主成分分析法实例
主成分分析之PCA

95
M
90
85
80
75
70
65
60 64 66 68 70 72 74 76 78 80 82 84
❖ 先假定数据只有二维,即只有两个 变量,它们由横坐标和纵坐标所代表; 因此每个观测值都有相应于这两个坐 标轴的两个坐标值;
❖ 如果这些数据形成一个椭圆形状的 点阵(这在变量的二维正态的假定下 是可能的).
F简化了系统结构,抓住了主要矛盾。
整理课件
35
稍事休息
§3.4 PCA的性质
一、两个线性代数的结论
1、若A是p阶实对称阵,则一定可以找到正交阵U,使
1 0 0
U1AU
0
2
0
0
0
p
pp
其中 i,i1.2. p是A的特征根。
2、若上述矩阵的特征根所对应的单位特征向量 为 u1,,up
例 设 x1,x2,x3的协方差矩阵为
1 2 0
2 5 0 0 0 2
解得特征根为
,,
15.8,32 2.00,30.17
0.383
U1
0 .924
0.000
0
U
2
0
1
0 .924
U
3
0
.383
0 .000
第 一 个 主 成 分 的 贡 献 率 为 5.83/ ( 5.83+2.00+0.17 ) =72.875%,尽管第一个主成分的贡献率并不小,但应该取 两个主成分。97.88%
❖ 注意,和二维情况类似,高维椭球的 主轴也是互相垂直的。这些互相正交 的新变量是原先变量的线性组合,叫 做主成分(principal component)。
主成分分析法实例

主成分分析法实例PCA的基本思想是将原始数据在坐标系下进行变换,使得各个坐标轴之间的相关性最小化。
在变换后的坐标系中,第一个主成分表示数据中方差最大的方向,第二个主成分表示与第一个主成分正交且方差次大的方向,以此类推。
因此,保留前k个主成分就可以达到降维的目的。
下面我们通过一个实例来详细介绍PCA的应用过程。
假设我们有一个二维数据集,其中包含了500个样本点,每个样本点具有两个特征。
我们首先需要对数据进行标准化处理,即对每个特征进行零均值化和单位方差化,这可以通过下面的公式实现:\[x_j' = \frac{x_j - \overline{x_j}}{\sigma_j}\]其中,\(x_j\)表示第j个特征的原始值,\(\overline{x_j}\)表示第j个特征的均值,\(\sigma_j\)表示第j个特征的标准差。
通过标准化处理后,我们可以得到一个均值为0,方差为1的数据集。
接下来,我们计算数据集的协方差矩阵。
协方差矩阵可以帮助我们衡量变量之间的相关性,它的第i行第j列的元素表示第i个特征与第j个特征的协方差。
\[Cov(X) = \frac{1}{n-1}(X - \overline{X})^T(X -\overline{X})\]其中,X是一个n行m列的矩阵,表示数据集,\(\overline{X}\)是一个n行m列的矩阵,表示X的每一列的均值。
协方差矩阵可以通过求解数据集的散布矩阵来得到,散布矩阵的定义如下:\[Scatter(X) = (X - \overline{X})^T(X - \overline{X})\]我们将协方差矩阵的特征值和特征向量求解出来,特征值表示每个特征方向上的方差,特征向量表示每个特征方向上的权重。
我们将特征值按照从大到小的顺序排序,选择前k个特征值对应的特征向量作为主成分。
最后,我们将数据集投影到选取的主成分上,得到降维后的数据集。
投影的过程可以通过下面的公式实现:\[y=XW\]其中,X是一个n行m列的矩阵,表示数据集,W是一个m行k列的矩阵,表示主成分。
主成分分析

主成分分析主成分分析、因子分析等在多元统计分析中属于协方差逼近技术。
主要是从协方差矩阵出发,实现一种正交变换,从而将高维系统表示为低维系统,在此过程中可以揭示研究对象的许多性质和特征。
主成分分析的结果可以用于回归分析、聚类分析、神经网络分析等等。
只要懂得线性代数中二次型化为标准型的原理,就很容易掌握主成分分析的原理,进而掌握因子分析的原理。
在理解正交变换数学原理的基础上,我们可以借助Excel 开展主成分分析。
为了清楚地说明主成分的计算过程,不妨给出一个简单的计算实例。
【例】2000 年中国各地区的城、乡人口的主成分分析。
这个例子只有两个变量(m=2):城镇人口和乡村人口;31 个样品:即中国的31 个省、自治区和直辖市(n=31)。
资料来自2001 年《中国统计年鉴》,为2000 年全国人口普查快速汇总的11 月1 日零时数。
由于变量太少,这个例子仅仅具有教学意义——简单的实例更容易清楚地展示计算过程的细节。
计算步骤5.1.1 详细的计算过程首先,录入数据,并对数据进行适当处理(图5-1-1)。
计算的详细过程如下。
第一步,将原始数据绘成散点图主成分分析原则上要求部分变量之间具有线性相关趋势。
如果所有变量彼此之间不相关(即正交),则没有必要进行主成分分析,因为主成分分析的目的就是用正交的变量代替原来非正交的变量。
如果原始变量之间为非线性关系,则有必要对数据进行线性转换,否则效果不佳。
从图5-1-2 可见,原始数据具有非线性相关趋势,可以近似匹配幂指数函数,且测定系数R2=0.5157,相应地,相关系数R=0.7181(图5-1-2a);取对数之后,点列具有明显的线性趋势(图5-1-2b)。
第二步,对数据进行标准化标准化的数学公式为我们将对对数变换后的数据开展主成分分析,因此只对取对数后的数据标准化。
根据图5-1-1所示的数据排列,应该按列标准化,用xij 代表取对数之后的数据,则下式分别为第j 列数据的均值和标准差,xij 为第i 行(即第i 个样本)、第j 列(即第j 个变量)的数据,xij*为相应于xij 的标准化数据,n=31 为样品数目(参见图5-1-1)。
主成分分析案例数据

