反比例函数全章导学案
反比例函数全章导学案
鸡西市第十九中学学案鸡西市第十九中学学案鸡西市第十九中学学案(2)、猜想:过双曲线上的任意一点做坐标轴的垂线,连接原点,所得三角形的面积为__________(3)、将反比例函数的图象绕原点旋转垂直 A y《反比例函数与一次函数图象》专题班级 姓名智慧、勤劳和天才,高于显贵和富有。
——贝多芬1、若矩形的面积为12cm 2,则它的长y cm 与宽x cm 的函数关系用图象表示大致( )2、函数y=-x 与y=1x在同一直角坐标系中的图象是( )3、若0<ab ,则函数ax y =与xby =在同一平面直角坐标系的图象大致是( )。
4、若0<ab ,则函数ax y =与xby -=在同一平面直角坐标系的图象大致是( )。
5、函数y kx k =-与(0)ky k x=≠在同一坐标系中的大致图象是( )6、如图,关于x 的函数y=k(x-1)和y=-kx(k ≠0), 它们在同一坐标系内的图象大致是( )7、请在下边的坐标系中同时画出21y x =-+与y x=-的大致图象。
8、如右图所示是,一次函数函数11y x =-和反比例函数26y x=的图象, (1)求方程组16y x y x =-⎧⎪⎨=⎪⎩的解; (2)观察图象,当x 在什么范围时,1y <2y ?9、如图所示,一次函数1y kx b =+的图象与反比例函数2my x=的图象相交于A 、B 两点,(1)利用图中条件,求该反比例函数和一次函数的解析式; (2)(观察图象,当x 在什么范围时,1y <2y ?A B C D《反比例函数k 的几何意义》专题班级 姓名想不付出任何代价而得到幸福,那是神话。
—— 徐特立1.如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( ) A . 2S = B . 4S = C .24S << D .4S >2.如图,直线y=mx 与双曲线y =xk交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( )A .2B 、m-2C 、mD 、43.如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。
初中九年级上册数学反比例函数导学案
初中九年级上册数学导学案初中九年级上册数学导学案描点:依据什么(数据、方法)找点?在平面直角坐标系内,以的取值为横坐标,以相应的为纵坐标,描出相应的点.连线:怎样连线? ——可在各个象限内按照自变量从到的顺序用两条光滑的把所描的点连接起来.观察上图,图像位于哪些象限?图像与坐标轴相交吗?在每一象限内,函数值y随自变量x的变化如何变化?63初中九年级上册数学导学案总结测评1.已知点A(﹣2,y1),B(﹣1,y2)在反比例函数y=xk(k<0)的图象上,则y1y2(选填“>”、“=”、“<”).2.反比例函数y=﹣x4的图象经过点P(﹣2,)3.如果点(a,﹣2a)在函数是y=xk的图象上,那么k0(填“>”或“<”).4.点A(﹣1,﹣5),B(3,c)都在双曲线上,则c=.5.当k<0时,反比例函数y=kx和一次函数Y=KX+3的图象大致是():初中九年级上册数学导学案疑 (2)如果点A (-3,y 1),B (-2,y 2)是该函数图象上的两点,试比较y 1,y 2的大小.6.已知一个正比例函数与一个反比例函数的图象交于点P (-3,4),试求出它们让你的表达式,并在同一坐标系内画出这两个函数的图象.提示:先设两个函数的表达式,且两个函数表示式中的比例系数应用1k 、2k 区分.初中九年级上册数学导学案合作探究4.某科技小组在一次野外考察途中遇到一片烂泥湿地,为了安全、迅速的通过这片湿地,他们沿着前进的路线铺垫了若干块木板,构筑成一条临时通道,从而顺利通过了这片湿地.(1)根据压力F(N)、压强p (Pa )与受力面积S (m 2)之间的关系式SF p ,请你判断:当F 一定时,p 是s 的反比例函数吗? (2)若人对地面的压力F=450N ,完成下表:受力面积S/ m 20.0050.010.020.04压强p/ Pa(3)当F=450N 时,画出该函数的图象,并结合图象分析当受力面积S 增大时,地面所受的压强p 是如何变化的.据此,请说出他们铺垫木板(木板重力忽略不计)通过湿地的道理.学生分组进行探讨交流,领会实际问题中的数学意义,体会数与形的统一,教师可以引导启发学生解决实际问题.展示质疑6. 已知某电路的电压U (V )、电流I(A)、电阻R(Ω)三者之间有如下关系式:U=IR ,且该电路的电压U 恒为220V(1)写出电流I 关于电阻R 的表达式(2)如果该电路的电阻为220Ω,则通过它的电流时多少?(3)如果该电路接入的是一个滑动变阻器,怎样调整电阻R ,就可以使电路中的电流I 增大?7. 某天然气公司要在地下修建一个容积为105m 3的圆柱形天然气储藏室.(1)储藏室的底面积S(m 2)与其深度d (m )有怎样的函数关系?(2)若公司决定把储藏室的面积S 定为5000 m 2,则施工队施工时应该向下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m 时,碰上了坚硬的岩石,为了节约建设资金,公司决定把储藏室的深度改为15m ,则储藏室的底面积应改为多少才能满足需要(精确到0.01 m 2)m。
人教版-数学-八年级下册- 反比例函数 全章导学案
第十七章反比例函数课题17.1.1 反比例函数的意义课时:一课时【学习目标】1.理解并掌握反比例函数的概念。
2.会判断一个给定函数是否为反比例函数。
3.会根据已知条件用待定系数法求反比例函数的解析式。
【重点难点】重点:理解反比例函数的意义,确定反比例函数的表达式。
难点:反比例函数的意义。
【导学指导】复习旧知:1.什么是常量?什么是变量?函数是如何定义的?2.我们学过哪几种函数?每一种函数形式怎样?3.写出下列问题中的函数关系式并说明是什么函数.(1)梯形的上底长是2,下底长是4,一腰长是6,则梯形的周长y与另一腰长x之间的函数关系式。
(2)某种文具单价为3元,当购买m个这种文具时,共花了y元,则y与m的关系式。
学习新知:阅读教材P39-P40相关内容,思考,讨论,合作交流完成下列问题。
1.什么是反比例函数?反比例函数的自变量可以取一切实数吗?为什么?2.仔细观察反比例函数的解析式y=k/x,我们还可以把它写成什么形式?3.回忆我们学过的一次函数和正比例函数,我们是用什么方法求它们的解析式的?以此类推,我们也可以采用同样的方法来求反比例函数的解析式。
【课堂练习】1.下列等式中y是x的反比例函数的是()①y=4x②y/x=3 ③y=6x-1 ④xy=12 ⑤y=5/x+2⑥y=x/2 ⑦y=-√2/x⑧y=-3/2x2.已知y是x的反比例函数,当x=3时,y=7,(1)写出y与x的函数关系式;(2)当x=7时,y等于多少?【要点归纳】通过今天的学习,你有哪些收获?与同伴交流一下。
【拓展训练】1.函数y=(m-4)x3-|m|是反比例函数,则m的值是多少?2.若反比例函数y=k/x与一次函数y=2x-4的图象都过点A(m,2)(1)求A点的坐标;(2)求反比例函数的解析式。
课题:17.1.2 反比例函数的图象和性质课时:二课时第一课时反比例函数的图象和性质的认识【学习目标】1.体会并了解反比例函数图象的意义。
反比例函数_全章导学案 (2)
26.1 反比例函数学习目标:1.理解反比例函数的概念,并会确定反比例函数式中的比例系数;2.能判断一个给定函数是否为反比例函数,并会根据实际问题中的条件确定反比例函数的解析式重点、难点:1,理解反比例函数的概念;2.确定反比例函数的解析式学习过程一.【预学提纲】初步感知、激发兴趣1. 形如的函数叫正比例函数,其自变量的取值范围是2.举出几组在小学中学过的成反比例的两个变量?3.阅读课本的思考和交流,体会实际问题中两个变量的函数关系,观察其函数解析式的共同特点,形如的函数叫反比例函数;其中,叫,自变量的取值范围是 .4.你觉得确定反比例函数中的比例系数要注意什么?5.反比例函数的解析式除了像定义中可以表示成,还可以将其变形表示成________二.【预学练习】初步运用、生成问题1. 底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化,则其中两个变量的函数关系式为______________2. 已知和成反比例,且当时,,则该函数的表达式为()A. B.C.D.3.当a= 时,函数是反比例函数?三.【新知探究】师生互动、揭示通法问题1. 下列关系式中是的反比例函数吗?如果是,比例系数是多少?(1) (2) (3)(4) (5) (6)问题2. 若函数是反比例函数,求出m的值并写出该函数解析式.问题3.写出下列函数关系式,并确定它们是否是反比例函数?⑴矩形的周长18㎝是随着较短的边(㎝)与较长的边(㎝)的变化而变化;⑵实数与互为倒数,随着的变化而变化;四.【解疑助学】生生互动、突出重点问题4.当时,函数是反比例函数.问题5.按每分钟的速度向容积为150的水池中注水,注满水池需.写出与的关系式,并判断此关系是不是反比例关系?如果是,请指出比例系数的值.五.【变式拓展】能力提升、突破难点问题6.已知,其中与成正比例,与成反比例,并且当时,;当时,,求与的函数关系式.六.【回扣目标】学有所成、悟出方法1.什么是反比例函数?如何确定反比例函数中的比例系数?2.你能举出生活中有反比例函数关系的实例吗?26.2反比例函数的图象与性质(1)学习目标:1.会用描点法画反比例函数的图象;2.通过画图体会反比例函数图象的对称性3.会判断点是否在反比例函数图象上,会由图象上一点确定函数关系式。
