高中数学必修一同步练习题库:集合(选择题:较难)

合集下载

高中数学必修第一册《1-2集合间的基本关系》课时同步训练试题

高中数学必修第一册《1-2集合间的基本关系》课时同步训练试题

1-2集合间的基本关系 同步训练第I 卷(选择题)一、单选题1.(2018·浙江高一课时练习)设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( ) A .A ⊆BB .B ⊆AC .B ∈AD .A =B2.(2021·全国)下列命题中,正确的有( )①空集是任何集合的真子集;②若A B ,B C ,则A C ;③任何一个集合必有两个或两个以上的真子集:④如果不属于B 的元素一定不属于A ,则A B ⊆.A .①②B .②③C .②④D .③④ 3.(2018·佛山市第二中学)集合{}{}14,A x x B x x a =-≤≤=>,若A B ⋂≠∅,则a 的取值范围为( )A .4a <B .4a >-C .1a >-D .14a -<≤4.(2019·华东师范大学第一附属中学)已知集合{}2430,A x x x x R =-+<∈,(){}12202750,x B x a x a x x R -=+≤-++≤∈且,若A B ⊆,则实数a 的取值范围_______. A .[]4,0- B .[]4,1-- C .[]1,0- D .14,13⎡⎤--⎢⎥⎣⎦ 5.(2017·浙江)集合{|}A x x a =≤,2{|50}B x x x =-<,若A∩B=B ,则a 的取值范围是( )A .5a ≥B .4a ≥C .5a <D .4a < 6.(2019·太原市第五十三中学校高一月考)已知{}1,2,3A =,{}|,,B x x a b a A b A ==+∈∈,则B 的真子集个数为( )A .31B .32C .63D .64二、多选题7.(2021·江苏)给出下列选项,其中正确的是( )A .{}{}∅∈∅B .{}{}∅⊆∅C .{}∅∈∅D .∅⫋{}∅ 8.(2021·全国高一专题练习)已知集合{12}A xx =<<∣,{232}B x a x a =-<<-∣,下列命题正确的是A .不存在实数a 使得AB =B .存在实数a 使得A B ⊆C .当4a =时,A B ⊆D .当04a 时,B A ⊆E.存在实数a 使得B A ⊆第II 卷(非选择题)三、填空题9.(2020·瓦房店市实验高级中学高一月考)已知集合{}1,2,3,4M =,对它的非空子集A ,可将A 中的每一个元素k 都乘以()1k-再求和,则对M 的所有非空子集执行上述求和操作,则这些和的总和是______.10.(2021·全国)设集合A ={x ||x ﹣a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A 是B 的真子集,则a 的取值范围为___. 11.(2019·全国高一课时练习)某个含有三个实数的集合既可表示为,,0b b a ⎧⎫⎨⎬⎩⎭,也可表示为{a ,a +b ,1},则a 2015+b 2015的值为____.12.(2021·全国)已知{}{}1,21,2,3,4,5,6,7A ≠⊆⊂,满足上述条件的集合A 的个数是______.四、解答题13.(2021·全国高一课时练习)已知全集(){|010},{1,35,7}U U A B x N x A C B =⋃=∈≤≤⋂=,,试求集合B .14.(2017·湖南长沙一中高一期中)已知集合{|013}A x ax =<+≤,集合1{|2}2B x x =-<<. (1)若1a =;求AC B ;(2)若A B A =,求实数a 的取值范围.15.(2020·黑龙江哈九中高三期末(文))已知()1f x x a x =-++.(1)若不等式()21f x x <++的解集是区间3,2的子区间,求实数a 的取值范围; (2)若对任意的x ∈R ,不等式()21>+f x a 恒成立,求实数a 的取值范围.16.(2019·太原市第五十三中学校高一月考)写出集合P 的所有子集,其中(){},|5,,P x y x y x N y N ++=+=∈∈.参考答案1.C【解析】【分析】首先确定集合A 的特征,据此确定A 与B 的关系即可.【详解】由题意可知集合A 中的元素为集合B 的子集,据此可得:B A ∈.本题选择C 选项.【点睛】本题主要考查集合的表示方法,集合与元素的概念等知识,意在考查学生的转化能力和计算求解能力.2.C【分析】运用空集的性质,即可判断①;运用集合的传递性,即可判断②;由集合的真子集的个数,即可判断③;由韦恩图,即可判断④.【详解】①空集是任何集合的子集,是任何非空集合的真子集,故①错误;②真子集具有传递性,故②正确;③若一个集合是空集,则没有真子集,故③错误;④由韦恩图易知④正确.故选C.【点睛】本题考查集合的概念,主要是空集和子集、真子集的性质,考查判断能力,属于基础题. 3.A【分析】据已知条件知A ,B 有公共元素,列出两个集合的端点满足的不等关系,结合数轴可以得出a 的范围.【详解】{}14A x x =-≤≤,{}B x x a =>,∵A B ⋂≠∅,∴对照数轴得4a <,即a 的取值范围为4a <,故选:A.【点睛】本题考查集合关系中的参数取值问题和集合的交集运算,将集合的关系转化为集合端点的不等关系,是解决本题的关键,属于基础题.4.B【分析】首先解出集合A ,若满足A B ⊆,则当()1,3x ∈时,120x a -+≤和()22750x a x -++≤恒成立,求a 的取值范围.【详解】{}13A x x =<<,A B ⊆,即当()1,3x ∈时,120x a -+≤恒成立,即12x a -≤- ,当()1,3x ∈时恒成立,即()1min 2x a -≤- ,()1,3x ∈而12x y -=-是增函数,当1x =时,函数取得最小值1-,1a ∴≤-且当()1,3x ∈时,()22750x a x -++≤恒成立,()()1030f f ⎧≤⎪⎨≤⎪⎩,解得:4a ≥- 综上:41a -≤≤-.故选B【点睛】本题考查根据给定区间不等式恒成立求参数取值范围的问题,意在考查转化与化归和计算求解能力,恒成立问题可以参变分离转化为求函数的最值问题,如果函数是二次函数可以转化为根的分布问题,列不等式组求解.5.A【解析】因为25005x x x -<⇒<<,又A B B B A ⋂=⇒⊆,则由{|}A x x a =≤,可得;5a ≥时满足条件A B B ⋂=.6.A【分析】由题:根据,a b 的取值情况分析集合{2,3,4,5,6}B =一共32个子集,所以31个真子集.【详解】由题:当1a b ==时,集合B 中元素最小为2,当3a b ==时,集合B 中元素最大为6, 又当1,2a b ==时,集合B 中元素为3,当1,3a b ==时,集合B 中元素为4,当2,3a b ==时,集合B 中元素为5,所以集合{2,3,4,5,6}B =,其子集个数为5232=个,所以真子集31个.故选:A【点睛】此题考查元素与集合的关系以及子集个数分析,关键在于熟记集合的子集个数结论,否则只有逐一列举,计算量大且容易出错.7.BCD【分析】利用空集的特征,以及元素和集合,集合与集合之间的关系逐项判断【详解】对于A ,∅不是{}{}∅的元素,故不正确;对于B ,∅是任何集合的子集,所以∅是{}{}∅的子集,故正确;对于C ,∅是{}∅的元素,故正确;对于D ,∅是任何非空集合的真子集,{}∅有一个元素∅,是非空集合,故正确.故答案为:BCD .8.AE【分析】利用集合相等判断A 选项错误,由A B ⊆建立不等式组,根据是否有解判断B 选项; 4a =时求出B ,判断是否A B ⊆可得C 错误,分B 为空集,非空集两种情况讨论可判断D选项,由D 选项判断过程可知E 选项正确.【详解】A 选项由相等集合的概念可得23122a a -=⎧⎨-=⎩解得2a =且4a =,得此方程组无解, 故不存在实数a 使得集合A=B ,因此A 正确;B 选项由A B ⊆,得23122a a -≤⎧⎨-≥⎩即24a a ≤⎧⎨≥⎩,此不等式组无解,因此B 错误; C 选项当4a =时,得{52}B xx =<<∣为空集,不满足A B ⊆,因此C 错误; D 选项当232a a -≥-,即1a ≥时,B A =∅⊆,符合B A ⊆;当1a <时,要使B A ⊆,需满足23122a a -≥⎧⎨-≤⎩解得24a ≤≤,不满足1a <,故这样的实数a 不存在,则当04a ≤≤时B A ⊆不正确,因此D 错误;E 选项由D 选项分析可得存在实数a 使得B A ⊆,因此E 正确.综上AE 选项正确.故选:AE.【点睛】本题主要考查了集合相等,子集的概念,考查了推理运算能力,属于中档题.9.16【分析】先求出集合M 它非空子集A 的个数,在所有子集中,各个元素出现的次数,即可解答.【详解】因为{}1,2,3,4M =,对它的非空子集A 共有15个, 分别是{}{}{}{}123412{},,,,,, 1,31,42,32,43,41,2,31,2,4{}{}{}{}{}{}{}{}{}{}1,3,42,3,41,2,34,,,,,,,,,,其中数字1,2,3,4都出现了8次. 依题意得:()()()()123481121314116⎡⎤-+-+-+-=⎣⎦. 故答案为:16.【点睛】本题主要考查了集合的非空真子集的概念,理解本题中的新定义的概念是解决本题的关键,属于中档题.10.2≤a ≤4【分析】根据集合A 解出a ﹣1<x <a +1,利用包含关系求解参数范围.【详解】由|x ﹣a |<1,得﹣1<x ﹣a <1,∴a ﹣1<x <a +1,由A 是B 的真子集,得1115a a ->⎧⎨+<⎩ ,∴2<a <4. 又当a =2时,A ={x |1<x <3}, a =4时,A ={x |3<x <5}, 均满足A 是B 的真子集, ∴2≤a ≤4.故答案为:2≤a ≤411.0【分析】根据所给的一个集合的两种表达形式,看出第一种表达形式中,只有a +b 一定不等式0,重新写出集合的两种形式,把两种形式进行比较,得出a ,b 的值,得到结果.【详解】解:∵集合既可以表示成{b ,b a,0},又可表示成{a ,a +b ,1} ∴a +b 一定等于0在后一种表示的集合中有一个元素是1只能是b .∴b =1,a =-1∴a 2015+b 2015=0.【点睛】本题考查集合的元素的三个特性和集合相等.易错点在于忽略集合中元素的互异性. 12.31【分析】集合A 中一定含有1,2这两个元素,且集合A 是集合{}1,2,3,4,5,6,7的真子集,则满足上述条件的集合A 的个数与集合{}3,4,5,6,7的真子集的个数一致,求出集合{}3,4,5,6,7的真子集个数,即可得出答案.【详解】由题意可知,集合A 中一定含有1,2这两个元素,且集合A 是集合{}1,2,3,4,5,6,7的真子集 则满足上述条件的集合A 的个数与集合{}3,4,5,6,7的真子集的个数一致则满足上述条件的集合A 的个数为52131-=故答案为:31【点睛】本题主要考查了集合的包含关系,求集合的真子集个数,属于中档题.13.{0,2,4,6,8,9,10}【分析】计算{0,1,2,3,4,5,6,7,8,9,10}U A B =⋃=,根据(){1,3,5,7}U A B ⋂=计算得到答案.【详解】{0,1,2,3,4,5,6,7,8,9,10}U A B =⋃=,(){1,3,5,7}U A B ⋂=,{1,3,5,7}U B ∴=.故(){0,2,4,6,8,9,10}U U B B ==.【点睛】本题考查了交集,全集,补集,意在考查学生的计算能力.14.(1)1{|12A CB x x =-<≤-或2}x =;(2)(,4)[2,)-∞-+∞ 【解析】试题分析:(1)1a =时求出集合A ,根据补集的定义写出A B ;(2)A B A ⋂=得A B ⊆,A 中不等式解集分三种情况讨论:0a =、0a <和0a >时,求出对应集合A ,根据A B ⊆求出a 的取值范围.试题解析:(1)若1a =,则{|12}A x x =-<≤, 故1{|12A CB x x =-<≤-或2}x = (2),A B A A B ⋂=∴⊆,不等式013ax <+≤解集分三种情况讨论:①0a =,则,A R A B =⊆不成立;②0a <,则21{|}A x x a a =≤<-,由A B ⊆得12,12,2a a⎧-≤⎪⎪⎨⎪-<⎪⎩得4a <-;③0a >,则12{|}A x x a a =-≤<,由A B ⊆得11,222,a a⎧-≥-⎪⎪⎨⎪<⎪⎩得2a ≥. 综上所述:a 的取值范围为()[),42,-∞-⋃+∞.点睛:本题主要考查了集合的运算以及含有参数的集合间的关系,属于基础题;对于含有参数的一元一次不等式的解法,主要利用分类讨论的思想,对一次项系数进行讨论,分为0,0,0a a a =><三种情形,利用数轴将区间端点值进行比较,得出不等式组.15.(1)[]1,0-(2)(),0-∞【分析】(1)首先求出不等式的解集,再根据集合的包含关系求出参数的取值范围;(2)根据绝对值的三角不等式可得()1111f x x a x a x x a x x a =-++=-++≥-++=+,故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 分类讨论计算可得;【详解】解:(1)因为()1f x x a x =-++,且()21f x x <++,2x a ∴-< ,22a x a ∴-+<<+,由题意知,()[]2,23,2a a -+⊆-,所以2322a a -≥-⎧⎨+≤⎩, 解得10a -≤≤,所以实数a 的取值范围是[]1,0-.(2)()1111f x x a x a x x a x x a =-++=-++≥-++=+,当且仅当()()10a x x -+≥时,等号成立,所以()f x 的最小值为1a +.故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+,所以10121a a a +≥⎧⎨+>+⎩或10121a a a +<⎧⎨-->+⎩,解得0a <. 所以实数a 的取值范围是(),0-∞.【点睛】本题考查绝对值不等式的解法,集合的包含关系及绝对值三角不等式的应用,属于中档题. 16.{},(1,4)},{(2,3)},{(3,2)},{(4,1)∅,{}{(1,4),(2,3)},{(1,4),(3,2)},(1,4),(4,1),{(2,3),(3,2)},{(2,3),(4,1)},{(3,2),(4,1)},{}{(1,4),(2,3),(3,2)},{(1,4),(2,3),(4,1)},{(2,3),(3,2),(4,1)},(1,4),(3,2),(4,1),{}(1,4),(2,3),(3,2),(4,1)【分析】依次写出集合P 中的所有元素,{}(1,4),(2,3),(3,2),(4,1)P =,即可写出其所有子集.【详解】由题(){},|5,,P x y x y x N y N ++=+=∈∈可解得{}(1,4),(2,3),(3,2),(4,1)P =,所有子集分为:没有元素:∅;一个元素:{}(1,4)},{(2,3)},{(3,2)},{(4,1);两个元素:{}{(1,4),(2,3)},{(1,4),(3,2)},(1,4),(4,1),{(2,3),(3,2)},{(2,3),(4,1)},{(3,2),(4,1)};三个元素:{}{(1,4),(2,3),(3,2)},{(1,4),(2,3),(4,1)},{(2,3),(3,2),(4,1)},(1,4),(3,2),(4,1);四个元素:{}(1,4),(2,3),(3,2),(4,1).所以,所有子集为:{},(1,4)},{(2,3)},{(3,2)},{(4,1)∅,{}{(1,4),(2,3)},{(1,4),(3,2)},(1,4),(4,1),{(2,3),(3,2)},{(2,3),(4,1)},{(3,2),(4,1)},{}{(1,4),(2,3),(3,2)},{(1,4),(2,3),(4,1)},{(2,3),(3,2),(4,1)},(1,4),(3,2),(4,1),{}(1,4),(2,3),(3,2),(4,1)【点睛】此题考查求集合中的元素和写出集合的子集,其中要求根据题目条件准确写出集合中的元素,根据集合中元素个数分别写出子集,做到不重不漏.答案第9页,总9页。

高中数学(必修1)-----各章节测试题全套含答案

高中数学(必修1)-----各章节测试题全套含答案

(数学1必修)第一章(上) 集合[基础训练A 组]一、选择题1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()A CBC U I UB .()()A B AC U I U C .()()A B B C U I UD .()A B C U I4.下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ;(3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个 B .1个 C .2个 D .3个 5.若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个二、填空题1.用符号“∈”或“∉”填空 (1)0______N , 5______N , 16______N(2)1______,_______,______2R Q Q e C Q π-(e 是个无理数) (3{}|,,x x a a Q b Q =∈∈2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C A B =I ,则C 的非空子集的个数为 。

3.若集合{}|37A x x =≤<,{}|210B x x =<<,则A B =U _____________.A B C4.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是 。

(压轴题)高中数学必修一第一单元《集合》测试题(含答案解析)(2)

(压轴题)高中数学必修一第一单元《集合》测试题(含答案解析)(2)