主成分分析案例数据目录主成分分析案例数据 (1)介绍主成分分析 (1)主成分分析的定义和背景 (1)主成分分析的应用领域 (2)主成分分析的基本原理 (3)主成分分析案例数据的收集和准备 (4)数据收集的方法和来源 (4)数据的预处理和清洗 (5)数据的特征选择和变换 (6)主成分分析的步骤和方法 (7)数据的标准化和中心化 (7)协方差矩阵的计算 (8)特征值和特征向量的求解 (9)主成分的选择和解释 (10)主成分分析案例数据的分析和解释 (11)主成分的解释和贡献率 (11)主成分的权重和特征 (11)主成分得分的计算和应用 (12)主成分分析的结果和结论 (13)主成分分析的结果解读 (13)主成分分析的应用建议 (14)主成分分析的局限性和改进方法 (15)总结和展望 (16)主成分分析的优势和局限性总结 (16)主成分分析的未来发展方向 (16)主成分分析在实际问题中的应用前景 (16)介绍主成分分析主成分分析的定义和背景主成分分析(Principal Component Analysis,简称PCA)是一种常用的多变量数据分析方法,旨在通过降维将高维数据转化为低维数据,同时保留原始数据中的主要信息。
它是由卡尔·皮尔逊(Karl Pearson)于1901年提出的,被广泛应用于数据挖掘、模式识别、图像处理等领域。
主成分分析的背景可以追溯到19世纪末,当时统计学家们开始关注如何处理多变量数据。
在那个时代,数据集的维度往往非常高,而且很难直观地理解和分析。
因此,研究人员开始寻找一种方法,能够将高维数据转化为低维数据,以便更好地理解和解释数据。
主成分分析的基本思想是通过线性变换将原始数据映射到一个新的坐标系中,使得新坐标系下的数据具有最大的方差。
这样做的目的是希望通过保留原始数据中的主要信息,同时减少数据的维度,从而更好地理解数据的结构和特征。
具体而言,主成分分析通过计算数据的协方差矩阵,找到一组正交的基向量,称为主成分。
主成分分析法案例

主成分分析法案例主成分分析(Principal Component Analysis,PCA)是一种常用的降维技术,可以将高维数据映射到低维空间,同时保持数据信息最大化。
本文将介绍一个应用主成分分析法的案例,以展示其在实际问题中的应用价值。
假设我们有一个销售数据集,包含100个样本和10个特征。
我们希望通过主成分分析法来降低数据的维度,以便更好地理解和解释数据。
第一步是标准化数据。
由于每个特征的单位和范围可能不同,我们需要将其缩放到相同的尺度。
这样可以避免某些特征对主成分分析结果的影响过大。
通过减去特征均值并除以标准差,我们可以将数据的均值调整为0,方差调整为1。
第二步是计算特征的协方差矩阵。
协方差矩阵可以衡量不同特征之间的关系。
通过计算特征之间的协方差,我们可以得到一个10×10的协方差矩阵。
第三步是计算协方差矩阵的特征值和特征向量。
特征值可以衡量每个特征的重要性,特征向量则表示数据在这些特征方向上的投影。
第四步是选择主成分。
我们可以通过特征值的大小来选择主成分的数量。
特征值越大,说明对应特征向量的信息量越大。
在这个案例中,我们选择前三个特征值最大的特征向量作为主成分。
第五步是计算主成分得分。
我们可以将原始数据映射到选定的主成分上,从而得到主成分得分。
主成分得分是原始数据在主成分上的投影。
最后,我们可以通过对主成分进行可视化和解释来理解数据。
在这个案例中,我们可以绘制主成分之间的散点图,观察样本之间的分布情况。
同时,我们还可以计算主成分与原始特征的相关系数,以评估特征在主成分中的重要性。
总之,主成分分析法是一种强大的降维技术,可以帮助我们更好地理解和解释数据。
通过选择主成分,计算主成分得分以及解释主成分,我们可以在高维数据中寻找关键的信息。
Matlab主成分分析:详解+实例

