,现抽空将所学的有机化学反应机理里牵扯的一些活性中间体介绍给大家,希望能对大家以后的学习有所帮助。
研究反应机理时,需要用一组基元反应来解释反应过程。
要用几个基元反应才能描述整个反应过程的反应称为复杂反应,在这些反应中常经过一个或多个基元反应才能形成反应活性中间体,然后再经过一个或者几个基元反应达到最终产物。
在复杂反应中,沿着反应坐标常出现多个最高能垒,在每两个能垒之间有一个最低能垒,具有这种最低能垒的结构及称为反应活性中间体。
有机反应中的机理大多是分步进行的,在这些反应过程中常生成经典碳正离子、碳负离子、自由基等活性中间体。
下面就对以上几种活性中间体进行简单的描述。
1、 碳正离子1.1、碳正离子的结构碳正离子的中心碳原子为sp 2杂化,中心碳原子即与其相连的三个原子在同一平面内,在与平面垂直的方向,有一个空的p 轨道,如下图:C 23R 1NuC 2R R 1NuSP 2平面结构1.2、经典碳正离子是有机反应中的重要中间体。
S N 1亲核取代反应、双键亲电加成、芳香亲电取代反应等都能生成碳正离子中间体。
以下分几种情况对碳正离子的生成进行介绍。
1.2.1、当取代中心为叔碳原子时,易于形成碳正离子,按S N 1机理进行反应。
例如反应:CH 3C Br CH 3CH 3NaOH H 2OK CH 3CH 3CH 3C Br CH 3C OH CH 3CH 3NaBr+ν=+其反应机理为: BrCH 3C CH 3CH 3Br C Br CH 3CH 3CH 3CH 3C CH 3CH 3OH CH 3C CH 3CH 3CH 3C CH 3CH 3OH CH 3C CH 3CH 3OH 第一步慢过渡态1中间体+第二步+快过渡态2δδδδ1.2.2、在双键与卤化氢的加成反应中必须先生成碳正离子中间体,才能生成重排产物,例如对反应:CH 3C CH 3CH 3CH CH 2HClCH 3C CH 3CH 3CHCH 3Cl CH 3C Cl CH 3CH CH 3CH 3+17%83%CH 3C CH 3CH 3CH 3C CH 3CH 3CH CH 3ClCH 3C CH CH 3CH CH 3Cl CH 3C Cl CH 3CH CH 3CH 383%CH 3C CH 3CH 3CHCH 3Cl 17%重排主要产物为后者,这是因为反应过程中生成的仲碳正离子通过甲基的迁移,重排成了更稳定的叔碳正离子。
有机活性中间体-苯炔
![有机活性中间体-苯炔](https://img.taocdn.com/s3/m/8ac90331f111f18583d05a73.png)
实验结果表明: (1)重排产品中引入的基团在脱掉的原子的邻位; (2)重排产品是从邻位脱掉原子(重氢)形成的。因而这些 反应是通过一个对称的中间体苯炔进行的。
环加成反应(Diels-Alder反应)
苯炔是具有高度反应活性的中间体,它的反应不受生成方法的影响, 即不论苯炔的来源如何,和同一作用物反应形成的产品是相同的。 苯炔的反应总是涉及到对“三键”的加成,从而在产品中恢复其芳香性。 苯块的反应可以是极性的。也可以是协同的环加成。
关于苯炔的结构,倾向性的意见为:
除了脱掉两个相邻的氢原子以外,苯环上基本没被扰乱。 在相邻的sp2杂化轨道之间必然有重叠,这样形成一个很弱 的键,这种情况和观察到的活泼性是一致的,红外光谱也 表明苯炔应具有这样的结构。
苯炔的反应
苯炔(或去氢苯)是从苯消除两个邻位取代基得到的具有高度反应活性的中间体。 芳香亲核取代反应过去存在着许多难以解释的现象。如用强碱处理芳香卤代物, 在某些情况下不仅形成正常的取代产品。而且同时也得到异构的化合物,其中 新的取代基在原来连接卤素的碳原子的体主要有: 碳正离子、碳负离子、自由基、 碳正离子、碳负离子、自由基、卡宾 碳烯)、乃春(氮烯)和苯炔等。 )、乃春 (碳烯)、乃春(氮烯)和苯炔等。
影响活性中间体稳定性的因素
诱导效应 共轭效应 空间效应 芳香性及其结构