一、选择题1.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃ 2.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2 D .-1或23.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞4.定义集合运算{},,A B x x a b a A b B ⊗==⨯∈∈,设{0,1},{3,4,5}A B ==,则集合A B ⊗的真子集个数为( )A .16B .15C .14D .85.已知{}lg M y y x ==,{}xN y y a ==,则MN =( )A .0,B .RC .∅D .,06.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x xx b =++>,其中,a b ∈R ,下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集7.对于非空集合A ,B ,定义运算:{},A B x x A B x A B ⊕=∈⋃∉⋂且,已知{}M x a x b =<<,{}N x c x d =<<,其中a 、b 、c 、d 满足a b c d +=+,0ab cd <<,则M N ⊕=( )A .()(),,a d b c B .()(),,c a b d C .(][),,a c d b D .()(),,c a d b8.已知集合{}2|230A x x x =--≤,集合{}||1|3B x x =-≤,集合4|05x C x x -⎧⎫=≤⎨⎬+⎩⎭,则集合A ,B ,C 的关系为( )A .B A ⊆B .A B =C .C B ⊆D .A C ⊆9.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈10.已知集合{}21,A x y x y Z ==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( ) A .A B = B .ABC .B AD .A B =∅11.设集合1{|0}x A x x a-=≥-,集合{}21B x x =->,且B A ⊆,则实数a 的取值范围是 () A .1a ≤B .3a ≤C .13a ≤≤D .3a ≥12.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .1二、填空题13.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围为________.14.已知集合{2,1}A =-,{|2,B x ax ==其中,}x a ∈R ,若A B B =,则a 的取值集合为___________.15.设集合{}0,4A =-,B ={}22|2(1)10,x x a x a x R +++-=∈.若B A ⊆,求实数a 的取值范围_______________16.已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠且A B ⋂≠∅,则m的取值范围是________17.已知全集{}1,2,3,4,5,6U =,①A U ⊆;②若x A ∈,则2x A ∉;③若Ux A ∈,则2Ux A ∉,则同时满足条件①②③的集合A 的个数为______18.已知有限集{}123,,,,(2)n A a a a a n =≥. 如果A 中元素(1,2,3,,)i a i n =满足1212n n a a a a a a =+++,就称A 为“复活集”,给出下列结论:①集合⎪⎪⎩⎭是“复活集”; ②若12,a a R ∈,且12{,}a a 是“复活集”,则124a a >; ③若*12,a a N ∈,则12{,}a a 不可能是“复活集”; ④若*i a N ∈,则“复活集”A 有且只有一个,且3n =.其中正确的结论是____________.(填上你认为所有正确的结论序号)19.设集合{}[1,2),0M N x x k =-=-≤,若M N ⋂=∅,则实数k 的取值范围为_______.20.若不等式34x b -<的解集中的整数有且仅有5,6,则b 的取值范围是______.三、解答题21.设集合{}{}222280,430A x x x B x x ax a =+-<=-+= (1)若x A ∈是x B ∈的必要条件,求实数a 的取值范围;(2)是否存在实数a ,使A B ϕ⋂≠成立?若存在,求出实数a 的取值范围;若不存在,请说明理由.22.设集合{}227150A x x x =+-≤,{}122B x a x a =-<<. (Ⅰ)若B =∅,求实数a 的取值集合; (Ⅱ)若A B ⊆,求实数a 的取值集合. 23.已知集合4231a A a a ⎧⎫-=≤⎨⎬+⎩⎭,{}12B a a =+≤,{3}C x m x m =-<≤+(1)求AB ;(2)若()C AC ⊆,求m 的取值范围.24.若集合{}24A x x =<<,{}3B x a x a =<<. (1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围; (2)若AB =∅,求实数a 的取值范围.25.已知集合2{|320}A x ax x =-+=,其中a 为常数,且a R ∈. (1)若A 中至少有一个元素,求a 的取值范围; (2)若A 中至多有一个元素,求a 的取值范围.26.已知集合5|01x A x x -⎧⎫=<⎨⎬+⎩⎭,{}2|20B x x x m =--<. (1)当3m =时,求()R A C B ;(2)若{}|14AB x x =-<<,求实数m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】【详解】因为2{|}A x x x =<(,0)(1,)=-∞⋃+∞,26{|}(32)0,B x x x =+-<=-所以()()3,01,2A B ⋂=-⋃. 故选:B 【点睛】本题主要考查了一元二次不等式的解法,集合的运算,属于中档题.2.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.3.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.4.B解析:B 【分析】根据新定义得到{}{},,0,3,4,5A B x x a b a A b B ⊗==⨯∈∈=,再计算真子集个数得到答案. 【详解】{0,1},{3,4,5}A B ==,{}{},,0,3,4,5A B x x a b a A b B ⊗==⨯∈∈=其真子集个数为:42115-= 故选:B 【点睛】本题考查了集合的新定义问题,真子集问题,意在考查学生的应用能力.5.A解析:A 【解析】 【分析】【详解】由已知易得M =R ,N ={y ∈R|y >0},∴M ∩N =(0,+∞). 故选A . 【点睛】本题主要考查了集合的交运算,化简计算即可,比较简单.6.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集. 对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选B. 【点睛】本小题主要考查子集的判断,考查恒成立问题和存在性问题的求解策略,属于基础题.7.C解析:C 【分析】先判断0a c d b <<<<,再计算(,),(,)M N a b M N c d ⋃=⋂=,得到答案. 【详解】根据a b c d +=+,0ab cd <<得到:0a c d b <<<<{}M x a x b =<<,{}N x c x d =<<故(,),(,)M N a b M N c d ⋃=⋂=(][),,M N a c d b ⊕=故选:C 【点睛】本题考查了集合的新定义问题,确定0a c d b <<<<是解题的关键.8.D解析:D 【分析】根据一元二次不等式的解法可求出集合A ,根据绝对值不等式的解法可求出集合B ,根据分式不等式的解法可求出集合C ,从而可得出集合A ,B ,C 间的关系. 【详解】解:由于{}{{}2|23013A x x x x x =--≤=-≤≤,{}{}|1324B x x x x =-≤=-≤≤, {}4|0545x C x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭,可知,A C ⊆. 故选:D. 【点睛】本题考查一元二次不等式、绝对值不等式和分式不等式的解法,以及集合间的关系,考查计算能力.9.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.10.C解析:C 【分析】由题意得出Z A ⊆,而集合B Z ,由此可得出A 、B 的包含关系.【详解】由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则BZ ,因此,BA .故选:C. 【点睛】本题考查集合包含关系的判断,解题时要善于抓住代表元素,认清集合的特征,考查推理能力,属于中等题.11.C解析:C【分析】先求出集合B ,比较a 与1的大小关系,结合B A ⊆,可求出实数a 的取值范围. 【详解】解不等式21x ->,即21x -<-或21x ->,解得1x <或3x >,{1B x x ∴=<或}3x >.①当1a =时,{}1A x x =≠,则B A ⊆成立,符合题意; ②当1a <时,{A x x a =<或}1x ≥,B A ⊄,不符合题意;③当1a >时,{1A x x =≤或}x a >,由B A ⊆,可得出3a ≤,此时13a .综上所述,实数a 的取值范围是13a ≤≤. 故选:C. 【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.12.B解析:B 【解析】 【分析】首先求解方程组3y x y x ⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.二、填空题13.【分析】由分和两种情况分别讨论进而建立不等关系可求出答案【详解】当即时此时满足;当即时此时由可得解得综上实数的取值范围为故答案为:【点睛】本题考查根据集合的包含关系求参数的范围其中的易漏点在于漏掉考 解析:(,3]-∞【分析】由B A ⊆,分B =∅和B ≠∅两种情况分别讨论,进而建立不等关系,可求出答案.当121m m +>-,即2m <时,此时B =∅,满足B A ⊆;当121m m +≤-,即2m ≥时,此时B ≠∅,由B A ⊆,可得12215m m +≥-⎧⎨-≤⎩,解得23m ≤≤.综上,实数m 的取值范围为(,3]-∞.故答案为:(,3]-∞ 【点睛】本题考查根据集合的包含关系求参数的范围,其中的易漏点在于漏掉考虑子集为空集的情况,易错点在于弄错不等关系,结合数轴依次分类讨论即可避免此类问题.14.【分析】根据得到之间的关系由此确定出可取的的值【详解】因为所以当时;当时若则所以;若则综上可知:的取值集合为故答案为:【点睛】本题考查根据集合间的包含关系求解参数难度一般分析集合间的子集关系时注意分 解析:{}1,0,2-【分析】 根据A B B =得到,A B 之间的关系,由此确定出可取的a 的值. 【详解】因为AB B =,所以B A ⊆,当B =∅时,0a =;当B ≠∅时,若{}2B =-,则22a -=,所以1a =-;若{}1B =,则2a =. 综上可知:a 的取值集合为{}1,0,2-, 故答案为:{}1,0,2-. 【点睛】本题考查根据集合间的包含关系求解参数,难度一般.分析集合间的子集关系时,注意分析空集的存在.15.或【分析】分类讨论四种情况讨论再求并集即可【详解】因为所以或或或当时方程无实根所以解得;当时方程有两个相等的实根所以解得:;当时方程有两个相等的实根所以此时无解;当时方程有两个不相等的实根所以解得:解析:1a ≤-或1a = 【分析】分类讨论B =∅,{}0B =、{}4B =、{}0,4B =四种情况讨论,再求并集即可. 【详解】因为B A ⊆,所以B =∅或{}0B =或{}4B =或{}0,4B =, 当B =∅时,方程222(1)10x a x a +++-=无实根,所以()()224141220a a a ∆=+--=+<,解得1a <-;当{}0B =时,方程222(1)10x a x a +++-=有两个相等的实根120x x ==, 所以()1221221010x x a x x a ⎧+=-+=⎨=-=⎩ ,解得:1a =-;当{}4B =-时,方程222(1)10x a x a +++-=有两个相等的实根124x x ==-,所以()12212218116x x a x x a ⎧+=-+=-⎨=-=⎩ ,此时无解;当{}0,4B =时,方程222(1)10x a x a +++-=有两个不相等的实根1204,x x ==-,所以()1221221410x x a x x a ⎧+=-+=-⎨=-=⎩,解得:1a =; 综上所述:1a ≤-或1a =, 【点睛】本题主要考查了集合之间的包含关系,分类讨论的思想,属于中档题.16.【分析】根据集合的并集和集合的交集得到关于的不等式组解出即可【详解】解:若且则解得即故答案为:【点睛】本题考查了集合的交集并集的定义属于基础题 解析:[6,8)-【分析】根据集合的并集和集合的交集得到关于m 的不等式组,解出即可. 【详解】解:{|68}A x x =-,{|}B x x m =, 若A B B ≠且A B ⋂≠∅,则68m m -⎧⎨<⎩,解得68m -≤<,即[)6,8m ∈- 故答案为:[)6,8-. 【点睛】本题考查了集合的交集、并集的定义,属于基础题.17.8【分析】由条件可得:当则即则即但元素3与集合的关系不确定3属于时6属于的补集;3属于的补集时6属于;而元素5没有限制【详解】由①;②若则;③若则当则即则即但元素3与集合的关系不确定3属于时6属于的解析:8 【分析】由条件可得:当1A ∈,则2A ∉,即2UA ∈,则4UA ∉,即4A ∈,但元素3与集合A的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ;而元素5没有限制. 【详解】由①A U ⊆;②若x A ∈,则2x A ∉;③若Ux A ∈,则2Ux A ∉.当1A ∈,则2A ∉,即2UA ∈,则4UA ∉,即4A ∈,但元素3与集合A 的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ; 而元素5没有限制.{1,4,6},{2,3,5},{2,3},{1,4,5,6},{1,3,4},{2,4,5},{2,A ∴=6},{1,3,4,5},同时满足条件①②③的集合A 的个数为8个. 故答案为:8. 【点睛】本题考查了集合的运算性质、元素与集合的关系,考查了分类讨论思想方法、推理能力与计算能力,属于中档题.18.①③④【分析】根据已知中复活集的定义结合韦达定理以及反证法依次判断四个结论的正误进而可得答案【详解】对于①故①正确;对于②不妨设则由韦达定理知是一元二次方程的两个根由可得或故②错;对于③不妨设中由得解析:①③④ 【分析】根据已知中“复活集”的定义,结合韦达定理以及反证法,依次判断四个结论的正误,进而可得答案. 【详解】对于①,1==-,故①正确; 对于②,不妨设1212a a a a t +==,则由韦达定理知12,a a 是一元二次方程20x tx t -+=的两个根, 由>0∆,可得0t <或4t >,故②错; 对于③,不妨设A 中123n a a a a <<<<,由1212n n n a a a a a a na =+++<得121n a a a n -<,当2n =时,即有12a <,∴11a =,于是221a a +=,2a 无解,即不存在满足条件的“复活集”A ,故③正确;对于④,当3n =时,123a a <,故只能11a =,22a =,求得33a =, 于是“复活集” A 只有一个,为{}1,2,3, 当4n ≥时,由()1211231n a a a n -≥⨯⨯⨯⨯-,即有()1!n n >-,也就是说“复活集”A 存在的必要条件是()1!n n >-,事实上()()()()221!1232222n n n n n n n -≥--=-+=--+>,矛盾, ∴当4n ≥时不存在“复活集”A ,故④正确.故答案为:①③④【点睛】本题主要考查了集合新定义,需理解“复活集”的定义,考查了学生的知识迁移能力以及分析问题的能力,属于中档题.19.【分析】首先求得集合N 然后确定实数k 的取值范围即可【详解】由题意可得:结合可知实数k 的取值范围是:故答案为:【点睛】本题主要考查交集的运算由集合的运算结果求参数取值范围的方法等知识意在考查学生的转化 解析:{}|1k k <-【分析】首先求得集合N ,然后确定实数k 的取值范围即可.【详解】由题意可得:{}|N x x k =≤,结合M N ⋂=∅可知实数k 的取值范围是:1k <-.故答案为:{}|1k k <-.【点睛】本题主要考查交集的运算,由集合的运算结果求参数取值范围的方法等知识,意在考查学生的转化能力和计算求解能力.20.【分析】先求得不等式的解集根据不等式的解集中的整数有且仅有得出不等式组即可求解得到答案【详解】由题意不等式即解得要使得不等式的解集中的整数有且仅有则满足解得即实数的取值范围是故答案为【点睛】本题主要 解析:[]16,17【分析】 先求得不等式34x b -<的解集4433b b x -++<<,根据不等式34x b -<的解集中的整数有且仅有5,6,得出不等式组44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,即可求解,得到答案. 【详解】 由题意,不等式34x b -<,即434x b -<-<,解得4433b b x -++<<,要使得不等式34x b -<的解集中的整数有且仅有5,6, 则满足44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得1617b ≤≤,即实数b 的取值范围是[]16,17.故答案为[]16,17.【点睛】本题主要考查了绝对值不等式的求解,以及集合的应用,其中解答中正确求解绝对值不等式,根据题设条件得到不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题21.(1)4233a -<<;(2)存在,42a -<<. 【分析】(1)x A ∈是x B ∈的必要条件可转化为B A ⊆,建立不等式求解即可;(2)假设A B ⋂≠∅,建立不等关系,有解则存在,无解则不存在.【详解】 {}42A x x =-<<,()(){}30B x x a x a =--=(1)由已知得:B A ⊆ 42432a a -<<⎧∴⎨-<<⎩ 4233a ⇒-<<, 即实数a 的取值范围4233a -<<, (2)假设存在a 满足条件, 则42a -<<或432a -<<,42a ∴-<<即存在42a -<<使A B ⋂≠∅.【点睛】本题主要考查了根据集合的包含关系求参数的取值范围,考查了必要条件,属于中档题. 22.(Ⅰ)14a ≤;(Ⅱ){}3a a >. 【分析】(Ⅰ)由空集的意义知,当且仅当212a a ≤-时,集合B 中无任何元素,解不等式即可得实数a 的取值范围;(Ⅱ)根据A B ⊆,得到a 的取值范围,即可得到结论.【详解】解:∵集合{}()(){}2327150235052A x x x x x x x x ⎧⎫=+-≤=-+≤=-≤≤⎨⎬⎩⎭, (Ⅰ)∵B =∅,∴{}122x a x a -<<=∅,∴212a a ≤-,解得14a ≤, (Ⅱ)∵A B ⊆,则集合B ≠∅,所以212a a >-,则14a >∴1253322a a a -<-⎧⎪⇒>⎨>⎪⎩∴实数a 的取值集合为{}3a a >.【点睛】本题考查解二次不等式,根据集合的包含关系求参数的范围,属于中档题.23.(1)(1,1]A B ⋂=-;(2)1m .【分析】(1)先利用分式不等式的解法和绝对值不等式的解法化简集合A ,B ,再利用交集运算求解.(2)根据()C AC ⊆,得到C A ⊆,然后分C =∅和C ≠∅两种情况讨论求解. 【详解】(1)因为集合423(1,5]1a A aa ⎧⎫-=≤=-⎨⎬+⎩⎭,{}12[3,1]B a a =+≤=-, 所以(1,1]A B ⋂=-.(2)因为()C A C ⊆,所以C A ⊆,①当3m m -≥+即32m ≤-时,C =∅,符合题意, ②当3m m -<+即32m >-时,则135m m -≥-⎧⎨+≤⎩, 解得132m -<≤, 综上:1m【点睛】 本题主要考查集合的基本运算和集合的基本关系的应用以及分式不等式和绝对值不等式的解法,还考查了分类讨论思想和运算求解的能力,属于中档题.24.(1)423a ≤≤;(2)23a ≤或4a ≥【分析】(1)考虑A 是B 的子集即可求解;(2)分类讨论当B 为空集和不为空集两种情况求解.【详解】(1)若x A ∈是x B ∈的充分条件,234a a ≤⎧⎨≥⎩,解得423a ≤≤; (2)A B =∅,当B =∅时,即3,0a a a ≥≤,当B ≠∅时,04a a >⎧⎨≥⎩或032a a >⎧⎨≤⎩,即203a <≤或4a ≥. 综上所述:23a ≤或4a ≥ 【点睛】此题考查根据充分条件与集合关系求解参数取值范围,易错点在于漏掉考虑空集情况. 25.(1)9,8⎛⎤-∞ ⎥⎝⎦;(2){}90,8⎡⎫⋃+∞⎪⎢⎣⎭【分析】(1)对a 分类讨论:0a =,解出即可判断出是否满足题意.0a ≠时,A 中至少有一个元素,满足0∆,解得a 范围即可得出.(2)对a 分类讨论:0a =,直接验证是否满足题意.0a ≠时,由A 中至多有一个元素,可得0∆≤,解得a 范围即可得出.【详解】解:(1)0a =,由320x -+=,解得23x =,满足题意,因此0a =. 0a ≠时,A 中至少有一个元素,∴980a ∆=-,解得98a ,0a ≠. 综上可得:a 的取值范围是9,8⎛⎤-∞ ⎥⎝⎦. (2)0a =,由320x -+=,解得23x =,满足题意,因此0a =. 0a ≠时,A 中至多有一个元素,∴980a ∆=-,解得98a. 综上可得:a 的取值范围是{}90,8⎡⎫⋃+∞⎪⎢⎣⎭. 【点睛】本题考查了集合的性质、一元二次方程的实数根与判别式的关系,考查了分类讨论方法、推理能力与计算能力,属于中档题.26.(1)(){}|35R AC B x x =≤<;(2)8.【分析】(1)根据分式不等式求解集合A ,再根据二次不等式的方法求解集合B 再求()R AC B 即可. (2)根据{}|14A B x x =-<<与{}|15A x x =-<<可知4x =为二次方程220x x m --=的根,代入求解实数m 的值即可.【详解】 因为501x x -<+,所以15x -<<,所以{}|15A x x =-<<. (1)当3m =时,{}|13B x x =-<<,则{}|1,3R C B x x x =≤-≥,所以(){}|35R A C B x x =≤<.(2)因为{}|15A x x =-<<,{}|14A B x x =-<<,故4x =为二次方程220x x m --=的根所以有24240m -⨯-=,解得8m =.此时{}|24B x x =-<<,符合题意,故实数m 的值为8.【点睛】本题主要考查了集合的交并补运算以及分式与二次不等式的求解.同时也考查了根据集合间的基本关系求解参数范围的问题.属于中档题.。

