毛细管网换热器

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毛细管网换热器与“节能减排降耗、提升建筑品质”关系密切

建筑能耗占整个能耗的40%左右,是最有潜力的节能领域。毛细管网换热器结构具有换热面积大、流量分配均匀、水流阻力小、散热效果好的优点,还能够耐高温、耐高压、耐腐蚀,是一种理想的高效换热器,用途十分广泛。毛细管网换热器的突出的优点是能够有效利用低品位的能源,尤其是可再生能源(如太阳能,以及土壤、地下水、空气、污水、地表水、发电厂废水等说蕴含的能量),还可以提高空调系统的能效,做到节能减排环保并提高建筑物的品质。毛细管网换热器与地源热泵或空气源热泵结合,加上合理的控制组成一个节能系统,节能可达70%;如果再配套太阳能和冷热储能系统,节能可达90%左右。毛细管网换热器与“节能减排降耗、提升建筑品质”关系密切,具有巨大推广应用前景。

第一部分:温湿度独立控制空调技术简介

一、常规空调技术存在的问题

从人体的热舒适与健康出发,要求对室内温度、湿度进行全面控制。夏季人体舒适区为25℃,相对湿度60%,此时露点温度为16.6℃。空调排热排湿的任务可以看成是从25℃的环境中向外界排热,在16.6℃的露点温度的环境下向外界排湿。目前空调方式的排热排湿都是通过空气冷却器对空气进行冷却和冷凝除湿,再将冷却干燥的空气送入室内,实现排热排湿的目的。常规温湿度混合处理的空调方式存在如下问题:

1、能源浪费。使用一套系统同时制冷和除湿,为了满足用冷凝方法排除室内余湿,冷源的温度需要低于室内空气的露点温度,考虑传热温差与介质输送温差,实现16.6℃的露点温度需要约7℃的冷源温度,这是现有空调系统采用5~7℃的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5℃的原因。在空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7℃的低温冷源进行处理,造成能量利用品位上的浪费。而且,经过冷凝除湿后的空气虽然湿度(含湿量)满足要求,但温度过低,有时还需要再热,造成了能源的进一步浪费与损失。

2、难以适应热湿比的变化。通过冷凝方式对空气进行冷却和除湿,其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内变化。一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协,造成室内相对湿度过高或过低的现

象。过高的结果是不舒适,进而降低室温设定值,通过降低室温来改善热舒适,造成能耗不必要的增加;相对湿度过低也将导致由于与室外的焓差增加使处理室外新风的能耗增加。

3、造成室内空气品质下降。大多数空调依靠空气通过冷表面对空气进行降温除湿,这就导致冷表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的理想场所。空调系统繁殖和传播霉菌成为空调可能引起健康问题的主要原因。另外,目前我国大多数城市的主要污染物仍是可吸入颗粒物,因此有效过滤空调系统引入的室外空气是维持室内健康环境的重要问题。然而过滤器内必然是粉尘聚集处,如果再漂溅过一些冷凝水,则也成为各种微生物繁殖的理想场所。频繁清洗过滤器既不现实,也不是根本的解决方案。

4、传统的室内末端装置有局限性。为排除足够的余热余湿同时又不使送风温度过低,就要求有较大的循环通风量。例如每平方米建筑面积如果有80 W/m2显热需要排除,房间设定温度为25℃,当送风温度为15℃时,所要求循环风量为24 m3/hr/m2,这就往往造成室内很大的空气流动,使居住者产生不适的吹风感。为减少这种吹风感,就要通过改进送风口的位置和形式来改善室内气流组织。这往往要在室内布置风道,从而降低室内净高或加大楼层间距。很大的通风量还极容易引起空气噪声,并且很难有效消除。在冬季,为了避免吹风感,即使安装了空调系统,也往往不使用热风,而是通过另一套的暖气系统(如采暖散热器)供热。这样就导致室内重复安装两套环境控制系统,分别供冬夏使用。

5、输配能耗的问题。为了完成室内环境控制的任务就需要有输配系统,带走余热、余湿、CO2、气味等。在中央空调系统中,风机、水泵消耗了40%~70%的整个空调系统的电耗。在常规中央空调系统中,多采用全空气系统的形式。所有的冷量全部用空气来传送,导致输配效率很低。相对而言,1m3水所输送的热量和3840 m3空气所输送的热量是相当的。

此外,随着能源问题的日益严重,以低品位热能作为夏季空调动力成为迫切需要。目前北方地区大量的热电联产集中供热系统在夏季由于无热负荷而无法运行,使得电力负荷出现高峰的夏季热电联产发电设施反而停机,或者按纯发电模式低效运行。如果可以利用这部分热量驱动空调,既省下空调电耗,又可使热电联产电厂正常运行,增加发电能力。这样即可减缓夏季供电压力,又提高能源利用率,是热电联产系统继续发展的关键。由于空调负荷在一天内变化显著,与热电联产电厂提供热能并不是很好匹配,如何实现有效的蓄能,以协调

二者的矛盾也是热能使用当中存在的问题。

综上所述,空调的广泛需求、人居环境健康的需要和能源系统平衡的要求,对目前空调方式提出了挑战。新的空调应该具备的特点为:减少室内送风量、高效换热末端、采用低品位能源、设置冷热蓄能系统。从如上要求出发,目前普遍认为温湿度独立控制空调技术可能是一个有效的解决途径。

二、温湿度独立控制空调技术的特点

空调系统承担着排除室内余热、余湿、CO2与异味的任务。研究表明:排除室内余湿与排除CO2、异味所需要的新风量与变化趋势一致,即可以通过新风同时满足排除余湿、CO2与异味的要求,而排除室内余热的任务则通过其他的系统(独立的温度控制系统)来实现。由于无需承担除湿的任务,因而用较高温度的冷源即可实现排除余热的任务。

温湿度独立控制空调系统中,采用温度与湿度两套独立的空调控制系统,分别控制、调节室内的温度与湿度,从而避免了常规空调系统中热湿联合处理所带来的损失。由于温度、湿度采用独立的控制系统,可以满足不同区域和同一区域不同房间热湿比不断变化的要求,克服了常规空调系统中难以同时满足温、湿度参数的要求,避免了室内湿度过高(或过低)的现象。

温湿度独立控制空调系统的基本组成为:处理显热的系统与处理潜热的系统,两个系统独立调节分别控制室内的温度与湿度(见图1)。处理显热的系统包括:高温冷源、余热消除末端装置,采用水作为输送媒介。由于除湿的任务由处理潜热的系统承担,因而显热系统的冷水供水温度不再是常规冷凝除湿空调系统中的7℃,而是提高到18℃左右,从而为天然冷源的使用提供了条件。即使采用机械制冷方式,制冷机的性能系数也有大幅度的提高。余热消除末端装置可以采用毛细管网换热器、辐射板、干式风机盘管等多种形式,由于供水的温度高于室内空气的露点温度,因而不存在结露的危险。处理潜热的系统,同时去除室内CO2、室内异味等,以保证室内空气质量。此系统由新风处理机组、送风末端装置组成,采用新风作为能量输送的媒介。在处理潜热的系统中,由于不一定需要处理温度,因而湿度的处理可能有多种方法,如冷凝除湿、吸附除湿等。

相关文档
最新文档