苯炔的结构
苯炔的结构式可表示为:
有机反应活性中间体—苯炔
简介及意义
– 简介:所谓“活性中间体”就是指具有一定的反应活性 简介:所谓“活性中间体” 或不稳定性的中间体。 或不稳定性的中间体。有机反应的活性中间体不同于中 间过渡状态,它是真实存在的,且不少的活性中间体目 间过渡状态,它是真实存在的, 前已经被人们通过物理或化学的方法检测到或分离出 例如1900年Gowmberg首次发现的三苯甲基自由基 来.例如1900年Gowmberg首次发现的三苯甲基自由基 ((C6H5 )3一C·)就是一种中间体。 就是一种中间体。 就是一种中间体 – 意义:有机化学反应类型很多,反应过程也复杂。根据 意义:有机化学反应类型很多,反应过程也复杂。 过渡状态理论, 过渡状态理论,有机反应中反应物分子一般是通过一个 或几个能量最高的过渡状态形成产物,或者是经过某些 或几个能量最高的过渡状态形成产物, 中间体形成产物的。因此, 中间体形成产物的。因此,讨论反应活性中间体的稳定 性对研究有机化学反应的活性具有十分重要意义。 性对研究有机化学反应的活性具有十分重要意义。
高等有机化学PPT课件
![高等有机化学PPT课件](https://img.taocdn.com/s3/m/4e560f494b7302768e9951e79b89680203d86bb4.png)
CH3CONHNH2 HNO2 CH3CON3
CH3NCO
X
O
C=NOH
CH3NCO
X
O
O
C N O C NHCH3
乃春在芳环邻位是不饱和支链时,极易环化成五元环,这一 性质对杂环的合成具有重要意义:
AX B
H N:
A BX
N
H
第三节:自由基
自由基是共价键发生均裂,每个碎片各保留一个电子,是带 单电子的三价碳的化合物。
2004年1版 6、洪琳编《有机反应活性中间体》高等教育出版社1999.6第一版 7、斯图尔特.沃伦著《有机合成――切断法探讨》丁新腾译,上海科学
技术文献出版社1986年1月第一版 8、黄宪、吴世晖、徐汉生《有机合成》(上、下)
第一章 有机反应活泼中间体及在合成上的应用
在有机反应中,经常出现的活泼中间体是卡宾、乃春、自由基、碳正离子、 碳负离子(包括苯炔、叶立德)
第一章 有机反应活泼中间体 及在合成上的应用
第一节:卡宾(碳烯)(Carbene) 第二节: 乃春 第三节:自由基 第四节:碳正离子 第五节、碳负离子(Carbenion)(活泼亚甲基
化合物)和叶立德
第二章 官能团的选择性互变
第一节 还原反应 第二节 氧化反应
第三章 官能团的保护
第一节: 羟基的保护(醇、酚羟基的保护) 第二节:烯键的保护 第三节:羰基的保护(用醇保护) 第四节:羧基的保护-酯化 第五节:胺基的保护-酰化或成盐
(六)生物有机化学( Bioorganic Chemistry) (七)元素和金属有机化学(Element and Metal Organic Compounds Chemistry) (八)有机化学中的一些重要应用研究
碳碳双键的加成反应 有机化学课件
![碳碳双键的加成反应 有机化学课件](https://img.taocdn.com/s3/m/2aa9c1e7aef8941ea76e05c8.png)
高等有机化学
加成反应:催化氢化、亲电加成、亲核加成和自由基
加成。 4.1 催化氢化
催化氢化分为非均相催化(多相催化)和均相催化。
非均相催化的催化剂为固体,均相催化的催化剂溶于
介质成液相,整个反应体系为一相。
4.1.1 多相催化氢化
氢和烯烃吸附在催化剂表面,使π键和H-H键断裂,形 成金属氢化物和配合物,氢原子再分别转移到双键碳 原子. 立体化学为顺式加成,反应收率高,速度快。
CH3 δ+ - H δ C C + CH3 CH3
δ- δ+ HO-Cl
HO-
CH3 CH CHCH3 CH3 Cl
OH CH3 C CHCH3 CH3 Cl
CF3
δ- δ+ CH=CH2 +
