不等式组的解集与区间
第三节 一元一次不等式(组)的解集与区间
集的规定可知a=6.
同步精练
9.若不等式组
2x 1 3
1,
的解集{x|x>2},则a的取值范围
x a
是___a_≤__2__.
【提示】
解不等式组
2x 1 ቤተ መጻሕፍቲ ባይዱ3 x a
1,
得
x x
2,要
a,
使解集是{x|x>2},需a≤2.
10.不等式x-3≥1+5x的解集可用区间表示为(_-__∞_,__-__1_].
解:解不等式4x+6>0,得x> 3 ;
2
解不等式3x-5<0,得x< 5 .
3
∴原不等式的解集是
3 2
,
5 3
.
同步精练
13.已知不等式组 数a,b的值.
2x 2x
a a
b b
的解集是(-5,4),求实
解:不等式2x-a>-b等价于2x>a-b,解得x> a b ;
2
不等式2x-a<b等价于2x<a+b,解得x< a b .
知识梳理
(3)一元一次不等式组的解法 若a<b,则不等式组
①
x a x b
的解集为__{_x_|_x>__b_}____;
②
x a x b
的解集为_{_x_|_a_<__x_<__b_}_;
③
x a x b
的解集为__{_x_|_x<__a_}____;
④
x a x b
的解集为_____∅_______.
|
x
5 3
典例解析
(2)去分母得2(x-2)≤3x-6,去括号2x-4≤3x-6,移项、 合并同类项得-x≤-2,化系数得x≥2,所以不等式的解集 为{x|x≥2}.
高中不等式组的解集取值范围
高中不等式组的解集取值范围
不等式组是高中数学中的重要内容,它在实际生活中有着广泛的应用。
不等式组的解集取值范围是解决实际问题的关键,掌握其求解方法对我们解决实际问题具有重要意义。
一、高中不等式组的概念与解集取值范围的关系
高中不等式组是由多个不等式组成的集合,其中的每个元素都满足所有的不等式。
解集取值范围是指不等式组所有解的数值范围,它可以帮助我们了解不等式组的性质和规律。
二、高中不等式组解集取值范围的求解方法
1.原则:同小取小,同大取大,小大取中,大大取大。
2.符号规律:两个不等式相乘,符号看两边;两个不等式相加,符号看中间。
3.逐步淘汰法:从约束条件出发,逐步淘汰不可能的解,缩小解集范围。
4.图像法:将不等式组转化为直线或曲线,观察其交点,确定解集取值范围。
三、高中不等式组解集取值范围的实例分析
例:解不等式组:{x + 2 > 5, x - 3 < 1}
1.解第一个不等式:x + 2 > 5,得到x > 3
2.解第二个不等式:x - 3 < 1,得到x < 4
3.根据原则,取两个不等式解的交集,得到解集:3 < x < 4
四、提高解题技巧,扩大解集取值范围的策略
1.熟练掌握不等式组的解法,灵活运用各种求解方法。
2.注意观察约束条件,挖掘题目中的隐含信息。
3.培养数形结合的思维能力,将不等式组问题转化为图像问题。
4.大量练习,提高解题速度和准确率。
通过以上分析,我们可以看到高中不等式组解集取值范围的重要性。
不等式组_精品文档
不等式组1. 引言不等式组是数学中一个重要的概念,它由一组不等式组成。
不等式是数学中用于描述数值之间大小关系的工具,而不等式组则可以用于描述多个数值之间的复杂关系。
本文将介绍不等式组的定义、解法以及其在应用中的一些常见场景。
2. 不等式组的定义不等式组是由多个不等式组成的集合,每个不等式可以是大于(>)、小于(<)、大于等于(≥)或小于等于(≤)等符号连接的数学表达式。
一个不等式组的一般形式可表示为:{不等式1,不等式2,...不等式n}其中,每个不等式可以包含一或多个变量,表示了变量之间的大小关系,或者变量与常数之间的关系。
3. 不等式组的解法不等式组的解是使得每个不等式都成立的变量的取值范围。
要解决一个不等式组,可以通过以下步骤进行:- 确定每个不等式中的变量个数和类型。
- 找到每个不等式中变量的取值范围。
可以通过移项、合并同类项、因式分解等方法将不等式转化为形式更简单的不等式。
- 根据不等式符号的特性进行取值范围的确定。
例如,对于大于(>)或小于(<)的不等式,变量的取值范围应排除等号右侧的值;对于大于等于(≥)或小于等于(≤)的不等式,变量的取值范围应包括等号右侧的值。
- 根据每个不等式的取值范围求解整个不等式组的解。
可以通过求交集或并集的方式得到最终的解集。
4. 不等式组的表示方法不等式组可以用不等式图形表示法、解集表示法或区间表示法来表示,具体的表示方式取决于问题的要求和解的形式。
不等式图形表示法是通过绘制每个不等式的图形并表示它们的交集或并集来表示不等式组。
解集表示法是通过写出每个不等式的解集并表示它们的交集或并集来表示不等式组。
区间表示法是用数轴上的区间表示不等式组的解集。
5. 不等式组的应用不等式组在实际问题中具有广泛的应用。
以下是一些常见的应用场景:- 经济领域:不等式组可以用于描述供需关系、利润最大化问题等经济学中的问题。
- 工程领域:不等式组可以用于描述工程中的约束条件,如最大承载能力、最短路径等。
不等式的解集表示
不等式的解集表示不等式是数学中一种常见的数值比较关系表达式。
解不等式时,我们需要找到满足不等式的所有可能取值。
而表示不等式的解集时,一般采用不等式的符号表示,或者用区间表示。
1. 不等式的解集表示方式一:使用不等式符号表示对于一元一次不等式,通常使用不等式的符号表示来表示解集。
以下是一些常见的不等式符号表示:1.1 大于不等式:> 表示。
例如:x > 3表示x的取值范围为3以上的所有实数。
1.2 小于不等式:< 表示。
例如:x < 5表示x的取值范围为5以下的所有实数。
1.3 大于等于不等式:≥ 表示。
例如:x ≥ 2表示x的取值范围为2及以上的所有实数。
1.4 小于等于不等式:≤ 表示。
例如:x ≤ 4表示x的取值范围为4及以下的所有实数。
1.5 不等式和等号:>、<、≥、≤ 均可与等号结合使用,表示不等式中包含等号。
例如:x ≥ 3表示x的取值范围为3及以上的所有实数,包括3本身。
2. 不等式的解集表示方式二:使用区间表示除了使用不等式符号表示外,我们还可以使用区间来表示不等式的解集。
区间表示法可以更直观地表示不等式的解集范围。
以下是一些常见的区间表示方法:2.1 左开右开区间:使用圆括号表示。
例如:(3, 5)表示解集中的所有实数x满足3 < x < 5。
2.2 左闭右开区间:使用左闭右开的符号表示。
例如:[2, 4)表示解集中的所有实数x满足2 ≤ x < 4。
2.3 左开右闭区间:使用左开右闭的符号表示。
例如:(1, 3]表示解集中的所有实数x满足1 < x ≤ 3。
2.4 左闭右闭区间:使用方括号表示。
例如:[0, 2]表示解集中的所有实数x满足0 ≤ x ≤ 2。
