线性代数在密码学中的应用

线性代数在密码学中的应用
线性代数在密码学中的应用

线性代数在密码学中的应用(hill密码的加密与破译)

(完整版)北邮版《现代密码学》习题答案.doc

《现代密码学习题》答案 第一章 1、1949 年,( A )发表题为《保密系统的通信理论》的文章,为密码系统建立了理 论基础,从此密码学成了一门科学。 A、Shannon B 、Diffie C、Hellman D 、Shamir 2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥 5 部分组成,而其安全性是由( D)决定的。 A、加密算法 B、解密算法 C、加解密算法 D、密钥 3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要 的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是( B )。 A 无条件安全 B计算安全 C可证明安全 D实际安全 4、根据密码分析者所掌握的分析资料的不通,密码分析一般可分为 4 类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是( D )。 A、唯密文攻击 B 、已知明文攻击 C 、选择明文攻击D、选择密文攻击 5、1976 年,和在密码学的新方向一文中提出了公开密钥密码的思想, 从而开创了现代密码学的新领域。 6、密码学的发展过程中,两个质的飞跃分别指1949年香农发表的保密系统的通

信理论和公钥密码思想。 7、密码学是研究信息寄信息系统安全的科学,密码学又分为密码编码学和密码分析学。 8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法5部分组成的。 对9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为 称和非对称。 10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列密码。 第二章 1、字母频率分析法对( B )算法最有效。 A、置换密码 B 、单表代换密码C、多表代换密码D、序列密码 2、(D)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。 A 仿射密码 B维吉利亚密码C轮转密码 D希尔密码 3、重合指数法对( C)算法的破解最有效。 A 置换密码 B单表代换密码C多表代换密码 D序列密码 4、维吉利亚密码是古典密码体制比较有代表性的一种密码,其密码体制采用的是 (C )。

线性代数论文

一、线性代数的定义 线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数是理工类、经管类数学课程的重要内容。在考研中的比重一般占到22%左右。 二、线性方程组简介 线性方程组是各个方程关于未知量均为一次的方程组(例如2元1次方程组)。对线性方程组的研究,中国比欧洲至少早1500年,记载在公元初《九章算术》方程章中。 解线性代数方程组是线性代数最主要的任务之一,行列式研究的便是线性方程组的一种特殊形式,即线性方程组所含方程的个数等于未知量的个数,且方程组的系数行列式不等于零,这时可以用克拉默法则。 三、线性方程组的解法 ①克莱姆法则.用克莱姆法则求解方程组有两个前提,一是方程的个数要等于未知量的个数,二是系数矩阵的行列式要不等于零。用克莱姆法则求解方程组实际上相当于用逆矩阵的方法求解线性方程组,它建立线性方程组的解与其系数和常数间的关系,但由于求解时要计算n+1个n阶行列式,其工作量常常很大,所以克莱姆法则常用于理论证明,很少用于具体求解。

②矩阵消元法.将线性方程组的增广矩阵通过行的初等变换化为行简化阶梯形矩阵,则以行简化阶梯形矩阵为增广矩阵的线性方程组与原方程组同解。当方程组有解时,将其中单位列向量对应的未知量取为非自由未知量,其余的未知量取为自由未知量,即可找出线性方程组的解。 关于未知量是一次的方程组,其一般形式为 ⑴ 式中x1,x2,…,xn代表未知量,αij(1≤i≤m,1≤j≤n)称为方程⑴的系数,bi(1≤i≤m)称为常数项。系数和常数项都是任意的复数或某一个域的元素。 当常数项b1,b2,…,bn都等于零时,则方程组⑴称为齐次线性方程组。 方程组⑴的系数所构成的m行n列矩阵 线性方程组 称为方程组⑴的系数矩阵。在A中添加由常数项组成的列而得到一个m 行n+1列矩阵称为方程组⑴的增广矩阵。

大一线性代数论文

中国矿业大学银川学院机电动力与信息工程 线性代数论文 (2012-2013) 专业:电气及其自动化 班级:11级电气(2)班

姓名:薛成建 学号:120110516126 任课老师:马延福 日期:2012. 6.19 摘要 随着我国经济建设与科学技术的迅速发展,高等教育已进入了一个 飞速发展的时期,并且突破了以前的精英式教育模式,发展成为一种在终身学习的大背景下极具创造性和再创性的基础学科教育。高等学校教育教学观念不断更新,教学改革不断深入,办学规模不断扩大,数学课程开设的专业覆盖面不断增大。越来越需要一本高质量的高等学校非教学类专业的教材———《线性代数》。 为适应教学课程开设的专业覆盖面,逐渐引入了以求适应的知识点。n 阶行列式、矩阵、n 维向量与向量空间,应用数学模型等慢慢走进了专业覆盖面。在实际问题中,我们经常会碰到超过3个元素的数组,例如确定飞机的状态,需要以下几个参数:机身的仰角、机翼的转角、机身的水平转角、飞机重心在空间的位置参数等。因此,需要引入n 维向量的概念。n 个数组成的有序数组 (a a a n ,,,21 )或 a a a n 2 1 称为一个 n 维向量,简称向量。其中只有一行的称 为行向量,只有一列的称为列向量。数a a a n ,,,21 称为这个向量的分量,a i 称为这个向量的第i 个分量或坐标。分量都是实数的向量称为实向量,分量都是负数的向量称为负向量。