主成分分析
总结:
主 原始变量 目标
成
X1, , Xm
主成分
Z1, ,Zp
分
线性组合
分
Z1, , Zp 互不相关
析 的
信息不重合 按‘重要性’排序
求解主 成分
思
Z1, , Zp
想 Var(Z1) Var(Z2 ) Var(Zp )
r
i r 2(z j , xi ),
j1
这里r(z j , xi )表示zj 与 xi 的相关系数。
主成分分析
1 2 0
例1 设 x [ x1, x2 , x3 ]T 且 R 2 5 0
0 0 0
则可算得1 5.8284,2 0.1716,如果我们仅取第
一个主成分,由于其累积贡献率已经达到97.14%, 似乎很理想了,但如果进一步计算主成分对原变量的
c1 x1+ c2 x2+… +cp xp
我们希望选择适当的权重能更好地区分学生的 成绩. 每个学生都对应一个这样的综合成绩, 记 为s1, s2,…, sn , n为学生人数. 如果这些值很分散, 表明区分好, 即是说, 需要寻找这样的加权, 能使 s1, s2,…, sn 尽可能的分散, 下面来看的统计定义.
x5:交通和通讯,
x6:娱乐教育文化服务,
x7:居住,
x8:杂项商品和服务.
对居民消费数据做主成分分析.
聚类分析
聚类分析
聚类分析
计算的Matlab程序如下:
clc,clear load czjm1999.txt
%把原始数据保存在纯文本文件czjm1999.txt中
主成分分析法案例

主成分分析法案例主成分分析法(Principal Component Analysis, PCA)是一种常用的多变量统计分析方法,它可以帮助我们发现数据中的主要特征和结构,从而简化数据集并减少信息丢失。
在本文中,我们将通过一个实际案例来介绍主成分分析法的应用。
案例背景。
假设我们有一个包含多个变量的数据集,我们希望通过主成分分析法来找出其中的主要特征,并将数据进行降维,以便更好地理解和解释数据。
数据准备。
首先,我们需要对数据进行预处理,包括数据清洗、缺失值处理、标准化等操作。
在这个案例中,我们假设数据已经经过了预处理,并且符合主成分分析的基本要求。
主成分分析。
接下来,我们将利用主成分分析法来分析数据。
主成分分析的基本思想是通过线性变换将原始变量转化为一组线性无关的新变量,这些新变量被称为主成分,它们能够最大程度地保留原始数据的信息。
在进行主成分分析之前,我们需要计算数据的协方差矩阵,并对其进行特征值分解。
通过特征值分解,我们可以得到数据的主成分和对应的特征值,从而找出数据中的主要特征。
案例分析。
假设我们得到了数据的前三个主成分,我们可以通过观察主成分的载荷(loadings)来理解数据中的结构。
载荷可以帮助我们理解每个主成分与原始变量之间的关系,从而解释数据的特点和规律。
通过主成分分析,我们可以发现数据中的主要特征和结构,从而更好地理解数据。
同时,我们还可以利用主成分分析的结果进行数据的降维,从而简化数据集并减少信息丢失。
结论。
通过以上案例分析,我们可以看到主成分分析法在多变量数据分析中的重要作用。
通过主成分分析,我们可以发现数据中的主要特征和结构,从而简化数据集并减少信息丢失。
同时,主成分分析还可以帮助我们更好地理解和解释数据,为后续的分析和应用提供有力支持。
总结。
在本文中,我们通过一个实际案例介绍了主成分分析法的基本原理和应用。
主成分分析是一种常用的多变量统计分析方法,它可以帮助我们发现数据中的主要特征和结构,从而简化数据集并减少信息丢失。
主成分分析法例子

x7 0.79 0.009 -0.93 -0.046 0.672 0.658 1 -0.03 0.89
x8 0.156 -0.078 -0.109 -0.031 0.098 0.222 -0.03 1
0.29
x9 0.744 0.094 -0.924 0.073 0.747 0.707 0.89 0.29
▲贡献率:
i
p
k
k 1
(i 1,2,, p)
▲合计贡献率:
i
k
k 1
p
k
k 1
(i 1,2,, p)
一般取合计贡献率达85—95%旳特征值 1, 2 ,, m
所相应旳第一、第二、…、第m(m≤p)个主成份。
④各主成份旳得分
l11 l12 l1p x1
Z
l21
l22
l2
p
x2
二主成份z2代表了人均资源量。
③第三主成份z3,与x8呈显出旳正有关程度 最高,其次是x6,而与x7呈负有关,所以能 够以为第三主成份在一定程度上代表了农业 经济构造。
显然,用三个主成份z1、z2、z3替代原来9个变量(x1, x2,…,x9),描述农业生态经济系统,能够使问题更进
一步简化、明了。
x4
0.0042
0.868
0.0037
75.346
x5
0.813
0.444
-0.0011
85.811
x6
0.819
0.179
0.125
71.843
x7
0.933
-0.133
-0.251
95.118
x8
0.197
-0.1
0.97
98.971
主成分分析法概念及例题

主成分分析法主成分分析(principal components analysis ,PCA)又称:主分量分析,主成分回归分析法目录[显示]1什么是主成分分析法2主成分分析的基本思想3主成分分析法的基木原理45主成分分析法的计算步骤6主成分分析法的应用分析0 案例一:主成分分析法在啤酒风味评价分析中的应用⑴1材料与方法2主成分分析袪的基本原理3主成分分析法在啤酒质虽一致性评价中的应用4结论7参考文献[编辑]什么是主成分分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在统计学中,主成分分析(principal components analysis,PCA )是一种简化数据集的技术。
它是一个线性变换。
这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。
这是通过保留低阶主成分,忽略高阶主成分做到的。
这样低阶成分往往能够保留住数据的最重要方面。
但是,这也不是一定的,要视具体应用而定。
[编辑]主成分分析的基本思想在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所硏究问题的某些信息,并且指标之间彼此有一定的相矢性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在逬行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具。
同样,在科普效果评估的过程中也存在着这样的问题。
科普效果是很难具体量化的。
在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。
第六章-主成分分析法精选全文