第一节反比例函数导学案
第一节反比例函数导学案第一节反比例函数导学案学习目标:1.经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2.能正确区分两变量是否为反比例函数关系。
学习重点:反比例函数的概念及应用。
学习难点:正确理解反比例函数的含义。
学习过程:预习1.如果两个变量x 、y之间的关系可以表示成y是x的,反比例函数的自变量x 。
2. 复习1.什么叫做函数?2.什么叫做一次函数?它的一般形式是3. 什么叫做正比例函数?它的一般形式是。
新课一.情境引入今年暑假小明背了很重的背包和同学们去野营,其中有几位同学因为约好要进行滑板车比赛,所以每人均带了一辆滑板车。
在途中他们遇到了一段泥泞路段,如果绕道,需要花很长时间,怎么办?小华说:“我们把滑板车铺在路上就可以通过。
”亲爱的同学们你知道他这样做的道理吗?二.探究新知探究一反比例函数的概念1. 阅读课本143页的内容并解决问题2. 总结反比例函数的定义3. 反比例函数的解析式⑴ ⑵ ⑶ 三.自主学习,巩固新知课本144页做一做四.范例学习例1若函数y= (m2-1)x 3m2+m-5 为反比例函数,求m 的值。
解析反比例函数y=k(k≠0) 的另一个形式是y=kx x探究二用待定系数法求反比例函数的解析式例2已知y= y1+y2 ,y1与x成正比例,y2与x成反比例,当x=1时,y=4;当x=3时,y=5;求x=-1时y的值。
课堂练习1.下列函数解析式中y是x的反比例函数的是()A.y=1311 B.y=- C.y= D.y=x2xx 1x2.当时,函数y=(+2)x是反比例函数。
3.在下列表达式中x均表示自变量,那么那些是反比例函数?每一个反比例函数相应的k值是多少?⑴y=14x;⑵y= -1 ;⑶y= ; ⑷xy=2. 2xx2六.课堂小结-我们本节课学习了⑴⑵ ⑶ 七.课堂作业1.下列哪些式子表示y是x的反比例函数?为什么?⑴xy=11⑷y= ;⑵y= 5-x ;⑶y=x2x 12.计划建设铁路1200km,那么铺轨天数y(d)是每日铺轨量x(km/d)的反比例函数吗?写出y与x的关系式。
新北师版数学九年级上册第六章反比例函数导学案(全章)
新北师版数学九年级上册第六章反比例函数导学案(全章)6.1反比例函数概念导学案【新知导航】1、写出函数关系式,找出共同点,(1)长方形的面积为122cm ,设一边为xcm,邻边为ycm ,则x 与y 的函数关系式为:y= . (2)京沪线铁路全长为1463,乘坐某次列车所用的时间t 与该次列车平均速度v 的函数关系为: .(3)已知工程队承包一项工程,写出工程效率v 与完成时间之间t 的函数关系式为: .上述三个函数是一次函数吗?2、记住反比例函数的概念:一般地,如果两个变量x,y 之间的关系可以表示成y=kx(k ≠0)的形式,那么我们称y 是x 的反比例函数。
三种形式: ; ; 。
【典例解析】例1、下列函数中,哪些是反比例函数,其k 值为多少? ①5yx =②33y x =- ③ 25y x -= ④y =⑤132y =⨯ ⑥12y -=- ⑦12y x -= ⑧14xy = ⑨ y=5-x ⑩ 33y x-=例2 已知()2212m m y m m x+-=+(1) 当m 为何值时,y 是x 的正比例函数? (2) 当m 为何值时,y 是x 的反比例函数?例3已知y 是x 的反比例函数,当x=3时,y=4求:当x=1时,y 的值.【巩固提高】一.选择题1.若函数为反比例函数,则m的值为()A.±1 B.1 C.D.﹣12.设某矩形的面积为S,相邻的两条边长分别为x和y.那么当S一定时,给出以下四个结论:①x是y的正比例函数;②y是x的正比例函数;③x是y的反比例函数;④y是x的反比例函数其中正确的为()A.①,②B.②,③C.③,④D.①,④3.下列关系式中,哪个等式表示y是x的反比例函数()A.B.C.D.4.下列问题中,两个变量间的函数关系式是反比例函数的是()A.小颖每分钟可以制作2朵花,x分钟可以制作y朵花B.体积为10cm3的长方体,高为hcm,底面积为Scm2C.用一根长50cm的铁丝弯成一个矩形,一边长为xcm,面积为Scm2D.汽车油箱中共有油50升,设平均每天用油5升,x天后油箱中剩下的油量为y升5.下列函数,①y=2x,②y=x,③y=x﹣1,④y=是反比例函数的个数有()A.0个B.1个C.2个D.3个二.填空题6.已知:是反比例函数,则m=.7.当m时,函数y=(m﹣2)x|m|﹣3是反比例函数.8.函数的自变量x的取值范围是.9.将x=代入反比例函数y=﹣中,所得的函数值记为y1,又将x=y1+1代入反比例函数y=﹣中,所得的函数值记为y2,又将x=y2+1代入反比例函数y=﹣中,所得的函数值记为y3,…如此继续下去,则y2008=.10.已知y与x成正比例,z与y成反比例,那么z与x的关系是:函数.11.若反比例函数y=(m+1)的图象在第二、四象限,m的值为.12.若反比例函数y=(2k﹣1)的图象位于二、四象限,则k=.13.反比例函数中,比例系数k=.三.解答题14.已知关于x、y的反比例函数的解析式为y=,确定a的值,求这个函数关系式.15.已知函数y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?16.(1)12、已知y与x成反比例,当x=3时,y=7,求当y=2时,x的值.(2)已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y =﹣1.(1)求y的表达式;(2)求当x=时y的值.6.2反比数的图象及性质(第1课时)【新知导航】1、按照分析步骤,画出反比例函数4y x =,4y x =-的图象。
人教版数学六年级下册反比例导学案(精推3篇)
人教版数学六年级下册反比例导学案(精推3篇)〖人教版数学六年级下册反比例导学案第【1】篇〗第一课时教学设计思想本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。
首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。
接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。
分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
教学目标知识与技能1.能灵活列反比例函数表达式解决一些实际问题。
2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。
过程与方法1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
情感态度与价值观体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
教学重难点重点:掌握从实际问题中建构反比例函数模型。
难点:从实际问题中寻找变量之间的关系。
关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
教学方法启发引导、合作探究教学媒体课件教学过程设计(一)创设问题情境,引入新课[师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?[生]是为了应用。
[师]很好。
学习的目的是为了用学到的知识解决实际问题。
究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。
问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。
〖人教版数学六年级下册反比例导学案第【2】篇〗教学内容:教科书第56页的例1、第57页的“试一试”和“练一练”,完成练习十的第1~3题。
教学目标:1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