高中数学必修一《集合》测试题 (1000)

高中数学必修一《集合》测试题 (1000)

34.已知集合 A = x 1<x 6 , B = x 2 x 9
(1)求 A B , (CRA ) B
(2)已知 C = x a x a +1 ,若 C B ,求实数 a 的取值范围。
35.已知集合 A= x x2 − 2x − 8 = 0 ,B= x x2 + ax + a2 −12 = 0 ,且 B A,求 a 的取
2.设集合 M ={x|x2+x-6<0},N ={x|1≤x≤3},则 M∩N =( ) (A)[1,2) (B)[1,2] (C)( 2,3] (D)[2,3] (2011 山东理 1) 3.设集合 U={1,2,3,4,5,6}, M={1,2,4 },则 CuM= A.U B. {1,3,5} C.{3 B 的所有元素之和为

23.已知集合 A = −1,0 ,则满足 A B = −1,0,1 的集合 B 的个数是 ▲ .
24.已知集合 M = {−1,1}, N = {x 1 2x+1 4, x Z},则 M N = ▲ . 2
25 . 设 全 集 U = 0,1, 2,3, 4 , 集 合 A = 0,1, 2,3 , B = 2,3, 4 , 则(CU A) B =
11 . 设 集 合 A = (x, y) y = ax +1 , B = (x, y) y = x + b , 且 A B = (2,5) , 则
a = __________,b = _________
12. 已知全集U = (−, 3] ,集合 A = [−1, 2] ,则 CU A=___ (−, −1) (2,3] ____
4.集合 M, N, P 满足 M N = N, N P = N ,则————————( ) (A) M = P (B) M P (C) M P (D) M P

1.1 集合的概念同步练习卷【新教材】人教A版(2019)高中数学必修第一册(含答案)

1.1 集合的概念同步练习卷【新教材】人教A版(2019)高中数学必修第一册(含答案)

1.1 集合的概念同步练习卷【人教A版2019】考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共22题,单选8题,多选4题,填空4题,解答6题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本节内容的具体情况!一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2020秋•袁州区校级月考)下列四组对象中能构成集合的是()A.宜春市第一中学高一学习好的学生B.在数轴上与原点非常近的点C.很小的实数D.倒数等于本身的数2.(3分)(2020秋•路北区校级期中)下列元素与集合的关系表示正确的是()①﹣1∈N*;②√2∉Z;③32∈Q;④π∈QA.①②B.②③C.①③D.③④3.(3分)(2020•西城区校级期中)已知集合M={﹣2,3},N={﹣4,5,6},依次从集合M,N中各取出一个数分别作为点P的横坐标和纵坐标,则在平面直角坐标系中位于第一、二象限内的点P的个数是()A.4B.5C.6D.74.(3分)(2020春•大武口区校级期中)已知集合M={1,m+2,m2+4},且5∈M,则m的值为()A.1或﹣1B.1或3C.﹣1或3D.1,﹣1或35.(3分)集合A={1,﹣3,5,﹣7,9,﹣11,…},用描述法表示正确的是()①{x|x=2n±1,n∈N};②{x|x=(﹣1)n(2n﹣1),n∈N};③{x|x=(﹣1)n(2n+1),n∈N}.A.③B.①③C.②③D.①②③6.(3分)(2020秋•张店区校级月考)集合A={x∈N∗|63−x∈Z},用列举法可以表示为()A.{1,2,4,9}B.{1,2,4,5,6,9}C.{﹣6,﹣3,﹣2,﹣1,3,6}D.{﹣6,﹣3,﹣2,﹣1,2,3,6}7.(3分)(2020秋•华龙区校级期中)已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,y﹣x∈A},则集合B中的元素的个数为()A.4B.5C.6D.78.(3分)(2020秋•汇川区校级月考)设集合A={2,3,a2﹣3a,a+2a+7},B={|a﹣2|,0}.已知4∈A且4∉B,则实数a的取值集合为()A.{﹣1,﹣2}B.{﹣1,2}C.{﹣2,4}D.{4}二.多选题(共4小题,满分16分,每小题4分)9.(4分)(2020秋•中山市校级月考)已知x∈{1,2,x2},则有()A.x=1B.x=2C.x=0D.x=√210.(4分)(2020秋•农安县月考)下面四个说法中错误的是()A.10以内的质数组成的集合是{2,3,5,7}B.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C.方程x2﹣2x+1=0的所有解组成的集合是{1,1}D.0与{0}表示同一个集合11.(4分)(2020秋•余姚市校级月考)已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则实数a可以取()A.a≥1B.a=0C.a≤﹣1D.﹣1≤a≤112.(4分)若集合A具有以下性质:(1)0∈A,1∈A;(2)若x∈A,y∈A;则x﹣y∈A,且x≠0时,1x∈A.则称集合A是“好集”.下列命题中正确的是()A.集合B={﹣1,0,1}是“好集”B.有理数集Q是“好集”C.整数集Z不是“好集”D.设集合A是“好集”,若x∈A,y∈A,则x+y∈A 三.填空题(共4小题,满分16分,每小题4分)13.(4分)(2020秋•辛集市校级月考)下列关系中,正确的是.①−43∈R;②√3∉Q;③|﹣20|∉N*;④|−√2|∈Q;⑤﹣5∉Z;⑥0∈N.14.(4分)(2020秋•浙江期中)已知集合A={﹣2,2a,a2﹣a},若2∈A,则a=.15.(4分)(2020秋•汇川区校级月考)设集合A中有n个元素,定义|A|=n,若集合P={x∈Z|6x−3∈Z},则|P|=.16.(4分)(2020秋•河东区校级月考)已知a,b,c均为非零实数,集合A={x|x=|a|a+b|b|+ab|ab|},则集合A的元素的个数有个.四.解答题(共6小题,满分44分)17.(6分)下列研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有个子高的同学;(3)不等式2x+1>7的整数解.18.(6分)已知集合M={﹣2,3x2+3x﹣4,x2+x﹣4},若2∈M,求x的值.19.(8分)用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x|x=|x|,x<5,且x∈Z};(4){(x,y)|x+y=6,x∈N*,y∈N*};(5){﹣3,﹣1,1,3,5}.20.(8分)(2020秋•黄浦区校级月考)已知集合A={x|kx2﹣8x+16=0,k∈R,x∈R}.(1)若A只有一个元素,试求实数k的值,并用列举法表示集合A;(2)若A至多有两个子集,试求实数k的取值范围.21.(8分)设集合A中含有三个元素3,x,x2﹣2x.(1)求实数x应满足的条件;(2)若﹣2∈A,求实数x.22.(8分)(2020秋•越秀区校级期中)已知不等式ax2+5x﹣2>0的解集是M.(1)若2∈M且3∉M,求a的取值范围;(2)若M={x|12<x<2},求不等式ax2﹣5x+a2﹣1>0的解集.1.1 集合的概念同步练习卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2020秋•袁州区校级月考)下列四组对象中能构成集合的是( ) A .宜春市第一中学高一学习好的学生B .在数轴上与原点非常近的点C .很小的实数D .倒数等于本身的数【分析】根据集合的含义分别分析四个选项,A ,B ,C 都不满足函数的确定性故排除,D 确定,满足. 【解答】解:A :宜春市第一中学高一学习好的学生,因为学习好的学生不确定,所以不满足集合的确定性,排除B :在数轴上与原点非常近的点,因为非常近的点不确定,所以不满足集合的确定性,排除C :很小的实数,因为很小的实数不确定,所以不满足集合的确定性,排除D :倒数等于它自身的实数为1与﹣1,∴满足集合的定义,故正确. 故选:D .【点睛】本题考查集合的含义.通过对集合元素三个性质:确定性,无序性,互异性进行考查,属于基础题.2.(3分)(2020秋•路北区校级期中)下列元素与集合的关系表示正确的是( ) ①﹣1∈N *;②√2∉Z ;③32∈Q ;④π∈QA .①②B .②③C .①③D .③④【分析】认识常用数集的表示符号及元素和集合的关系. 【解答】解:对于①:﹣1不是自然数,故﹣1∉N *,故①错误;对于②:√2是无理数不是整数,Z 表示整数集合∴√2∉Z ,故②正确; 对于③:32是有理数,Q 表示有理数集,∴32∈Q ,故③正确;对于④:π是无理数,Q 表示无理数集,∴π∉Q ,故④错误. 故选:B .【点睛】本题考查对数集的认识,属于基础题3.(3分)(2020•西城区校级期中)已知集合M ={﹣2,3},N ={﹣4,5,6},依次从集合M ,N 中各取出一个数分别作为点P的横坐标和纵坐标,则在平面直角坐标系中位于第一、二象限内的点P的个数是()A.4B.5C.6D.7【分析】利用列举法和第一、二象限的点的性质直接求解.【解答】解:集合M={﹣2,3},N={﹣4,5,6},依次从集合M,N中各取出一个数分别作为点P的横坐标和纵坐标,在平面直角坐标系中位于第一、二象限内的点P有:(﹣2,5),(﹣2,6),(3,5),(3,6),共4个.故选:A.【点睛】在平面直角坐标系中位于第一、二象限内的点P的个数的求法,考查列举法和第一、二象限的点的性质等基础知识,考查运算求解能力,是基础题.4.(3分)(2020春•大武口区校级期中)已知集合M={1,m+2,m2+4},且5∈M,则m的值为()A.1或﹣1B.1或3C.﹣1或3D.1,﹣1或3【分析】由5∈{1,m+2,m2+4},得m+2=5或m2+4=5,再由集合中元素的互异性,能求出m的取值集合.【解答】解:∵5∈{1,m+2,m2+4},∴m+2=5或m2+4=5,即m=3或m=±1.当m=3时,M={1,5,13};当m=1时,M={1,3,5};当m=﹣1时,M={1,1,5}不满足互异性,∴m的取值集合为{1,3}.故选:B.【点睛】本题考查实数的取值集合的求法,解题时要认真审题,注意集合性质的合理运用,是基础题.5.(3分)集合A={1,﹣3,5,﹣7,9,﹣11,…},用描述法表示正确的是()①{x|x=2n±1,n∈N};②{x|x=(﹣1)n(2n﹣1),n∈N};③{x|x=(﹣1)n(2n+1),n∈N}.A.③B.①③C.②③D.①②③【分析】取n=0,1,2分别验证三个集合即可.【解答】解:取n=0,{x|x=2n±1,n∈N}={0,1},故①错误;取n=0,{x|x=(﹣1)n(2n﹣1),n∈N}={﹣1},故②错误;取n=0,{x|x=(﹣1)n(2n+1),n∈N}={1},取n=1,{x|x=(﹣1)n(2n+1),n∈N}={﹣3},取n=2,{x|x=(﹣1)n(2n+1),n∈N}={5},……,故③正确;故选:A.【点睛】本题主要考查了集合的表示方法,是基础题.6.(3分)(2020秋•张店区校级月考)集合A={x∈N∗|63−x∈Z},用列举法可以表示为()A.{1,2,4,9}B.{1,2,4,5,6,9}C.{﹣6,﹣3,﹣2,﹣1,3,6}D.{﹣6,﹣3,﹣2,﹣1,2,3,6}【分析】利用已知条件,化简求解即可.【解答】解:集合A={x∈N∗|63−x∈Z},可知63−1=3,63−2=6,63−4=−6,63−5=−3,63−6=−2,63−9=−1,则x=1,2,4,5,6,9.集合A={x∈N∗|63−x∈Z}={1,2,4,5,6,9}.故选:B.【点睛】本题考查集合的表示方法,是基础题.7.(3分)(2020秋•华龙区校级期中)已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,y﹣x∈A},则集合B中的元素的个数为()A.4B.5C.6D.7【分析】通过集合B,利用x∈A,y∈A,y﹣x∈A,求出集合B中元素的个数.【解答】解:因为集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,y﹣x∈A},所以当x=1时,y=2或y=3或y=4,当x=2时,y=3或y=4,当x=3时,y=4,所以集合B中的元素个数为6.故选:C.【点睛】本题考查集合的元素与集合的关系,属基础题.8.(3分)(2020秋•汇川区校级月考)设集合A={2,3,a2﹣3a,a+2a+7},B={|a﹣2|,0}.已知4∈A且4∉B ,则实数a 的取值集合为( ) A .{﹣1,﹣2}B .{﹣1,2}C .{﹣2,4}D .{4}【分析】根据题意分a 2﹣3a =4且|a ﹣2|≠4,a +2a +7=4且|a ﹣2|≠4两种情况讨论,求出a 的值,并利用集合的互异性进行验证,即可求得符合题意的a 的值.【解答】解:由题意可得①当a 2﹣3a =4且|a ﹣2|≠4时,解得a =﹣1或4, a =﹣1时,集合A ={2,3,4,4}不满足集合的互异性,故a ≠﹣1, a =4时,集合A ={2,3,4,1112},集合B ={2,0},符合题意.②当a +2a+7=4且|a ﹣2|≠4,解得a =﹣1,由①可得不符合题意. 综上,实数a 的取值集合为{4}. 故选:D .【点睛】本题主要考查元素与集合的关系,考查集合的互异性,属于基础题. 二.多选题(共4小题,满分16分,每小题4分)9.(4分)(2020秋•中山市校级月考)已知x ∈{1,2,x 2},则有( ) A .x =1B .x =2C .x =0D .x =√2【分析】利用元素与集合的关系及集合中元素的互异性即可求解. 【解答】解:因为x ∈{1,2,x 2},所以x =2或x =x 2,解得x =2或x =1或x =0, 当x =2时,x ∈{1,2,4},符合题意;当x =1时,x ∈{1,2,1},不满足集合的互异性; 当x =0时,x ∈{1,2,0},符合题意., 故x =2或x =0. 故选:BC .【点睛】本题主要考查元素与集合间的关系,利用集合中元素的互异性验证结论是否符合题意是解题的关键,属于基础题.10.(4分)(2020秋•农安县月考)下面四个说法中错误的是( ) A .10以内的质数组成的集合是{2,3,5,7}B .由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C .方程x 2﹣2x +1=0的所有解组成的集合是{1,1}D.0与{0}表示同一个集合【分析】结合集合的表示及元素与集合的基本关系分别检验各选项即可判断.【解答】解:10以内的质数组成的集合是{2,3,5,7},故A正确;由集合中元素的无序性知{1,2,3}和{3,2,1}表示同一集合,故B正确;方程x2﹣2x+1=0的所有解组成的集合是{1},故C错误;由集合的表示方法知0不是集合,故D错误,故选:CD.【点睛】本题主要考查了集合的表示及元素与集合的基本关系的判断,属于基础题.11.(4分)(2020秋•余姚市校级月考)已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则实数a可以取()A.a≥1B.a=0C.a≤﹣1D.﹣1≤a≤1【分析】根据集合A={x|ax2﹣2x+a=0}中至多含有一个元素,讨论集合A中的方程ax2﹣2x+a=0的根的情况,求解若ax2﹣2x+a=0为一元一次方程和一元二次方程至多含有一个根的情况,符合题意时可得实数a可以取为:a=0,a≥1或a≤﹣1.【解答】解:已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则讨论集合A中的方程ax2﹣2x+a=0的根的情况,①若ax2﹣2x+a=0为一元一次方程,则a=0,解得x=0,符合题意;②若ax2﹣2x+a=0为一元二次方程,则a≠0,方程至多含有一个根,△=4﹣4a2≤0,解得a≥1或a≤﹣1,符合题意;故实数a可以取为:a=0,a≥1或a≤﹣1.故选:ABC.【点睛】本题主要考查元素与集合的关系,一元二次方程根的情况,分类讨论思想,属于基础题.12.(4分)若集合A具有以下性质:(1)0∈A,1∈A;(2)若x∈A,y∈A;则x﹣y∈A,且x≠0时,1x∈A.则称集合A是“好集”.下列命题中正确的是()A.集合B={﹣1,0,1}是“好集”B.有理数集Q是“好集”C .整数集Z 不是“好集”D .设集合A 是“好集”,若x ∈A ,y ∈A ,则x +y ∈A【分析】逐一判断给定的3个集合,是否满足“好集”的定义,最后综合讨论结果,可得答案. 【解答】解:对于A ,假设集合B 是“好集”,因为﹣1∈B ,1∈B ,所以﹣1﹣1=﹣2∈B ,这与﹣2∉B 矛盾,所以集合B 不是“好集”.故A 错误;对于B ,因为0∈Q ,1∈Q ,且对任意的x ∈Q ,y ∈Q 有x ﹣y ∈Q ,且x ≠0时,1x ∈Q ,所以有理数集Q 是“好集”,故B 正确;对于C ,因为2∈Z ,但12∉Z ,所以整数集Z 不是“好集”.故C 正确;因为集合A 是“好集”,所以0∈A ,又y ∈A ,所以0﹣y ∈A ,即﹣y ∈A ,又x ∈A ,所以x ﹣(﹣y )∈A ,即x +y ∈A ,故D 正确. 故选:BCD .【点睛】本题主要考查了元素与集合关系的判断,以及新定义的理解,同时考查了运算求解的能力,属于基础题.三.填空题(共4小题,满分16分,每小题4分)13.(4分)(2020秋•辛集市校级月考)下列关系中,正确的是 ①②⑥ . ①−43∈R ; ②√3∉Q ; ③|﹣20|∉N *; ④|−√2|∈Q ; ⑤﹣5∉Z ; ⑥0∈N .【分析】根据元素与集合的关系进行判断即可. 【解答】解:①−43∈R ,正确; ②√3∉Q ,正确;③因为|﹣20|=20∈N *,则|﹣20|∉N *,错误; ④因为|−√2|=√2∉Q ;则|−√2|∈Q ,错误; ⑤﹣5∉Z ,错误; ⑥0∈N .正确;所以正确的是①②⑥.【点睛】本题主要考查元素与集合的关系,属于基础题.14.(4分)(2020秋•浙江期中)已知集合A ={﹣2,2a ,a 2﹣a },若2∈A ,则a = 1或2 .【分析】根据2是集合中的元素,求出a 值,再验证集合中元素的互异性即可.【解答】解:∵2∈A ,∴2a =2或a 2﹣a =2;当2a =2时,a =1,a 2﹣a =0,A ={﹣2,2,0},符合题意;当a 2﹣a =2时,a =﹣1或a =2,a =2时,A ={﹣2,4,2},符合题意.a =﹣1时,A ={﹣2,﹣2,2},不符合题意.综上a =1或a =2,故答案为:1或2.【点睛】本题考查集合中元素的性质及元素与集合的关系,属于基础题目.15.(4分)(2020秋•汇川区校级月考)设集合A 中有n 个元素,定义|A |=n ,若集合P ={x ∈Z |6x−3∈Z },则|P |= 8 .【分析】通过对集合中元素构成的特点及元素条件求集合P ,即可得到答案.【解答】解:∵集合P ={x ∈Z |6x−3∈Z },∵x ∈Z ,6x−3∈Z ,∴x ﹣3=±1,±2,±3,±6.解得x =4,2,5,1,0,6,9,﹣3,∴P ={﹣3,0,1,2,4,5,6,9}.|P |=8,故答案为:8.【点睛】本题考查集合的元素,通过对集合中元素构成的特点及元素条件求集合,属于基础题.16.(4分)(2020秋•河东区校级月考)已知a ,b ,c 均为非零实数,集合A ={x|x =|a|a +b |b|+ab |ab|},则集合A 的元素的个数有 2 个.【分析】通过对a ,b 的正负的分类讨论,利用绝对值的定义去掉绝对值的符号 然后进行运算,求出集合中的元素.【解答】解:当a >0,b >0时,x =|a|a +b |b|+ab |ab|=1+1+1=3,当a >0,b <0时,x =|a|a +b |b|+ab |ab|=1﹣1﹣1=﹣1,当a <0,b >0时,x =|a|a +b |b|+ab |ab|=−1+1﹣1=﹣1,当a<0,b<0时,x=|a|a+b|b|+ab|ab|=−1﹣1+1=﹣1,故x的所有值组成的集合为{﹣1,3}故答案为:2.【点睛】本题考查了分类讨论的数学思想方法,绝对值的几何意义.考查计算能力,属于基础题.四.解答题(共6小题,满分44分)17.(6分)下列研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有个子高的同学;(3)不等式2x+1>7的整数解.【分析】根据集合元素的确定性,互异性进行判断即可.【解答】解:(1)小于5的自然数为0,1,2,3,4,元素确定,所以能构成集合.为{0,1,2,3,4}.(2)个子高的标准不确定,所以集合元素无法确定,所以不能构成集合.(3)由2x+1>7得x>3,因为x为整数,集合元素确定,但集合元素个数为无限个,所以用描述法表示为{x|x>3,且x∈Z}.【点睛】本题主要考查集合的含义和表示,利用元素的确定性,互异性是判断元素能否构成集合的条件,比较基础.18.(6分)已知集合M={﹣2,3x2+3x﹣4,x2+x﹣4},若2∈M,求x的值.【分析】由已知2是集合M的元素,分类讨论列出方程,求出x的值,将x的值代入集合,检验集合的元素需满足互异性.【解答】解:当3x2+3x﹣4=2时,3x2+3x﹣6=0,x2+x﹣2=0,x=﹣2或x=1.经检验,x=﹣2,x=1均不合题意.当x2+x﹣4=2时,x2+x﹣6=0,x=﹣3或2.经检验,x=﹣3或x=2均合题意.∴x=﹣3或x=2.【点睛】本题考查解决集合中的参数值时,需将求出的参数值代入集合检验集合的互异性、考查分类讨论的数学思想方法.19.(8分)用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x|x=|x|,x<5,且x∈Z};(4){(x,y)|x+y=6,x∈N*,y∈N*};(5){﹣3,﹣1,1,3,5}.【分析】根据集合的概念,列举法及描述法的定义,选择适当的方法表示每个集合即可.【解答】解:(1){绝对值不大于2的整数}={﹣2,﹣1,0,1,2}.(2){能被3整除,且小于10的正数}={3,6,9}.(3){x|x=|x|,x<5,且x∈Z}={0,1,2,3,4}.(4){(x,y)|x+y=6,x∈N*,y∈N*}={(1,5),(2,4),(3,3),(4,2),(5,1)}.(5){﹣3,﹣1,1,3,5}={x|x=2k﹣1,﹣1≤k≤3,k∈Z}.【点睛】考查集合的概念,集合的表示方法:列举法,描述法.20.(8分)(2020秋•黄浦区校级月考)已知集合A={x|kx2﹣8x+16=0,k∈R,x∈R}.(1)若A只有一个元素,试求实数k的值,并用列举法表示集合A;(2)若A至多有两个子集,试求实数k的取值范围.【分析】(1)当k=0时,易知符合题意,当k≠0时,利用△=0即可求出k的值;(2)由A至多有两个子集,可知集合A中元素个数最多1个,再分k=0和k≠0两种情况讨论,即可求出实数k的取值范围.【解答】解:(1)①当k=0时,方程化为:﹣8x+16=0,解得x=2,此时集合A={2},满足题意;②当k≠0时,∵方程kx2﹣8x+16=0有一个根,∴△=(﹣8)2﹣4k×16=0,解得:k=1,此时方程为x2﹣8x+16=0,解得x=4,∴集合A={4},符合题意,综上所述,k=0时集合A={2};k=1时集合A={4};(2)∵A至多有两个子集,∴集合A中元素个数最多1个,①当k≠0时,一元二次方程kx2﹣8x+16=0最多有1个实数根,∴△=(﹣8)2﹣4k×16≤0,解得k≥1,②当k=0时,由(1)可知,集合A={2}符合题意,综上所述,实数k 的取值范围为:{0}∪[1,+∞).【点睛】本题主要考查了集合的表示方法,考查了集合的元素个数,是基础题.21.(8分)设集合A 中含有三个元素3,x ,x 2﹣2x .(1)求实数x 应满足的条件;(2)若﹣2∈A ,求实数x .【分析】(1)由集合元素的互异性直接求解.(2)若﹣2∈A ,则x =﹣2或x 2﹣2x =﹣2.由此能出x .【解答】解:(1)由集合元素的互异性可得:x ≠3,x 2﹣2x ≠x 且x 2﹣2x ≠3,解得x ≠﹣1,x ≠0且x ≠3.(2)若﹣2∈A ,则x =﹣2或x 2﹣2x =﹣2.由于x 2﹣2x =(x ﹣1)2﹣1≥﹣1,所以x =﹣2.【点睛】本题考查集合中元素的性质、实数值的求法,是基础题,解题时要认真审题,注意元素与集合的关系的合理运用.22.(8分)(2020秋•越秀区校级期中)已知不等式ax 2+5x ﹣2>0的解集是M .(1)若2∈M 且3∉M ,求a 的取值范围;(2)若M ={x|12<x <2},求不等式ax 2﹣5x +a 2﹣1>0的解集.【分析】(1)由2∈M 且3∉M ,列出不等式组,能求出实数a 的取值范围.(2)推导出12,2是方程ax 2+5x ﹣2=0的两个根,由韦达定理求出a =﹣2,从而不等式ax 2﹣5x +a 2﹣1>0即为2x 2+5x ﹣3<0,由此能求出不等式的解集.【解答】解:(1)∵不等式ax 2+5x ﹣2>0的解集是M .2∈M 且3∉M ,∴{4a +8>09a +13≤0,解得﹣2<a ≤−139, ∴a 的取值范围是(﹣2,−139].(2)∵M ={x|12<x <2},∴12,2是方程ax 2+5x ﹣2=0的两个根,∴由韦达定理得{12+2=−5a 12⋅2=−2a ,解得a =﹣2, ∴不等式ax 2﹣5x +a 2﹣1>0为2x 2+5x ﹣3<0,∴不等式ax 2﹣5x +a 2﹣1>0的解集为{x|−3<x <12}.【点睛】本题考查实数的取值范围的求法,考查不等式的解集的求法,考查运算求解能力,是基础题.。