δ+ δ- AlBr3 CF3 CH2 CH2Br H Br
H C Br
-I
H2C CH
H C H Br + H Br
C
C
+ H2
Pd,BaSO4 喹啉
C=C
OH
OH Pd,BaSO 4 喹啉 30℃
OH OH
4.底物结构
空阻大的底物催化氢化比较困难。
活性
RCOCl (RCHO) > RNO2(R-NH2) > RC
CR'
(RCH=CHR’) > RCHO ( RCHOH ) >RCH=CHR’ (RCH2CH2R’)>RCOR’>RCH (OH) R’>ArCH2OR (ArCH3) >RCN (RCH2NH2)
H H
C C
吸附
H H
第四章有机反应活性中间体介绍
![第四章有机反应活性中间体介绍](https://img.taocdn.com/s3/m/eeec314f02768e9950e73818.png)
H 空的 p 轨道
CC H
H
Liaocheng University
Organic Advanced Chemistry
②共轭效应
CH2 CH CH2
CH
CH2
CH2
p-π共轭
共轭体系的数目越多,碳正离子越稳定
(CH2=CH)3C+ > (CH2=CH)2CH+ > CH2=CHCH2+
Ph3C+ > Ph2CH+ > PhCH2+
常见的活性中间体有:碳正离子、碳 离子、自由基、卡宾、乃春、苯炔等六种。
Liaocheng University
Organic Advanced Chemistry
一. 碳正离子 (Carbocations() 亲电反应中间体)
含义:带正电荷的三价碳原子的原子团。 最常见
特点:缺电子,∵带正电荷的碳有六个价电子。
Liaocheng University
C6H13CHCH 3 2BuLi I
C6H13CHCH 3 Li
1)CO2 2)H3O+
C6H13CHCH
3
COOH
-70℃时,60%构型保持;0 ℃时,外消旋化
2. 碳负离子稳定性
1)诱导效应
-I:分散负电荷,使碳负离子稳定;反之亦然
CH3- > MeCH2- > Me2CH- > Me3C-
Liaocheng University
Organic Advanced Chemistry
常见化合物的pKa值
化合物
CH4 CH2CH2
C6H6 PhCH3 Ph2CH2 CF3H CHCH CH3CN CH3COCH3 PhCOCH3
高等有机化学第四章消除反应
![高等有机化学第四章消除反应](https://img.taocdn.com/s3/m/157e7e3010a6f524ccbf85b9.png)
HL
1. 单分子消除反应 (E1)机理
CC 慢 HL L
CC H
C C +H
反应活性:
υ =k C C HL
对于烷基: 3°> 2°> 1°
按E1机理进行反应的实例:
(1)
80%EtOH
(CH3)3CCl -H2O
(CH3)2C CH2 (CH3)3COH
80%EtOH
-H2O (CH3)3CS(CH3)3
3. 双分子消除反应 (E2) 机理
δ
H
HB
CC B CC
CC
L
Lδ
+ HB + L
υ=k [底物] [:B] B- : 中性或带负电荷,如:OR-,OH-,NH2-,
I-,RLi等。
L: X-,OSO2-, RCOO-,NR3+,NO2-, CN-,SR2+等。
按E2反应的底物特征:伯卤代烷、仲卤代烷、一级 烷基季铵盐等。
碱性: CN- <OH- <C2H5O-
DMSO
CH3(CH2)5CHCH3+KCN
CH3(CH2)5CHCH3+KCl
Cl
CN
3. 碱的体积
碱的体积大有利于E2, 不利于SN2
(CH3)2CHCH2Br + CH3CH2ONa CH3CH2OH (CH3)2CH CH2 + (CH3)2CHCH2OCH2CH3
H
R OR
HOC
H H
O
R H
+H C OR