八年级数学《反比例函数-单元课》导学案
第十七章 反比例函数【知识脉络】【学习目标】1、使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式)0(≠=k x k y ,能判断一个给定函数是否为反比例函数;2、能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点;3.能根据图象数形结合地分析并掌握反比例函数)0(≠=k x k y 的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题;4.探索现实生活中数量间的反比例关系,在解决实际问题的过程中,进一步体会和认识反比例函数这种刻画现实世界中特定数量关系的数学模型;5.使学生在学习一次函数之后,进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法。
【要点检索】:反比例函数的概念、图象和性质,以及用反比例函数分析和解决实际问题等。
【方法导航】1、在丰富的数学活动中,经过创新思维,体会、观察生活与数学之间的紧密联系,增强学习过程中的探索意识和解决问题的能力。
2、本章始终贯穿了运用数形结合的思想方法来分析、研究实际问题,如运动问题、销售问题、利润问题、几何变化问题等,所以灵活运用反比例函数的图像会给解决实际问题带来很大方便。
3、在学习的过程中,不要死记硬背,关键是正确利用反比例函数的图像,根据图像的位置、特点去掌握函数的性质,深刻理解反比例函数的关系式与函数图象之间的关系,运用类比的思想方法研究反比例函数的图像与性质,因此在学习中应掌握最基本的方法,同时可以进行一些社会实践调查,以达到巩固知识、增强能力的目的。
【中考翘望】17.1.1本节内容以整张的导入和基础,单独考察的内容的并不多,但也有部分地方涉及本章内容,主要考察对反比例函数的理解,常以填空题、选择题的形式出现在中考卷面上,今后几年任将持续这一命题趋势,并逐渐与实际问题、跨学科问题综合起来,考察学生的理解和运用反比例的概念和能力,题相对简单些.17.1.2 本节内容是反比例的概念和性质,中考主要考察对反比例函数的概念的理解和性质的运用,多以填空题、选择题的形式出现,试题的难度不大,今后本节内容以考察结合图像及综合图像性质解决问题为主,只要学会“数形结合”的思想分析问题就达到目标.17.2 本节内容主要是利用反比例函数解决实际问题,跨科学性的综合题是近几年中考的热点题型多以选择题、解答题解决的形式出现,尤其是近两年各地中考常把反比例函数与一次函数及以后学习的二次函数、几何知识综合起来设计命题,考察反比例函数的图像及性质在实际问题中的应用,体现了数形结合思想和函数思想,这也是初中数学常用的数学思想方法。
第十七章反比例函数全章导学案
第十七章 反比例函数反比例函数的意义主备人: 初审人: 终审人:【导学目标】1.使学生理解并掌握反比例函数的概念.2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式. 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想. 【导学重点】理解反比例函数的概念,能根据已知条件写出函数解析式. 【导学难点】理解反比例函数的概念. 【学法指导】比归纳法,合作探究法. 【课前准备】类比一次函数的相关知识即能完成反比例函数的学习,所以我要求学生课前认真复习和回顾一次函数的相关知识,同时做好新课预习. 【导学流程】一、呈现目标、明确任务1.使学生理解并掌握反比例函数的概念.2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式. 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想. 二、检查预习、自主学习1.我们学过哪几种函数?每一种函数形式怎样?2.写出下列问题中的函数关系式并说明是什么函数.(1)梯形的上底长是2,下底长是4,一腰长是6,则梯形的周长y 与另一腰长x 之间的函数关系式.(2)某种文具单价为3元,当购买m 个这种文具时,共花了y 元,则y 与m 的关系式.(3)说说“思考”中的问题的函数关系式. (4)怎样的函数是反比例函数? 三、教师引导1.反比例函数的概念:一般的,形如()0ky k k x=≠为常数,的函数叫做 ,例如10y x=.可变形为:()y kx =(0k ≠),其中:自变量是 ,自变量的次数是 .例1:已知函数73-=m x y 是反比例函数,求m 的取值. 例2:已知y 是x 的反比例函数,当2=x 时,6=y.(1)求出该反比例函数的表达式; (2)求当4=x 时y 的值;(3)当k 取何值时,y 的值为-3. 四、问题导学、展示交流1.什么是反比例函数?反比例函数的自变量可以取一切实数吗?为什么?2.仔细观察反比例函数的解析式ky x=,我们还可以把它写成什么形式? 3.回忆我们学过的一次函数和正比例函数,我们是用什么方法求它们的解析式的?以此类推,我们也可以采用同样的方法来求反比例函数的解析式.五、点拨升华、当堂达标1.已知变量y 是x 的反比例函数,且当2x =-时3y =. (1)求出该反比例函数的表达式; (2)求当1x =时y 的值;(3)当x 取何值时,y 的值为3-.2.已知y 与1x -成反比例,且当2x =时,2y =.求y 与x 的函数关系式,并判断y 是否为x 的反比例函数.3.函数()34m y m x -=-是反比例函数,则m 的值是多少?六、布置预习1.预习《配套练习》P15页选择填空题.2.完成练习题. 【教后反思】练习课主备人: 初审人: 终审人:【导学目标】1.复习反比例函数的意义.2.列反比例函数的关系式.3.会进行反比例函数的相关计算. 【导学重点】理解反比例函数的概念,能根据已知条件写出函数解析式. 【导学难点】根据已知条件写出函数解析式. 【学法指导】类比、推理. 【课前准备】反比例函数的意义.一、呈现目标、明确任务 1.复习反比例函数的意义. 2.列反比例函数的关系式.3.会进行反比例函数的相关计算. 二、检查预习、自主学习 展示预习效果. 三、教师引导若反比例函数()2103k y k x-=+是反比例函数,求k 的值.()2103ky k x -=+是反比例函数,必然满足2101k-=-,且30.k +≠解:()2103k y k x -=+是反比例函数,∴2101k-=-,且,∴k =3.四、问题导学、展示交流讨论完成《配套练习》P15页7,8题. 五、点拨升华、当堂达标 讨论9题.这道题,先表示1y 与x 关系和2y 与2x 的关系,再表示y 和x 的直接关系. 六、布置预习预习下一节,完成例题和练习. 【教后反思】反比例函数的图象和性质(1)主备人: 初审人: 终审人:【导学目标】1.会用描点法画反比例函数的图象.2.结合图象分析并掌握反比例函数的性质.3.体会函数的三种表示方法,领会数形结合的思想方法. 【导学重点】理解并掌握反比例函数的图象和性质. 【导学难点】正确画出图象,通过观察、分析,归纳出反比例函数的性质.类比、讨论. 【课前准备】根据新课标要求“培养可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生,并参与到学习活动中,鼓励学生采用自主探索、合作交流的研讨学习方式.让学生准备坐标纸. 【导学流程】一、呈现目标、明确任务1.会用描点法画反比例函数的图象.2.结合图象分析并掌握反比例函数的性质.3.体会函数的三种表示方法,领会数形结合的思想方法. 二、检查预习、自主学习 1.根据上节课的学习,说说反比例函数的意义和如何用待定系数法求反比例函数的解析式.2.我们研究一次函数y kx b =+(k ,b 为常数,0k ≠)的图象是什么?性质有哪些?正比例函数呢?3.用描点法画函数图象的步骤是什么?4.交流预习成果. 三、教师引导用描点法画图,要注意:(1)列表取值时,0x ≠,因为0x =函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值. (2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确.(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.(4)由于0x ≠,0k ≠,所以0y ≠,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴.四、问题导学、展示交流1.一次函数y kx b =+(k ,b 为常数,0k ≠)的图象是什么?其性质有哪些?正比例函数y kx =(0k ≠)呢?2.画函数图象的方法是什么?其一般步骤有哪些?应注意什么? 