需要注意的是,在表示解集时,可以将多个不等式的解集表示进行合并,得到复合不等式的解集表示。
例如:x < 3 或 x > 5可以表示为解集为(-∞,3)∪(5,+∞)。
数学(第一册)不等式22.2 区间
§2.2 区 间【教学目的】理解区间的概念,掌握用区间表示不等式解集的方法,并能在数轴上表示出来.【教学重点】各类区间的符号表示.【教学难点】对“∞”符号的理解.【教学过程】不等式(组)的解集也可以用区间来表示.介于两个实数之间的所有实数的集合叫做区间.这两个实数叫做区间的端点. 设a ,为任意两个实数,且,规定: 注:符号“”读作“无穷大”,它不是一个数,只是一个记号,“”表示可以无限制地增大,“-∞”表示可以无限制地减小.例1 用区间表示下列不等式的解:3113x x +≥-.解 移项得31103x x +-≥-,(问:能不能先去分母?) 整理得203x x +≥-.它可化为不等式组:(1) 2030x x +≥⎧⎨->⎩ 或 (2) 2030x x +≤⎧⎨-<⎩.解(1)得 3x >;解(2)得 2x ≤-. 所以,原不等式的解为 ()(,2]3,x ∈-∞-+∞.例2 求下列不等式的解集:⎩⎨⎧≤->+053062x x .解 解 ⎩⎨⎧≤->+053062x x 得353x x >-⎧⎪⎨≤⎪⎩,即533x -<≤. 则原不等式的解集为533x x ⎧⎫-<≤⎨⎬⎩⎭,用区间表示为53,3⎛⎤- ⎥⎝⎦. 课堂练习练习1:见书P35.练习2:1. 用区间表示下列数集:(1) 数集B 是大于等于1的实数; (2) 数集A 是大于0、不大于5的实数; 2.解不等式265x -<,并用区间表示不等式的解集.【小结与作业】课堂小结:本次课主要学习了用区间表示数集.理解区间概念,会用区间表示不等式(组)的数集.本课作业:习题2.2.。
不等式的解集及区间
x
a
b
x
a
b
(1)含有两个端点的数轴区域设 设a<x<b
a bx a≤x≤b {x| a≤x≤b} [a,b]
a bx
a bx a bx
a<x<b
a<x≤b
a≤x<b
{x| a<x<b} {x| a<x≤b}
(a,b)
(a,b]
{x| a≤x<b} [a,b)
• 开区间 满足不等式a<x<b 的所有实数的集 合,叫做开区间,记做(a,b),在数轴上用介 于a,b两点之间而不包括端点的一条线段上所 有的点表示。如图:
x
a
b
• 闭区间 满足不等式a≤x≤b的所有实数的集合, 叫做闭区间,记做[a,b],用数轴表示为:
x
a
b
半开半闭区间
不等式满足a<x≤b 或 a≤x<b
成的一元一次不等式组的解集。
思考:如果各个不等式的解集的交集是空集呢?
求解不等式组解集的过程,叫做解不等式组。
例2:解不等式组
{x -5 2 x -4 3 x 1< 9- x
解:由不等式得 x-2x≤5-4, -x≤1, x≥-1. 所以不等式的解集是{x|x≥-1}. 由不等式得 3x+x<9-1, 4x<8, x<2. 所以不等式的解集是{x|x≤2}。 取交集得到元不等式的解集是{x|-1≤x<2}. 请同学们自己在数轴上表示出来.
(-∞ ,a]
a
x
x>a
{x| x > a}
(a,+∞)
ax x<a {x| x < a}
(-∞,a)
对于实数集 R,也可用区间(- ∞ ,+∞) 表示 .
高一数学不等式区间知识点
高一数学不等式区间知识点在高一数学学习中,不等式是一个重要的内容。
而不等式的区间则是不等式的基础知识点之一。
在本文中,我将为大家详细介绍高一数学不等式区间的相关知识点。
一、区间的定义区间是指数轴上的一个连续的区间段,可以用数学符号表示。
一般来说,区间由两个数值确定,包括这两个数值在内的所有实数都属于该区间。
根据数学符号的不同,区间可以分为闭区间和开区间。
1. 闭区间:闭区间用方括号 [ ] 表示,包含区间的两个端点。
例如,[a, b] 表示包含 a 和 b 的所有实数。
2. 开区间:开区间用括号 ( ) 表示,不包含区间的两个端点。
例如,(a, b) 表示不包含 a 和 b 的所有实数。
二、区间的表示方法在不等式中,我们常常用区间来表示解的范围。
以下是一些常见的不等式区间的表示方法:1. 大于等于和小于等于:如果不等式的关系是大于等于(≥) 或小于等于(≤),则对应的区间是闭区间。
例如,2x + 1 ≥ 5,可以表示为 x ∈ [2, +∞)。
2. 大于和小于:如果不等式的关系是大于 (>) 或小于 (<),则对应的区间是开区间。
例如,3x - 2 > 4,可以表示为 x ∈ (2/3, +∞)。
3. 包含零点:如果不等式的关系是大于零 (>) 或小于零 (<),则零点需要单独处理。
例如,x^2 - 4 > 0,可以表示为 x ∈ (-∞, -2)∪ (2, +∞)。
三、区间的合并与交集在实际问题中,我们常常需要对多个区间进行合并或求交集。
这需要我们对区间的特性有所了解。
1. 区间的合并:当给出多个区间时,要求得它们的合并区间。
合并区间是包含输入的所有区间的最小的区间。
例如,给出区间[1, 3] 和 (4, 5),它们的合并区间为 [1, 3] ∪ (4, 5) = [1, 3] ∪ [4, 5] = [1, 5]。
2. 区间的交集:当给出多个区间时,要求得它们的交集区间。
高中不等式组的解集取值范围
高中不等式组的解集取值范围摘要:一、不等式组的概念1.不等式组的定义2.不等式组解集的求法二、高中不等式组的解集取值范围1.一元一次不等式组的解集取值范围2.一元二次不等式组的解集取值范围3.多元不等式组的解集取值范围三、不等式组解集取值范围的求法1.口诀求解2.代入法求解3.图像法求解四、实际应用1.高中数学题目中的应用2.实际生活场景中的应用正文:一、不等式组的概念不等式组是由多个不等式组成的集合,求解不等式组的解集就是找到满足所有不等式的数值。
不等式组的解集可以用图像法、口诀法、代入法等方法求解。
二、高中不等式组的解集取值范围高中阶段,我们主要学习一元一次不等式组、一元二次不等式组和多元不等式组。
1.一元一次不等式组的解集取值范围:当所有不等式的符号都相同时,解集为所有满足不等式条件的数值;当有不等式符号不同时,解集为满足最大(小)不等式条件的数值。
2.一元二次不等式组的解集取值范围:首先求出对应的一元二次方程的根,然后根据根与系数的关系判断解集。
3.多元不等式组的解集取值范围:通常需要利用线性规划的方法求解,也可以通过图像法直观地得到解集。
三、不等式组解集取值范围的求法1.口诀求解:根据口诀“同大取大、同小取小、大小小大中间找、大大小小找不到”,可以快速地找到不等式组的解集。
2.代入法求解:将每个不等式的解代入到其他不等式中,判断是否满足,从而找到解集。