实际上,n 维行向量可以看成行矩阵,n 维列向量可以看成列矩阵。 如果两实向量相等,即称两个向量相等。 对于两个分量的各分量的和所组成的向量,称为两个向量的和。 一个数与向量的各分量相乘所组成的向量,称为向量e 与k 的数量乘积,简称数乘,记为k e 。 分量全为零的向量(000 )称为零向量,记为0。 α与-1的数乘(-1)α称为α的负向量,记为-α。 向量的加法与数乘具有下列性质: (1) a +b =b +a ; (交换律) (2) (a +b )+c =a +(b +c ); (结合律) (3) a +0=a ; (4) a +(-a )=0; (5) k (a +b )=k a +k b ; (6) (k+i)a = k a +i a ; (7) k(i a )=(ki)a ; (8) i a = a ; (9) 0a =0; (10) k 0=0 在数学中,满足(1)~(8)的运算称为线性运算。我们还可以证明: (11) 如果k ≠0且a ≠0,那么k a ≠0. 由若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组。 例如一个mxn 矩阵A=) (a ij mxn 有n 个m 维列向量 a 1 = a a a m 1 21 11 , a 2 = a a a m 2 22 12 , ··· ,a n = a a a mn n n 21 , 我们称向量组a a a n 2 1为矩阵A 的列向量组。 对于行向量组也同样。

现代密码学 学习心得

混合离散对数及安全认证 摘要:近二十年来,电子认证成为一个重要的研究领域。其第一个应用就是对数字文档进行数字签名,其后Chaum希望利用银行认证和用户的匿名性这一性质产生电子货币,于是他提出盲签名的概念。 对于所有的这些问题以及其他的在线认证,零知识证明理论成为一个非常强有力的工具。虽然其具有很高的安全性,却导致高负荷运算。最近发现信息不可分辨性是一个可以兼顾安全和效率的性质。 本文研究混合系数的离散对数问题,也即信息不可识别性。我们提供一种新的认证,这种认证比因式分解有更好的安全性,而且从证明者角度看来有更高的效率。我们也降低了对Schnorr方案变形的实际安全参数的Girault的证明的花销。最后,基于信息不可识别性,我们得到一个安全性与因式分解相同的盲签名。 1.概述 在密码学中,可证明为安全的方案是一直以来都在追求的一个重要目标。然而,效率一直就是一个难以实现的属性。即使在现在对于认证已经进行了广泛的研究,还是很少有方案能兼顾效率和安全性。其原因就是零知识协议的广泛应用。 身份识别:关于识别方案的第一篇理论性的论文就是关于零知识的,零知识理论使得不用泄漏关于消息的任何信息,就可以证明自己知道这个消息。然而这样一种能够抵抗主动攻击的属性,通常需要许多次迭代来得到较高的安全性,从而使得协议或者在计算方面,或者在通信量方面或者在两个方面效率都十分低下。最近,poupard和stern提出了一个比较高效的方案,其安全性等价于离散对数问题。然而,其约减的代价太高,使得其不适用于现实中的问题。 几年以前,fiege和shamir就定义了比零知识更弱的属性,即“信息隐藏”和“信息不可分辨”属性,它们对于安全的识别协议来说已经够用了。说它们比零知识更弱是指它们可能会泄漏秘密消息的某些信息,但是还不足以找到消息。具体一点来说,对于“信息隐藏”属性,如果一个攻击者能够通过一个一次主动攻击发现秘密消息,她不是通过与证明者的交互来发现它的。而对于“信息不可分辨”属性,则意味着在攻击者方面看来,证据所用的私钥是不受约束的。也就是说有许多的私钥对应于一个公钥,证据仅仅传递了有这样一个私钥被使用了这样一个信息,但是用的是哪个私钥,并没有在证据传递的信息中出现。下面,我们集中考虑后一种属性,它能够提供一种三次传递识别方案并且对抗主动攻击。Okamoto 描述了一些schnorr和guillou-quisquater识别方案的变种,是基于RSA假设和离散对数子群中的素数阶的。 随机oracle模型:最近几年,随机oracle模型极大的推动了研究的发展,它能够用来证明高效方案的安全性,为设计者提供了一个有价值的工具。这个模型中理想化了一些具体的密码学模型,例如哈希函数被假设为真正的随机函数,有助于给某些加密方案和数字签名等提供安全性的证据。尽管在最近的报告中对于随机oracle模型采取了谨慎的态度,但是它仍然被普遍认为非常的有效被广泛的应用着。例如,在这个模型中被证明安全的OAPE加密