进行热解消除反应的底物:
反应特点:1) 不需碱作催化剂 2) 环状过渡态机理 3) 通常是顺式消除。
RCH2CHOCOCH3 R' S
有机反应机理及中间体的探讨
![有机反应机理及中间体的探讨](https://img.taocdn.com/s3/m/980a20d018e8b8f67c1cfad6195f312b3169eb99.png)
有机反应机理及中间体的探讨有机反应机理是有机化学中的重要概念,它描述了反应的步骤和中间体的形成与转化过程。
中间体是指在反应中生成的稳定化合物,它在反应中起着关键的作用。
本文将探讨有机反应机理及中间体的相关内容。
一、有机反应机理的基本概念有机反应机理是研究有机反应过程中化学键断裂和形成的步骤和顺序。
它描述了反应物转变为产物的详细路径,包括中间体的形成和转化过程。
有机反应机理的研究对于理解和预测有机反应的性质和行为具有重要意义。
有机反应机理可以分为两类:步骤反应机理和连续反应机理。
步骤反应机理是指反应过程中存在多个连续的步骤,每个步骤都是一个中间体的生成和消失过程。
连续反应机理是指反应过程中没有明显的中间体生成,反应物直接转变为产物。
二、中间体的种类和性质中间体是指在有机反应中生成的稳定化合物,它在反应中起着关键的作用。
根据其化学性质和反应机制的不同,中间体可以分为离子中间体和自由基中间体。
离子中间体是带电的化合物,包括阳离子中间体和阴离子中间体。
阳离子中间体通常具有较高的电子亲和力,能够与亲电试剂发生反应。
阴离子中间体则具有较高的电子给予能力,能够与亲核试剂发生反应。
自由基中间体是具有单个未成对电子的化合物,它们通常非常反应活泼。
自由基中间体在有机合成和有机反应中起着重要的作用,如自由基取代反应、自由基聚合反应等。
三、有机反应机理的研究方法有机反应机理的研究方法主要包括实验方法和理论方法。
实验方法是通过实验观察反应物转变为产物的过程,分析中间体的生成和消失情况,从而推测反应机理。
常用的实验方法包括核磁共振(NMR)、质谱(MS)和红外光谱(IR)等。
理论方法是通过计算机模拟和量子化学计算来研究反应机理。
理论方法可以提供反应物转化为产物的详细路径和能垒,从而揭示反应机理的细节。
常用的理论方法包括密度泛函理论(DFT)和分子力场(MM)等。
四、有机反应机理的应用有机反应机理的研究对于有机合成和药物研发具有重要意义。
高等有机化学 第四章 亲电加成反应(2010)
![高等有机化学 第四章 亲电加成反应(2010)](https://img.taocdn.com/s3/m/9264e14c69eae009581bec71.png)
implies formation of a complex between one
molecule of the reagent and the reactant and also
is expected to result in anti addition.
11
(2)双分子历程 ① 碳正离子历程
H
+
+
13
CH3 C C H H
DCl CH3COOD
D
+C
D Cl C C CH3 H H
C CH3 H
H
通常不具有立体选择性
CH CH3 3 + CH3 + H2O CH3 H
+
CH3 CH3 顺式 OH HO + H CH3
H
OH
OH CH3 H CH3
反式
CH3 H
14
有时有重排产物出现
鎓离子存在的直接证据?
Biadamantylidene bronomium
19
(3)三分子历程(AdE3)
某些非共轭烯烃与HX加成按AdE3历程进行。
立体化学通常为反式加成
20
complex
21
HBr + H3C C C H H H CH3 H3C C C CH3 H
22
2. 烯烃亲电加成反应的立体化学
5
(2) Formation of carbocation ion pair from
alkene and electrophile.