3.反比例函数的图象是什么样呢?4.在同一个平面直角坐标系中用不同颜色的笔画出反比例函数6y x =和6y x=-的图象.并思考:(1)从以上作图中,发现6y x =和6y x=-的图象是什么? (2)6y x =和6y x=-的图象分别在第几象限? (3)在每一个象限y 随x 是如何变化的?(4)6y x =和6y x=-的图象之间的关系? 五、点拨升华、当堂达标1.已知反比例函数x k y -=3,分别根据下列条件求出字母k 的取值范围:(1)函数图象位于第一、三象限;(2)在第二象限内,y 随x 的增大而增大. 2.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为 .3.若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,则m 的取值范围是.4.反比例函数xy 2-=,当2x =-时,y = ;当x <-2时;y 的取值范围是 ;当x >-2时;y 的取值范围是 .5.已知反比例函数y a x a =--()226,当x >0时,y 随x 的增大而增大,求函数关系式.六、布置预习阅读P43页“归纳”,完成练习题. 【教后反思】反比例函数的图象和性质(2)主备人: 初审人: 终审人:【导学目标】1.使学生进一步理解和掌握反比例函数及其图象与性质.2.能熟练运用函数图象和性质解决一些较综合的问题.3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法. 【导学重点】理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题. 【导学难点】学会从图象上分析、解决问题. 【学法指导】探讨、研究、发现. 【课前准备】1.画平面直角坐标系(网格).2.复习一次函数(正比例函数)的相关知识. 【导学流程】一、呈现目标、明确任务1.使学生进一步理解和掌握反比例函数及其图象与性质. 2.能灵活运用函数图象和性质解决一些较综合的问题.3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法. 二、检查预习、自主学习1.反比例函数2y x =-的图象在第 象限,在每个象限中y 随x 的增大而 . 2.已知反比例函数my x=的图象位于一、三象限,则m 的取值范围是 .3.已知点(-3,1)在双曲线ky x=上,则k = .4.已知y 是x 的反比例函数,当3x =时,2y =-:(1)写出y 与x 的函数关系式;(2)求当2x =-时y 的值;(3)求当4y =时x 的值. 三、教师引导1.已知反比例函数的图象经过点A (2,6),(1)这个函数的图象分布在哪些象限?y 随x 的增大如何变化?(2)点B (3,4)、点C (122-,445-)、点D (2,5)是否在函数图象上? 2.下图是反比例函数5m y x-=的图象的一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m 的取值范围是什么?(2)在这个函数图象的某一支上任取点A (a ,b )和B (1a ,1b ).如果a >1a ,那么b 和1b 有怎样的大小关系?四、问题导学、展示交流 1.若反比例函数xk y 1-=图像的一支在第三象限,则k . 2.对于函数x y 3=,当x >0时y 0,这部分图像在第 象限. 3.对于函数xy 3-=,x <0时y 0,这部分图像在第 象限.五、点拨升华、当堂达标 1.完成练习题.2.已知点(-1,1y )、(2,2y )、(π,3y )在双曲线xk y 12+-=上,则下列关系式正确的是( )(A )1y >2y >3y (B )1y >3y >2y (C )2y >1y >3y (D )y 3>y 1>y 2. 3.已知反比例函数xk y 12+=的图象在每个象限内函数值y 随自变量x 的增大而减小,且k 的值还满足)12(29--k ≥2k -1,若k 为整数,求反比例函数的解析式. 六、布置预习预习习题17.1,完成1,2题. 【教后反思】练习课主备人: 初审人: 终审人:【导学目标】1.使学生熟练掌握反比例函数及其图象与性质.2.能灵活运用函数图象和性质解决一些较综合的问题.3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法. 【导学重点】理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题. 【导学难点】学会从图象上分析、解决问题. 【学法指导】探讨、研究、发现. 【课前准备】复习一次函数(正比例函数)的相关知识. 【导学流程】一、呈现目标、明确任务1.熟练掌握反比例函数及其图象与性质.2.灵活运用函数图象和性质解决一些较综合的问题. 二、检查预习、自主学习展示17.1中1,2题的预习成果. 三、问题导学、展示交流 独立完成3,4题.四、点拨升华、当堂达标1.小组讨论5—7题.5,6题,要先考虑y 与z 和z 与x 的直接关系,再考虑y 与x 的间接关系. 7题要回忆上学期的有关知识. 2.讨论8,9题.3.如图,A 为反比例函数xky =图象上一点,AB 垂直x 轴于B 点,3AOB S ∆=,则k 的值( )A .6B .3C .23D .不能确定 五、布置预习预习下一节例1,2,整理不懂的问题,出示在黑板上. 【教后反思】实际问题与反比例函数(1)主备人: 初审人: 终审人:【导学目标】1.运用反比例函数的概念和性质解决实际问题.2.利用反比例函数求出问题中的值. 【导学重点】运用反比例函数的意义和性质解决实际问题. 【导学难点】把实际问题转化为反比例函数这一数学模型. 【学法指导】自主探究与合作交流,导学自主. 【课前准备】1.解析式的一般形式.2.反比例函数的图象和性质 【导学流程】一、呈现目标、明确任务1.运用反比例函数的概念和性质解决实际问题.2.利用反比例函数求出问题中的值. 二、检查预习、自主学习1、若点(1,2)在函数ky x=上,则k = ,则这个函数表达式是 . 2、3y x=-的图象位于 象限,在每个象限内,当x 增大时,则y ;3、已知反比例函数1kyx-=的图象在其每个象限内y随x的增大而减小,则k的值可以是()A、1- B、3 C、0 D、3-4.出示不懂的问题.三、教师引导例1、市煤气公司要在地下修建一个容积为4310m的圆柱形煤气储存室.(1)储存室的底面积S(单位2m)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500,施工队施工时应该向下掘进多深?(3)当施工队按(2)中的计划掘进到地下10m时,碰上了坚硬的岩石.为了节约建设资金,公司临时改变计划,把储存室的深度改为10m,相应地,储存室的底面积应改为多少m才满足需要?例2.码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始缺货,缺货速度v(单位:吨/ 天)与缺货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天的时间内卸载完毕,那么平均每天至少要卸载多少吨货物?四、问题导学、展示交流讨论例题.五、点拨升华、当堂达标1.完成练习1,2题.2.完成习题17.2中2—4题.六、布置预习预习例3,4,整理不懂的问题.【教后反思】实际问题与反比例函数(2)主备人:初审人:终审人:【导学目标】1.进一步体验现实生活与反比例函数的关系.2.能解决确定反比例函数中常数k值的实际问题.3.进一步运用反比例函数的概念和性质解决实际问题.【导学重点】运用反比例函数的知识解决实际问题.【导学难点】如何把实际问题转化我数学问题,利用反比例函数的知识解决实际问题.【学法指导】数形结合思想 【课前准备】一次函数与正比例函数的表示形式及有关应用. 【导学流程】一、呈现目标、明确任务1.进一步体验现实生活与反比例函数的关系.2.能解决确定反比例函数中常数k 值的实际问题.3.进一步运用反比例函数的概念和性质解决实际问题. 二、检查预习、自主学习 出示不懂的问题. 三、教师引导例3.小伟欲用撬棍撬起一块大石头,已知阻力和阻力臂不变,分别为1200牛和0.5米. (1)动力F 和动力臂l 有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?(2)若想使动力F 不超过(1)中所用力的一半,则动力臂至少要加长多少?例4.一个用电器的电阻R 是可调节的,其范围为110-220欧姆.已知电压U 为220伏,这个用电器的电路(1)输出功率P 与电阻R 有怎样的函数关系?(2)这个用电器输出功率的范围多大?四、问题导学、展示交流 讨论例题.例3,根据“杠杆定律”,若两物体与支点的距离与其重量成反比,则杠杆平衡.