现代密码学课后答案第二版讲解

现代密码学教程第二版 谷利泽郑世慧杨义先 欢迎私信指正,共同奉献 第一章 1.判断题 2.选择题 3.填空题 1.信息安全的主要目标是指机密性、完整性、可用性、认证性和不可否认性。 2.经典的信息安全三要素--机密性,完整性和可用性,是信息安全的核心原则。 3.根据对信息流造成的影响,可以把攻击分为5类中断、截取、篡改、伪造和重放,进一 步可概括为两类主动攻击和被动攻击。

4.1949年,香农发表《保密系统的通信理论》,为密码系统建立了理论基础,从此密码学 成为了一门学科。 5.密码学的发展大致经历了两个阶段:传统密码学和现代密码学。 6.1976年,W.Diffie和M.Hellman在《密码学的新方向》一文中提出了公开密钥密码的 思想,从而开创了现代密码学的新领域。 7.密码学的发展过程中,两个质的飞跃分别指 1949年香农发表的《保密系统的通信理 论》和 1978年,Rivest,Shamir和Adleman提出RSA公钥密码体制。 8.密码法规是社会信息化密码管理的依据。 第二章 1.判断题 答案×√×√√√√××

2.选择题 答案:DCAAC ADA

3.填空题 1.密码学是研究信息寄信息系统安全的科学,密码学又分为密码编码学和密码分 析学。 2.8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法 5部分组成的。 3.9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为对称和 非对称。 4.10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列 密码。

第三章5.判断 6.选择题

大学线性代数论文

线性代数论文 线性代数课程是高等学校理工科各专业学生的一门必修的重要基础理论课,它广泛应用于科学技术的各个领域。尤其是计算机日益发展和普及的今天,使线性代数成为工科学生所必备的基础理论知识和重要的数学工具。线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。 主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现(见于我国古代数学名著《九章算术》)。①线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位;②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分;③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的;④随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 行列式的计算方法. 定义法 在引进行列式的定义之前,,为了更加容易的理解行列式的定义,首先介绍排列和逆序的概念. (1) n级排列:由1,2.3…n组成的一个有序数组称为一个n级排列. (2) 在一个排列中,如果一对数的前后位置与大小顺序相反,即:前面的数大于后面 的数,那么它们就称为一个逆序,一个排列中逆序的总数称为这个排列的逆序 数. (3) 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列. 在做好这些工作之后,来引入行列式的定义: 定义:n阶行列式 等于所有取自不同行不同列的n个元素的乘积. a1j1a2j2a3j3………anj n <Ⅱ> 的代数和,这里j1,j2,j3,……j n为1,2,3,……,n的一个排列,每一项<Ⅱ> j1,j2,j3,……j n是偶排列时, <Ⅱ>带有正号,当都按下列规则带有符号,当