高一数学必修1集合练习题

高一数学必修1集合练习题

高一数学必修1集合练习题高一数学必修1集合练习题数学是一门需要不断练习和探索的学科,而集合作为数学中的一个重要概念,也是高中数学必修1中的一部分内容。

通过练习集合的相关题目,我们可以巩固对集合的理解和运用能力。

下面,我将为大家提供一些高一数学必修1集合练习题,并解答这些题目,希望能够帮助大家更好地掌握集合的知识。

1. 已知集合A={1, 2, 3, 4, 5},集合B={3, 4, 5, 6, 7},求A与B的交集和并集。

解答:交集表示两个集合中共有的元素,即A与B中都存在的元素。

根据题目中给出的集合A和集合B,我们可以找到它们的交集为{3, 4, 5}。

并集表示两个集合中所有的元素,即A与B中所有的元素的集合。

根据题目中给出的集合A和集合B,我们可以找到它们的并集为{1, 2, 3, 4, 5, 6, 7}。

2. 已知集合A={1, 2, 3, 4, 5},集合B={3, 4, 5, 6, 7},求A与B的差集。

解答:差集表示属于一个集合而不属于另一个集合的元素的集合。

根据题目中给出的集合A和集合B,我们可以找到它们的差集为{1, 2},因为1和2属于集合A,但不属于集合B。

3. 已知集合A={1, 2, 3, 4, 5},集合B={3, 4, 5, 6, 7},求A与B的补集。

解答:补集表示在全集中不属于某个集合的元素的集合。

根据题目中给出的集合A和集合B,我们需要知道全集是什么。

如果全集是自然数集,那么集合A 的补集为{6, 7},集合B的补集为{1, 2}。

如果全集是整数集,那么集合A的补集为{...,-3, -2, -1, 0, 6, 7, ...},集合B的补集为{...,-3, -2, -1, 1, 2, ...}。

4. 已知集合A={1, 2, 3, 4, 5},集合B={3, 4, 5, 6, 7},判断A是否是B的子集。

解答:子集表示一个集合中的所有元素都属于另一个集合。

根据题目中给出的集合A和集合B,我们可以看出集合A的所有元素都属于集合B,因此集合A是集合B的子集。

高中数学必修一集合习题大全含答案

高中数学必修一集合习题大全含答案
《集合》
一、选择题 :( 每小题 5 分共 6 0 分 )
1. 下列命题正确的有(

( 1)很小的实数可以构成 集合;
练习一
( 2)集合 y | y
2
x
1 与集合
x, y | y
2
x
1 是同一个集合 ;
( 3) 1, 3 , 6 ,
1 ,0.5 这些数组成
的集合有
5 个元素;
24 2
( 4)集合 x, y | xy 0, x, y R 是指第二和第 四象限内的点集。

2
2
( A) N M ( B) N P ( C) N=M∪ P ( D) N=M∩ P
二、填空题(每小题 4 分,计 4× 4=16 分)
11.已知集合 P y | y x 2 1 , x R , Q
y | y x2 2x , x R ,
则集合 P Q
12.设全集 U 1 , 3 , 5 , 7 , 9 , A 1 , | a 5 | , 9 , CU A 5 , 7 ,
2.设集合 A x | 1 x 2 , B x | 0 x 4 ,则 A B ( )
(A) x | 0 x 2 ( B) x |1 x 2 ( C) x | 0 x 4 ( D) x | 1 x 4
3.下列表示① 0

0③
0 ④ 0 中 , 正确的个数为
( A) 1 ( B) 2 ( C)3 (D) 4
1.下列四种说法正确的一个是
()
A. f ( x) 表示的是含有 x 的代数式
B.函数的值域也就是其定义中的数集 B
C.函数是一种特殊的映射
D.映射是一种特殊的函数
2.已知 f 满足 f ( ab)= f ( a)+ f ( b) ,且 f (2)= p , f (3) q 那么 f (72) 等于

(易错题)高中数学必修一第一单元《集合》测试题(含答案解析)(4)

(易错题)高中数学必修一第一单元《集合》测试题(含答案解析)(4)