可编辑修改精选全文完整版第六章 主成分分析法主成分分析法是将高维空间变量指标转化为低维空间变量指标的一种统计方法。
由于评价对象往往具有多个属性指标,较多的变量对分析问题会带来一定的难度和复杂性。
然而,这些指标变量彼此之间常常又存在一定程度的相关性,这就使含在观测数据中的信息具有一定的重叠性。
正是这种指标间的相互影响和重叠,才使得变量的降维成为可能。
即在研究对象的多个变量指标中,用少数几个综合变量代替原高维变量以达到分析评价问题的目的。
当然,这少数指标应该综合原研究对象尽可能多的信息以减少信息的失真和损失,而且指标之间彼此相互独立。
第一节 引言主成分分析,也称主分量分析,由皮尔逊(Pearson )于1901年提出,后由霍特林(Hotelling )于1933年发展了,这也正是现在多元统计分析中的一种经典统计学观点。
经典统计学家认为主成分分析是确定一个多元正态分布等密度椭球面的主轴,这些主轴由样本来估计。
然而,现代越来越多的人从数据分析的角度出发,用一种不同的观点来考察主成分分析。
这时,不需要任何关于概率分布和基本统计模型的假定。
这种观点实际上是采用某种信息的概念,以某种代数或几何准则最优化技术对一个数据阵的结构进行描述和简化。
主成分分析方法的主要目的就是通过降维技术把多个变量化为少数几个主要成分进行分析的统计方法。
这些主要成分能够反映原始变量的绝大部分信息,它们通常表示为原始变量的某种线性组合。
为了使这些主要成分所含的信息互不重迭,应要求它们互不相关。
当分析结束后,最后要对主成分做出解释。
当主成分用于回归或聚类时,就不需要对主成分做出解释。
另外,主成分还有简化变量系统的统计数字特征的作用。
对于任意p 个变量,描述它们自身及其相互关系的数字特征包括均值、方差、协方差等,共有)1(21-+p p p 个参数。
经过主成分分析后,每个新变量的均值和协方差都为零,所以,变量系统的数字特征减少了)1(21-+p p p 个。
主成分分析实例和含义讲解

主成分分析实例和含义讲解1.数据标准化:对原始数据进行标准化处理,使得每个变量的均值为0,方差为1、这一步是为了将不同量级的变量进行比较。
2.计算协方差矩阵:根据标准化后的数据,计算协方差矩阵。
协方差矩阵反映了各个变量之间的线性关系。
3.特征值分解:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。
特征值表示了各个特征向量的重要程度。
4.选择主成分:根据特征值的大小,选择前k个特征向量作为主成分,k通常是根据主成分所解释的方差比例进行确定。
5.数据投影:将原始数据投影到选取的主成分上,得到降维后的数据。
主成分分析的含义可以从两个方面来解释。
一方面,主成分分析表示了原始数据在新坐标系下的投影,可以帮助我们理解数据的结构和变化。
通过选择前几个主成分,我们可以找到最能够代表原始数据的几个因素,从而实现数据的降维。
例如,在一个包含多个变量的数据集中,如果我们选择了前两个主成分,那么我们可以通过绘制数据在这两个主成分上的投影,来理解数据的分布和变化规律。
同时,主成分的累计方差贡献率可以帮助我们评估所选择的主成分对原始数据方差的解释程度,从而确定降维的精度。
另一方面,主成分分析还可以用于数据的预处理和异常值检测。
通过计算每个变量在主成分上的权重,我们可以判断每个变量对主成分的贡献大小。
如果一些变量的权重很小,那么可以考虑将其从数据集中剔除,从而减少数据的维度和复杂度。
此外,主成分分析还可以检测数据集中的异常值。
在降维的过程中,异常值对主成分的计算结果会产生较大的影响,因此可以通过比较各个主成分的方差贡献率,来识别可能存在的异常值。
总之,主成分分析是一种常用的数据降维方法,它能够帮助我们理解数据集的结构,并鉴别对数据变化影响最大的因素。
通过选择适当的主成分,我们可以实现数据的降维和可视化,并对异常值进行检测。
在实际应用中,主成分分析常常与其他数据挖掘和机器学习方法结合使用,从而发现数据的隐藏模式和关联规则,提高数据分析的效果和准确性。
主成份分析和因子分析实例