3.图像法求解:将不等式组转化为对应的函数图像,通过观察图像找到解集。
四、实际应用1.高中数学题目中的应用:不等式组在高中数学题目中非常常见,如在解析几何、函数、概率等题目中都有涉及。
大一不等式知识点总结
大一不等式知识点总结在大一阶段学习数学的过程中,不等式是一个非常重要的内容。
不等式是数学中关系大小的一种表示方式,它在解决实际问题和证明数学定理等方面有着广泛的应用。
本文将对大一学习过程中的不等式知识点进行总结和归纳。
一、基本概念在介绍不等式的具体性质前,我们首先需要了解一些基本概念。
1. 不等式:不等式是利用不等号(<、>、≤、≥)表示的数学关系,用来表达两个数之间的大小关系。
2. 解集:解集是使不等式成立的所有实数的集合。
解集可以用区间表示,包括开区间、闭区间、无穷区间等形式。
3. 不等式的性质:不等式具有传递性、对称性、加减性、乘除性等基本性质,这些性质在解不等式时需要灵活应用。
4. 不等式的加强与弱化:不等式中,如果将不等号由“<”改为“≤”,或者将不等号由“>”改为“≥”,则称为加强不等式;如果将不等号由“≤”改为“<”,或者将不等号由“≥”改为“>”,则称为弱化不等式。
二、一元一次不等式一元一次不等式是指只有一个未知数,并且该未知数的最高次数为1的不等式。
在学习一元一次不等式时,我们需要掌握以下几个重要的知识点:1. 不等式的解集表示:解一元一次不等式时,可以得到一个解集。
当不等式中存在“<”或“>”时,解集通常用开区间表示;当不等式中存在“≤”或“≥”时,解集通常用闭区间表示。
2. 解不等式的方法:解一元一次不等式时,可以利用逆序法、代换法、配方法等不同的方法。
在解题过程中,我们需要注意运算的合法性和不等号的变化情况。
3. 不等式的应用:一元一次不等式在实际问题中有着广泛的应用。
常见的问题类型包括利润最大化、成本最小化、不等式关系的判断等等。
三、一元二次不等式一元二次不等式是指只有一个未知数,并且该未知数的最高次数为2的不等式。
在学习一元二次不等式时,我们需要掌握以下几个重要的知识点:1. 不等式的解集表示:解一元二次不等式时,解集通常用开区间、闭区间或无穷区间表示,具体形式取决于不等式的形态和条件。
不等式与区间
不等式与区间不等式是数学中的一种常见表达方式,用于比较两个数或者两个算式的大小关系。
区间则是不等式的一种特殊表达形式,表示一个数的范围。
一、不等式基础不等式有以下几种形式:1. 严格不等式:表示两个数不相等的关系,使用 "<" 或 ">" 符号进行表示。
例如:a < b 或 c > d。
2. 非严格不等式:表示两个数包括相等的关系,使用"≤" 或"≥" 符号进行表示。
例如:x ≤ y 或u ≥ v。
在解不等式时,需要注意以下几个原则:1. 相加相减法则:可以在不等式的两侧同时加上或减去相同的数,而不改变不等式的方向。
例如:若 a < b,则 a + c < b + c。
2. 相乘相除法则:可以在不等式的两侧同时乘以或除以正数,而不改变不等式的方向;但是若乘以或除以负数,则需要改变不等式的方向。
例如:若 x > y,则 2x > 2y;若 z < w,则 -3z > -3w。
二、不等式的解集与图示解一个不等式意味着找到满足该不等式的数的集合,这个集合称为不等式的解集。
1. 一元不等式的解集表示:对于只含有一个未知数的不等式,可以通过解不等式得到一个数轴上的一段区间来表示解集。
举例说明:解不等式 2x - 3 > 5,需要先将 x 的系数移到一侧得到 2x > 8,再将x 分离,得到 x > 4。
所以不等式的解集为 x ∈ (4, +∞)。
2. 多元不等式的解集表示:对于含有两个或两个以上未知数的不等式,可以通过解不等式得到平面上的一个区域来表示解集。
举例说明:解不等式系统 {x + y > 2, x - y < 4},可以通过先将不等式转化为等式,再画出相应的直线,最后根据不等式的符号确定对应的区域。
经求解得到该不等式系统的解集为{(x, y) | x + y > 2, x - y < 4}。
二元一次不等式组的解法与性质
二元一次不等式组的解法与性质不等式是数学中的重要概念,常用于描述数值之间的大小关系。
二元一次不等式组则是由两个二元一次不等式组成的集合。
本文将介绍二元一次不等式组的解法和性质。
一、二元一次不等式组的解法为了解决二元一次不等式组,我们需要找到满足所有不等式的解集。
以下是三种常见的解法:1. 图像法图像法通过将不等式转化为平面上的图形来解决问题。
我们将每个不等式表示为平面上的直线或者曲线,并且找到它们的交集区域。
这个交集区域即为不等式组的解集。
2. 代入法代入法是一种常用的解决二元一次不等式组的方法。
我们可以将其中一个不等式的解表示为另一个不等式中的变量,再代入到另一个不等式中求解。
通过这种方式,我们可以得到一个变量的解,然后再将其代入到另一个不等式中求得另一个变量的解。
3. 消元法消元法是一种基于代数运算的解法。
我们可以利用加减消元法或乘除消元法来消去其中一个变量,然后求解剩余的一元一次不等式。
接下来,再将求得的解代入到另一个不等式中进行检验,得到最终的解。
二、二元一次不等式组的性质除了解的求解方法,二元一次不等式组还有一些重要的性质需要了解。
1. 解的存在性对于一般的二元一次不等式组,它们的解集可以为空集(例如矛盾方程),可以是一个有界区域(例如一个矩形区域),也可以是整个平面。
确定解集的性质有赖于具体的不等式。
2. 解的数量二元一次不等式组的解集可以包含无数对解,也可以只包含有限对解。
具体的解集数量取决于不等式之间的相互关系。
例如,如果两个不等式的解集重合,那么最终的解集将有无数对解;如果两个不等式的解集不重合,那么最终的解集将为空集。
3. 解集的表示解集可以用不等式、区间或坐标系来表示。
具体的表示方法取决于解集的性质和可视化需求。
我们可以使用不等式符号(如>, ≥, <, ≤)来表示不等式组的解集,也可以使用区间表示法(如[a, b])来表示解集的区间范围。
结论二元一次不等式组是数学中的重要概念,通过解法可以求得它的解集。
初中不等式重要知识点总结
初中不等式重要知识点总结一、不等式的基本概念1. 不等式的定义不等式是指两个不同实数之间的大小关系,用不等号表示的式子称为不等式。
例如:a >b,a、b为实数。
不等式包括开区间不等式和闭区间不等式。
开区间不等式:a > b(>表示大于,不包括a);闭区间不等式:a ≥ b(≥表示大于等于,包括a)。
2. 不等式的解集不等式的解集是所有满足不等式条件的实数构成的集合。
例如:不等式2x > 6的解集为{x | x > 3}。
3. 不等式的性质不等式与等式一样,具有传递性、对称性和反对称性。