一、选择题1.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( ) A .3m ≥B .23m ≤≤C .3m ≤D .2m ≥2.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .(4,1D .(1,1+3.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .5114.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈5.若集合{}2|560A x x x =-->,{}|21xB x =>,则()R C A B =( )A .{}|10x x -≤<B .{}|06x x <≤C .{}|20x x -≤<D .{}|03x x <≤6.若x A ∈,则1A x ∈,就称A 是和美集合,集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的所有非空子集中是和美集合的个数为( ) A .4 B .5C .6D .77.已知集合22{|,N ,N}A t t m n m n = =+ ∈ ∈,且x A ∈,yA ,则下列结论中正确的是( ) A .x y A +∈ B .x y A -∈ C .xy A ∈D .xA y∈ 8.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈9.已知集合{}2230A x x x =--≤,{}22B x m x m =-≤≤+.若R A C B A =,则实数m 的取值范围为( )A .5m >B .3m <-C .5m >或3m <-D .35m -<<10.设{}|22A x x =-≥,{}|1B x x a =-<,若A B =∅,则a 的取值范围为( ) A .1a <B .01a <≤C .1a ≤D .03a <≤11.已知非空集合M 满足:对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是( )A .11B .12C .15D .1612.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值 范围是( ) A .{}a |0a 6≤≤ B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤二、填空题13.对非空有限数集12{,,,}n A a a a =定义运算“min”:min A 表示集合A 中的最小元素.现给定两个非空有限数集A ,B ,定义集合{|,,}M x x a b a A b B ==-∈∈,我们称min M 为集合A ,B 之间的“距离”,记为AB d .现有如下四个命题:①若min min A B =,则0AB d =;②若min min A B >,则0AB d >;③若0AB d =,则A B ⋂≠∅;④对任意有限集合A ,B ,C ,均有AB BC AC d d d +. 其中所有真命题的序号为__________.14.设集合{}1,2,4A =,{}2|40B x x x m =-+=.若{}1A B ⋂=,则B =__________.15.若规定集合{}()*12,,,n M a a a n N=⋅⋅⋅∈的子集{}()12*,,,mi i i a aa m N ⋅⋅⋅∈为M 的第k个子集,其中12111222m i i i k ---=++⋅⋅⋅+,则M 的第25个子集是______. 16.已知有限集{}123,,,,(2)n A a a a a n =≥. 如果A 中元素(1,2,3,,)i a i n =满足1212n n a a a a a a =+++,就称A 为“复活集”,给出下列结论:①集合1122⎧---⎪⎨⎪⎪⎩⎭是“复活集”; ②若12,a a R ∈,且12{,}a a 是“复活集”,则124a a >; ③若*12,a a N ∈,则12{,}a a 不可能是“复活集”; ④若*i a N ∈,则“复活集”A 有且只有一个,且3n =.其中正确的结论是____________.(填上你认为所有正确的结论序号)17.若规定{}1210E a a a =⋯,,,的子集{}12,,n k k k a a a 为E 的第k 个子集,其中12111222n k k k k ---=++⋯+,则E 的第211个子集是____________. 18.已知集合{}10,A x ax x R =+=∈,集合{}2280B x x x =--=,若A B ⊆,则a 所有可能取值构成的集合为______________19.已知集合{1,2,3},{1,2}A B ==,则满足A C B C ⋂=⋃的集合C 有_______个. 20.函数()[]f x x =的函数值表示不超过x 的最大整数,例如:[ 3.5]4-=-,[2.1]2=.若{|[][2][3],01}A y y x x x x ==++≤≤,则A 中所有元素的和为_______.三、解答题21.已知集合{|314}A x x =-<+,{|213}B x m x m =-<+. (1)当1m =时,求AB ;(2)若A B A ⋃=,求m 的取值范围.22.若集合{}24A x x =<<,{}3B x a x a =<<. (1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围; (2)若AB =∅,求实数a 的取值范围.23.设{}{},1,05U R A x x B x x ==≥=<<,求()UA B 和()U A B ∩24.设集合{|12A x a x a =-<<,}a R ∈,不等式2760x x -+<的解集为B . (1)当a 为0时,求集合A 、B ; (2)若A B ⊆,求实数a 的取值范围.25.设集合2{|320}A x x x =-+≥,{|B x y ==,全集U =R ,求()U A C B ⋂.26.设全集U =R .(1)解关于x 的不等式|1|10()x a a R -+->∈;(2)记A 为(1)中不等式的解集,B 为不等式组2351410x x x x -⎧≤⎪+⎨⎪-+≥⎩的整数解集,若()U C A B ⋂恰有三个元素,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】讨论,B B =∅≠∅两种情况,分别计算得到答案.当B =∅时:1212m m m +>-∴< 成立;当B ≠∅时:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得:23m ≤≤.综上所述:3m ≤ 故选C 【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误.2.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】 由于()1lg 12x -<=所以{(011,1A x x =<-<=+, 依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.3.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-=【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.4.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B 【解析】 【分析】求得集合{|1A x x =<-或6}x >,{}|0B x x =>,根据集合运算,即可求解,得到答案. 【详解】由题意,集合{}2|560{|1A x x x x x =-->=<-或6}x >,{}{}|21|0x B x x x =>=>,则{}|16R C A x x =-≤≤,所以(){}|06R C A B x x =<≤.故选B . 【点睛】本题主要考查了集合的混合运算,其中解答中正确求解集合,A B ,结合集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.6.D解析:D 【分析】写出集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的非空子集,根据和美集合的定义验证即可. 【详解】先考虑含一个元素的子集,并且其倒数是其本身,有{}{}1,1,- 再考虑 含有两个元素的和美集合,有{}11,1,,33⎧⎫-⎨⎬⎩⎭,含有三个元素的子集且为和美集合的是111,,3,1,,3,33⎧⎫⎧⎫-⎨⎬⎨⎬⎩⎭⎩⎭含有四个元素的子集且为和美集合的是11,1,,33⎧⎫-⎨⎬⎩⎭. 【点睛】本题主要考查了集合的子集,考查了创设新情景下解决问题的能力,属于中档题.7.C解析:C 【分析】 设22x m n =+,22N,N N,,,N n b b ya ma ,再利用22()()xy ma nb mb na =++-,可得解.【详解】 由x A ∈,yA ,设22x m n =+,22N,N N,,,N n b b y a m a ,所以22222222222222()()()()xy m n a b m a m b n a n b ma nb mb na =++=+++=++-, 且N,N ma nb mb na +-∈∈, 所以xy A ∈, 故选:C. 【点睛】关键点点睛,本题的解题关键是2222222222()()m a m b n a n b ma nb mb na +++=++-,另外本题可以通过列举法得到集合的一些元素,进而排除选项可得解.8.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.故选:B【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.9.C解析:C 【分析】首先根据题意,求得{|2R C B x x m =>+或}2x m <-,由R AC B A =可以得到R A C B ⊆,根据子集的定义求得参数所满足的条件,得到结果.【详解】{}{}2230=|13A x x x x x =--≤-≤≤,∵{}22B x m x m =-≤≤+. ∴{2R C B x x m =>+或2}x m <-, ∵R AC B A =即R A C B ⊆,∴23m ->或21m +<-.即5m >或3m <-,即实数m 的取值范围是5m >或3m <-. 故选:C. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的补集,根据子集求参数的取值范围,属于简单题目.10.C解析:C 【分析】解集绝对值不等式求得,A B ,结合A B =∅求得a 的取值范围.【详解】由22x -≥得22x -≤-或22x -≥,解得0x ≤或4x ≥,所以(][),04,A =-∞⋃+∞, 由1x a -<得1a x a -<-<,解得11a x a -<<+,所以()1,1B a a =-+. 当0a ≤时,B =∅,A B =∅,符合题意.当0a >时,由于AB =∅,所以1014a a -≥⎧⎨+≤⎩,解得01a <≤.综上所述,a 的取值范围是1a ≤. 故选:C 【点睛】本小题主要考查绝对值不等式的解法,考查根据交集的结果求参数的取值范围.11.A解析:A 【分析】可得集合M 是集合{}2,3,4,5的非空子集,且2,4不同时出现,即可得到结论. 【详解】由题意,可得集合M 是集合{}2,3,4,5的非空子集,共有42115-=个, 且2,4不能同时出现,同时出现共有4个, 所以满足题意的集合M 的个数为11个,故选A. 【点睛】本题主要考查了元素与集合的关系,以及集合的子集个数的判定及应用,着重考查了分析问题和解答问题的能力,属于中档试题.12.C解析:C 【解析】|x-a|<1,∴a-1<x<a+1,∵A∩B=∅. ∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.二、填空题13.①③【分析】根据题意可得①③正确通过举反例可得②④错误【详解】对于结论①若则中最小的元素相同故①正确;对于结论②取集合满足但故②错误;对于结论③若则中存在相同的元素则交集非空故③正确;对于结论④取集解析:①③ 【分析】根据题意可得①③正确,通过举反例可得②④错误. 【详解】对于结论①,若min min A B =,则A ,B 中最小的元素相同,故①正确;对于结论②,取集合{}1,2A =,{}0,2B =,满足min min A B >,但0AB d =,故②错误;对于结论③,若0AB d =,则,A B 中存在相同的元素,则交集非空,故③正确; 对于结论④,取集合{}1,2A =,{}2,3B =,{}3,4C =,可知0AB d =,0BC d =,1AC d =,则AB BC AC d d d +≥不成立,故④错误. 故答案为:①③.14.【解析】因为所以为方程的解则解得所以集合 解析:{}1,3【解析】 因为{}1A B ⋂=,所以1x =为方程240x x m -+=的解, 则140m -+=,解得3m =,所以2430x x -+=,(1)(3)0x x --=,集合{}1,3B =.15.【分析】根据子集的定义将表示为求出即可求解【详解】的第25个子集是故答案为:【点睛】本题考查新定义的理解认真审题领会题意是关键属于中档题 解析:{}145,,a a a【分析】根据子集的定义将25表示为1211125222m i i i ---=++⋅⋅⋅+,求出12,m i i i ,即可求解【详解】03411415125222222---=++=++,1231,4,5i i i ===,M 的第25个子集是{}145,,a a a ,故答案为:{}145,,a a a . 【点睛】本题考查新定义的理解,认真审题,领会题意是关键,属于中档题.16.①③④【分析】根据已知中复活集的定义结合韦达定理以及反证法依次判断四个结论的正误进而可得答案【详解】对于①故①正确;对于②不妨设则由韦达定理知是一元二次方程的两个根由可得或故②错;对于③不妨设中由得解析:①③④ 【分析】根据已知中“复活集”的定义,结合韦达定理以及反证法,依次判断四个结论的正误,进而可得答案. 【详解】对于①,1==-,故①正确; 对于②,不妨设1212a a a a t +==,则由韦达定理知12,a a 是一元二次方程20x tx t -+=的两个根, 由>0∆,可得0t <或4t >,故②错; 对于③,不妨设A 中123n a a a a <<<<,由1212n n n a a a a a a na =+++<得121n a a a n -<,当2n =时,即有12a <,∴11a =,于是221a a +=,2a 无解,即不存在满足条件的“复活集”A ,故③正确;对于④,当3n =时,123a a <,故只能11a =,22a =,求得33a =,于是“复活集” A 只有一个,为{}1,2,3, 当4n ≥时,由()1211231n a a a n -≥⨯⨯⨯⨯-,即有()1!n n >-,也就是说“复活集”A 存在的必要条件是()1!n n >-,事实上()()()()221!1232222n n n n n n n -≥--=-+=--+>,矛盾,∴当4n ≥时不存在“复活集”A ,故④正确.故答案为:①③④ 【点睛】本题主要考查了集合新定义,需理解“复活集”的定义,考查了学生的知识迁移能力以及分析问题的能力,属于中档题.17.【分析】根据题意分别讨论的取值通过讨论计算的可能取值即可得出答案【详解】而的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含的第个子集是故答案为:【点睛】本题主要 解析:{}12578,,,,a a a a a【分析】根据题意,分别讨论2n 的取值,通过讨论计算n 的可能取值,即可得出答案. 【详解】72128211=<,而82256211=>,E ∴的第211个子集包含8a ,此时21112883-=,626483=<,7212883=>,E ∴的第211个子集包含7a ,此时836419-=,421619=<,523219=>,E ∴的第211个子集包含5a ,此时19163-=,1223=<,2243=>,E ∴的第211个子集包含2a ,此时321-=,021=E ∴的第211个子集包含1a ,E ∴的第211个子集是{}12578,,,,a a a a a .故答案为:{}12578,,,,a a a a a 【点睛】本题主要考查了与集合有关的信息题,理解条件的定义是解决本题的关键.18.【分析】先化简集合利用分类讨论和即可求出构成的集合【详解】由可得:即:解得或故:由可得:当时方程无实数解此时满足当时方程的实数解为故:由可得:或解得或的所有取值构成的集合为:故答案为:【点睛】本题主 解析:11{0,,}24- 【分析】先化简集合B ,利用A B ⊆,分类讨论=0a 和0a ≠,即可求出构成a 的集合.【详解】 由{}2280B x x x =--=可得:2280x x --= 即:()()240x x +-=解得2x =-或4x = 故:{}2,4B =- {}10,A x ax x R =+=∈由10ax += 可得:1ax =-当0a =时,方程1ax =-无实数解,此时A =∅,满足A B ⊆当0a ≠时,方程1ax =-的实数解为1x a =-,故:1{}A a=- 由A B ⊆可得:12a -=-或14a-= 解得12a =或14a =- a 的所有取值构成的集合为:11{0,,}24-.故答案为:11{0,,}24-.【点睛】本题主要考查了集合间的基本关系以及一元二次方程的解法,要注意集合A 是集合B 的子集时,集合A 有可能是空集. 19.2【分析】由题意首先确定集合ABC 的关系然后结合子集个数公式即可确定集合C 的个数【详解】由条件可知:则符合条件的集合C 的个数即为集合{3}的子集的个数共个事实上满足题意的集合C 为:或故答案为2【点睛 解析:2【分析】由题意首先确定集合ABC 的关系,然后结合子集个数公式即可确定集合C 的个数.【详解】由条件A C B C ⋂=⋃可知:()()()()B B C A C C B C A C A ⊆⋃=⋂⊆⊆⋃=⋂⊆,则符合条件的集合C 的个数即为集合{3}的子集的个数,共122=个.事实上,满足题意的集合C 为:{}1,2C =或{}1,2,3C =.故答案为2.【点睛】本题主要考查集合的包含关系,子集个数公式及其应用等知识,意在考查学生的转化能力和计算求解能力.20.【分析】分5种情况讨论的范围计算函数值并求元素的和【详解】①当时;②当时;③当时;④时;⑤当时则中所有元素的和为故答案为12【点睛】本题考查新定义的题型需读懂题意并能理解应用分类讨论解决问题本题的难解析:12【分析】 分103x ≤<,1132x ≤<,1223x ≤<,213x ≤<,1x =,5种情况讨论2,3x x 的范围,计算函数值,并求元素的和.【详解】 ①当103x ≤<时, 220,3x ⎡⎫∈⎪⎢⎣⎭,[)30,1x ∈, ∴ [][][]230x x x ===,[][][]230x x x ++= ;②当1132x ≤<时,22,13x ⎡⎫∈⎪⎢⎣⎭,331,2x ⎡⎫∈⎪⎢⎣⎭ , [][]20,x x ∴==[]31x =,[][][]231x x x ∴++=;③当1223x ≤<时,[)21,2x ∈ ,33,22x ⎡⎫∈⎪⎢⎣⎭[]0x ∴=,[]21x = ,[]31x = ,[][][]232x x x ∴++=; ④213x ≤<时,42,23x ⎡⎫∈⎪⎢⎣⎭,[)32,3x ∈ []0x ∴=,[]21x =,[]32x =,[][][]233x x x ∴++=;⑤当1x =时[]1x =,[]22x =,[]33x = ,[][][]236x x x ∴++={}0,1,2,3,6A ∴=,则A 中所有元素的和为0123612++++=.故答案为12【点睛】本题考查新定义的题型,需读懂题意,并能理解,应用,分类讨论解决问题,本题的难点是分类较多,不要遗漏每种情况三、解答题21.(1){|13}A B x x ⋂=;(2)3(2-,0][4⋃,)+∞. 【分析】(1)当1m =时,求出集合B ,A ,由此能求出A B .(2)由A B A ⋃=,得B A ⊆,当B =∅时,213m m -+,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,由此能求出m 的取值范围.【详解】解:(1)当1m =时,{|14}B x x =<,{|314}{|43}A x x x x =-<+=-<,{|13}A B x x ∴⋂=.(2)A B A =,B A ∴⊆,当B =∅时,213m m -+,解得4m ,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,解得302m -<, 综上,m 的取值范围为3(2-,0][4⋃,)+∞. 【点睛】结论点睛:本题考查交集、实数的取值范围的求法,并集、交集的结论与集合包含之间的关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆.22.(1)423a ≤≤;(2)23a ≤或4a ≥ 【分析】(1)考虑A 是B 的子集即可求解;(2)分类讨论当B 为空集和不为空集两种情况求解.【详解】(1)若x A ∈是x B ∈的充分条件,234a a ≤⎧⎨≥⎩,解得423a ≤≤; (2)A B =∅,当B =∅时,即3,0a a a ≥≤,当B ≠∅时,04a a >⎧⎨≥⎩或032a a >⎧⎨≤⎩,即203a <≤或4a ≥. 综上所述:23a ≤或4a ≥ 【点睛】此题考查根据充分条件与集合关系求解参数取值范围,易错点在于漏掉考虑空集情况. 23.(){}|5U A B x x ⋃=<,(){}|5U A B x x ⋂=≥.【分析】 首先根据题中所给的集合,根据补集的定义,求得{}|1UA x x =<,{0UB x =≤或5}x ,之后利用交集并集的定义求得结果.【详解】因为U =R ,{}{}1,05A x x B x x =≥=<<,所以{}|1U A x x =<,{0U B x =≤或5}x , 所以(){}|5UA B x x ⋃=<,(){}|5U A B x x ⋂=≥. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的运算,属于简单题目. 24.(1){|10}A x x =-<<,{|16}B x x =<<;(2)1a -或23a .【分析】(1)根据题意,由0a =可得结合A ,解不等式2760x x -+<可得集合B ,(2)根据题意,分A 是否为空集2种情况讨论,求出a 的取值范围,综合即可得答案.【详解】解:(1)根据题意,集合{|12A x a x a =-<<,}a R ∈,当0a =时,{|10}A x x =-<<,276016x x x -+<⇒<<,则{|16}B x x =<<,(2)根据题意,若A B ⊆,分2种情况讨论:①,当12a a -时,即1a -时,A =∅,A B ⊆成立;②,当12a a -<时,即1a >-时,A ≠∅,若A B ⊆,必有1126a a -⎧⎨⎩, 解可得23a ,综合可得a 的取值范围为1a -或23a .【点睛】本题考查集合的包含关系的应用,(2)中注意讨论A 为空集,属于基础题.25.{|1x x ≤或}23x ≤<【分析】先化简集合A ,B 中元素的性质,再求得U B ,进而由交集的定义求解即可. 【详解】由题,因为2320x x -+≥,解得2x ≥或1x ≤,所以{|2A x x =≥或}1x ≤,因为30x -≥,解得3x ≥,所以{}|3B x x =≥,所以{}U |3B x x =<,则(){U |1A B x x ⋂=≤或}23x ≤<【点睛】本题考查集合的交集、补集运算,考查解一元二次不等式,考查具体函数的定义域. 26.(1)见解析(2)10a -<≤【分析】(1)通过讨论a 的取值范围,求出不等式的解集即可.(2)解不等式组求得集合B ,通过讨论a 的范围求出A 的补集,再根据()U C A B ⋂恰有三个元素,建立不等式求解.【详解】(1)因为|1|10()x a a R -+->∈,所以|1|1->-x a ,当10a -< 即1a > 时,解集为R ,当10a -= 即1a = 时,解集为{}|1x x ≠ ,当10a -> 即1a < 时,11->-x a 或11-<-x a ,所以2x a >-或x a <,所以解集为{|2x x a >- 或}x a <.综上:1a > 时,解集为R ;1a = 时,解集为{}|1x x ≠ ;1a < 时,解集为{|2x x a >- 或}x a <.(2)因为2351410x x x x -⎧≤⎪+⎨⎪-+≥⎩, 所以23510410x x x x -⎧-≤⎪+⎨⎪-+≥⎩,所以()()29404210x x x x x ⎧⎛⎫+-≤≠-⎪ ⎪⎝⎭⎨⎪-+≥⎩, 解得942x -<≤ . 因为B 为不等式组2351410x x x x -⎧≤⎪+⎨⎪-+≥⎩的整数解集,所以{}3,2,1,0,1,2,3,4B =--- ,当1a > 时,U A =∅ 不满足()U C A B ⋂恰有三个元素. 当1a = 时,{}=1U A 不满足()U C A B ⋂恰有三个元素. 当1a < 时,{}=≤≤-|2U A x a x a ,21a -> ,因为()U C A B ⋂恰有三个元素,所以12224a a a a a <⎧⎪--≥⎨⎪--<⎩, 解得10a -<≤ .综上:a 的取值范围是10a -<≤.【点睛】本题主要考查了绝对值不等式,分式不等式及一元二次不等式的解法和集合的基本运算,还考查了转化化归的思想和运算求解的能力,属于中档题.。

(完整)高一数学必修一集合练习题及单元测试(含答案及解析),推荐文档

(完整)高一数学必修一集合练习题及单元测试(含答案及解析),推荐文档

集合练习题1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于( )A.{x|x≥3} B.{x|x≥2}C.{x|2≤x<3} D.{x|x≥4}2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=( )A.{3,5} B.{3,6} C.{3,7} D.{3,9}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=( )A.{x|x≥-1} B.{x|x≤2 } C.{x|0<x≤2}D.{x|-1≤x≤2} 4. 满足M⊆{,,,},且M∩{,,}={,}的集合M的个数是( ) A.1 B.2 C.3 D.45.集合A={0,2,a},B={1, }.若A∪B={0,1,2,4,16},则a的值为( )A.0 B.1 C.2 D.46.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=( )A.Ø B.{x|x<-1/2} C.{x|x>5/3} D.{x|-1/2<x<5/3} 7.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.8.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.9.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.10.已知集合A={-4,2a-1,},B={a-5,1-a,9},若A∩B={9},求a的值.11.已知集合A={1,3,5},B={1,2,-1},若A∪B={1,2,3,5},求x及A∩B. 12.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a的取值范围.13.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?集合测试一、选择题:本大题共10小题,每小题5分,共50分。