• 定义:因子分析是一种降维分析方法,通过研究多个变量之间的相关性,将多个变量归结为少数几个公 共因子
• 原理:基于变量的相关性,通过旋转因子矩阵,使得每个变量仅与一个公共因子高度相关,从而实现对 数据的简化分析 以下是用户提供的信息和标题: 我正在写一份主题为“主成份分析和因子分析实例” 的PPT,现在准备介绍“因子分析的步骤”,请帮我生成“步骤”为标题的内容 步骤
数据来源:某高校学生成 绩数据
数据清洗:去除异常值、缺失值和重复值
数据转换:将非数值型数据转换为数值型数据 数据标准化:将数据进行标准化处理,使每个变量的平均值为0,标准差为 1 数据降维:将高维数据降维到低维空间,保留主要特征
定义:计算变量之间的相关系数矩阵
目的:了解变量之间的相关性
计算方法:使用统计学软件或编程语言计算相关系数矩阵 结果解释:通过相关系数矩阵,可以了解变量之间的线性关系强度 和方向
因子分析缺点:对数据的要求较高,需要数据量足够大且各变量间相关性较强;在确定因子数量 时,需要主观判断。
拓展应用领域:从金融、经济领域拓展到更多领域,如社会学、心理学等 优化算法和模型:提高主成份分析和因子分析的准确性和效率,减少误差 结合其他技术:与数据挖掘、机器学习等技术结合,提高数据分析的深度和广度 强化实际应用:在更多实际问题中应用主成份分析和因子分析,为决策提供支持
根据累积方差贡 献率确定主成份 个数
根据碎石图确定 主成份个数
根据主成份得分 矩阵确定主成份 个数
根据因子载荷矩 阵确定主成份个 数
计算每个观测值 在每个主成份上 的得分
将每个观测值在 每个主成份上的 得分进行加权求 和
得到每个观测值 的主成份得分
将每个观测值的 主成份得分进行 排序,得到主成 份得分排名
主成分分析法实例

【转】主成分分析法概述、案例实例分析主成分分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具。
主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。
在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。
依次类推,I 个变量就有I个主成分。
这种方法避免了在综合评分等方法中权重确定的主观性和随意性,评价结果比较符合实际情况;同时,主成份分量表现为原变量的线性组合,如果最后综合指标包括所有分量,则可以得到精确的结果,百分之百地保留原变量提供的变差信息,即使舍弃若干分量,也可以保证将85%以上的变差信息体现在综合评分中,使评价结果真实可靠。
是在实际中应用得比较广的一种方法。
由于其第一主成份(因子)在所有的主成分中包含信息量最大,很多学者在研究综合评价问题时常采用第一主成分来比较不同实体间的差别。
综上所述,该方法的优点主要体现在两个方面:1.权重确定的客观性;2.评价结果真实可靠。
1.主成分分析的基本原理主成分分析:把原来多个变量划为少数几个综合指标的一种统计分析方法,是一种降维处理技术。
)记原来的变量指标为x1,x2,…,xP,它们的综合指标——新变量指标为z1,z2,…,zm(m≤p),则z1,z2,…,zm分别称为原变量指标x1,x2,…,xP的第一,第二,…,第m 主成分,在实际问题的分析中,常挑选前几个最大的主成分。
浅析主成分分析法及案例分析

浅析主成分分析法及案例分析主成分分析的原理:主成分分析的目标是找到一组线性变量,它们能够最大程度地解释原始数据中的变化。
第一个主成分与数据具有最大的差异,而随后的主成分则与第一个主成分正交(即无相关性),并且在特征解释方面具有最大的差异。
主成分是对原始数据的线性组合,其中具有最大方差的成分被称为第一个主成分,次大方差的成分被称为第二个主成分,依此类推。
主成分分析的步骤:1.标准化数据:如果原始数据的变量具有不同的单位和尺度,我们需要对数据进行标准化,以确保每个变量对主成分的贡献是公平的。
2.计算协方差矩阵:协方差矩阵显示了原始数据中变量之间的相关性。
它可以通过计算每个变量之间的协方差来得到。
3.计算特征向量和特征值:通过对协方差矩阵进行特征分解,我们可以得到一组特征向量和特征值。
特征向量表示主成分的方向,而特征值表示每个主成分的解释方差。
4.选择主成分:根据特征值的大小,我们可以选择前k个主成分作为降维后的新变量,其中k是我们希望保留的维度。
这样就可以将原始数据投影到所选的主成分上。
主成分分析的案例分析:假设我们有一份包含多个变量的数据集,例如身高、体重、年龄和收入。
我们希望通过主成分分析来降低数据的维度,以便更好地理解数据集。
首先,我们需要标准化数据,以确保每个变量具有相同的权重。
接下来,我们计算协方差矩阵,得到变量之间的相关性。
然后,我们进行特征值分解,得到一组特征向量和特征值。
通过观察特征值的大小,我们可以选择前几个主成分,例如前两个主成分。
最后,我们将原始数据集投影到选定的主成分上,得到降维后的数据集。
这样,我们可以用两个主成分来表示原始数据集的大部分变异,并且可以更容易地分析数据集中的模式和关系。
总结:通过主成分分析,我们可以将高维度的数据转换为更低维度的数据,从而更好地理解和分析数据集。
它可以帮助我们发现数据中的隐藏模式和关系,提取出对数据变异具有最大贡献的特征。
在实际应用中,主成分分析常用于数据降维、数据可视化、特征选择等领域。
主成份分析和因子分析实例