传递性:若a > b,b > c,则a >c;对称性:若a > b,则-b < -a;反对称性:若a > b,且b > a,则a = b。
另外,对于不等式,还有加减法原理和乘除法原理。
加减法原理:不等式两边都加(减)同一个实数,不等式号的方向不变;乘除法原理:不等式两边都乘(除)同一个正数,不等式号的方向不变,都乘(除)同一个负数,不等式号的方向改变。
二、一元一次不等式1. 一元一次不等式的书写一元一次不等式是指形如ax + b > 0或ax + b < 0的不等式,其中a和b是常数,x是未知数。
一元一次不等式中,a不等于0。
2. 一元一次不等式的解法解一元一次不等式,主要有以下几种方法:(1)图解法:将不等式转化为方程,利用函数的图像找出满足不等式条件的实数解。
(2)试数法:通过代入试数的方式,找出满足不等式条件的实数解。
(3)分析法:通过移项整理和求解,找出满足不等式条件的实数解。
三、一元一次不等式组1. 一元一次不等式组的定义一元一次不等式组是由若干个一元一次不等式构成的集合。
2. 一元一次不等式组的解法解一元一次不等式组,主要有以下几种方法:(1)图解法:将不等式转化为方程,找出满足所有不等式条件的实数解,画出其图像,并找出图像的交集部分。
(2)试数法:通过代入试数的方式,找出满足所有不等式条件的实数解。
高中不等式组的解集取值范围
高中不等式组的解集取值范围
对于一元不等式组,即只含有一个变量的不等式组,我们可以通过解不等式的方法来确定解集的取值范围。
解集的取值范围可以是一个区间,也可以是多个不连续的区间的并集。
对于多元不等式组,即含有多个变量的不等式组,解集的取值范围通常表示为一个多维空间中的区域。
这个区域可以是一个区域内的点的集合,也可以是一个区域内的曲线、曲面或多面体等。
要确定不等式组的解集取值范围,我们可以使用以下方法:
1. 图形法,将不等式组表示为平面上的图形,并找出图形的范围。
例如,对于二元不等式组,可以将其表示为平面上的区域,并确定该区域的范围。
2. 代数法,通过代数运算来求解不等式组,得到解集的取值范围。
例如,可以使用代数方法解二元一次不等式组或使用线性规划方法解线性不等式组。
3. 区间法,对于一元不等式组,可以通过求解每个不等式的解
集,并将所有解集的交集或并集作为最终的解集取值范围。
需要注意的是,不等式组的解集取值范围可能受到其他条件的限制,如等式约束、非负约束等。
在确定解集取值范围时,需要考虑这些条件并进行相应的限制。
综上所述,高中不等式组的解集取值范围可以是一个或多个区间、曲线、曲面或多面体等,具体取决于不等式组的形式和条件。
不等式的解集与区间的概念
因式分解得
(x + 1)(x - 1)(x + 2)(x - 2) < 0
解集表示为
{ x | -2 < x < -1 或 1 < x < 2 }
利用数轴穿根法,解得解集为
-2 < x < -1 或 1 < x < 2
拓展应用:不等式组与区间综合问题
单击此处添加文本具体内容
PART.01
不等式组定义及性质
(a, b) - (c, d) = (a-d, b-c)
区间表示方法及运算规则
区间表示方法
减法运算
乘法运算
除法运算
加法运算
区间运算规则
除了使用圆括号和方括号表示开区间和闭区间外,还可以使用无穷大符号表示包含正无穷大或负无穷大的区间,如(a, +∞)、(-∞, b)等。
对于任意两个实数a、b(a < b)以及实数c、d(c < d),有以下运算规则
根据判别式确定解的情况,将解集在数轴上表示为开区间、闭区间或半开半闭区间。
解集与区间对应关系分析
解集与区间的区别
03
解集是具体的数值集合,而区间是数轴上的连续区域,两者在表现形式和性质上有所不同。
不等式的解集可以表示为区间,而区间也可以用来描述不等式的解集。
解集与区间的定义
01
解集是满足不等式的所有解的集合,而区间是数轴上的一段连续区域。
一元二次不等式案例解析
案例一
解析不等式 x^2 - 4x + 3 < 0
因式分解得
(x - 1)(x - 3) < 0
根据一元二次不等式的解法,解集为
1 < x < 3
2.2.2不等式的解集(新教材教师用书)
2.2.2不等式的解集(教师独具内容)课程标准:1.了解不等式的解集和不等式组的解集的概念,会求一元一次不等式组的解集.2.理解绝对值的几何意义,掌握去掉绝对值的方法.3.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c;|x-a|+|x-b|≤c.教学重点:1.求一元一次不等式组的解集.2.绝对值不等式的解法.教学难点:绝对值不等式的几何解法.【知识导学】知识点一不等式的解、不等式的解集及不等式组的解集的概念(1)□01未知数的值称为不等式的解.(2)□02所有解组成的集合称为不等式的解集.(3)对于由若干个不等式联立得到的不等式组来说,这些不等式的□03解集的交集称为不等式组的解集.知识点二绝对值不等式一般地,含有□01绝对值的不等式称为绝对值不等式.知识点三数轴上两点之间的距离公式及中点坐标公式一般地,如果实数a,b在数轴上对应的点分别为A,B,即A(a),B(b),则线段AB的长为□01|a-b|,记作□02AB=|a-b|,这就是数轴上两点之间的距离公式.如果线段AB的中点M对应的数为x,则x=□03a+b2,这就是数轴上的中点坐标公式.【新知拓展】1.解绝对值不等式的主要依据解绝对值不等式的主要依据是绝对值的定义、绝对值的几何意义及不等式的性质.2.绝对值不等式|x|≤a和|x|≥a的解法1.判一判(正确的打“√”,错误的打“×”)(1)不等式2x-3≤1的解集为{x|x≤2}.()(2)若|x|≥a的解集为R,则a<0.()(3)|x-1|>1的解集为{x|x>2或x<-2}.()(4)|x-a|<|x-b|⇔(x-a)2<(x-b)2.()答案(1)√(2)×(3)×(4)√2.做一做(1)不等式|x|>x的解集是()A.{x|x≤0} B.{x|x<0或x>0} C.{x|x<0} D.{x|x>0} (2)不等式|3x-2|<1的解集为()A .(-∞,1) B.⎝ ⎛⎭⎪⎫13,1 C.⎝ ⎛⎭⎪⎫23,1 D.⎝ ⎛⎭⎪⎫-13,13 (3)不等式|x +2|≥|x |的解集是________.(4)已知数轴上,A (-2),B (x ),C (5),若A 与C 关于点B 对称,则x =________;若线段AB 的中点到C 的距离小于3,则x 的取值范围是________.答案 (1)C (2)B (3)[-1,+∞) (4)32 (6,18)题型一 一元一次不等式组的解法 例1 解下列不等式组: (1)⎩⎨⎧2x -1>x +1, ①x +8<4x -1; ② (2)⎩⎪⎨⎪⎧2x +3≥x +11, ①2x +53-1<2-x . ②[解] (1)将①式移项、合并同类项,得x >2.