高中数学集合练习与答案

高中数学集合练习与答案

高中数学集合练习与答案一、选择题1. 已知集合{}6A x N x =∈<,{}2,xB y y x A ==∈,则A B 中元素的个数是( )A .1B .2C .3D .42.已知集合(){}|10A x x x =-≤,(){}|ln B x y x a ==-,若A B A =,则实数a 的取值范围为( ) A .(),0-∞ B .(],0-∞C .()1,+∞D .[)1,+∞ 3.已知集合,,则( )A .B .C .D .4.已知全集,集合为A .B .C .D .5. 若命题p 为:为A .B .C .D .6.下列命题正确的个数为①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行; ③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. A .0 B .1 C .2 D .37.设集合, ,则( )A .B .C .D . 8. 已知,则( )A .B .C .D .9. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题10. 设集合,集合,则集合( ) A .B .C .D .11 已知集合,,则=( ) A .B .C .D .12. 【河北省衡水中学2018届高三高考押题(一)理数试题试卷】在等比数列中,“是方程的两根”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件13. 设集合{|2}A x x =<, {}B x x a =,全集U R =,若UA B ⊆,则有( )A .0a =B .2a ≤C .2a ≥D .2a <14. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题 15. 设集合,,则( )A .B .C .D .16. 已知集合2{6}A x y x x ==-++,集合{1}B x x =≥,则A B =A.{23}x x -≤≤ B {1}x x ≥ C {13}x x ≤≤. D.{2}x x ≥-17.已知全集U=R ,则A .B .C .D .18.集合,,,若,则的取值范围是( )A .B .C .D . 19. 设集合{|1},{|1}A x x B x x =>-=≥,则“x A ∈且x B ∉”成立的充要条件是( )A .11x -<≤B .1x ≤C .1x >-D .11x -<<20.下列命题中的假命题是( )A .B .C .D .21. 已知全集,集合和的关系的韦恳(V enn )图如图所示,则阴影部分所示的集合的元素共有( )A .1个B .2个C .3个D .无穷个22. 设,,a b c R ∈,则“1abc =”是a b c a b c≤+=”的 A .充分条件但不是必要条件, B .必要条件但不是充分条件 C .充分必要条件 D .既不充分也不必要的条件23. 已知集合{|1}A x x =<,{|1x B x e =< },则( ) A .{|1}A B x x ⋂=< B .()R A C B R ⋃=C .{|}A B x x e ⋃=<D .(){|01}R C A B x x ⋂=<< 二、填空题 1.已知下列命题:①命题“2,35x R x x ∀∈+<”的否定是“2,35x R x x ∃∈+<”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝⌝∧为真命题”;③“2015a >”是“2017a >”的充分不必要条件;④“若0xy =,则0x =且0y =”的逆否命题为真命题 其中,所有真命题的序号是__________.答案一、选择题1. 已知集合{}6A x N x =∈<,{}2,xB y y x A ==∈,则A B 中元素的个数是( )A .1B .2C .3D .4【答案】C【解析】∵{}6A x N x =∈<, ∴{}0,1,2,3,4,5A =, 又{}2,xB y y x A ==∈, ∴{}1,2,4,8,16,32B =, ∴{}1,2,4AB =,有3个元素,故选:C .2.已知集合(){}|10A x x x =-≤,(){}|ln B x y x a ==-,若A B A =,则实数a 的取值范围为( ) A .(),0-∞ B .(],0-∞C .()1,+∞D .[)1,+∞【答案】A【解析】(){}|1001A x x x x =-≤⇒≤≤(){}|ln B x y x a x a ==-⇒>A B A A B ⋂=⇒⊆所以0a < 故答案选A 3.已知集合,,则( )A .B .C .D .【答案】A 【解析】集合集合,则,故选A.4. 已知全集,集合为A .B .C .D .【解析】因为,所以或.所以.故选B.5.若命题p为:为A.B.C.D.【答案】C【解析】根据的构成方法得,为.故选C.6.下列命题正确的个数为①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A.0 B.1 C.2 D.3【答案】C分析:逐一判断每个命题的真假,得到正确命题的个数.详解:对于①,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,所以该命题是真命题;对于②,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,所以该命题是假命题;对于③,两两相交的三条直线最多可以确定三个平面,是真命题;对于④,如果两个平面有三个公共点,则这两个平面相交或重合,所以该命题是假命题.故答案为:C.7.设集合,,则()A.B.C.D.【答案】B【解析】A={x|y=log2(2﹣x)}={x|x<2},B={x|x2﹣3x+2<0}={x|1<x<2},则∁A B={x|x≤1},故选:B.8.已知,则()A.B.C.D.【解析】试题分析:因为,,所以,.选.9.下列有关命题的说法正确的是()A.命题“若,则”的否命题为“若,则”B.命题“若,则,互为相反数”的逆命题是真命题C.命题“,使得”的否定是“,都有”D.命题“若,则”的逆否命题为真命题【答案】B【解析】“若,则”的否命题为“若,则”,错误;逆命题是“若则,互为相反数,”,正确;“,使得”的否定是“,都有”,错误;“若,则”为假命题,所以其逆否命题也为假命题,错误,故选B.10.设集合,集合,则集合()A.B.C.D.【答案】C【解析】由题意得,,∴,∴.故选C.11已知集合,,则=()A.B.C.D.【答案】B【解析】由题知,,则故本题答案选.12.在等比数列中,“是方程的两根”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】由韦达定理知,则,则等比数列中,则.在常数列或中,不是所给方程的两根.则在等比数列中,“,是方程的两根”是“”的充分不必要条件.故本题答案选.13. 设集合{|2}A x x =<, {}B x x a =,全集U R =,若UA B ⊆,则有( )A .0a =B .2a ≤C .2a ≥D .2a < 【答案】C【解析】(){}2,2,U A C B x a =-=≤,所以2a ≤,故选C.14. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题【答案】B 【解析】 “若,则”的否命题为“若,则”,错误;逆命题是 “若则,互为相反数,”,正确; “,使得”的否定是“,都有”,错误;“若,则”为假命题,所以其逆否命题也为假命题,错误,故选B.15. 设集合,,则( )A .B .C .D .【答案】B【解析】由题意可得:,则集合=.本题选择B 选项.16. 已知集合2{6}A x y x x ==-++,集合{1}B x x =≥,则A B =A.{23}x x -≤≤ B {1}x x ≥C {13}x x ≤≤. D.{2}x x ≥-【答案】C【解析】由题意知集合2{|60}{|23}A x x x x x =--≤=-≤≤,所以{|13}AB x x =≤≤ ,故选C 。

高一数学必修一集合练习题含答案

高一数学必修一集合练习题含答案

高一数学必修一集合练习题含答案进入高中一之后,第一个学习的重要数学知识点就是集合,学生需要通过练习巩固集合内容,下面是店铺给大家带来的高一数学必修一集合练习题,希望对你有帮助。

高一数学必修一集合练习题一、选择题(每小题5分,共20分)1.下列命题中正确的( )①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4A.只有①和④B.只有②和③C.只有②D.以上语句都不对【解析】{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确;③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示.故选C.【答案】 C2.用列举法表示集合{x|x2-2x+1=0}为( )A.{1,1}B.{1}C.{x=1}D.{x2-2x+1=0}【解析】集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.【答案】 B3.已知集合A={x∈N*|-5≤x≤5},则必有( )A.-1∈AB.0∈AC.3∈AD.1∈A【解析】∵x∈N*,-5≤x≤5,∴x=1,2,即A={1,2},∴1∈A.故选D.【答案】 D4.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为( )A.0B.2C.3D.6【解析】依题意,A*B={0,2,4},其所有元素之和为6,故选D.【答案】 D二、填空题(每小题5分,共10分)5.已知集合A={1,a2},实数a不能取的值的集合是________.【解析】由互异性知a2≠1,即a≠±1,故实数a不能取的值的集合是{1,-1}.【答案】{1,-1}6.已知P={x|2【解析】用数轴分析可知a=6时,集合P中恰有3个元素3,4,5.【答案】 6三、解答题(每小题10分,共20分)7.选择适当的方法表示下列集合集.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于2且小于6的有理数;(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.【解析】(1)方程的实数根为-1,0,3,故可以用列举法表示为{-1,0,3},当然也可以用描述法表示为{x|x(x2-2x-3)=0},有限集.(2)由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|2(3)用描述法表示该集合为M={(x,y)|y=-x+4,x∈N,y∈N}或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.8.设A表示集合{a2+2a-3,2,3},B表示集合{2,|a+3|},已知5∈A且5∉B,求a的值.【解析】因为5∈A,所以a2+2a-3=5,解得a=2或a=-4.当a=2时,|a+3|=5,不符合题意,应舍去.当a=-4时,|a+3|=1,符合题意,所以a=-4.9.(10分)已知集合A={x|ax2-3x-4=0,x∈R}.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.【解析】(1)∵A中有两个元素,∴方程ax2-3x-4=0有两个不等的实数根,∴a≠0,Δ=9+16a>0,即a>-916.∴a>-916,且a≠0.(2)当a=0时,A={-43};当a≠0时,若关于x 的方程ax2-3x-4=0有两个相等的实数根,Δ=9+16a=0,即a=-916;若关于x的方程无实数根,则Δ=9+16a<0,即a<-916;故所求的a的取值范围是a≤-916或a=0.高一数学必修一集合知识点集合通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。

高中数学必修一集合练习题

高中数学必修一集合练习题

高中数学必修一集合练习题1. 集合的表示法:给定集合A={1, 2, 3},请用描述法表示集合A。

2. 子集与真子集:若集合B={x | x是A的子集},集合A={1, 2, 3},请列出集合B的所有元素,并判断哪些是A的真子集。

3. 集合的并集:已知集合C={1, 2}和集合D={2, 3},请计算C∪D。

4. 集合的交集:若集合E={1, 3, 5}和集合F={2, 3, 5},请找出E∩F。

5. 集合的差集:给定集合G={1, 2, 3, 4}和集合H={3, 4, 5},求G-H。

6. 集合的补集:设全集U={1, 2, 3, 4, 5, 6},集合I={2, 4, 6},请求∁_U I。

7. 幂集:集合J={a, b},请列出J的所有幂集。

8. 集合的包含关系:若集合K={x | x是小于10的正整数},集合L={1, 3, 5, 7, 9},请判断K和L之间的关系。

9. 集合相等:集合M={x | x是偶数}和集合N={2, 4, 6, 8, 10},判断M和N是否相等。

10. 集合的笛卡尔积:若集合O={1, 2}和集合P={a, b},请计算O×P。

解答提示:- 对于第1题,描述法表示集合A可以写作A={x | x是正整数,且1≤x≤3}。

- 第2题中,集合B的所有元素包括空集和所有A的子集,即B={∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}。

其中,A的真子集是不包含A本身的所有子集。

- 第3题,C∪D={1, 2, 3}。

- 第4题,E∩F={3, 5}。

- 第5题,G-H={1, 2}。

- 第6题,∁_U I={1, 3, 5}。

- 第7题,J的幂集包括所有J的子集,即{∅, {a}, {b}, {a, b}}。

- 第8题,K包含L,因为L的所有元素都在K中。

- 第9题,M和N相等,因为它们包含相同的元素。

(必考题)高中数学必修一第一单元《集合》测试卷(答案解析)(3)

(必考题)高中数学必修一第一单元《集合》测试卷(答案解析)(3)

一、选择题1.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,2.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃3.设全集U =R ,{}2560A x x x =-->,{}5B x x a =-<(a 为常数),且11B ∈,则下列成立的是( )A .U AB R = B .UA B R =C .UUAB R = D .AB R =4.已知集合A 、B 均为非空集合,定义{*|()A B x x A B =∈⋃且}()x A B ∉⋂,若{}1,0,1,2,3A =-,{}2|1,B x x t t A ==+∈,则集合*A B 的子集共( )A .64个B .63个C .32个D .31个5.已知{}lg M y y x ==,{}xN y y a ==,则MN =( )A .0,B .RC .∅D .,06.设集合{,}A a b =,{}220,,B a b =-,若A B ⊆,则⋅=a b ( )A .-1B .1C .-1或1D .0 7.已知集合{,}P a b =,{|}Q M M P =⊆,则P 与Q 的关系为( )A .P Q ⊆B .Q P ⊆C .P Q ∈D .P Q ∉8.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( ) A .3m ≥B .23m ≤≤C .3m ≤D .2m ≥9.能正确表示集合{}02M x x =∈≤≤R 和集合{}20N x x x =∈-=R 的关系的韦恩图的是( )A .B .C .D .10.设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中a ,b ∈R 下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集11.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,112.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-二、填空题13.设P 为非空实数集满足:对任意给定的x y P ∈、(x y 、可以相同),都有x y P +∈,x y P -∈,xy P ∈,则称P 为幸运集.①集合{2,1,0,1,2}P =--为幸运集;②集合{|2,}P x x n n ==∈Z 为幸运集;③若集合1P 、2P 为幸运集,则12P P 为幸运集;④若集合P 为幸运集,则一定有0P ∈;其中正确结论的序号是________ 14.已知集合2|05x A x x -⎧⎫=<⎨⎬+⎩⎭,{}2230,B x x x x R =--≥∈,则A B =_________. 15.已知集合(){}22112|2103x P x Q x x x m ⎧-⎫=-=-+-⎨⎬⎩⎭≤,≤,其中m >0,全集U =R .若“Ux P ∈”是“∈Ux Q ”的必要不充分条件,则实数m 的取值范围为__________.16.已知集合()2{}2|1A x log x =-<,{|26}B x x =<<,且A B =________.17.设P Q 、是两个非空集合,定义集合间的一种运算“”:{},P Q x P Q x P Q =∈∉且,如果{P y y ==,{}|4,0x Q y y x ==>,则PQ =____________.18.若关于x 的方程2210ax x ++=的解集有唯一子集 ,则实数a 的取值范围是_____. 19.若{}|224xA x ≤≤,1|1xB x a x -⎧⎫=<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围为_________;20.已知集合{}A a =-,,2||b aB a ⎧⎫=⎨⎬⎩⎭,且A B =,则a b +=______。

新人教版高中数学必修一《集合间的基本关系》同步练习(含答案)

新人教版高中数学必修一《集合间的基本关系》同步练习(含答案)

集合间的基本关系1.下列说法:①空集没有子集;②任何集合至少有两个子集; ③空集是任何集合的真子集; ④若∅⊂≠A ,则A ≠∅, 其中正确的个数是( )¥A .0B .1C .2D .32.已知集合A ={x |ax 2+2x +a =0,a ∈R },若集合A 有且仅有2个子集,则a 的取值 是( ) A .1 B .-1 C .0,1 D .-1,0,1 3.设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( )A .A ⊆B B .B ⊆AC .A ∈BD .B ∈A,4.下列五个写法:①{0}∈{0,1};②∅⊂≠{0};③{0,-1,1}{-1,0,1};④0∈∅;⑤ {(0,0)}={0},其中写法错误的个数是( )A .2B .3C .4D .5 5.}0352|{2=--=x x x M ,}1|{==mx x N ,若M N ≠⊂,则m 的取值集合为( )A.{2}-B.13⎧⎫⎨⎬⎩⎭ C.12,3⎧⎫-⎨⎬⎩⎭D.12,0,3⎧⎫-⎨⎬⎩⎭6. 满足{1,2,3}{1,2,3,4,5,6}M ⊂⊂≠≠的集合的个数为( )》二、填空题(本大题共3小题,每小题6分,共18分) 7.满足{1}A {1,2,3}的集合A 的个数是________.8.已知集合A ={x |x =a +16,a ∈Z },B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z },则A 、 B 、C之间的关系是________.9.已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m=________.三、解答题(本大题共3小题,共46分)`10.(14分)下面的Venn图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系,问集合A,B,C,D,分别是哪种图形的集合*11.(15分)已知集合A={x|x2-3x-10≤0},(1)若B⊆A,B={x|m+1≤x≤2m-1},求实数m的取值范围;(2)若A⊆B,B={x|m-6≤x≤2m-1},求实数m的取值范围;(3)若A=B,B={x|m-6≤x≤2m-1},求实数m的取值范围.~12.(17分)设集合A={x|x2-5x+6=0},B={x|x2-(2a+1)x+a2+a=0},若B⊆A,求a的值[一、选择题解析:空集只有一个子集,就是它本身,空集是任何非空集合的真子集,故仅④是正确的.解析:因为集合A 有且仅有2个子集,所以A 仅有一个元素,即方程ax 2+2x +a =0(a ∈)仅有一个根或两个相等的根.(1)当a =0时,方程为2x =0,此时A ={0},符合题意. (2)当a ≠0时,由Δ=22-4·a ·a =0,即a 2=1, ∴a =±1. ;此时A ={-1}或A ={1},符合题意. ∴a =0或a =±1.3. D 解析:∵B 的子集为{1},{2},{1,2},,∴A ={x |x ⊆B }={{1},{2},{1,2},},∴B ∈A . 4. B 解析:只有②③正确.5. D 解析: 1{,3},2M =-(1)0,N m =∅⇒=(2)1{}2,2N m =-⇒=-(3)1{3},3N m =⇒=∴ 的取值集合为12,0,.3⎧⎫-⎨⎬⎩⎭~6. B 解析:集合M 真包含集合}3,2,1{,M 中一定有元素1,2,3且除此之外至少还有一个元素. 又集合M 真包含于集合}6,5,4,3,2,1{,所以M 中最少有4个元素,最多有5个元素,集合M 的个数等于集合}6,5,4{非空真子集的个数,即6223=-. 二、填空题7. 3 解析:A 中一定有元素1,所以A 可以为{1,2},{1,3},{1,2,3}. 8. AB =C 解析:用列举法寻找规律.9. 1 解析:∵BA ,∴m 2=2m -1,即(m -1)2=0,∴ m =1.当m =1时,A ={-1,3,1},B ={3,1},满足BA . 三、解答题10.解:观察Venn 图,得B 、C 、D 、E 均是A 的子集,且有E D ,D C .#梯形、平行四边形、菱形、正方形都是四边形, 故A ={四边形};梯形不是平行四边形,而菱形、正方形是平行四边形, 故B ={梯形},C ={平行四边形};正方形是菱形,故D ={菱形},E ={正方形}.11.解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)∵B ⊆A ,∴①若B =,则m +1>2m -1,即m <2,此时满足B ⊆A .,②若B ≠,则⎩⎪⎨⎪⎧m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3].(2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧ 2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3,4].(3)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈,即不存在m 值使得A =B .12.解:(方法一) A ={x |x 2-5x +6=0}={2,3}, 由B ⊆A ,得B =,或B ={2},或B ={3},或B ={2,3}. 因为Δ=(2a +1)2-4a 2-4a =1>0, 所以B 必有两个元素.则B ={2,3},需2a +1=5和a 2+a =6同时成立,所以a =2. 综上所述:a =2.(方法二) A ={x |x 2-5x +6=0}={2,3},B ={x |x 2-(2a +1)x +a 2+a =0}={x |(x -a )(x -a -1)=0}={a ,a +1}, 因为a ≠a +1,所以当B ⊆A 时,只有a =2且a +1=3.所以a =2。