6
Mechanism(2)also involves a carbocation intermediate, but it is generated in the presence of an anion and exists initially as an ion pair. Depending on the mutual reactivity of the two ions, they might or might not become free of one another before combining to give product.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-12-28
18
5 .伯胺与 HNO2 作用,先生成重氮离子,然后失去 N2形成碳正离子。 R-NH2 → R-N2+ → R+ + N2↑ (二)亲电试剂与重键加成 1.烯烃酸催化水合
C C + H+ C CH
2.羧基化合物的氧质子化
R C R O + H
+
R R C OH
2014-12-28
31
(四)空间效应
不饱和键与碳负离子的电子对共轭,则碳负离子必 然成为平面构型,以利于 P 轨道的最大重叠;若结构上 或空间上因受阻碍达不到最大重叠,则相应碳负离子的 稳定性就小。
1 O H H O O H O
1,3-环己二酮 可与NaOH液反应
双环[2.2.2]辛-2,6-二酮 不能与NaOH水液反应,
(一)S特性效应(杂化效应)
S轨道比相应的 P 轨道离原子核较近,故原子核对S 轨 道中的电子吸引力比相应P轨道的大。这种差别也反映在 杂化轨道中。
轨道吸电子能力: SP > SP2 > SP3 碳负离子稳定性: CH≡C- > -CH=CH2 > -CH2-CH3 这种影响是由于碳原子杂化轨道中S成分不同造成的, 称S特性效应,又叫杂化效应。
CH3NO2
CH2NO2
2014-12-28
34
2 . 碱性条件下脱羧(C-C键异裂)
CN C2H5 C COOH C6H5 碱 CN C2H5 C C6H5
(二)亲核试剂与重键加成(略)
四.碳负离子的反应
(一)对重键的加成
2014-12-28
35
1. 对羰基的加成
C O + R-MgX R C OMgX H3O R C OH
1 .简单的烷基负离子和环烷基负离子,均采取 SP3 杂化构型 , 这种构型使负离子能量较低。原因为 处于SP3轨道中未共用电子对和三对成键电子间(夹 角为109.50)的排斥作用较小。
三角锥体构型的证据之一是,碳负离子的反应非 常容易在桥头碳原子上发生。
2014-12-28
27
Li
1.CO2 Li 2.H3O+ COOH
2014-12-28
11
(二)芳香性的影响
环丙烯正离子
环庚三烯正离子
环戊二烯正离子
有芳香性,特别稳定
反芳香性,很不稳定
2014-12-28
12
(三)空间效应
碳正离子中心碳原子必须SP2杂化,才较稳定。 原因: ①平面构型有利于电荷离域; ②空p轨道的两瓣在平面两侧均可溶剂化。 若空间因素使之不能具有平面构型时,则稳定性降低。
共轭使负电荷分散导致碳负离子稳定性增加。
碳负离子中心碳连接有不饱和基团时,采用 SP2 杂 化,未共用电子对由于P—π共轭,使负电荷分散而稳定。
-CH 2-CH=O -CH -C≡N 2
CH2=CH-OCH2=C=NO N O
O CH2 N O CH2
Ph3C Ph2CH ,
2014-12-28
是相当稳定的,其盐可以在溶液中长期保存。
Δ G2≠
Δ G 1≠ A+B 反应物 C 产物
A+B 反应物
△G
D 产物
△G
a
2014-12-28
单步反应
b
双步 反 应
3
键断裂过程
BOND FISSION PROCESSES Generation of carbon reactive intermediates
C Y
均裂
HOMOLYSIS
HETEROLYSIS
2014-12-28
32
(五)芳香性
环戊二烯负离子
H H H
●●
H
H
环辛四烯二价负离子
2
2014-12-28
33
三.碳负离子的生成
(一)直接异裂
1.C-H键在碱作用下异裂,生成碳负离子。 eg. NaNH
CH CH
2
液NH3
CH C
CH3COCH2COOEt
NaOH
NaOEt
CH3COCH2COOEt
2014-12-28
29
(二)诱导效应
吸电子诱导效应使碳负离子的负电荷分散而增加 稳定性。 eg.
–CH 3
< -CF3 < -C(CF3)3
给电子诱导效应使碳负离子的负电荷更集中而降 低稳定性。 eg.
–CH 3
> RCH2- > R2CH- > R3C-
2014-12-28
30
(三)共轭效应
碳正离子具有一个或多个碳原子或氢原子桥连两个缺电
子中心,这些桥原子具有比一般情况高的配位数的碳正 离子称非经典碳正离子。
2014-12-28
24
例:实验表明:反-7-原冰片烯基对甲苯磺酸酯在乙酸
中的溶剂解的速度比相应的饱和化合物大 1011倍.