将②式移项、合并同类项,得3x >9.系数化为1,得x >3. 所以不等式组的解集为(3,+∞). (2)将①式移项、合并同类项,得x ≥8. 将②式去分母,得2x +5-3<6-3x .移项、合并同类项,得5x <4.系数化为1,得x <45. 所以不等式组的解集为∅. 金版点睛解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,最后写出不等式组的解集.[跟踪训练1] x 取哪些整数值时,不等式5x +2>3(x -1)与12x -1≤7-32x 都成立?解 解不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),①12x -1≤7-32x .②将①式去括号,得5x +2>3x -3.移项、合并同类项,得2x >-5.系数化为1,得x >-52. 将②式移项,合并同类项,得2x ≤8.系数化为1,得x ≤4. 所以不等式组的解集为⎝ ⎛⎦⎥⎤-52,4,所以x 可取的整数值是-2,-1,0,1,2,3,4.题型二 |ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法 例2 解下列不等式: (1)|5x -2|≥8;(2)2≤|x -2|≤4.[解] (1)|5x -2|≥8可化为5x -2≥8或5x -2≤-8,解得x ≥2或x ≤-65, 故原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-65∪[2,+∞).(2)原不等式等价于不等式组⎩⎨⎧|x -2|≥2,|x -2|≤4.由|x -2|≥2,得x -2≤-2或x -2≥2, 所以x ≤0或x ≥4.由|x -2|≤4,得-4≤x -2≤4,所以一2≤x ≤6.故原不等式的解集为{x |-2≤x ≤0或4≤x ≤6},即[-2,0]∪[4,6]. 金版点睛形如|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型的不等式,均可采用等价转化法进行求解,即|ax +b |≤c ⇔-c ≤ax +b ≤c ,|ax +b |≥c ⇔ax +b ≤-c 或ax +b ≥c .[跟踪训练2] 解下列不等式: (1)|2x -3|≤1;(2)|4-3x |>5.解 (1)由|2x -3|≤1可得-1≤2x -3≤1, 所以1≤x ≤2.故原不等式的解集为[1,2].(2)由|4-3x |>5可得4-3x >5或4-3x <-5,所以x <-13或x >3,即原不等式的解集为⎝ ⎛⎭⎪⎫-∞,-13∪(3,+∞). 题型三 |x -a |±|x -b |≤c 和|x -a |±|x -b |≥c 型不等式的解法 例3 解下列不等式:(1)|x +1|+|x -1|≥3;(2)|x -3|-|x +1|<1.[解] (1)解法一:如图,设数轴上与-1,1对应的点分别为A ,B ,那么点A ,B 之间的点到A ,B 两点的距离和为2,因此区间[-1,1]上的数都不是不等式的解.设在点A 左侧有一点A 1到A ,B 两点的距离之和为3,A 1对应数轴上的x .由-1-x +1-x =3,得x =-32.同理设点B 右侧有一点B 1到A ,B 两点的距离之和为3,B 1对应数轴上的x , 由x -1+x -(-1)=3,得x =32,从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都小于3;点A 1的左侧或点B 1的右侧的任何点到A ,B 的距离之和都大于3.所以原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞. 解法二:当x ≤-1时,原不等式可以化为-(x +1)-(x -1)≥3, 解得x ≤-32.当-1<x <1时,原不等式可以化为x +1-(x -1)≥3,即2≥3.不成立,无解. 当x ≥1时,原不等式可以化为x +1+x -1≥3, 解得x ≥32.综上所述,原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞.解法三:将原不等式转化为|x +1|+|x -1|-3≥0. 构造函数y =|x +1|+|x -1|-3,即y =⎩⎨⎧-2x -3,x ≤-1,-1,-1<x <1,2x -3,x ≥1.作出函数的图像,如图.函数图像与x 轴交点的横坐标是-32和32.从图像可知,当x ≤-32或x ≥32时,y ≥0,即|x +1|+|x -1|-3≥0. 所以原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞.(2)解法一:如图所示,在数轴上-1,3,x 对应的点分别为A ,C ,P ,而点B 对应的实数为12,点B 到点C 的距离与到点A 的距离之差为1.由绝对值的几何意义知,当点P 在射线Bx 上(不含点B )时,不等式成立,故不等式的解集为⎝ ⎛⎭⎪⎫12,+∞.解法二:原不等式⇔①⎩⎨⎧x ≤-1,-(x -3)+(x +1)<1或②⎩⎨⎧-1<x <3,-(x -3)-(x +1)<1或③⎩⎨⎧x ≥3,(x -3)-(x +1)<1,解得①的解集为∅,②的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <3,③的解集为{x |x ≥3}. 综上可知,原不等式的解集为⎝ ⎛⎭⎪⎫12,+∞.解法三:将原不等式转化为|x -3|-|x +1|-1<0,构造函数y =|x -3|-|x +1|-1,则y =⎩⎨⎧3,x ≤-1,-2x +1,-1<x <3,-5,x ≥3.作出函数的图像,如图.函数图像与x 轴的交点是⎝ ⎛⎭⎪⎫12,0.由图像可知,当x >12时,有y <0, 即|x -3|-|x +1|-1<0,所以原不等式的解集为⎝ ⎛⎭⎪⎫12,+∞.金版点睛形如|x -a |±|x -b |≤c 和|x -a |±|x -b |≥c型不等式的解法这种类型的不等式在求解时有三种方法:(1)利用绝对值的几何意义求解,这种方法体现了数形结合的思想,是解绝对值不等式最简单的方法,给绝对值不等式以准确的几何解释是解题的关键.(2)令每个绝对值符号里的一次式为0,求出相应的根,把这些根由小到大排序,它们把数轴分为若干个区间,然后利用区间分段讨论法去绝对值符号求解,这种方法体现了分类讨论的思想,是解绝对值不等式最常用的方法.(3)构造函数,利用函数图像求解,这种方法体现了函数与方程的思想,准确画出函数图像并求解函数图像与x 轴的交点坐标是解题的关键.