高中数学必修一各章节同步练习(附答案解析)

高中数学必修一各章节同步练习(附答案解析)

第一章 1.1 1.1.1集合的含义与表示基础巩固一、选择题1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是( )A .②B .③C .②③D .①②③[答案] C[解析] 高一数学中的难题的标准不确定,因而构不成集合,而正三角形标准明确,能构成集合,方程x 2-2=0的解也是确定的,能构成集合,故选C.2.已知集合A ={x |x ≤10},a =2+3,则a 与集合A 的关系是( ) A .a ∈A B .a ∉A C .a =A D .{a }∈A[答案] A[解析] 由于2+3<10,所以a ∈A .3.(2015·山东临沂检测)集合{x ∈N *|x -2<3}的另一种表示形式是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5} D .{1,2,3,4,5}[答案] B[解析] 由x -2<3,得x <5,又x ∈N *,所以x =1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.4.方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27的解集是( )A.⎩⎪⎨⎪⎧x =3y =-7B .{x ,y |x =3且y =-7}C .{3,-7}D .{(x ,y )|x =3且y =-7} [答案] D[解析] 解方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27得⎩⎪⎨⎪⎧x =3y =-7,用描述法表示为{(x ,y )|x =3且y =-7},用列举法表示为{(3,-7)},故选D. 5.已知集合S ={a ,b ,c }中的三个元素是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形[答案] D[解析] 由集合中元素的互异性知a ,b ,c 互不相等,故选D.6.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为( )A .2B .3C .0或3D .0或2或3[答案] B[解析] 因为2∈A ,所以m =2或m 2-3m +2=2,解得m =0或m =2或m =3.又集合中的元素要满足互异性,对m 的所有取值进行一一检验可得m =3,故选B.二、填空题7.用符号∈与∉填空:(1)0________N *;3________Z ; 0________N ;(-1)0________N *; 3+2________Q ;43________Q .(2)3________{2,3};3________{(2,3)}; (2,3)________{(2,3)};(3,2)________{(2,3)}. (3)若a 2=3,则a ________R ,若a 2=-1,则a ________R . [答案] (1)∉ ∉ ∈ ∈ ∉ ∈ (2)∈ ∉ ∈ ∉ (3)∈ ∉[解析] (1)只要熟记常用数集的记号所对应的含义就很容易辨别.(2)中3是集合{2,3}的元素;但整数3不是点集{(2,3)}的元素;同样(2,3)是集合{(2,3)}的元素;因为坐标顺序不同,(3,2)不是集合{(2,3)}的元素.(3)平方等于3的数是±3,当然是实数,而平方等于-1的实数是不存在的.8.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba,b ,则b -a =________.[答案] 2[解析] 显然a ≠0,则a +b =0,a =-b ,b a=-1,所以a =-1,b =1,b -a =2. 三、解答题9.已知集合A 含有a -2,2a 2+5a,12三个元素,且-3∈A ,求a 的值. [解析] ∵-3∈A ,则-3=a -2或-3=2a 2+5a , ∴a =-1或a =-32.当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,∴a =-1舍去. 当a =-32时,经检验,符合题意.故a =-32.[注意] (1)分类讨论意识的建立.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识,如本例按照元素-3与a -2,2a 2+5a,12的关系分类 ,即可做到不重不漏.(2)注意集合中元素的互异性.求解与集合有关的字母参数时,需利用集合元素的互异性来检验所求参数是否符合要求,如本例在求出a 的值后,需代入验证是否满足集合中元素的互异性.10.已知集合A ={x |ax 2-3x +2=0}. (1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.[分析] 将求集合中元素问题转化为方程根问题.(1)集合A 为单元素集合,说明方程有唯一根或两个相等的实数根.要注意方程ax 2-3x +2=0可能不是一元二次方程.(2)至少有一个元素,说明方程有一根或两根.[解析] (1)因为集合A 是方程ax 2-3x +2=0的解集,则当a =0时,A ={23},符合题意;当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根, 则Δ=9-8a =0,解得a =98,此时A ={43},符合题意.综上所述,当a =0时,A ={23},当a =98时,A ={43}.(2)由(1)可知,当a =0时,A ={23}符合题意;当a ≠0时,要使方程ax 2-3x +2=0有实数根, 则Δ=9-8a ≥0,解得a ≤98且a ≠0.综上所述,若集合A 中至少有一个元素,则a ≤98.[点评] “a =0”这种情况容易被忽视,如“方程ax 2+2x +1=0”有两种情况:一是“a =0”,即它是一元一次方程;二是“a ≠0”,即它是一元二次方程,只有在这种情况下,才能用判别式“Δ”来解决.能力提升一、选择题1.(2015·河北衡水中学期末)下列集合中,不同于另外三个集合的是( )A .{x |x =1}B .{x |x 2=1} C .{1} D .{y |(y -1)2=0}[答案] B[解析] {x |x 2=1}={-1,1},另外三个集合都是{1},选B.2.下列六种表示法:①{x =-1,y =2};②{(x ,y )|x =-1,y =2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x ,y )|x =-1或y =2}.能表示方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解集的是( )A .①②③④⑤⑥B .②③④⑤C .②⑤D .②⑤⑥[答案] C [解析] 方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解是⎩⎪⎨⎪⎧x =-1,y =2.故选C.3.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M[答案] D[解析] 当x >0,y >0,z >0时,代数式的值为4,所以4∈M ,故选D.4.设A ,B 为两个实数集,定义集合A +B ={x |x 1+x 2,x 1∈A ,x 2∈B },若A ={1,2,3},B ={2,3},则集合A +B 中元素的个数为( )A .3B .4C .5D .6[答案] B[解析] 当x 1=1时,x 1+x 2=1+2=3或x 1+x 2=1+3=4;当x 1=2时,x 1+x 2=2+2=4或x 1+x 2=2+3=5;当x 1=3时,x 1+x 2=3+2=5或x 1+x 2=3+3=6.∴A +B ={3,4,5,6},共4个元素.二、填空题5.已知P ={x |2<x <k ,x ∈N ,k ∈R },若集合P 中恰有3个元素,则实数k 的取值范围是________.[答案] {k |5<k ≤6}[解析] x 只能取3,4,5,故5<k ≤6.6.(2015·湖南郴州模拟)用列举法写出集合{33-x ∈Z |x ∈Z }=________.[答案] {-3,-1,1,3} [解析] ∵33-x∈Z ,x ∈Z , ∴3-x 为3的因数. ∴3-x =±1,或3-x =±3. ∴33-x =±3,或33-x=±1. ∴-3,-1,1,3满足题意. 三、解答题7.数集A 满足条件:若a ∈A ,则1+a 1-a ∈A (a ≠1).若13∈A ,求集合中的其他元素.[分析] 已知a ∈A ,1+a 1-a ∈A ,将a =13代入1+a1-a 即可求得集合中的另一个元素,依次,可得集合中的其他元素.[解析] ∵13∈A ,∴1+131-13=2∈A ,∴1+21-2=-3∈A ,∴1-31+3=-12∈A ,∴1-121+12=13∈A . 故当13∈A 时,集合中的其他元素为2,-3,-12.8.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”. (1)判断集合A ={-1,1,2}是否为可倒数集; (2)试写出一个含3个元素的可倒数集.[解析] (1)由于2的倒数为12不在集合A 中,故集合A 不是可倒数集.(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必有一个元素有a =1a,即a =±1,故可以取集合A ={1,2,12}或{-1,2,12}或{1,3,13}等.第一章 1.1 1.1.2集合间的基本关系基础巩固一、选择题1.对于集合A,B,“A⊆B”不成立的含义是( )A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A[答案] C[解析] “A⊆B”成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,故选C.2.下列命题中,正确的有( )①空集是任何集合的真子集;②若A B,B C,则A C;③任何一个集合必有两个或两个以上的真子集;④如果不属于B的元素也不属于A,则A⊆B.A.①②B.②③C.②④D.③④[答案] C[解析] ①空集只是空集的子集而非真子集,故①错;②真子集具有传递性;故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确,故选C.3.已知集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x是等腰直角三角形},D={x|x是等边三角形},则( )A.A⊆B B.C⊆BC.D⊆C D.A⊆D[答案] B[解析] ∵正方形必为矩形,∴C⊆B.4.下列四个集合中,是空集的是( )A.{0} B.{x|x>8,且x<5}C.{x∈N|x2-1=0} D.{x|x>4}[答案] B[解析] 选项A、C、D都含有元素.而选项B无元素,故选B.5.若集合A⊆{1,2,3},且A中至少含有一个奇数,则这样的集合A有( )A.3个B.4个C.5个D.6个[答案] D[解析] 集合{1,2,3}的子集共有8个,其中至少含有一个奇数的有{1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.6.设集合A ={x |1<x <2},B ={x |x <a },若A B ,则实数a 的取值范围为( ) A .a ≥2 B .a ≤1 C .a ≥1 D .a ≤2[答案] A[解析] 在数轴上表示出两个集合(图略),因为A B ,所以a ≥2. 二、填空题7.用适当的符号填空:(1){x |x 是菱形}________{x |x 是平行四边形}; {x |x 是三角形}________{x |x 是斜三角形}. (2)Z ________{x ∈R |x 2+2=0}; 0________{0};Ø________{0};N ________{0}. [答案] (1)(2) ∈[解析] (1)判断两个集合之间的关系,可以根据子集的定义来加以判断,特别要注意判断出包含关系后,还要进一步判断是否具有真包含关系.(2)集合{x ∈R |x 2+2=0}中,由于实数范围内该方程无解,因此{x ∈R |x 2+2=0}=Ø;0是集合{0}中的元素,它们之间是属于关系;{0}是含有一个元素0的集合;Ø是不含任何元素的集合,故Ø{0};自然数集N 中含有元素0,但不止0这一个元素.8.(2012·大纲全国改编)已知集合A ={1,2,m 3},B ={1,m },B ⊆A ,则m =________. [答案] 0或2或-1[解析] 由B ⊆A 得m ∈A ,所以m =m 3或m =2,所以m =2或m =-1或m =1或m =0,又由集合中元素的互异性知m ≠1.所以m =0或2或-1.三、解答题9.判断下列集合间的关系:(1)A ={x |x -3>2},B ={x |2x -5≥0}; (2)A ={x ∈Z |-1≤x <3},B ={x |x =|y |,y ∈A }. [解析] (1)∵A ={x |x -3>2}={x |x >5},B ={x |2x -5≥0}={x |x ≥52},∴利用数轴判断A 、B 的关系. 如图所示,AB .(2)∵A ={x ∈Z |-1≤x <3}={-1,0,1,2},B ={x |x =|y |,y ∈A ,∴B ={0,1,2},∴B A .10.已知集合M ={x |x =m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z },P ={x |x =p 2+16,p ∈Z },试确定M ,N ,P 之间的关系.[解析] 解法一:集合M ={x |x =m +16,m ∈Z },对于集合N ,当n 是偶数时,设n =2t (t ∈Z ), 则N ={x |x =t -13,t ∈Z };当n 是奇数时,设n =2t +1(t ∈Z ),则N ={x |x =2t +12-13,t ∈Z }={x |x =t +16,t ∈Z }.观察集合M ,N 可知M N .对于集合P ,当p 是偶数时,设p =2s (s ∈Z ),则P ={x |x =s +16,s ∈Z },当p 是奇数时,设p =2s -1(s ∈Z ),则P ={x |x =2s -12+16,s ∈Z } ={x |x =s -13,s ∈Z }.观察集合N ,P 知N =P . 综上可得:MN =P .解法二:∵M ={x |x =m +16,m ∈Z }={x |x =6m +16,m ∈Z }={x |x =3×2m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z }={x |x =3n -26,n ∈Z }={x |x =3n -1+16,n -1∈Z },P ={x |x =p 2+16,p ∈Z }={x |x =3p +16,p ∈Z },比较3×2m +1,3(n -1)+1与3p +1可知,3(n -1)+1与3p +1表示的数完全相同, ∴N =P,3×2m +1只相当于3p +1中当p 为偶数时的情形, ∴MP =N .综上可知M P =N .能力提升一、选择题1.(2015·瓮安一中高一期末试题)设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k∈Z },则( )A .M =NB .M NC .M ND .M 与N 的关系不确定[答案] B[解析] 解法1:用列举法,令k =-2,-1,0,1,2…可得M ={…-34,-14,14,34,54…}, N ={…0,14,12,34,1…},∴MN ,故选B.解法2:集合M 的元素为:x =k 2+14=2k +14(k ∈Z ),集合N 的元素为:x =k 4+12=k +24(k ∈Z ),而2k +1为奇数,k +2为整数,∴M N ,故选B.[点评] 本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k 是任意整数,则k +m (m 是一个整数)也是任意整数,而2k +1,2k -1均为任意奇数,2k 为任意偶数.2.(2015·湖北孝感期中)集合A ={(x ,y )|y =x }和B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5,则下列结论中正确的是( )A .1∈AB .B ⊆AC .(1,1)⊆BD .Ø∈A[答案] B[解析] B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5={(1,1)},故选B. 3.已知集合A ={1,2},B ={x |ax -2=0},若B ⊆A ,则a 的值不可能是( ) A .0 B .1 C .2 D .3[答案] D[解析] 由题意知,a =0时,B =Ø,满足题意;a ≠0时,由2a∈A ⇒a =1,2,所以a 的值不可能是3.4.集合P ={3,4,5},Q ={6,7},定义P *Q ={(a ,b )|a ∈P ,b ∈Q },则P *Q 的子集个数为( )A .7B .12C .32D .64[答案] D[解析] 集合P *Q 的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),共6个,故P *Q 的子集个数为26=64.二、填空题5.已知集合M ={x |2m <x <m +1},且M =Ø,则实数m 的取值范围是________. [答案] m ≥1[解析] ∵M =Ø,∴2m ≥m +1,∴m ≥1.6.集合⎩⎨⎧x ,y ⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =-x +2,y =12x +2⊆{(x ,y )|y =3x +b },则b =________.[答案] 2[解析] 解方程组⎩⎪⎨⎪⎧y =-x +2y =12x +2得⎩⎪⎨⎪⎧x =0y =2,代入y =3x +b 得b =2. 三、解答题7.设集合A ={-1,1},集合B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求实数a 、b 的值.[解析] ∵B 中元素是关于x 的方程x 2-2ax +b =0的根,且B ⊆{-1,1},∴关于x 的方程x 2-2ax +b =0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B ={x |x 2-2ax +b =0}⊆A ={-1,1},且B ≠Ø, ∴B ={-1}或B ={1}或B ={-1,1}. 当B ={-1}时,Δ=4a 2-4b =0且1+2a +b =0,解得a =-1,b =1. 当B ={1}时,Δ=4a 2-4b =0且1-2a +b =0,解得a =b =1. 当B ={-1,1}时,有(-1)+1=2a ,(-1)×1=b ,解得a =0,b =-1.8.设集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.[解析] (1)当m +1>2m -1,即m <2时,B =Ø,满足B ⊆A .当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,只需⎩⎪⎨⎪⎧ m +1≥-2,2m -1≤5,即2≤m ≤3.综上,当B ⊆A 时,m 的取值范围是{m |m ≤3}.(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5},∴集合A 的非空真子集个数为28-2=254.(3)∵x ∈R ,且A ={x |-2≤x ≤5}, B ={x |m +1≤x ≤2m -1},又不存在元素x 使x ∈A 与x ∈B 同时成立,∴当B =Ø,即m +1>2m -1,得m <2时,符合题意;当B ≠Q ,即m +1≤2m -1,得m ≥2时,⎩⎪⎨⎪⎧ m ≥2,m +1>5,或⎩⎪⎨⎪⎧ m ≥2,2m -1<-2,解得m >4.综上,所求m 的取值范围是{m |m <2或m >4}.第一章 1.1 1.1.3 第一课时并集和交集基础巩固一、选择题1.下面四个结论:①若a ∈(A ∪B ),则a ∈A ;②若a ∈(A ∩B ),则a ∈(A ∪B );③若a ∈A ,且a ∈B ,则a ∈(A ∩B );④若A ∪B =A ,则A ∩B =B .其中正确的个数为( )A .1B .2C .3D .4[答案] C[解析] ①不正确,②③④正确,故选C.2.已知集合M ={x |-3<x ≤5},N ={x |x >3},则M ∪N =( )A .{x |x >-3}B .{x |-3<x ≤5}C .{x |3<x ≤5}D .{x |x ≤5}[答案] A[解析] 在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.3.(2015·全国高考卷Ⅰ文科,1题)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2[答案] D[解析] A∩B={8,14},故选D.4.