通俗一点可以叙述为:阻力×阻力臂=动力×动力臂.题中已知阻力与阻力臂不变,即阻力与阻力臂的积为定值,由“杠杆定律”知变量动力与动力臂成反比关系,写出函数关系式,得到函数动力F 是自变量动力臂l 的反比例函数,当l =1.5时,代入解析式中求F 的值;(2)问要利用反比例函数的性质,l 越大F 越小,先求出当F =200时,其相应的l 值的大小,从而得出结果.例4,电学知识告诉我们,用电器的输出功率P (瓦)、两端的电压U (伏)和用电器的电阻R (欧)有如下关系:2PR U ,这个关系可以写为P = ,或R = . 五、点拨升华、当堂达标 1.完成练习3题.2.完成习题17.2中5,6题. 六、布置预习预习《配套练习》P18页1—3题. 【教后反思】练习课主备人:初审人:终审人:【导学目标】1.进一步体验现实生活与反比例函数的关系.2.能解决确定反比例函数中常数k值的实际问题.3.尝试运用反比例函数解决实际问题.【导学重点】运用反比例函数的知识解决实际问题.【导学难点】如何把实际问题转化我数学问题,利用反比例函数的知识解决实际问题.【学法指导】归纳、类比.【课前准备】反比例函数的意义.【导学流程】一、呈现目标、明确任务1.进一步体验现实生活与反比例函数的关系.2.能解决确定反比例函数中常数k值的实际问题.3.尝试运用反比例函数解决实际问题.二、检查预习、自主学习小组预习成果.三、教师引导某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t完成.(1)写出每天生产夏凉小衫Y件与生产时间T天(T大于4)之间的函数关系式;(2)由于气温提前升高,服装厂决定提前4天完成任务.那么每天要多做多少件才能完成任务?本题函数关系确定的关键是:生产总量=每天生产的数量×生产时间.提前4天交货,则生产时间变为T-4.四、问题导学、展示交流同桌合作完成《配套练习》P18页4,5题.五、点拨升华、当堂达标小组讨论6,7题.6题的(2),主要是考查函数的增减性.这两道题实际上都考查了三个问题:一是列函数解析式,二是由自变量的值求函数值,三是由函数值求自变量的值.六、布置预习预习复习题17,完成1—4题.【教后反思】小结(1)主备人: 初审人:终审人:【导学目标】1.复习反比例函数的概念和性质.2.三反比例函数解决实际问题.3.体会函数模型的应用.【导学重点】做练习.【导学难点】用反比例函数解决实际问题.【学法指导】复习,总结.【课前准备】反比例函数的应用.【导学流程】一、呈现目标、明确任务1.复习反比例函数的概念和性质.2.三反比例函数解决实际问题.二、检查预习、自主学习小组展示预习成果.三、教师引导本章知识结构:四、问题导学、展示交流1.例函数()0k y k k x=≠为常数,的图象是什么样的?反比例函数有什么性质? 2.同桌合作完成复习题17中5,7题.五、点拨升华、当堂达标讨论9—11题.9题,考虑图象的两种可能情况,然后由图象考虑k 的正负.10(2)(4)两题,,由自变量的值考虑函数值的正负,然后考虑图象所在的象限.11(3)题,要先考虑40天已经运了多少,还剩多少,每天还需运多少,再与原计划每天运送量比较.六、布置预习预习下一章.。
人教版数学六年级下册反比例导学案(推荐3篇)
人教版数学六年级下册反比例导学案(推荐3篇)人教版数学六年级下册反比例导学案【第1篇】教学目标1、知识与技能目标:通过对反函数的学习,在具体情境中感受反函数的解决实际问题,与生活息息相关,加深对函数概念的理解。
2、过程与方法目标:通过带领学生解决实际问题,体验反函数的学习过程,并且能够运用反函数解决实际问题。
3、情感、态度与价值观目标:在整个教学过程中照顾到全体学生,创造平等的教学氛围和环境。
教学重点理解反函数的概念,体验学习反函数概念的过程。
教学难点理解反函数的概念,会运用反函数去解决实际问题。
教学准备:多媒体课件教学过程一、导入活动内容:教师提出问题,引导学生复习函数及一元一次函数的相关知识。
问题1:上次课我们学习了函数,那么有谁知道一次函数和正比例函数表达式么?师:同学们能用语言和字母分别表示一次函数和正比例函数:生:一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.师:如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,如果速度是恒定的,我们关心的是花费的时间,那么时间是如何去求的呢?生:师:那么这里的t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?二、新授活动内容:师:同学们可以根据以下三个具体的问题列出表达式吗?京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t 单位:h)的变化而变化;某住宅小区要种植一个面积为1000的矩形草坪,草坪的长y( 单位:m)随宽度x 单位:m)的变化而变化;已知北京市的总面积为平方千米,人均占有的土地面积S(单位:平方千米/人)随全市总人口n 单位:人)的变化而变化。
生: 1) 2) 3)师:同学们你们还记得函数的定义吗?一起回顾下。
九年级数学__反比例函数全章__导学案
5.1反比例函数 第1课时学习目标:知识与技能:会判断一个函数是反比例函数,能举例辩析一个变化过程中两个变量之间符合反比例函数的特征;会求简单问题中反比例函数的表达式.过程与方法:利用导学案,采用学生自学和小组讨论的方式进行合作学习式学习。
情感态度价值观:在探究函数的图像和性质的活动中,通过一系列的富有探究性的问题,渗透与人交流合作的意识和探究精神。
学习重点:感受反比例函数是刻画世界数量关系的一种有效模型 学习难点:利用反比例函数关系解决实际问题 一、自学展示:1、一般地.在某个变化中,有两个 x 和y,如果给定一个x 的值,相应地 ,那么我们称y 是x 的函数,其中x 叫 ,y 叫 。
2、我们已经学过一次函数,还记得相关知识吗?⑴形如y= 的函数,叫做一次函数; ⑵图像的性质是:当k >0时,图像经过第 象限,y 随x 的逐渐增大而 ,这时图像是 图像(上升或下降)。
当k<0时,图像经过第 象限,y 随x 的逐渐增大而 ; 当k=0时,它变成 函数,图像的性质与 的性质相同。
二、合作学习1、电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时, (1)你能用含有R 的代数式表示I 吗?当R 越来越大时,I 怎样变化?当R 越来越小呢?(3)变量I 是R 的函数吗?为什么?2、汽车从南京出发开往上海(全程约为300km ),全程所用的时间t(h)随速度v(km/h)的变化而变化.(1)你能用含有v 的代数式表示t 吗? (2)利用(1)中的关系式完成下表:随着速度的变化,全程所用的时间发生怎样的变化?.(3)速度v 是时间t 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成 的形式,那么y 是x 的反比例函数.反比例函数的自变量x 不能为零。
3.下列关系式中的y 是x 的反比例函数吗?如果是,系数k 是多少? ①4y x =;②12y x =-;③1y x =-;④1xy =;⑤2x y =;⑥13y x -=;⑦21y x=- 三、质疑导学1、 个矩形的面积为202cm ,相邻的两条边长分别为xcm 和ycm 。
【人教版】九年级数学下册《反比例函数》全章导学案
第二十六章二次函数26.1 二次函数(1)教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,2.x3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y 是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。
形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。
将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)]3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? [(10-8-x);(100+100x)]4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。
反比例函数整章导学案