密码学在网络安全中的应用

密码学在网络安全中的应用 0 引言 密码学自古就有,从古时的古典密码学到现如今数论发展相对完善的现代密码学。加密算法也经历了从简单到复杂、从对称加密算法到对称和非对称算法并存的过程。现如今随着网络技术的发展,互联网信息传输的安全性越来越受到人们的关注,很需要对信息的传输进行加密保护,不被非法截取或破坏。由此,密码学在网络安全中的应用便应运而生。 1 密码的作用和分类 密码学(Cryptology )一词乃为希腊字根“隐藏”(Kryptós )及“信息”(lógos )组合而成。现在泛指一切有关研究密码通信的学问,其中包括下面两个领域:如何达成秘密通信(又叫密码编码学),以及如何破译秘密通信(又叫密码分析学)。密码具有信息加密、可鉴别性、完整性、抗抵赖性等作用。 根据加密算法的特点,密码可以分为对称密码体制和非对称密码体制,两种体制模型。对称密码体制加密和解密采用相同的密钥,具有很高的保密强度。而非对称密码体制加密和解密是相对独立的,加密和解密使用两种不同的密钥,加密密钥向公众公开,解密密钥只有解密人自己知道,非法使用者根据公开的加密密钥无法推算出解密密钥[1]。 2 常见的数据加密算法 2.1 DES加密算法 摘 要:本文主要探讨的是当今流行的几种加密算法以及他们在网络安全中的具体应用。包括对称密码体制中的DES加密算法和AES加密算法,非对称密码体制中的RSA加密算法和ECC加密算法。同时也介绍了这些加密方法是如何应用在邮件通信、web通信和keberos认证中,如何保证网络的安全通信和信息的加密传输的。 关键词:安全保密;密码学;网络安全;信息安全中图分类号:TP309 文献标识码:A 李文峰,杜彦辉  (中国人民公安大学信息安全系,北京 102600) The Applying of Cryptology in Network Security Li Wen-feng 1, Du Yan-hui 2 (Information security department, Chinese People’s Public Security University, Beijing 102600, China) Abstract: This article is discussing several popular encryption methods,and how to use this encryption method during security transmittion.There are two cipher system.In symmetrical cipher system there are DES encryption algorithm and AES encryption algorithm.In asymmetrical cipher system there are RSA encryption algorithm and ECC encryption algorithm. At the same time, It introduces How is these encryption applying in the mail correspondence 、the web correspondence and the keberos authentication,how to guarantee the security of the network communication and the secret of information transmits. Key words: safe security; cryptology; network security; information security DES 算法为密码体制中的对称密码体制,又被成为美国数据加密标准,是1972年美国IBM 公司研制的对称密码体制加密算法。其密钥长度为56位,明文按64位进行分组,将分组后的明文组和56位的密钥按位替代或交换的方法形成密文组的加密方法。 DES 加密算法特点:分组比较短、密钥太短、密码生命周期短、运算速度较慢。DES 工作的基本原理是,其入口参数有三个:Key 、Data 、Mode 。Key 为加密解密使用的密钥,Data 为加密解密的数据,Mode 为其工作模式。当模式为加密模式时,明文按照64位进行分组,形成明文组,Key 用于对数据加密,当模式为解密模式时,Key 用于对数据解密。实际运用中,密钥只用到了64位中的56位,这样才具有高的安全性。 2.2 AES加密算法 AES (Advanced Encryption Standard ):高级加密标准,是下一代的加密算法标准,速度快,安全级别高。2000年10月,NIST (美国国家标准和技术协会)宣布通过从15种候选算法中选出的一项新的密匙加密标准。Rijndael 被选中成为将来的AES 。Rijndael 是在1999年下半年,由研究员Joan Daemen 和 Vincent Rijmen 创建的。AES 正日益成为加密各种形式的电子数据的实际标准。 算法原理:AES 算法基于排列和置换运算。排列是对数据重新进行安排,置换是将一个数据单元替换为另一个。 doi :10.3969/j.issn.1671-1122.2009.04.014

线性代数学习心得体会doc

线性代数学习心得体会 篇一:学习线性代数的心得体会 学习线性代数的心得体会 线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。我自己对线性代数的应用了解的也不多。但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。 线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。 线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。那么,就应该在第二天有线代课时晚上睡得早一点。如果你觉得上课跟不上老师的思路那么请预习。这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,

想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。 一定要重视上课听讲,不能使线代的学习退化为自学。上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。上课时一定要“虚心”,即使老师讲的某个题自 己会做也要听一下老师的思路。 上完课后不少同学喜欢把上课的内容看一遍再做作业。实际上应该先试着做题,不会时看书后或做完后看书。这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。作业尽量在上课的当天或第二天做,这样能减少遗忘给做作业造成的困难。做作业时遇到不会的题可以 问别人或参考同学的解答,但一定要真正理解别人的思路,绝对不能不弄清楚别人怎么做就照抄。适当多做些题对学习是有帮助的。。 线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只

现代密码学期终考试试卷和答案

一.选择题 1、关于密码学的讨论中,下列(D )观点是不正确的。 A、密码学是研究与信息安全相关的方面如机密性、完整性、实体鉴别、抗否认等的综 合技术 B、密码学的两大分支是密码编码学和密码分析学 C、密码并不是提供安全的单一的手段,而是一组技术 D、密码学中存在一次一密的密码体制,它是绝对安全的 2、在以下古典密码体制中,属于置换密码的是(B)。 A、移位密码 B、倒序密码 C、仿射密码 D、PlayFair密码 3、一个完整的密码体制,不包括以下(?C?? )要素。 A、明文空间 B、密文空间 C、数字签名 D、密钥空间 4、关于DES算法,除了(C )以外,下列描述DES算法子密钥产生过程是正确的。 A、首先将DES 算法所接受的输入密钥K(64 位),去除奇偶校验位,得到56位密钥(即经过PC-1置换,得到56位密钥) B、在计算第i轮迭代所需的子密钥时,首先进行循环左移,循环左移的位数取决于i的值,这些经过循环移位的值作为下一次 循环左移的输入 C、在计算第i轮迭代所需的子密钥时,首先进行循环左移,每轮循环左移的位数都相同,这些经过循环移位的值作为下一次循 环左移的输入 D、然后将每轮循环移位后的值经PC-2置换,所得到的置换结果即为第i轮所需的子密钥Ki 5、2000年10月2日,NIST正式宣布将(B )候选算法作为高级数据加密标准,该算法是由两位比利时密码学者提出的。 A、MARS B、Rijndael C、Twofish D、Bluefish *6、根据所依据的数学难题,除了(A )以外,公钥密码体制可以分为以下几类。 A、模幂运算问题 B、大整数因子分解问题 C、离散对数问题 D、椭圆曲线离散对数问题 7、密码学中的杂凑函数(Hash函数)按照是否使用密钥分为两大类:带密钥的杂凑函数和不带密钥的杂凑函数,下面(C )是带密钥的杂凑函数。 A、MD4 B、SHA-1