[跟踪训练3] 解下列不等式:(1)|x -1|-|5-x |>2;(2)|2x -1|+|3x +2|≥8.解 (1)原不等式即为|x -1|-|x -5|>2, 其等价于①⎩⎨⎧ x <1,1-x -(5-x )>2或②⎩⎨⎧1≤x ≤5,x -1-(5-x )>2或 ③⎩⎨⎧x >5,x -1-(x -5)>2, 解得①无解,②的解集为{x |4<x ≤5},③的解集为{x |x >5},故原不等式的解集为(4,+∞). (2)①当x ≤-23时,|2x -1|+|3x +2|≥8⇔1-2x -(3x +2)≥8⇔-5x ≥9⇔x ≤-95,所以x ≤-95;②当-23<x <12时,|2x -1|+|3x +2|≥8⇔1-2x +3x +2≥8⇔x +3≥8⇔x ≥5,所以x ∈∅; ③当x ≥12时,|2x -1|+|3x +2|≥8⇔5x +1≥8⇔5x ≥7⇔x ≥75,所以x ≥75. 故原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-95∪⎣⎢⎡⎭⎪⎫75,+∞.1.不等式组⎩⎨⎧x +3>0,3(x -1)≤2x -1的解集为( )A .(-3,0]B .(-3,2]C .∅D.⎝ ⎛⎦⎥⎤-3,-45答案 B解析 解不等式组⎩⎨⎧x +3>0, ①3(x -1)≤2x -1, ②将①式移项,得x >-3.将②式去括号,得3x -3≤2x -1.移项、合并同类项,得x ≤2.所以不等式组的解集为(-3,2],故选B.2.不等式|4-x |≥1的解集为( ) A .[3,5] B .(-∞,3]∪[5,+∞) C .[-4,4] D .R答案 B解析 |4-x |≥1⇒x -4≥1或x -4≤-1,即x ≥5或x ≤3.所以所求不等式的解集为(-∞,3]∪[5,+∞).故选B.3.不等式1<|x +1|<3的解集为( ) A .(0,2) B .(-2,0)∪(2,4) C .(-4,0) D .(-4,-2)∪(0,2) 答案 D解析 由1<|x +1|<3,得1<x +1<3或-3<x +1<-1,所以0<x <2或-4<x <-2.所以所求不等式的解集为(-4,-2)∪(0,2).4.不等式|x +1|-|x -3|≥0的解集是________. 答案 [1,+∞)解析 解法一:不等式等价转化为|x +1|≥|x -3|,两边平方,得(x +1)2≥(x -3)2,解得x ≥1, 故所求不等式的解集为[1,+∞).解法二:不等式等价转化为|x +1|≥|x -3|,根据绝对值的几何意义可得数轴上点x 到点-1的距离大于等于到点3的距离,到两点距离相等时x =1,故所求不等式的解集为[1,+∞).5.解不等式|x +2|+|x -1|<4.解 |x +2|=0和|x -1|=0的根-2,1把数轴分为三个区间:(-∞,-2],(-2,1),[1,+∞).在这三个区间上|x +2|+|x -1|有不同的表达式,它们构成了三个不等式组. (1)当x ≤-2时,|x +2|+|x -1|<4⇔-2-x +1-x <4⇔-2x <5⇔x >-52, 所以不等式组⎩⎨⎧x ≤-2,|x +2|+|x -1|<4的解集为⎝ ⎛⎦⎥⎤-52,-2.(2)当-2<x <1时,|x +2|+|x -1|<4⇔x +2+1-x <4⇔3<4,所以不等式组⎩⎨⎧-2<x <1,|x +2|+|x -1|<4的解集为(-2,1). (3)当x ≥1时,|x +2|+|x -1|<4⇔x +2+x -1<4⇔2x <3⇔x <32, 所以不等式组⎩⎨⎧x ≥1,|x +2|+|x -1|<4的解集为⎣⎢⎡⎭⎪⎫1,32.因此原不等式的解集为⎝ ⎛⎦⎥⎤-52,-2∪(-2,1)∪⎣⎢⎡⎭⎪⎫1,32=⎝ ⎛⎭⎪⎫-52,32.A 级:“四基”巩固训练一、选择题1.不等式组⎩⎪⎨⎪⎧23x +5>1-x ,x -1≤34x -18的解集为( )A .(-∞,-12) B.⎝ ⎛⎦⎥⎤-125,72 C.⎝ ⎛⎦⎥⎤-125,12 D.⎝ ⎛⎦⎥⎤-12,12 答案 B解析不等式组⎩⎪⎨⎪⎧23x +5>1-x ,x -1≤34x -18可化为⎩⎨⎧2x +15>3-3x , ①8x -8≤6x -1. ② 解不等式①,得x >-125.解不等式②,得x ≤72.所以原不等式组的解集为⎝ ⎛⎦⎥⎤-125,72.故选B.2.“|x -1|<2成立”是“x (x -3)<0成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 ∵|x -1|<2成立⇔-1<x <3成立,x (x -3)<0成立⇔0<x <3成立,又-1<x <3⇒/0<x <3,0<x <3⇒-1<x <3,∴“|x -1|<2成立”是“x (x -3)<0成立”的必要不充分条件.故选B.3.不等式3≤|5-2x |<9的解集为( ) A .(-∞,-2)∪(7,+∞) B .[1,4] C .[-2,1]∪[4,7] D .(-2,1]∪[4,7) 答案 D解析 不等式等价于⎩⎨⎧-9<2x -5<9,2x -5≥3或2x -5≤-3,解得-2<x ≤1或4≤x <7.所以原不等式的解集为(-2,1]∪[4,7).故选D. 4.不等式|x -1|+|x -2|≥5的解集为( ) A .(-∞,-1]∪[4,+∞) B .(-∞,1]∪[2,+∞) C .(-∞,1] D .[2,+∞) 答案 A解析 画数轴可得:当x =-1或x =4时,有|x -1|+|x -2|=5.由绝对值的几何意义可得,当x ≤-1或x ≥4时,|x -1|+|x -2|≥5,故选A.5.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R }.若A ⊆B ,则实数a ,b 必满足( )A .|a +b |≤3B .|a +b |≥3C .|a -b |≤3D .|a -b |≥3答案 D解析 由|x -a |<1,得a -1<x <a +1.由|x -b |>2,得x <b -2或x >b +2.∵A ⊆B ,∴a -1≥b +2或a +1≤b -2,即a -b ≥3或a -b ≤-3,∴|a -b |≥3.二、填空题6.不等式||x -2|-1|≤1的解集为________. 答案 [0,4]解析 原不等式可转化为-1≤|x -2|-1≤1,故0≤|x -2|≤2,解得0≤x ≤4,故所求不等式的解集为[0,4].7.|2x -1|-2|x +3|>0的解集为________.答案 (-∞,-3)∪⎝ ⎛⎭⎪⎫-3,-12∪⎝ ⎛⎭⎪⎫32,+∞ 解析 ∵分母|x +3|>0且x ≠-3,∴原不等式等价于|2x -1|-2>0,即|2x -1|>2, ∴2x -1>2或2x -1<-2,解得x >32或x <-12.