课题 17.1.1 反比例函数的意义学习目标:1.会识别相关量之间的反比例关系,理解反比例函数的意义,能确定简单的反比例函数关系式.2.通过对实际问题的分析、类比、归纳,培养学生分析问题的能力,并体会函数在实际问题中的应用.重点:反比例函数意义的理解.难点:反比例函数的建模.学习过程一、独学1、阅读课本第39页至40页的部分,完成以下问题.问题:(1)京沪线铁路全长1463 km,某次列车的平均速度v km/h•随此次列车的全程运行时间t h 的变化而变化,其关系可用函数式表示为:(2)某住宅小区要种植一个面积为1 000 m2矩形草坪,草坪的长y m随宽x m•的变化而变化,可用函数式表示为(3) 已知北京市的总面积为1.68×104 km2,人均占有的土地面积S km2/人,随全市总人口n人的变化而变化,其关系可用函数式表示为.2、合作探究分析上述问题中的函数关系式都有y=kx的形式,其中k为常数.归纳一般地,形如y=kx(k为常数,且k•≠0)•的函数称为。
注意在y=kx中,自变量x是分式kx的分母,当x=0时,分式kx无意义,所以x•的取值范围二、课堂展示【例1】已知y是x的反比例函数,当x=2时,y=6.(1)写出y与x的函数关系式;(2)求当x=4时y的值.例2. 若反比例函数y=kx与一次函数y=2x-4的图象都过点A(m,2).(1)求点A坐标.(2)求反比例函数解析式.三、随堂练习1.写出下列函数关系式,并指出它们各是什么函数(1)平行四边形面积是24 cm2,它的一边长x m和这边上的高h cm之间的关系是.(2)小明用10元钱去买同一种菜,买这种菜的数量m kg与单价n元/kg•之间的关系是(3)老李家一块地收粮食1000 kg,这块地的亩数S与亩产量t kg/亩之间的关系是2.若y是x-1的反比例函数,则x的取值范围是 3.若y=11nx-是y关于x的反比例函数关系式,则n是4.把xy=-1化为y=kx的形式,其中k=5.指出下列函数关系式中,哪一个成反比例函数关系,并指出k的值.(1)y=-3x(2)(3)2yx=1 (4)(5)(6)y=21x6.已知y是2x的反比例函数,当x=12时,y=1.(1)求y与2x的函数关系式;(2)当x=-14时,求y的值;(3)当y=-12时,求x的值.7.若y与x3成反比例,且x=2是y=14.(1)求y与x3的函数关系式;(2)求y=-16时x的值.四、当堂检测1.苹果每千克x元,花10元钱可买y千克的苹果,则y与x之间的函数关系式为2.若函数28)3(mxmy-+=是反比例函数,则m的取值是3.矩形的面积为4,一条边的长为x,另一条边的长为y,则y与x的函数解析式为4.已知y与x成反比例,且当x=-2时,y=3,则y与x之间的函数关系式是,当x=-3时,y=5.已知函数y=y1+y2,y1与x+1成正比例,y2与x成反比例,且当x=1时,y=0;当x=4时,y=9,求当x=-1时y的值是多少?6.当m=时,关于x的函数22)1(-+=m xmy是反比例函数?7.已知3)2(-+=mxmy是反比例函数,则m是什么?五、小结与反思课题17.1.2 反比例函数的图象和性质(1)学习目标:1.进一步作函数图象的主要步骤,会作反比例函数的图象。
反比例函数全章导学案.doc
学习课题:17. 1. 1反比例函数的意义 预习案:学法指导:用10到15分钟阅读课本内容,完成下列问题,将预习屮不能解决的问题和疑惑记下来1、 回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2、 体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?3在思考(1)中,当路程一定时,速度和时间成什么关系?在思考(2)中,当矩形草坪面积一定时, 矩形草坪的长与宽成什么关系?在思考(3)中,当北京市的总面积一定时,人均占有的土 地面积与全市总人口成什么关系?4、什么是反比例函数?哪个是比例系数?比例系数有什么特点?探究案:问题1、在思考(1) (2) (3)中得到的关系式与一次函数、正比例函数的关系式一样吗?2、 这些关系式有什么特征?3、 你能归纳出反比例函数的概念吗?4、 反比例函数的自变量x 的取值范围是怎样的?函数值y 的取值范围是什么?【活动1】问题1:下列哪个等式中的y 是x 的反比例函数?丄=3, y = 6 兀+ 1,小=123, y=- —x2x思考:反比例函数解析式的分子、分母有什么特征?问题2:当m 取什么值时,函数y 二(加-2)兀“"2是反比例函数? 思考:反比例函数的解析式有儿种形式?【活动2】己知y 是X 的反比例函数,当x=2时,y=6(1)写出y 与x 的函数关系式:(2)求当x 二4时,y 的值。
思考1:确定反比例函数解析式的关键是什么?思考2:本题可以设反比例函数解析式的哪种形式? 二、巩固练习1、 P40-1、2、3 (在书上完成)2、y 是x 的反比例函数,下表给出了 x 与y 的一些值:(1) 写出这个反比例函数的表达式;(2) 根据函数表达式完成上表。
四、反思归纳1、 木节课学习的内容:5y"x + 22、数学思想方法归纳:当堂检测1、下列哪个等式中的y是x的反比例函数?2 2 2(1)y -—X , (2) y -—X , (3) xy +1 = 0 , (4) xy = 0 , (5) x =——• 3 -3 3y2、函数y =-—中的自变量x的取值范围是______________________x + 2三、提升能力:1、若函数y = (m + l)x,,r J是反比例函数,则m二 _________2、已知y与x・l成反比例函数,当x=2时y=l,则这个函数的表达式是( )1 k 1 1 .A、y = ---- y = ------------ C、y =--------------- D^ y = ------------ 1x-\ x-\x+1 x3、己知y与x?成反比例,并且当x=3时y二4.(1)写出y与x之间的函数关系式。
九年级数学上册 第六章 反比例函数 全章导学案 (新版)北师大版
6.1反比例函数学习目标:1.理解反比例函数的概念,会求比例系数。
2.感受反比例函数是刻画世界数量关系的一种有效模型,能够列出实际问题中的反比例函数关系.学习重点:理解反比例函数的概念,会求比例系数。
难点:正确列出实际问题中的反比例函数关系。
学习过程中可能会用到的某些量之间的关系:,R U I = ,vs t = 长方形的面积=长⨯宽,总人口数总耕地面积人均耕地面积= 学习过程:一、自主学习1、自学课本新课内容并完成课本的题目。
(做在课本上。
)2、明确概念:反比例函数:一般地,如果两个变量x 、y 之间的关系式可以表示成的形式,那么称y 是x 的反比例函数。
反比例函数的自变量x 不能为。
*说明:(1)反比例函数)0(≠=k x k y 有时也写成)0(≠=k y 或)0(≠=k 的形式。
(2)反比例函数中,三个量x 、y 、k 均不能为0.二、合作学习,共同探索1、订正自主学习内容。
2、完成课本做一做。
先独立完成,再小组交流。
三、全班交流,知识应用1、下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少? ①4y x =;②12y x =-;③1y x =-;④1xy =;⑤2x y =;⑥13y x -=;⑦21y x =- 解:上述关系式中y 是x 的反比例函数的有:;它们的比例系数k 分别是 。
2、已知y 是x 的反比例函数,且当x =2时,y =9.(1)求y 关于x 的函数表达式;(2)当27=x 时,求y 的值;(3)当y =3时,求x 的值。
3、已知函数22(1)m y m x -=+当m 为何值时,y 是x 的反比例函数?并求出函数的表达式。
四、课堂小结。
这节课我们主要学习了 ,你的收获是: 。
五、当堂检测必做题:1.下列函数中,y 与x 成反比例函数关系的是( )A.5xy =B.21y x =-C.3y x =D.11y x =-+ 2.在下列关系式中:①x y 5= ②x y 4.0= ③2x y = ④1-=xy ⑤x y -=5 ⑥x y 65= ⑦2=xy ⑧12-=x y 其中y 是x 的反比例函数的有:;它们的比例系数k 分别是 。
初三数学九年级下册《反比例函数》导学案