线性代数论文

华北水利水电学院 题目:常见的矩阵及其计算 课程名称:线性代数(第二版) 专业班级: 成员组成: 联系方式: 2012年10月20 日

常见的矩阵及其计算 摘要:矩阵是线性代数理论中极其重要的组成部分,是高等数学的一个基本的概念。它在线性代数与数学的许多分支都有重要应用,许多实际问题都可以用有关理论得到解决。矩阵,是由个数组成行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母表示其元素,其中下标都是正整数,他们表示该元素在矩阵中的位置。 关键词:常见矩阵计算方法 Common matrix and calculation Abstract:The matrix in linear algebra theory is extremely important part, of higher mathematics is a basic concept. It in linear algebra and mathematical many branches have important application, many practical problems can be solved with related theory. Matrix, consisting of a line list of regular form, Usually use capital letters said matrixes of each number, are called matrix elements, usually use lowercase said its elements, the subscript are all positive integer, they said the elements in the position of the matrix. Key words:Common matrix Calculation method

现代密码学教程课后部分答案考试比用

第一章 1、1949年,(A )发表题为《保密系统的通信理论》的文章,为密码系统建立了理论基础,从此密码学成了一门科学。 A、Shannon B、Diffie C、Hellman D、Shamir 2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥5部分组成,而其安全性是由(D)决定的。 A、加密算法 B、解密算法 C、加解密算法 D、密钥 3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是(B )。 A无条件安全B计算安全C可证明安全D实际安全 4、根据密码分析者所掌握的分析资料的不同,密码分析一般可分为4类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是(D )。 A、唯密文攻击 B、已知明文攻击 C、选择明文攻击 D、选择密文攻击 5、1976年,W.Diffie和M.Hellman在密码学的新方向一文中提出了公开密钥密码的思想,从而开创了现代密码学的新领域。 6、密码学的发展过程中,两个质的飞跃分别指1949年香农发表的保密系统的通信理论和公钥密码思想。 7、密码学是研究信息及信息系统安全的科学,密码学又分为密码编码学和密码分析学。 8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法5部分组成的。 9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为对称和非对称。 10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列密码。 第二章 1、字母频率分析法对(B )算法最有效。 A、置换密码 B、单表代换密码 C、多表代换密码 D、序列密码 2、(D)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。 A仿射密码B维吉利亚密码C轮转密码D希尔密码 3、重合指数法对(C)算法的破解最有效。 A置换密码B单表代换密码C多表代换密码D序列密码 4、维吉利亚密码是古典密码体制比较有代表性的一种密码,其密码体制采用的是(C )。 A置换密码B单表代换密码C多表代换密码D序列密码 5、在1949年香农发表《保密系统的通信理论》之前,密码学算法主要通过字符间的简单置换和代换实现,一般认为这些密码体制属于传统密码学范畴。 6、传统密码体制主要有两种,分别是指置换密码和代换密码。 7、置换密码又叫换位密码,最常见的置换密码有列置换和周期转置换密码。 8、代换是传统密码体制中最基本的处理技巧,按照一个明文字母是否总是被一个固定的字母代替进行划分,代换密码主要分为两类:单表代换和多表代换密码。 9、一个有6个转轮密码机是一个周期长度为26 的6次方的多表代替密码机械装置。 第四章 1、在( C )年,美国国家标准局把IBM的Tuchman-Meyer方案确定数据加密标准,即DES。 A、1949 B、1972 C、1977 D、2001 2、密码学历史上第一个广泛应用于商用数据保密的密码算法是(B )。 A、AES B、DES C、IDEA D、RC6 3、在DES算法中,如果给定初始密钥K,经子密钥产生的各个子密钥都相同,则称该密钥K为弱密钥,DES算法弱密钥的个数为(B )。 A、2 B、4 C、8 D、16