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >32或x <-12且x ≠-3,即(-∞,-3)∪⎝ ⎛⎭⎪⎫-3,-12∪⎝ ⎛⎭⎪⎫32,+∞. 8.已知不等式|ax +b |<2(a ≠0)的解集为{x |1<x <5},则实数a ,b 的值为________. 答案 1,-3或-1,3解析 原不等式等价于-2<ax +b <2.①当a >0时,解得-2+b a <x <2-ba ,与1<x <5比较,得⎩⎪⎨⎪⎧-2+ba =1,2-ba =5,解得⎩⎨⎧a =1,b =-3.②当a <0时,解得2-b a <x <-2+ba ,与1<x <5比较,得⎩⎪⎨⎪⎧2-b a =1,-2+ba =5,解得⎩⎨⎧a =-1,b =3. 综上所述,a =1,b =-3或a =-1,b =3. 三、解答题 9.解下列不等式:(1)|4x +5|≥25;(2)|3-2x |<9; (3)1<|x -1|<5;(4)|x -1|>|x -2|.解 (1)因为|4x +5|≥25⇔4x +5≥25或4x +5≤-25⇔4x ≥20或4x ≤-30⇔x ≥5或x ≤-152,所以原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-152∪[5,+∞).(2)因为|3-2x |<9⇔|2x -3|<9⇔-9<2x -3<9⇔-6<2x <12⇔-3<x <6, 所以原不等式的解集为(-3,6).(3)因为1<|x -1|<5⇔1<x -1<5或-5<x -1<-1⇔2<x <6或-4<x <0, 所以原不等式的解集为(-4,0)∪(2,6).(4)|x -1|>|x -2|⇔(x -1)2>(x -2)2⇔x 2-2x +1>x 2-4x +4⇔2x >3⇔x >32, 所以原不等式的解集为⎝ ⎛⎭⎪⎫32,+∞.10.解不等式|3x -2|+|x -1|>3.解 ①当x ≤23时,|3x -2|+|x -1|=2-3x +1-x =3-4x ,由3-4x >3,得x <0. ②当23<x <1时,|3x -2|+|x -1|=3x -2+1-x =2x -1,由2x -1>3,得x >2,∴x ∈∅. ③当x ≥1时,|3x -2|+|x -1|=3x -2+x -1=4x -3,由4x -3>3,得x >32,∴x >32. 故原不等式的解集为(-∞,0)∪⎝ ⎛⎭⎪⎫32,+∞.B 级:“四能”提升训练1.若|x +1|+2|x -a |的最小值为5,求实数a 的值. 解 当a ≤-1时,|x +1|+2|x -a |=⎩⎨⎧-3x +2a -1(x ≤a ),x -2a -1(a <x ≤-1),3x -2a +1(x >-1),所以(|x +1|+2|x -a |)min =-a -1, 所以-a -1=5,所以a =-6. 当a >-1时,|x +1|+2|x -a |=⎩⎨⎧-3x +2a -1(x ≤-1),-x +2a +1(-1<x ≤a ),3x -2a +1(x >a ),所以(|x +1|+2|x -a |)min =a +1, 所以a +1=5,所以a =4. 综上可知,a =-6或a =4.2.已知P =|2x -1|+|2x +a |,Q =x +3.(1)当a =-2时,求不等式|2x -1|+|2x +a |<x +3的解集;(2)设a >-1,且当x ∈⎣⎢⎡⎦⎥⎤-a 2,12时,|2x -1|+|2x +a |≤x +3,求a 的取值范围.解 (1)解法一:当a =-2时,不等式为|2x -1|+|2x -2|<x +3. 当x ≥1时,4x -3<x +3⇒x <2; 当x ≤12时,-4x +3<x +3⇒x >0; 当12<x <1时,1<x +3⇒x >-2.综上可知,当a =-2时,不等式|2x -1|+|2x +a |<x +3的解集为(0,2).解法二:当a =-2时,不等式|2x -1|+|2x +a |<x +3化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1,其图像如图所示,由图像可知,当且仅当x ∈(0,2)时,y <0,所以原不等式的解集为(0,2).(2)当x ∈⎣⎢⎡⎦⎥⎤-a 2,12时,P =|2x -1|+|2x +a |=1+a ,不等式|2x -1|+|2x +a |≤x +3化为1+a ≤x +3, 所以x ≥a -2对x ∈⎣⎢⎡⎦⎥⎤-a 2,12都成立,故-a 2≥a -2,即a ≤43. 从而a 的取值范围是⎝ ⎛⎦⎥⎤-1,43.。
不等式的解集表示方法
不等式的解集表示方法不等式是数学中常见的一种表示关系的方法,它用于描述两个数或者变量之间的大小关系。
解集则是指使不等式成立的所有数的集合。
在数学中,有多种方法来表示不等式的解集,下面将介绍其中常用的几种表示方法。
一、图形表示法图形表示法是一种直观、可视化的表示方法。
对于简单的一元一次不等式或二元一次不等式,我们可以将其转化为对应的直线或平面图形,然后通过观察图形与坐标系上的区域来确定不等式的解集。
例如,对于一元一次不等式2x - 3 < 5,我们可以通过将不等式转化为等式2x - 3 = 5,并画出对应的直线2x - 3 = 5,然后观察直线与x轴上的交点所构成的区域,即可确定不等式的解集。
二、区间表示法区间表示法是一种常用的表示不等式解集的方法,尤其适用于表示连续的解集。
在一元不等式中,我们可以用区间的方式来表示不等式的解集。
例如,对于不等式2x - 3 < 5,我们可以将其解集表示为x ∈ (-∞, 4],其中“∈”表示“属于”,“(”和“]”分别表示开区间和闭区间。
“-∞”表示负无穷大,“4”表示不等式的右端点。
三、集合表示法集合表示法是一种常用的数学符号表示方法,可以简洁地表示不等式的解集。
在集合表示法中,我们用大括号“{}”来表示集合,用特定的符号或条件来描述集合元素。
例如,对于不等式2x - 3 < 5,我们可以将其解集表示为{x | x < 4},其中“|”表示“满足”,“x < 4”表示不等式的条件。
四、参数表示法参数表示法主要用于表示含有参数的不等式。
在参数表示法中,我们用字母来表示参数,并给出参数的取值范围,从而表示不等式的解集。
例如,对于不等式ax - b > 0,其中a和b为参数,我们可以将其解集表示为{x | x > b/a},其中“x > b/a”表示参数的条件。
综上所述,不等式的解集可以通过图形表示法、区间表示法、集合表示法或参数表示法来表示。
(完整版)高中数学不等式知识点总结