第26章 反比例函数26.1.1反比例函数的意义【学习目标】1、 经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、 理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、 让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用 【学习重点】理解反比例函数的意义,确定反比例函数的解析式 【学习难点】反比例函数的解析式的确定 【学法指导】自主、合作、探究【自主学习,基础过关】 一、自主学习: (一)复习巩固1.在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时, y ,则称x 为 ,y 叫x 的 .2.一次函数的解析式是: ;当 时,称为正比例函数.3.一条直线经过点(2,3)、(4,7),求该直线的解析式. 以上这种求函数解析式的方法叫: . (二)自主探究提出问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?(1)京沪线铁路全程为1463km ,乘坐某次列车所用时间t (单位:h )随该列车平均速度v (单位:km/h )的变化而变化;(2)某住宅小区要种植一个面积为1000m 2的矩形草坪,草坪的长为y 随宽x 的变化; (3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S (单位:平方千米/人)随全市人口n (单位:人)的变化而变化.1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么? (1) (2) (3)2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗? (三)归纳总结:1、三个函数表达式:v t 1262=、xy 1000=、S =n 41068.1⨯有什么共同特征?你能用一个一般形式来表示吗?2、对于函数关系式xy 1000=,完成下表:3、类比一次函数的概念给上述新的函数下一个恰当的定义 讨论:1、反比例函数xky =中自变量x 在分式的什么位置?自变量的取值范围是什么?2、你能再举出两个反比例函数关系的实例吗?写出函数表达式,与同伴进行交流。
苏教版九年级上册《反比例函数》导学案
第四章 反比例函数§1 函数基础知识复习◆教学目标:一、回顾直角坐标系与函数的基础知识 二、一次函数1、一次函数的定义2、一次函数的图象3、一次函数与一元一次方程、一元一次不等式的相互联系4、一次函数的运用5、培养学生初步的数形结合的意识和能力。
体验数形结合的美感◆课前知识回顾1、平面直角坐标系的概念平面直角坐标系是由平面内的两条互相__________,且具备公共_________的数轴构成,平面直角坐标系中的点与____________是一一对应。
2、平面直角坐标系中点的四性 ⑴点的象限性点),(b a P 在第一象限时0______,0______b a ⇔ 在第二象限时0______,0______b a ⇔ 在第三象限时0______,0______b a ⇔ 在第四象限时0______,0______b a ⇔ ⑵点的坐标轴性点),(b a P 在x 轴上,0____=⇔ 在y 轴上,0_____=⇔ ⑶点的轴距性点),(b a P 到x 轴的距离为_________,到y 轴的距离为__________,到原点的距离为______________。
A(x 1,y 1),B(x 2,y 2),AB= . ⑷点的对称性点),(b a P 关于x 轴的对称点为( ),关于y 轴的对称点为( ),关于原点的对称点为( ) 3、函数的表示方法:函数的表示方法有_________________,_____________________,__________________________ 4、画函数图象的一般步骤画函数图象的三个步骤分别依次为_____________,________________,_____________________5、一次函数的定义形如b kx y +=(b k ,为常数,0≠k )的函数叫做_____________。
如果0=b ,把具有)0(≠=k kx y 形式的函数,我们又称为___________。
第26章反比例函数全章导学案(共7份)
1赣州一中2014—2015学年度第一学期初三数学导学案26.1 反比例函数【学习目标】1.会识别相关量之间的反比例关系,理解反比例函数的意义,能确定简单的反比例函数关系式.2.通过对实际问题的分析、类比、归纳,培养学生的能力,并体会函数在实际问题中的应用. 【学习重点】理解和领会反比例函数的概念 【学习难点】反比例函数的建模,能列出实际问题中反比例关系式.. 【学习过程】一、课前导学:预习课本第1页至第3页,完成下列问题:1.我们形如 的函数叫做一次函数,当 时,又叫做正比例函数.2.探究:反比例函数的意义 问题1:(1)京沪线铁路全长1 463km ,某次列车的平均速度vkm/h•随此次列车的全程运行问题th 的变化而变化,其关系可用函数式表示为:(2)某住宅小区要种植一个面积为1 000m 2矩形草坪,草坪的长ym 随宽xm•的变化而变化,可用函数式表示为 (3)已知北京市的总面积为 1.68×104km 2,人均占有的土地面积Skm 2/人,随全市总人口n 人的变化而变化,其关系可用函数式表示为 .问题2上述问题中的函数关系式都有什么共同的特征?答: .4. 反比例函数的意义:一般的,形如 的函数,叫做反比例函数,其中x 是自变量,y 是函数学.自变量的取值范围是 的一切实数.5.下列哪个等式中的y 是x 的反比例函数?6.已知y 是x 的反比例函数,当x=2时,y=6.写出y 与x 的函数关系式; 求当x=4时,y 的值.7.若y 与x 成正比例,z 与y 成反比例,则x 与z 之间成______________关系.8.已知y 与(2x+1)成反比例,且x=1时,y=2,那么当x=0时,y 的值是二、 合作、交流、展示:1.比例函数的意义:反比例函数的解析式 ,y=xk 反比例函数的变形形式:(1)xy=k(2)1-=kx y2.例题1.下列等式中,哪些是反比例函数? (1)3xy = (2)x y 2-= (3)xy =21(4)25+=x y (5)x y 23-= (6)31+=xy (7)y =x-4例题2.当m 取什么值时,函数23)2(m xm y --=是反比例函数?例题3(拓展提升).已知函数y =y 1+y 2,y 1与x成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5 (1)求y 与x 的函数关系式; (2)当x =-2时,求函数y 的值 归纳总结: 注意y 1与x 和y 2与x 的函数关系中的比例系数 ,故不能都设为k ,要用 的字母表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数全章导学案学习课题:17.1.1反比例函数的意义预习案:学法指导:用10到15分钟阅读课本内容,完成下列问题,将预习中不能解决的问题和疑惑记下来1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2、体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?3在思考(1)中,当路程一定时,速度和时间成什么关系?在思考(2)中,当矩形草坪面积一定时,矩形草坪的长与宽成什么关系?在思考(3)中,当北京市的总面积一定时,人均占有的土地面积与全市总人口成什么关系?4、什么是反比例函数?哪个是比例系数?比例系数有什么特点?探究案:问题1、在思考(1)(2)(3)中得到的关系式与一次函数、正比例函数的关系式一样吗?2、这些关系式有什么特征?3、你能归纳出反比例函数的概念吗?4、反比例函数的自变量x的取值范围是怎样的?函数值y的取值范围是什么?1、P40-1、2、3(在书上完成)2、y 是x 的反比例函数,下表给出了x 与y 的一些值: x -2-1 21-21 1 3 y322-1(1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表。
四、反思归纳1、本节课学习的内容:2、数学思想方法归纳: 当堂检测1、下列哪个等式中的y 是x 的反比例函数?(1)x y 32=, (2)x y 32=,(3) 01=+xy ,(4)0=xy ,(5)y x 32=2、函数21+-=x y 中的自变量x 的取值范围是 三、提升能力:1、若函数12)1(-+=m x m y 是反比例函数,则m=2、已知y 与x-1成反比例函数,当x=2时y=1,则这个函数的表达式是( )A 、11-=x yB 、1-=x k yC 、11+=x y D 、11-=xy3、已知y 与x 2成反比例,并且当x=3时y=4.(1)写出y 与x 之间的函数关系式。
(2)求x=1.5时y 的值。