主成份分析和因子分析实例主成分分析和因子分析是常用的降维技术,用于对数据进行降维和探索性因子分析。
在本文中,我将为您介绍两种方法,并提供一个数据集的实例来说明它们的应用。
一、主成分分析(PCA)主成分分析是一种广泛应用的数据降维技术,它可以将高维数据转换为低维数据,同时尽可能以保留最大方差的方式来解释数据。
主成分分析的目标是找到一个新的低维度空间,使得投影到该空间的数据具有最大的方差。
下面是一个用于说明主成分分析的实例:假设我们有一组包含5个变量的数据,分别是身高、体重、BMI指数、血压和血糖。
我们希望使用主成分分析将这些变量降维到2维并通过可视化来分析数据。
首先,我们需要对原始数据进行标准化,以消除变量之间的单位差异。
然后,我们计算协方差矩阵,并通过对协方差矩阵进行特征值分解来找到数据的主成分。
在这个例子中,我们得到了两个主成分,分别称为PC1和PC2、PC1是与身高、体重和BMI指数等相关的主成分,而PC2是与血压和血糖相关的主成分。
这两个主成分解释了数据总方差的大部分。
接下来,我们可以使用这两个主成分来可视化数据,并分析数据的聚集和分布情况。
例如,我们可以使用散点图可视化数据的主成分得分,并根据不同类别对数据进行颜色编码,以便观察数据的聚集情况。
通过主成分分析,我们可以将原始高维数据转换为低维数据,并通过可视化来分析数据的分布和聚集情况,进而进行更深入的研究和分析。
二、因子分析(FA)因子分析是一种用于探索性数据分析的统计技术,其目的是揭示变量之间的潜在因子结构。
因子分析假设观测数据由一组潜在因子引起,并尝试将这些因子解释为一组不可观测的变量。
下面是一个用于说明因子分析的实例:假设我们有一组包含10个观测变量的数据,我们希望了解这些变量之间的潜在因子结构。
我们可以使用因子分析来识别可能存在的潜在因子,并了解它们对观测变量的影响。
在进行因子分析之前,我们首先需要检验数据的合适性。
我们可以使用Kaiser-Meyer-Olkin (KMO)测度和巴特利特球形检验来评估数据的适合度。
主成分分析

表1是某市工业部门13个行业的8项重要经济指标的数
主成分分析实例 2
据,这8项经济指标分别是: X1:年末固定资产净值,单位:万元; X2:职工人数据,单位:人; X3:工业总产值,单位:万元; X4:全员劳动生产率,单位:元/人年; X5:百元固定资产原值实现产值,单位:元; X6:资金利税率,单位:%; X7:标准燃料消费量,单位:吨; X8:能源利用效果,单位:万元/吨。
主成分分析的目的与功能
在多变量分析中,分析者所面临的最大难题是
解决众多变量之间的关系问题。进行数据降维 可以用尽可能少的新指标取代原来较多的指标 变量,并能包含原来指标变量所包含的大部分 信息 。 解决多元回归分析中的多重共线性问题。 综合评价中,人们总是尽可能多地选取评价指 标,而这些评价指标之间往往相互重叠,信息 冗余是不可避免的。主成分分析则可以把这众 多指标所蕴含的信息压缩到少数几个主成分指 标,然后给出这几个主成分指标的权重,综合 到一个评价指标中。
y1 是反映学生身材魁梧与否的综合指标
y2 是反映学生体形特征的综合指标。
表1是某市工业部门13个行业的8项重要经济指标的数 据,这8项经济指标分别是: X1:年末固定资产净值,单位:万元; X2:职工人数据,单位:人; X3:工业总产值,单位:万元; X4:全员劳动生产率,单位:元/人年; X5:百元固定资产原值实现产值,单位:元; X6:资金利税率,单位:%; X7:标准燃料消费量,单位:吨; X8:能源利用效果,单位:万元/吨。
表1 某市工业部门13个行业8项指标
X1 冶金 电力 煤炭 化学 机器 建材 森工 食品 纺织 缝纫 皮革 造纸 文教 90342 4903 6735 49454 139190 12215 2372 11062 17111 1206 2150 5251 14341 X2 52455 1973 21139 36241 203505 16219 6572 23078 23907 3930 5704 6155 13203 X3 101091 2035 3767 81557 215898 10351 8103 54935 52108 6126 6200 10383 19396 X4 19272 10313 1780 22504 10609 6382 12329 23804 21796 15586 10870 16875 14691 X5 82 34.2 36.1 98.1 93.2 62.5 184.4 370.4 221.5 330.4 184.2 146.4 94.6 X6 16.1 7.1 8.2 25.9 12.6 8.7 22.2 41 21.5 29.5 12 27.5 17.8 X7 197435 592077 726396 348226 139572 145818 20921 65486 63806 1840 8913 78796 6354 X8 0.172 0.003 0.003 0.985 0.628 0.066 0.152 0.263 0.276 0.437 0.274 0.151 1.574
Matlab中的主成分分析方法与实例分析

Matlab中的主成分分析方法与实例分析引言主成分分析(Principal Component Analysis,PCA)是一种常用的多变量分析方法,广泛应用于数据降维、特征提取和可视化等领域。
在Matlab中,通过调用PCA函数,可以方便地实现主成分分析。
本文将介绍Matlab中的主成分分析方法,并通过实例分析展示其应用。
一、主成分分析方法概述主成分分析通过线性变换将原始数据转换为新的坐标系,使得转换后的变量彼此之间不相关。
在新的坐标系中,第一个主成分具有最大的方差,第二个主成分具有次大的方差,并且与第一个主成分无关,以此类推。
主成分分析的基本思想是将高维数据投影到低维空间上,保留数据中所包含的主要信息,尽可能地减少信息损失。
二、Matlab中的主成分分析函数在Matlab中,通过调用pca函数可以进行主成分分析。
该函数的基本用法如下:\[coeff, score, latent, tsquared, explained, mu] = pca(X)\]其中,X代表待分析的数据矩阵,coeff是主成分系数矩阵,score是数据在主成分上的投影,latent是各主成分的方差,tsquared是数据的Hotelling T平方统计量,explained是各主成分的方差贡献率,mu是数据的均值。
三、主成分分析的实例分析为了进一步说明主成分分析的应用,我们将通过一个实例来展示其具体步骤。
假设我们有一个数据集,包含了100个样本和5个特征。
首先,我们将数据加载到Matlab中,并进行标准化处理,即将每一列的均值变为0,方差变为1。
这样做可以消除不同特征之间的量纲差异。
接下来,我们调用pca函数对标准化后的数据进行主成分分析。
根据explained 中各主成分的方差贡献率,我们可以选择保留的主成分个数。
通常,我们会选择方差贡献率大于一定阈值(如80%)的主成分。
在实际应用中,保留的主成分个数需要根据具体问题进行调整。
《主成分分析法》课件