线性代数小论文

线性代数小论文 在学习了线性代数两个多月后,也算是对它有了一些了解。在此,我就从老师教学和我自身的学习方面谈谈我的体会,对教学改革提一些自己的意见。 首先,我想说明的是,大学里的学习是不能靠其他任何人的,只能靠自己,老师只是起到一个引导作用。所以教材是我们最重要的学习资源,如果没有书本,就是天才也不可能学好。我使用的线性代数教材是科学出版社出版李小刚主编的《线性代数及其应用》。我比较了一下这本书和其他线代教材的区别,它有个很大的特点就是,别的教材第一章讲的是行列式,而它却直接通过介绍高斯消元法引入了矩阵的概念,在学习了矩阵后才介绍行列式的计算。这是这本教材的优越之处,它包含了一个循序渐进的过程。但是,它也有许多的不足之处,就个人在看这本教材时,觉得它举得实例太少了,并且例子不太全面,本来线性代数是一门比较抽象的学科,加上计算量大,学时少,所以要学好它,就只有靠自己在课余时间多加练习,慢慢领悟那些概念性的东西。然后对于教材内容的侧重点,我觉得应该放在线性方程组这一块,因为它是其他问题的引出点,不管是矩阵,行列式,还是矩阵的秩和向量空间,都是为线性方程组服务的。我们对向量组的线性相关性的讨论,还有对矩阵的秩,向量组的秩的计算,都是为了了解线性方程组的解的情况。在线性方程组的求解过程中,我们运用了矩阵的行变换来求基础解系,当然这就相当于求极大无关组。还有对线性相关和线性无关的讨论,这也关系到线性方程组的解。所以在改革中,应该拿线性方程组为应用的实例,来一步一步的解剖概念和定理。当然一些好的、典型的解题方法,也应该用具体的例子来讲解,这是一本教材必须具备的。 其次,老师在教学中,也应该以一些具体的实例入手来教学,就像开尔文说的,数学只不过是常识的升华而已,所以如果脱离了实际应用,只是讲抽象的概念和式子,是很难明白的,并且有实例的对照,可以加深记忆理论知识。然后要注重易混淆概念的区别,必要时应该拿出来单独讲讲,比如矩阵和行列式的区别,矩阵只是为了计算线性方程而列的一个数据单而已,并无实际意义。而行列式和矩阵有本质的区别,行列式是一个具体的数值,并且行列式的行数和列数必须是相等的。其实老师在教学过程中,应该学会轻松一点,我不希望看到老师在讲台上讲得满头大汗,而学生坐在下面听得云里雾里的场面,这就需要老师能够精选一些内容讲解,不需要都讲,而其他相关的内容让学生自己通过举一反三就得到就可以了。老师可以自己选一些经典的例子来讲,而不一定要讲书上的例子。然后对于例子中的计算,老师就可以不用算了,多叫学生动动手,增加我们的积极性,并且这样也更能发现问题。再就是线性代数的课时少,这是一个客观存在的原因,所以更要精讲。而不需全部包揽。当然,若果能通过改革,增加课时是最好不过了。这也算一点小小的建议吧。 然后,自己在学习的过程中,也应该能够整体把握老师的意思,注意各个章节的联系,R.斯根普说过个别的概念一定要融入与其它概念合成的概念结构中才有效用。数学中的概念往往不是孤立的,理解概念间的联系既能促进新概念的引入,也有助于接近已学过概念的本质及整个概念体系的建立。如矩阵的秩与向量组的秩的联系:矩阵的秩等于它的行向量组的秩,也等于它的列向量组的秩;矩阵行(列)满秩,与向量组的线性相关和线性无关也有一定的联系。知识体系是一环扣一环,环环相连的。前面的知识是后面学习的基础,如用初等变换求矩阵的秩熟练与否,直接影响求向量组的秩及极大无关组,进一步影响到求由向量组生成的向量空间的基与维数;又如求解线性方程组的通解熟练与否,会影响到后面特征向量的求解,以及利用正交变换将二次型化为标准型等。因此,学习线性代数,一定要坚持温故而知新的学习方法,及时复习巩固,为此,老师课前的知识回顾以及学生提前预习是十分必要的。对于后来学的,应该多翻翻书看看前面是怎么说的,往往前面学习的内容是为后面做铺垫的,所以在学了后面的知识后,再看前面的知识,会对前面的知识有一个新的认识,会更

线性代数的学习方法和心得体会

线性代数的学习方法和心得体会 一、学习方法 今天先谈谈对线形空间和矩阵的几个核心概念的理解。这些东西大部分是凭着自己的理解写出来的,基本上不抄书,可能有错误的地方,希望能够被指出。但我希望做到直觉,也就是说能把数学背后说的实质问题说出来。 首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间。赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间。 总之,空间有很多种。你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间。这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢?大家将会看到,其实这是很有道理的。 我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的(按照牛顿的绝对时空观)的三维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点。仔细想想我们就会知道,这个三维的空间:1. 由很多(实际上是无穷多个)位置点组成; 2. 这些点之间存在相对的关系; 3. 可以在空间中定义长度、角度; 4. 这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动, 认识到了这些,我们就可以把我们关于三维空间的认识扩展到其他的空间。事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变换)。你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是对应空间中允许的运动形式而已。