TsO H AcO
AcOH -TsO
H
Ts = CH3
CH3 H3C 109 28' H3C
0
C CH3
Cl
1200 C H3C CH3
+
Cl
2014-12-28
15
如四个叔卤代烷在丙酮水溶液中的相对速率如下:
CH3 H3CH2C C Cl CH3 CH3 (H3C)3C C Cl CH3 CH(CH3)2 (H3C)2HC C Cl CH(CH3)2
SO2
+
7
1 3
2电子3中心体系
5 4 2
25
2014-12-28
4.2
碳负离子
一、碳负离子结构
中心碳配位数为3,外层电子为8个,其中一对 电子是未共用的。 空间构型:①SP2杂化,平面构型(A) ②SP3杂化,三角锥体构型(B)
C
C
(A)SP2杂化
(B)SP3杂化
2014-12-28
26
碳负离子采取何种构型,与中心碳原子所连基 团有关。
H
CH3 CHCH3 CH3
重排
H CH3
-H
CH3
2014-12-28 22
(四)加成反应
碳正离子为亲电物种,与烯烃加成,生成新 的碳正离子。
R
+
C
C
C C R
2014-12-28
23
五、非经典碳正离子
Brown和Schleyer认为:如果能用个别的路易斯结构式
来表示,其碳正离子的价电子层有六个电子,与三个原 子或原子团相连,如+CH3,R3C+等称为经典碳正离子。 相反地,如果不能用个别的路易斯结构式来表示,这类
CH3 H3C C Cl CH3
k
1.00
2.06
2.43
6.94
2014-12-28
16
(四)溶剂效应
碳正离子的空p轨道可与某些有偶极特性的溶剂相作 用,这类溶剂具有稳定碳正离子的能力,所以,碳正离 子一般存在于溶剂中,难以在气相中单独存在。如叔丁 基 溴 在 水 溶 液 中 解 离 需 82KJ/mol , 而 气 相 中 需 820KJ/mol。
2014-12-28
13
下列反应难以进行:
Cl
1-氯双环[2.2.1]庚烷 烯丙基型正离子通常是稳定的,但下列碳正离子则因非 平面结构不能使电荷离域很不稳定:
但在形成的桥环足够大时,桥头C可取 平面构型,如1-金刚烷碳正离子:
2014-12-28 14
叔碳正离子易于形成且较稳定,是因为四面体反应物 离解成平面构型的碳正离子时,与中心碳原子直接相连的 原子之间的键角,由原来的109.50变成1200,三个基团的拥 挤程度减小,从而降低了张力(后张力)。
2. 对连有吸电子的C=C双键加成
EtO
CH2=CH2CN
R2CHCHO
R2CCHO
R2CCHO CH2CH2CN
EtOH
(Michael 反应)
2014-12-28
36
Micheal 加成的反应体系: 底物:
R
CH
CH
Z
CH2 CH C OR O
Z: 含杂原子的不饱和键且与双键共轭的基团
CH2 CH C H CH2 CH C R O O CH2 CH C
Cl
而该类化合物相应的碳正离子的反应难以进行(平面构型难形成)。
2.若碳负离子中心碳连结着可与之发生共轭作用的不饱和基团, 则中心碳构型必须为 SP2 杂化平面构型。因为这样能通过共轭使 负电荷分散。
CH2 CH CH2 CH2 CH CH2
2014-12-28
28
二、影响碳负离子稳定性的几个因素:
第四章 有机化学反应活泼中间体
2014-12-28
1
有机化学反应有些是属于一步完成的,称为协同反应, 如双烯合成反应。
而多数有机反应不是一步完成的,反应过程中至少含有 一个活性中间体的生成,如SN1反应。 这些中间体是“短寿命”的物种,很难分离出来,又称 为活性中间体,但用现代仪器可以测定出来。中间体来 自共价键的均裂和异裂,如碳正离子、碳负离子、碳自 由基、卡宾、苯炔等,都是反应中间体。 反应中间体与过渡态是不同的:过渡态是一种假想状态, 不具有客观性;中间体是具有客观性,可分离或检测其 存在。
19
3.环状溴鎓离子的生成
R2C CR2 + Br
+
Br R2C CR2
(非经典碳正离子)
R R2C C C6H5 + Br + R2 Br CH C R C6H5
2014-12-28