主成分分析法的目的是减少数据的维 度,同时保留数据中的主要信息,以 便更好地理解和分析数据。
历史与发展
1901年
由英国统计学家Karl Pearson提出主成分的概 念。
1933年
美国统计学家Harold Hotelling将主成分分析 法应用于心理学和教育学领域。
20世纪70年代
随着计算机技术的发展,主成分分析法在各个领域得到广泛应用。
04
主成分分析法的步骤
数据标准化
总结词
消除量纲和数量级对分析的影响
详细描述
在进行主成分分析之前,需要对数据进行标准化处理,即将各指标的均值调整为0,标准差调整为1, 以消除不同量纲和数量级对分析的影响。
计算相关系数矩阵
总结词
衡量变量间的相关性
VS
详细描述
通过计算原变量之间的相关系数矩阵,可 以了解各变量之间的相关性。相关系数矩 阵中的元素表示各指标之间的相关系数, 用于衡量变量间的线性关系。
详细描述
市场细分是主成分分析法在市场营销领域中的重要应 用。通过对市场数据进行主成分分析,可以提取出影 响市场需求的共同因素,进而将市场划分为不同的子 市场。这种分析方法有助于企业识别不同子市场的需 求特点、消费行为和竞争状况,为制定针对性的营销 策略提供依据。
实例二:客户分类
要点一
总结词
利用主成分分析法对客户进行分类,有助于企业更好地了 解客户群体特征,提高客户满意度和忠诚度。
01
数学模型
主成分分析通过线性变换将原始 变量转换为彼此独立的主成分, 这种变换是线性的。
变换矩阵
02
03
特征向量
线性变换需要一个变换矩阵,该 矩阵由原始变量和主成分之间的 系数构成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、主成分法:
用主成分法寻找公共因子的方法如下:
假定从相关阵出发求解主成分,设有p 个变量,则可找出p 个主成分。
将所得的p 个主成分按由大到小的顺序排列,记为1Y ,2Y ,…,P Y , 则主成分与原始变量之间存在如下关系:
11111221221122221122....................p p p p p
p p pp p Y X X X Y X X X Y X X X
γγγγγγγγγ=+++⎧⎪
=+++⎪⎨⎪
⎪=+++⎩ 式中,ij γ为随机向量X 的相关矩阵的特征值所对应的特征向量的分量,因为特征向量之间彼此正交,从X 到Y 得转换关系是可逆的,很容易得出由Y 到
X 得转换关系为:
11112121212122221122....................p p p p p
p p pp p X Y Y Y X Y Y Y X Y Y Y
γγγγγγγγγ=+++⎧⎪
=+++⎪⎨⎪
⎪=+++⎩ 对上面每一等式只保留钱m 个主成分而把后面的部分用i ε代替,则上式变为:
111121211
2121222221122.................
...m m m m p p p mp m p X Y Y Y X Y Y Y X Y Y Y γγγεγγγεγγγε=++++⎧⎪=++++⎪⎨⎪⎪=++++⎩
上式在形式上已经与因子模型相一致,且i Y (i=1,2,…,m )之间相互独立,且i Y 与i ε之间相互独立,为了把i Y 转化成合适的公因子,现在要做的工作只是把主成分i Y 变为方差为1的变量。
为完成此变换,必须将i Y 除以其标准差,由主成
分分析的知识知其标准差即为特征根的平方根
/i i F Y =
,
12m ,则式子变为:
1111122112211222221122....................m m m m p p p pm m p X a F a F a F X a F a F a F X a F a F a F εεε=++++⎧⎪=++++⎪⎨⎪
⎪=++++⎩
这与因子模型完全一致,这样,就得到了载荷A 矩阵和 初始公因子(未旋转)。
一般设A ∧
为样本相关矩阵R 的特征根,12,,...,p γγγ为对应的标准正交化特征向量。
设m<p,则因子载荷矩阵A 的一个解为:
A ∧
=(12m )
共同度的估计为:
2
2
2
2
12...i i i im h a a a ∧∧∧∧=+++
下面用主成分法分析以下数据:
步骤:
第一步,把Excel 中的数据导入到SPSS 中:File →Open →Data ; 第二步,数据标准化:Analyze →Descriptive Statistics →Descriptives 如图:
第三步,检验数据:如图:
得到结果如下:
Sig小于0.05,所以该数据可用;
第四步,用主成分法分析数据:Analyze→Dimension Reduction→Factor 如图:
得到结果如下图:
Communalities
其中Communalities给出了该次分析从每个原始变量中提取的信息,表格下面注示表明,该次分析是用Factor analysis模块默认的信息提取方法即主成分分析完成的。
可以看到除100元工业总产值实现利税,100元销售收入实现利税和全员劳动生产率以外,主成分几乎包括了各个原始变量至少80%的信息。