线性代数小论文

摘要:分析了若矩阵A 经过行初等变换化为矩阵B ,则A 与B 的列向量组具有完全相同的线性关系,以及此性质在线性代数的主要应用。 关键词:初等变换;线性相关;线性无关;线性表示 线性代数主要研究的是线性问题。一般而言,凡是线性问题常可以用向量空间的观点和方法加以讨论,因此向量空间成了线性代数的基本概念和中心内容。 向量空间理论的核心问题是向量间的线性关系。其基本概念有向量的线性表示、向量组线性相关与线性无关、向量组等价、向量组的极大无关组,以及向量空间的基与维数等。这些问题通常转化为解线性方程组或解齐次线性方程组。 1 线性相关性证明 设A =(α1,α2,··· ,αn ),αi ∈P m ,若矩阵A 经过行初等变换化为矩阵B ,则A 与B 的列向量组具有完全相同的线性关系。 证明:设A m ×n ,A 经过行初等变换化为B ,将A ,B 分别按列分块为A =(α1,α2,…,αn ),B=(β1, β2,···,βn )。由于对A 只进行有限次行初等变换,故可知有满秩矩阵P ,使PA =B ,即P(α1,α2, ···,αn )=(β1, β2, ···,βn ),于是有i 1 βj = P αj (j=1,2,3, ···,n) (1) 设A 和B 对应的列向量组为αi 1,αi 2, ···,αi r 和βi 1, βi 2,···,βi r (1≤i 1<i 2<···<i r ≤n),由(1)式得 βik = P αik (k=1,2,3, ···,r) 因此,如果αi 1,αi 2, ···,αi r 有线性关系式k 1αi 1+k 2αi 2+ ···+k r αi r =0(k r 为实数),则k 1,k 2…k r 也必使得 k 1βi 1+k 2 βi 2+···+k r βi r =k 1(P αi 1)+ k 2(P αi 2)+ ···+ k r (P αi r ) =P (k 1αi 1+k 2αi 2+ ···+k r αi r )=P 0=0 反之,如果βi 1, βi 2,···,βi r 有线性关系式,得 λ1βi 1+λ2βi 2+ ···+λr βi r =0 则由P 的满秩性可知αj =P -1βj (j=1,2,3, ···,n),于是有 λ1αi 1+λ2αi 2+ ···+λr αi r =λ1P -1βi 1 +λ2P -1βi 2 + ···+λr P -1βi r = P -1(λ1βi 1+λ2βi 2+ ···+λr βi r )= P -10=0 这表明向量组αi 1,αi 2, ···,αi r 与向量组βi 1, βi 2,···,βi r 有相同的线性相关性,证毕。 2 线性相关性在线性代数中的应用 2.1向量组的线性相关性与行列式的关系 若向量组α1,α2, ···,αn 的个数等于于向量的维数,即m=n 时,则

现代密码学小论文

目录 现代密码学的认识与应用 (1) 一、密码学的发展历程 (1) 二、应用场景 (1) 2.1 Hash函数 (1) 2.2应用场景分析 (2) 2.2.1 Base64 (2) 2.2.2 加“盐” (2) 2.2.3 MD5加密 (2) 2.3参照改进 (3) 2.3.1 MD5+“盐” (3) 2.3.2 MD5+HMAC (3) 2.3.3 MD5 +HMAC+“盐” (3) 三、总结 (4)

现代密码学的认识与应用 一、密码学的发展历程 密码学的起源的确要追溯到人类刚刚出现,并且尝试去学习如何通信的时候,为了确保他们的通信的机密,最先是有意识的使用一些简单的方法来加密信息,通过一些(密码)象形文字相互传达信息。接着由于文字的出现和使用,确保通信的机密性就成为一种艺术,古代发明了不少加密信息和传达信息的方法。 事实上,密码学真正成为科学是在19世纪末和20世纪初期,由于军事、数学、通讯等相关技术的发展,特别是两次世界大战中对军事信息保密传递和破获敌方信息的需求,密码学得到了空前的发展,并广泛的用于军事情报部门的决策。 20世纪60年代计算机与通信系统的迅猛发展,促使人们开始考虑如何通过计算机和通信网络安全地完成各项事务,从而使得密码技术开始广泛应用于民间,也进一步促进了密码技术的迅猛发展。 二、应用场景 2.1 Hash函数 Hash函数(也称杂凑函数、散列函数)就是把任意长的输入消息串变化成固定长度的输出“0”、“1”串的函数,输出“0”、“1”串被称为该消息的Hash值(或杂凑值)。一个比较安全的Hash函数应该至少满足以下几个条件: ●输出串长度至少为128比特,以抵抗攻击。对每一个给定的输入,计算 Hash值很容易(Hash算法的运行效率通常都很高)。 ●对给定的Hash函数,已知Hash值,得到相应的输入消息串(求逆)是计 算上不可行的。 ●对给定的Hash函数和一个随机选择的消息,找到另一个与该消息不同的 消息使得它们Hash值相同(第二原像攻击)是计算上不可行的。 ●对给定的Hash函数,找到两个不同的输入消息串使得它们的Hash值相同 (即碰撞攻击)实际计算上是不可行的Hash函数主要用于消息认证算法 构造、口令保护、比特承诺协议、随机数生成和数字签名算法中。 Hash函数算法有很多,最著名的主要有MD系列和SHA系列,一直以来,对于这些算法的安全性分析结果没有很大突破,这给了人们足够的信心相信它们是足够安全的,并被广泛应用于网络通信协议当中。