4、已知y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x=1时,y =4;当x =2时,y =5.求y 与x 的函数关系式学习课题:17.1.2 反比例函数的图象和性质(1) 教学目标:1、会画反比例函数的图像 2、能说出反比例函数图像的性质 预习案:学法指导:用10到15分钟阅读课本内容,完成下列问题,将预习中不能解决的问题和疑惑记下来 1、举出反比例函数实例2、用描点法画图象的步骤是__________、__________、__________探究案:问题:我们已知道,一次函数y=kx+b(k≠0)的图象是一条直线,•那么反比例函数y=kx(k为常数且k≠0)的图象是什么样呢?【活动1】尝试用描点法来画出反比例函数的图象.画出反比例函数y=6x 和y=-6x的图象.解:列表x …-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …y=6x-1 -1.5 -2 -6 3 1y=-6x1 1.23 6 -1.5(请把表中空白处填好)描点,以表中各对应值为坐标,在直角坐标系中描出各点.连线,用平滑的曲线把所描的点依次连接起来.思考:问题1:你认为作反比例函数的图像应该注意哪些问题问题2:反比例函数的图像可能与坐标轴相交吗?为什么?问题3:反比例函数y=6x 和y=-6x的图象有什么共同特征?它们之间有什么关系?归纳:反比例函数y=6x 和y=-6x的图象的共同特征:(1)____________________(2)________________________________________问题4:把y=6x 和y=-6x的图象放到同一坐标系中,观察一下,看它们是否对称.此外,y=6x 的图象和y=-6x的图象关于x轴对称,也关于y轴对称.【活动2】在平面直角坐标系中画出反比例函数y=3x和y=-3x的图象.学习课题:17.1.2反比例函数的图象和性质(2)教学目标:1、能在同一个坐标下分析正比例函数和反比例函数图像2、能运用反比例函数的图像与性质一、观察分析:(课本P42 思考)y=6x 和y=-6x的图象及y=3x 和y=-3x的图象(1)它们有什么共同特征和不同点?(2)每个函数的图象分别位于哪几个象限?(3)在每一个象限内,y随x的变化而如何变化?【活动3】猜想:反比例函数y=kx(k≠0)的图象在哪些象限由什么因素决定?•在每一个象限内,y随x 的变化情况如何?它可能与坐标轴相交吗?归纳:(1)反比例函数y=kx(k为常数,k≠0)的图象是双曲线.(2)当k>0时,双曲线的两支分别位于第__________象限,在每个象限内,y•值随x值的增大而.____________(3)当k<0时,双曲线的两支分别位于第__________四象限,在每个象限内,y•值随x值的增大而____________.例1、指出当k>0时,下列图象中哪些可能是y=kx(k≠0)在同一坐标系中的图象()与y=kx思考1:正比例函数的图像有什么特点?思考2:反比例函数的图像有什么特点?二、巩固练习1、P43-1、22、请你写出一个反比例函数的解析式,使它的图象在第一、三象限__________.三、归纳知识四、当堂检测1、反比例函数y=k x (k ≠0)的图象经过点(-3,3),则该反比例函数的图像在( )A 、第一、三象限B 、第二、四象限C 、第二、三象限D 、第一、二象限 2、反比例函数 y=x2的图象的两支分别在第象限。
五、提升能力:1、已知反比例函数 y=2k x的图象在第一三象限内,则k 的取值范围是________2、在反比例函数y=k x(k<0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1>x 2>0,则y 1-y 2的值为 ( )(A )正数 (B )负数 (C )非正数 (D )非负数3、在直角坐标系中,若一点的横坐标与纵坐标互为倒数,•则这点一定在函数图象上 ____ (填函数关系式).4.若一次函数y=kx+b 的图象经过第一、二、四象限,则反比例函数y=kb x 的图象一定在 象限.5、在平面直角坐标系内,过反比例函数xk y =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为 6、已知反比例函数y a x a =--()226,当x >0时,y随x 的增大而增大,求函数关系式。
7、如图,过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2 (C )S 1<S 2(D )大小关系不能确定学习课题:17.1.2 反比例函数的图象和性质(3)学习目标:1、能用待定系数法求反比例函数的解析式.2、 能用反比例函数的定义和性质解决实际问题.预习案:学法指导:用10到15分钟阅读课本内容,完成下列问题,将预习中不能解决的问题和疑惑记下来一、 复习 1、如何画反比例函数图象。
2、反比例函数有哪些性质。
二、教材助读1、反比例函数解析式中哪个量决定函数所在的象限?要确定函数解析式,可用什么方法是什么?2、在例3中,判断点不在函数图象上的方法是什么?3、在例4中,根据函数图象确定x my 5-=中m 的取值范围,反比例函数图象位于第一象限,说明什么?探究案: K 的符号 函数图象 图象位置 图象的对称性 图象在同一象限内x,y 的变化规律问题1:正比例函数的图象与反比例函数的图象有什么不同?问题2:正比例函数与反比例函数的解析式有什么不同?问题3:正比例函数与反比例函数的自变量的取值范围各是怎么样的?问题4:正比例函数的图象与反比例函数的图象的位置如何分布的?问题5:正比例函数与反比例函数的图象在同一个象限内x、y的变化规律分别是什么?函数正比例函数反比例函数图象解析式自变量取值范围图象的位置性质探究反比例函数图象与性质的应用例1、三个反比例函数(1)y=1kx (2)y=2kx(3)y=3kx在x轴上方的图象如图所示,由此推出k1,k2,k3的大小关系思考1:k1,k2与k3有什么不同?思考2:如何比较k2,k3的大小例2、直线y=kx与反比例函数y=-6x的图象相交于点A、B,过点A作AC垂直于y轴于点C,求S△ABC.思考1:直线y=kx的解析式不确定,能直接求面积吗?思考2:S△A0C与S△BOC有什么关系吗?与S△ABC呢?思考3:当点A、B位置发生变化时,S△ABC有什么变化?二、巩固练习:1、P45-1、22、判断下列说法是否正确(1)反比例函数图象的每个分支只能无限接近x 轴和y轴,•但永远也不可能到达x轴或y轴.()中,由于3>0,所以y一定随x的增(2)在y=3x大而减小.()(3)已知点A(-3,a)、B(-2,b)、C(4,c)的图象上,则a<b<c.()均在y=-2x(4)反比例函数图象若过点(a,b),则它一定过点(-a,-b).()的图象上有两点A(x1,3、设反比例函数y=3mxy1)和B(x2,y2),且当x1<0<x2时,有y1<y2,则m 的取值范围是.4、点(1,3)在反比例函数y=k的图象上,则xk= ,在图象的每一支上,y随x•的增大而.5、正比例函数y=x的图象与反比例函数y=k的图x象有一个交点的纵坐标是2,求(1)x=-3时反比例函数y的值;(2)当-3<x<-1时,反比例函数y的取值范围.三、反思归纳1、本节课学习的内容:反比例函数的性质及运用(1)k的符号决定图象_________.(2)在每一象限内,y随x的变化情况,在不同象限,_________运用此性质.(3)从反比例函数y=k的图象上任一点向一坐标x轴作垂线,这一点和垂足及坐标原点所构成的三=_________.角形面积S△四、当堂检测:“已知点(2,5)在反比例函数y=x 的图象上,•试判断点(-5,-2)是否也在此图象上.”题中的“?•”是被一个同学不小心擦掉的一个数字,请你分析一下“?”代表什么数,并解答此题目.三、提升能力:3、已知函数y=-kx(k≠0)和y=-4的图象交于A、Bx两点,过点A作AC垂直于y轴,垂足为C,则S△=_________.BOC的图象都4、已知正比例函数y=kx和反比例函数y=3x过点A(m,1),求此正比例函数解析式及另一交点的坐标.5、如图所示,已知直线y1=x+m与x轴、y•轴分别交于点A、B,与双曲(k<0)分别交于点C、D,且C点坐标为(-1,线y2=kx2).(1)分别求直线AB与双曲线的解析式;(2)求出点D的坐标;(3)利用图象直接写出当x在什么范围内取何值时,y1>y2.学习课题:17.2实际问题与反比例函数(1)学习目标:1、能灵活列反比例函数表达式解决一些实际问题.2、能综合利用几何、方程、反比例函数的知识解决一些实际问题.预习案:学法指导:用10到15分钟阅读课本内容,完成下列问题,将预习中不能解决的问题和疑惑记下来一、复习1、什么是反比例函数?它的图象是怎样的?有哪些性质?2、解决实际应用问题的基本步骤是怎样的?二、教材助读1、例1中,圆柱的体积公式是什么?2、例2是一个工程问题,工作问题= ×工作时间?而工作总量即货物总量是多少?3、例2(2)是一个不等关系,你能不能转化为关于v的相等关系?是什么?探究案一、探究研讨生活中的反比例函数模型的应用 P54 练习1思考1:如何确定面积S与漏斗的深d之间的函数关系?思考2:本题中确定比例系数k的方法是什么?二、探究面积中的反比例函数的应用已知某矩形的面积为20cm2(1)写出其长y与宽x之间的函数表达式。