由输出结果看到,前面2个主成分y1,y2的方差和占全部方差的比例为84.7%.我们就选取1y 为第一主成分,2y 为第二主成分,且这两个主成分之方差和占全部方差的84.7%,即基本上保留了原来指标的信息,这样由原来的9个指标转化为2个新指标,起到了降维的作用。
由上表得到两个主成分,12,y y 的线性组合为:
11234567890.2130.1140.0720.1550.0650.1860.1980.1480.172y x x x x x x x x x *********
=++--++++2123456789
0.1530.1560.2560.5670.4060.080.1280.050.051y x x x x x x x x x *********=-++++--+-
2、主轴因子法:
假定m 个公因子只能解释原始变量的部分方差,利用公因子方差(或共同度)来代替相关矩阵对角线上的元素1,并以新得到的这个矩阵为出发点,对其分别求解特征根与特征向量并得到因子解。
在因子模型中,不难得到如下关于X 的相关矩阵R 的关系式:
12,,...,m γγγ***
式中,A 为因子载荷矩阵;ε∑为一对角阵,其对角元素为相应特殊因子的方差。
则称R R AA ε*'=-∑=为调整相关矩阵,显然R *的主对角元素不再是1,而是共同度2i h 。
分别求解R *的特征值与标准正交特征向量,进而求出因子载荷矩阵A 。
此时,R *有m 个正的特征值。
设12...m λλλ***≥≥≥为R *的特征根,12,,...,m γγγ***
为
对应的标准正交化特征向量。
m<p ,则因子载荷矩阵A 的一个主轴因子解为:
A ∧
=12m ***
)
用轴因子法分析上述数据:Analyze →Dimension Reduction →Factor 如图:
只需在这步把Methoct 选择为Principal axis factoring (主轴因子法),其他的方法与主成分法一致。
得到的结果如下图:
其中Communalities给出了该次分析从每个原始变量中提取的信息,表格下面注示表明,该次分析是用Factor analysis模块默认的信息提取方法即主成分分析完成的。
可以看到除100元销售收入实现利税和全员劳动生产率以外,主成分几乎包括了各个原始变量至少80%的信息。
由输出结果看到,前面2个主成分y1,y2的方差和占全部方差的比例为84.7%.我们就选取y1为第一主成分,y2为第二主成分,且这两个主成分之方差和占全部方差的84.7%,即基本上保留了原来指标的信息,这样由原来的9个指标转化为2个新指标,起到了降维的作用。
3、极大似然法:
如果假定公因子F 和特殊因子ε服从正态分布,则能够得到因子载荷和特殊因子方差的极大似然估计。
设12,,...,p X X X 为来自正态总体(),N μ∑的随机样本,其中AA ε'∑=+∑。
从似然函数的理论知:
()()
()()()()
111/2()/2
/2
1
,2n j j j tr x x x x n x x n np L e
μμμπ-=⎡⎤
''-∑∑--+--⎢⎥
⎣⎦
∑=
∑
它通过∑依赖于A 和ε∑。
但上式并不能唯一确定A ,为此,添加如下条件:
1
A A ε-'∑=Λ
这里,Λ是一个对角阵,用数值极大化的方法可以得到极大似然估计ˆA 和ˆε∑。
极大似然估计ˆA ,ˆε∑和ˆX μ=,将使ˆA '1ˆε
-∑ˆA 为对角阵,且使上式达到最大化。
用极大似然法分析上述数据:Analyze→Dimension Reduction→Factor
如图:
只需在这步把Methoct选择为Maximum likelihood(极大似然法),其他的方法与主成分法一致。
其中Communalities给出了该次分析从每个原始变量中提取的信息,表格下面注示表明,该次分析是用Factor analysis模块默认的信息提取方法即主成分分析完成的。
可以看到除100元工业总产值实现利税,100元销售收入实现利税和
我们就选取y1为第一主成分,y2为第二主成分,且这两个主成分之方差和占全部
方差的81.8%,即基本上保留了原来指标的信息,这样由原来的9个指标转化为2个新指标,起到了降维的作用。
由上表得到前2个主成分,y1,y2的线性组合为:
11234567890.9090.10.0590.0220.0030.0190.0150.0050.013y x x x x x x x x x *********
=+---++++212345679
0.12430.6250.9690.0740.0140.0150.0180.008y x x x x x x x x ********=-++++---
最后,由Communalities (共同度)可得,主成分法和极大似然法除100
元工业总产值实现利税,100元销售收入实现利税和全员劳动生产率以外,主成分几乎包括了各个原始变量至少80%的信息;而主轴因子法只是除100元销售收入实现利税和全员劳动生产率以外,主成分几乎包括了各个原始变量至少80%的信息。
由解释的总方差可得,主成分法和主轴因子法的两个主成分之方差和占全部方差的84.7%,而极大似然法两个主成分之方差和占全部方差的81.8%,都起到了降维的作用。
由因子得分系数矩阵可得,主成分法和极大似然法得到的线性组合有些不同,而主轴因子法没有因子得分系数矩阵即没有线性组合。