(完整版)高中数学不等式知识点总结高中数学中,不等式是一个重要的内容,它是解决数学问题的一种有力工具。
不等式是一种用于描述数值的大小关系的数学语句,它包含“大于”、“小于”、“大于等于”、“小于等于”等符号。
在数学考试中,不等式问题常常出现在基础知识和综合应用的部分,所以对不等式的学习是非常必要的。
下面我将为大家总结一下高中数学中关于不等式的知识点。
一、不等式的基本概念1. 不等式的定义:不等式是数值之间大小关系的表达式,由关系符号和数值构成。
2. 关系符号的含义:- 大于:表示前面的数比后面的数要大,如a>b。
- 小于:表示前面的数比后面的数要小,如a<b。
- 大于等于:表示前面的数比后面的数大或相等,如a≥b。
- 小于等于:表示前面的数比后面的数小或相等,如a≤b。
二、不等式的性质及常用规则1. 不等式的性质:- 若a>b,则-a<-b。
- 若a>b,则a+c>b+c。
- 若a>b,则ac>bc(当c为正数时)。
- 若a>b,则ac<bc(当c为负数时)。
- 若a>b,且c>0,那么a/c>b/c。
- 若a>b,且c<0,那么a/c<b/c。
2. 不等式的常用规则:- 加法规则:若a>b,则a+c>b+c。
- 减法规则:若a>b,则a-c>b-c。
- 乘法规则:若a>b(c>0),则ac>bc;若a<b(c<0),则ac<bc。
- 除法规则:若a>b(c>0),则a/c>b/c;若a<b(c<0),则a/c<b/c。
- 对称性:若a>b,则-b<-a。
三、一元一次不等式1. 一元一次不等式的解集表示法:- 解集用区间表示。
- 开区间:解集中的数不包括端点。
- 闭区间:解集中的数包括端点。
2. 不等式的性质应用举例:- 若a>0,则-1/a<0。
不等式的解集表示总结
不等式的解集表示总结在数学的世界里,不等式是一个非常重要的概念。
而理解和准确表示不等式的解集,对于解决各种数学问题至关重要。
首先,我们来谈谈什么是不等式。
不等式是用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个数或表达式的式子。
比如说,3x > 5 ,x + 2 < 8 等等,这些都是不等式。
那么,什么是不等式的解集呢?简单来说,不等式的解集就是使不等式成立的所有未知数的值的集合。
接下来,我们看看不等式解集的表示方法。
第一种常见的表示方法是用区间。
区间分为开区间、闭区间和半开半闭区间。
开区间用小括号“()”表示,比如(1, 5) ,表示大于 1 且小于 5的所有实数。
闭区间用中括号“ ”表示,像 2, 6 ,意思是大于等于 2 且小于等于 6 的所有实数。
半开半闭区间则是一边用小括号,一边用中括号,比如(2, 5 ,代表大于 2 且小于等于 5 的所有实数。
举个例子,如果不等式的解集是 x > 3 ,那我们就可以用区间表示为(3, +∞)。
这里的“+∞”表示正无穷大。
同理,如果解集是x ≤ 5 ,就可以表示为(∞, 5 。
第二种表示方法是用集合的描述法。
比如说,不等式 x > 3 的解集可以表示为{x | x > 3} ,意思是“所有大于 3 的 x 组成的集合”。
再说说不等式组的解集表示。
不等式组是由几个不等式组成的一组式子。
比如,有不等式组:x > 2 且 x < 5 。
它的解集就是 2 < x < 5 ,用区间表示为(2, 5) 。
如果是x ≥ -1 且x ≤ 3 ,解集就是-1 ≤ x ≤ 3 ,区间表示为-1, 3 。
有时候,我们还会遇到绝对值不等式。
比如|x| < 3 ,这个不等式的意思是 x 的绝对值小于 3 ,那么它的解集就是-3 < x < 3 ,区间表示为(-3, 3) 。
再看|x| > 5 ,其解集是 x <-5 或 x > 5 ,用区间表示就是(∞,-5) ∪(5, +∞)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{x| x≥3 }
{x| x>3 } {x| x≤2 } {x| x<2 }
(3)x-2≥0
x-3≤0 (4)x-2>0
{x| 2≤x≤3 }
{x| 2<x<3 } {x| 2≤x<3 } {x| 2<x≤3 }
x-3<0
(5)x-2≥0
练习:解不等式组
2( x 1) 5 x 5 x 3 3x 1
(1) (2)
1、一元一次不等式(组)的解集
2、一元一次不等式(组)的解集的表示方法
(1)集合描述法 (2)区间:闭区间 开区间 半开半闭区间 无限区间
x-3<0
(6)x-2>0 x-3≤0
区间是指一定范围内的所有实数所 构成的集合。也就是数轴上某一“段” 所有的点所对应的所有实数。
设a,b是两个实数,而且a<b.我们规定
(1)满足不等式a ≤ x ≤ b 的实数x的集 合叫做以 a , b 为端点的闭区间,记作[a,b]
数轴表示
a
b
x
设a,b是两个实数,而且a<b.我们规定
b
x
在实数集R中,有没有 最大的数和最小的数?
实数集R 用区间表示为( -∞,+∞ )
-∞ 读作: 负无穷大
+∞ 读作: 正无穷大
x
填
表:
区间表示 数轴表示 a a b b x x x x
解集表示
{x|x≥a}
[a,+ ∞) (a,+ ∞)
{x|x > a} {x|x≤b}
{x|x<b}
( -∞,b]
(- ∞ ,-1]∪[2,+∞)
例题:解不等式组
{6 + x > 4x – 3
7 +3x ≤ 9+5x
例题:解不等式组
{6 + x > 4x – 3
x 3
1 x 3
7 +3x ≤ 9+5x
解:原不等式组可化为: x 1
从而
所以原不等式组的解集为 [-1,3)
-1
0
3
x
(2)满足不等式a <x < b 的实数x的集 合叫做以 a , b 为端点的开区间,记作(a,b)
数轴表示
开区间
a b x
半开半闭区间:满足不等式a≤x<b或 a <
x ≤ b的实数x的集合叫做以a,b为端点的半
开半闭区间,记作:[a,b),(a,b] 数轴表示
a b
x
a
(-∞,b)
例题:用区间表示下列数集,并在数轴上表示
(1){x|-1<x<3}
解:{x|-1<x<3}表示为(-1,3)
数轴表示
-1 0 3 x
(2){x|-2≤x<2}
解:{x|-2≤x<2}表示为[-2,2)
数轴表示
-2 -1
0
1
2
x
(3){x|x>-1}
解: {x|x>-1}表示为(-1,+∞),
数轴表示
-2 -1
0
1
x
(4){x|x≤3}
解: {x|x≤3}表示为(- ∞ ,3],
数轴表示
0 1 2 3
x
用区间表示下列数集,并在数 轴上表示出来:
1、{x|-3<x ≤ 4} 2、 {x|x ≥ 2} 3、 {x|x < 0}
讨论:
{x|x≤-1或x≥2}用区间如何表示?
解:用区间表示为