线性代数环境科学中的应用

线性代数环境科学中的应用 12环境工程1班 李磊 卢春明 汪泽洋 实验目的: 大学数学是自然科学的基本语言,是应用模式探索现实世界物质运动机理的主要手段。学习数学的意义不仅仅是学习一种专业的工具而已。初等的数学知识、学习线性代数数学建模、函数模型的建立及应用,作为变化率的额倒数在几何学、物理学、经济学中的应用,抛体运动的数学建模及其应用,最优化方法及其在工程、经济、农业等领域中的应用,逻辑斯谛模型及其在人口预测、新产品的推广与经济增长预测方面的应用,网络流模型及其应用,人口迁移模型及其应用,常用概率模型及其应用,等等。 线性代数中行列式 实质上是又一些竖直排列形成的数表按一定的法则计算得到的一个数。早在1683年与1693年,日本数学家关孝和与德国数学家莱布尼茨就分别独立的提出了行列式的概念。之后很长一段时间,行列式主要应用与对现行方程组的而研究。大约一个半世纪后,行列式逐步发展成为线性代数的一个独立的理论分支。1750年瑞士数学家克莱姆也在他的论文中提出了利用行列式求解线性方程组的著名法则——克莱姆法则。随后1812年,法国数学家柯西发现了行列式在解析几何中的应用,这一发现机器了人们对行列式的应用进行探索的浓厚兴趣。如今,由于计算机和计算软件的发展,在常见的高阶行列式计算中,行列式的数值意义虽然不大,但是行列式公式依然可以给出构成行列式的数表的重要信息。在线性代数的某些应用中,行列式的只是依然非常重要。 模型简介: 例:有甲、乙、丙三种化肥,甲种化肥每千克含氮70克,磷8克,钾2克; 乙种、 化肥每千克含氮64克,磷10克,钾0.6克;丙种化肥每千克含氮70克,磷5克,钾1.4克.若把此三种化肥混合,要求总重量23千克且含磷149克,钾30克,问三种化肥各需多少千克? 解: 题意得方程组 依千克、、各需设甲、乙、丙三种化肥32,1x x x ??? ??=++=++=++. 304.16.02,1495108,23321 321321x x x x x x x x x ,527- =D 此方程组的系数行列式81275 81 321-=-=-=D D D ,,又 由克莱姆法则,此方程组有唯一解:3=x 1;52=x ;.153=x 即甲乙丙三种化肥各需 3千克 5千克 15千克、

线性代数论文

线性代数论文 一:行列式 学习线性代数最先接触的是行列式,行列式出现于线性方程组的求解,解一组线性方程组最基本的方法是消元,而行列式只是方程求解的一种速记表达式。由多代数学家研究和完善,给出了n 阶行列式的定义: ∑ -= n n n j j j nj j j j j j nn n n n n a a a a a a a a a a a a 21212121)(21 2222111211 )1(τ 因此在这之前必须提出逆序数的概念:在一个n 级排列)(21n s t i i i i i 中,若数,s t i i > 则称数t i 与s i 构成一个逆序。一个n 级排列中逆序的总数称为该排列的逆序数, 记 为).(21n i i i τ一个排列逆序数为偶数则为偶排列,否则为奇排列。 有定义可以看出n 阶行列式表示所有取自不同行、不同列的n 个元素乘积n nj j j a a a 2121的代数和, 各项的符号是: 当该项各元素的行标按自然顺序排列后, 若对应的列标构成的排列是偶排列则取正号; 是奇排列则取负号.由此则可推出行列式的几个性质: 1:行列互换行列式的值不变,行列地位是对称的; 2:用一个数乘行列式的某一行等于用这个数乘此行列式。因此相反的行列式的某一行有公因子可以提出来; 3:如果行列式中某一行是两组数的和,则这个行列式等于两个行列式的和,这两个行列式分别以这两组数作为该行,而其余各行与原行列式对应相同; 4:对换行列式中两行的位置,行列式反号; 5:如果行列式中有两行成比例饿,则行列式等于0; 6:把一行的某个倍数加到另一行,行列式的值不变; 有上述六条性质可以很好的对一些高阶行列式进行化简,进而求值。简化行列式计算的另一条途径则是降阶,即把高阶行列式的计算化为低低阶行列式运算。在这方面则是发现了行列式的展开公式。 首先为方便表达计算有如下定义: 在一个n 级行列式D 中,把元素aij (i,j=1,2,.....n)所在的行与列划去后,剩下的(n-1)^2个元素按照原来的次序组成的一个n-1阶行列式Mij,称为元素aij 的余子式,Mij 带上符号(-1)^(i+j)称为aij 的代数余子式,记作Aij=(-1)^(i+j)Mij 之后则有行列式展开公式:行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和,即 : 最后则回到最原先的问题,用行列式表示方程的解: 由克拉默法则知:

相关文档
最新文档