(2015·浙江省期中试题)集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=( )A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}[答案] D[解析] A∩B={1,2},(A∩B)∪C={1,2,3,4},故选D.5.若A∪B=Ø,则( )A.A=Ø,B≠ØB.A≠Ø,B=ØC.A=Ø,B=ØD.A≠Ø,B≠Ø[答案] C6.设集合A={x|-1≤x≤2},集合B={x|x≤a},若A∩B=Ø,则实数a的取值集合为( )A.{a|a<2} B.{a|a≥-1}C.{a|a<-1} D.{a|-1≤a≤2}[答案] C[解析] 如图.要使A∩B=Ø,应有a<-1.二、填空题7.若集合A={2,4,x},B={2,x2},且A∪B={2,4,x},则x=________.[答案] 0,1或-2[解析] 由已知得B⊆A,∴x2=4或x2=x,∴x=0,1,±2,由元素的互异性知x≠2,∴x =0,1或-2.8.已知集合A ={x |x ≥5},集合B ={x |x ≤m },且A ∩B ={x |5≤x ≤6},则实数m =________.[答案] 6[解析] 用数轴表示集合A 、B 如图所示.由于A ∩B ={x |5≤x ≤6},得m =6.三、解答题9.设集合A ={a 2,a +1,-3},B ={a -3,2a -1,a 2+1},A ∩B ={-3},求实数a 的值.[解析] ∵A ∩B ={-3},∴-3∈B .∵a 2+1≠-3,∴①若a -3=-3,则a =0,此时A ={0,1,-3},B ={-3,-1,1},但由于A ∩B ={1,-3}与已知A ∩B ={-3}矛盾,∴a ≠0.②若2a -1=-3,则a =-1,此时A ={1,0,-3},B ={-4,-3,2},A ∩B ={-3}.综上可知a =-1.10.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围.[解析] (1)∵B ={x |x ≥2},A ={x |-1≤x <3},∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a 2},B ∪C =C ⇔B ⊆C , ∴-a 2<2,∴a >-4. 能力提升一、选择题1.已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M 且a ≠b },则M ∪N =( )A .{0,1}B .{-1,0}C .{-1,0,1}D .{-1,1} [答案] C[解析] 由题意可知,集合N ={-1,0},所以M ∪N =M .2.若集合M ={(x ,y )|x +y =0},P ={(x ,y )|x -y =2},则M ∩P 等于( )A .(1,-1)B .{x =1或y =-1}C .{1,-1}D .{(1,-1)} [答案] D[解析] M ∩P 的元素是方程组⎩⎪⎨⎪⎧ x +y =0x -y =2的解∴M ∩P ={(1,-1)}.3.(2015·衡水高一检测)若集合A ,B ,C 满足A ∩B =A ,B ∪C =C ,则A 与C 之间的关系为( )A .C AB .AC C .C ⊆AD .A ⊆C [答案] D[解析] ∵A ∩B =A ,∴A ⊆B ,又B ∪C =C ,∴B ⊆C ,∴A ⊆C ,故选D.4.当x ∈A 时,若x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,由A 的所有孤立元素组成的集合称为A 的“孤星集”,若集合M ={0,1,3}的孤星集为M ′,集合N ={0,3,4}的孤星集为N ′,则M ′∪N ′=( )A .{0,1,3,4}B .{1,4}C .{1,3}D .{0,3} [答案] D[解析] 由条件及孤星集的定义知,M ′={3},N ′={0},则M ′∪N ′={0,3}.二、填空题5.以下四个推理:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆A ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的为________.[答案] ②③④[解析] ①是错误的,a ∈(A ∪B )时可推出a ∈A 或a ∈B ,不一定推出a ∈A .6.已知集合A ={x |x 2+px +q =0},B ={x |x 2-px -2q =0},且A ∩B ={-1},则A ∪B =________.[答案] {-2,-1,4}[解析] 因为A ∩B ={-1},所以-1∈A ,-1∈B ,即-1是方程x 2+px +q =0和x 2-px -2q =0的解,所以⎩⎪⎨⎪⎧ -12-p +q =0,-12+p -2q =0,解得⎩⎪⎨⎪⎧p =3,q =2, 所以A ={-1,-2},B ={-1,4},所以A ∪B ={-2,-1,4}.三、解答题7.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},A ∪B =R ,求a 的取值范围.[解析] ∵B ={x |x <-1或x >5},A ∪B =R ,∴⎩⎪⎨⎪⎧2a <-1,a +8≥5,解得-3≤a <-12. 8.设A ={x |x 2+8x =0},B ={x |x 2+2(a +2)x +a 2-4=0},其中a ∈R .如果A ∩B =B ,求实数a 的取值范围.[解析] ∵A ={x }x 2+8x =0}={0,-8},A ∩B =B ,∴B ⊆A .当B =Ø时,方程x 2+2(a +2)x +a 2-4=0无解,即Δ=4(a +2)2-4(a 2-4)<0,得a <-2.当B ={0}或{-8}时,这时方程的判别式 Δ=4(a +2)2-4(a 2-4)=0,得a =-2.将a =-2代入方程,解得x =0,∴B ={0}满足.当B ={0,-8}时,⎩⎪⎨⎪⎧ Δ>0,-2a +2=-8,a 2-4=0,可得a =2.综上可得a =2或a ≤-2. [点评] (1)当集合B ⊆A 时,如果集合A 是一个确定的集合,而集合B 不确定,运算时,要考虑B =Ø的情形,切不可漏掉.(2)利用集合运算性质化简集合,有利于准确了解集合之间的关系.第一章 1.1 1.1.3 第二课时补集基础巩固一、选择题1.(2015·重庆三峡名校联盟)设全集I ={1,2,3,4,5},集合A ={2,3,5},集合B ={1,2},则(∁I B )∩A 为( )A .{2}B .{3,5}C .{1,3,4,5}D .{3,4,5}[答案] B[解析] 因为全集I ={1,2,3,4,5},集合B ={1,2},则∁I B ={3,4,5}.所以(∁I B )∩A 为{3,5}.故选B.[易错警示] 本小题的关键是先求出集合B的补集,再求交集.集合的运算是集合关系的基础知识,要理解清楚,可能渗透在一个大题中,不熟练会导致整体看不懂或理解错误.2.设全集U={1,2,3,4,5},A={1,3,5},则∁U A的所有非空子集的个数为( )A.4 B.3C.2 D.1[答案] B[解析] ∵∁U A={2,4},∴非空子集有22-1=3个,故选B.3.若P={x|x<1},Q={x|x>-1},则( )A.P⊆Q B.Q⊆PC.(∁R P)⊆Q D.Q⊆∁R P[答案] C[解析] ∵P={x|x<1},∴∁R P={x|x≥1}.又Q={x|x>-1},∴(∁R P)⊆Q,故选C.4.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( )A.M∪N B.M∩NC.(∁U M)∪(∁U M) D.(∁U M)∩(∁U N)[答案] D[解析] ∵M∪N={1,2,3,4},∴(∁U M)∩(∁U N)=∁U(M∪N)={5,6},故选D.5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∪(∁U B)等于( )A.{x|-2≤x≤4}B.{x|x≤3,或x≥4}C.{x|-2≤x<-1}D.{x|-1≤x≤3}[答案] A[解析] 由题意可得∁U B={x|-1≤x≤4},A={x|-2≤x≤3},所以A∪(∁U B)={x|-2≤x≤4},故选A.6.已知集合A={x|x<a},B={x|x<2},且A∪(∁R B)=R,则a满足( )A.a≥2B.a>2C.a<2 D.a≤2[答案] A[解析] ∁R B={x|x≥2},则由A∪(∁R B)=R得a≥2,故选A.二、填空题7.已知集合A={3,4,m},集合B={3,4},若∁A B={5},则实数m=________.[答案] 58.U =R ,A ={x |-2<x ≤1或x >3},B ={x |x ≥4},则∁U A =________,∁A B =________.[答案] {x |x ≤-2或1<x ≤3} {x |-2<x ≤1或3<x <4}三、解答题9.已知全集U ={2,3,a 2-2a -3},A ={2,|a -7|},∁U A ={5},求a 的值.[解析] 解法1:由|a -7|=3,得a =4或a =10.当a =4时,a 2-2a -3=5,当a =10时,a 2-2a -3=77∉U ,∴a =4.解法2:由A ∪∁U A =U 知⎩⎪⎨⎪⎧ |a -7|=3a 2-2a -3=5,∴a =4.10.(2015·唐山一中月考试题)已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3≤x ≤2},求A ∩B ,(∁U A )∪B ,A ∩(∁U B ).[分析] 利用数轴,分别表示出全集U 及集合A ,B ,先求出∁U A 及∁U B ,然后求解.[解析] 如图所示,∵A ={x |-2<x <3},B ={x |-3≤x ≤2},∴∁U A ={x |x ≤-2或3≤x ≤4},∁U B ={x |x <-3或2<x ≤4}.∴A ∩B ={x |-2<x ≤2},(∁U A )∪B ={x |x ≤2或3≤x ≤4},A ∩(∁UB )={x |2<x <3}.[点评] (1)数轴与Venn 图有同样的直观功效,在数轴上可以直观地表示数集,所以进行数集的交、并、补运算时,经常借助数轴求解.(2)不等式中的等号在补集中能否取到要引起重视,还要注意补集是全集的子集.能力提升一、选择题1.如图,阴影部分用集合A 、B 、U 表示为( )A .(∁U A )∩BB .(∁U A )∪(∁U B )C .A ∩(∁U B )D .A ∪(∁U B )[答案] C[解析] 阴影部分在A中,不在B中,故既在A中也在∁U B中,因此是A与∁U B的公共部分.2.设S为全集,则下列说法中,错误的个数是( )①若A∩B=Ø,则(∁S A)∪(∁S B)=S;②若A∪B=S,则(∁S A)∩(∁S B)=Ø;③若A∪B=Ø,则A=B.A.0 B.1C.2 D.3[答案] A[解析] 借助文氏图可知,①②正确,对于③于由A∪B=Ø,∴A=Ø,B=Ø,∴A=B,故选A.3.设全集U={1,2,3,4,5},集合S与T都是U的子集,满足S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5}则有( )A.3∈S,3∈T B.3∈S,3∈∁U TC.3∈∁U S,3∈T D.3∈∁U S,3∈∁U T[答案] B[解析] 若3∈S,3∈T,则3∈S∩T,排除A;若3∈∁U S,3∈T,则3∈(∁U S)∩T,排除C;若3∈∁U S,3∈∁U T,则3∈(∁U S)∩(∁U T),排除D,∴选B,也可画图表示.4.(2008·北京)已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于( )A.{x|-2≤x<4} B.{x|x≤3或x≥4}C.{x|-2≤x<-1} D.{x|-1≤x≤3}[答案] D[解析] ∁U B={x|-1≤x≤4},A∩∁U B={x|-1≤x≤3},故选D.二、填空题5.已知全集为R,集合M={x∈R|-2<x<2},P={x|x≥a},并且M⊆∁R P,则a的取值范围是________.[答案] a≥2[解析] M={x|-2<x<2},∁R P={x|x<a}.∵M⊆∁R P,∴由数轴知a≥2.6.已知U =R ,A ={x |a ≤x ≤b },∁U A ={x |x <3或x >4},则ab =________.[答案] 12[解析] ∵A ∪(∁U A )=R ,∴a =3,b =4,∴ab =12.三、解答题7.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁U A )∩B ={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.[提示] 由2∈B,4∈A ,列方程组求解.[解析] ∵(∁U A )∩B ={2},∴2∈B ,∴4-2a +b =0.①又∵A ∩(∁U B )={4},∴4∈A ,∴16+4a +12b =0.②联立①②,得⎩⎪⎨⎪⎧ 4-2a +b =0,16+4a +12b =0,解得⎩⎪⎨⎪⎧ a =87,b =-127.经检验,符合题意:∴a =87,b =-127. [点评] 由题目中所给的集合之间的关系,通过分析得出元素与集合之间的关系,是解决此类问题的关键.8.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.[分析] 本题从条件B ⊆∁R A 分析可先求出∁R A ,再结合B ⊆∁R A 列出关于a 的不等式组求a 的取值范围.[解析] 由题意得∁R A ={x |x ≥-1}.(1)若B =Ø,则a +3≤2a ,即a ≥3,满足B ⊆∁R A .(2)若B ≠Ø,则由B ⊆∁R A ,得2a ≥-1且2a <a +3,即-12≤a <3. 综上可得a ≥-12.第一章 1.1 1.1.3 第三课时习题课基础巩固一、选择题1.(2015·全国高考卷Ⅱ文科,1题)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∩B =( )A .{x |-1<x <3}B .{x |-1<x <0}C.{x|0<x<2} D.{x|2<x<3}[答案] A[解析] A∪B={x|-1<x<3},故选A.2.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)等于( )A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}[答案] B[解析] 画出数轴,如图所示,∁U B={x|x≤1},则A∩∁U B={x|0<x≤1},故选B.3.图中阴影部分所表示的集合是( )A.B∩(∁U(A∪C))B.(A∪B)∪(B∪C)C.(A∪C)∩(∁U B)D.[∁U(A∩C)]∪B[答案] A[解析] 阴影部分位于集合B内,且位于集合A、C的外部,故可表示为B∩(∁U(A∪C)),故选A.4.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-2或x>4},那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4}B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}[答案] A[解析] 方法1:∁U A={x|x<-2或x>3},∁U B={x|-2≤x≤4}∴(∁U A)∩(∁U B)={x|3<x≤4},故选C.方法2:A∪B={x|x≤3或x>4},(∁U A)∩(∁U B)=∁U(A∪B)={x|3<x≤4}.故选A.5.已知集合A={x|-1≤x≤1},B={x|-1≤x≤a},且(A∪B)⊆(A∩B),则实数a=( )A.0 B.1C.2 D.3[答案] B[解析] ∵(A ∪B )⊆(A ∩B ),∴(A ∪B )=(A ∩B ), ∴A =B ,∴a =1.6.设U 为全集,对集合X ,Y 定义运算“*”,X *Y =∁U (X ∩Y ),对于任意集合X ,Y ,Z ,则(X *Y )*Z =( )A .(X ∪Y )∩∁U ZB .(X ∩Y )∪∁U ZC .(∁U X ∪∁U Y )∩ZD .(∁U X ∩∁U Y )∪Z [答案] B[解析] X *Y =∁U (X ∩Y )(X *Y )*Z =∁U [∁U (X ∩Y )∩Z ]=∁U (∁U (X ∩Y ))∪∁U Z =(X ∩Y )∪∁U Z ,故选B. 二、填空题7.(河北孟村回民中学2014~2015学年高一九月份月考试题)U ={1,2},A ={x |x 2+px +q =0},∁U A ={1},则p +q =________.[答案] 0[解析] 由∁U A ={1},知A ={2}即方程x 2+px +q =0有两个相等根2,∴p =-4,q =4,∴p +q =0.8.已知集合A ={(x ,y )|y =2x -1},B ={(x ,y )|y =x +3},若m ∈A ,m ∈B ,则m 为________.[答案] (4,7)[解析] 由m ∈A ,m ∈B 知m ∈(A ∩B ), 由⎩⎪⎨⎪⎧y =2x -1y =x +3,得⎩⎪⎨⎪⎧x =4y =7,∴A ∩B ={(4,7)}.三、解答题9.已知全集U =R ,A ={x |2≤x <5},B ={x |3≤x <7},求: (1)(∁R A )∩(∁R B ) (2)∁R (A ∪B ) (3)(∁R A )∪(∁R B ) (4)∁R (A ∩B )[分析] 在进行集合运算时,充分利用数轴工具是十分有效的手段,此例题可先在数轴上画出集合A 、B ,然后求出A ∩B ,A ∪B ,∁R A ,∁R B ,最后可逐一写出各小题的结果.[解析] 如图所示,可得A ∩B ={x |3≤x <5},A ∪B ={x |2≤x <7}.∁R A ={x |x <2或x ≥5}, ∁R B ={x |x <3或x ≥7}. 由此求得(1)(∁R A )∩(∁R B )={x |x <2或x ≥7}. (2)∁R (A ∪B )={x |x <2或x ≥7}.(3)(∁R A )∪(∁R B )={x |x <2或x ≥5}∪{x <3或x ≥7}={x |x <3或x ≥5}. (4)∁R (A ∩B )={x |x <3或x ≥5}.[点评] 求解集合的运算,利用数轴是有效的方法,也是数形结合思想的体现. 10.已知U =R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},(∁UB )∩A ={4},求A ∪B .[分析] 先确定p 和q 的值,再明确A 与B 中的元素,最后求得A ∪B . [解析] ∵(∁U A )∩B ={2},∴2∈B 且2∉A . ∵A ∩(∁U B )={4},∴4∈A 且4∉B .∴⎩⎪⎨⎪⎧42+4p +12=0,22-5×2+q =0.解得p =-7,q =6,∴A ={3,4},B ={2,3},∴A ∪B ={2,3,4}.能力提升一、选择题1.设A 、B 、C 为三个集合,(A ∪B )=(B ∩C ),则一定有( ) A .A ⊆C B .C ⊆A C .A ≠C D .A =Ø[答案] A[解析] ∵A ∪B =(B ∩C )⊆B , 又B ⊆(A ∪B ),∴A ∪B =B ,∴A ⊆B , 又B ⊆(A ∪B )=B ∩C ,且(B ∩C )⊆B , ∴(B ∩C )=B ,∴B ⊆C ,∴A ⊆C .2.设P ={3,4},Q ={5,6,7},集合S ={(a ,b )|a ∈P ,b ∈Q },则S 中元素的个数为( )A .3B .4C .5D .6[答案] D[解析] S ={(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)}共6个元素,故选D. 3.(2015·陕西模拟)已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B )中元素的个数为( )A.1 B.2C.3 D.4[答案] B[解析] 因为集合A={1,2},B={2,4},所以A∪B={1,2,4},所以∁U(A∪B)={3,5}.4.设全集U=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k<2},且B∩(∁U A)≠Ø,则( )A.k<0 B.k<2C.0<k<2 D.-1<k<2[答案] C[解析] ∵U=R,A={x|x≤1或x≥3},∴∁U A={x|1<x<3}.∵B={x|k<x<k+1,k<2},∴当B∩(∁U A)=Ø时,有k+1≤1或k≥3(不合题意,舍去),如图所示,∴k≤0,∴当B∩(∁U A)≠Ø时,0<k<2,故选C.二、填空题5.(2014·福建,理)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2,④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.[答案] 6[解析] 根据题意可分四种情况:(1)若①正确,则a=1,b=1,c≠2,d=4,符合条件的有序数组有0个;(2)若②正确,则a≠1,b≠1,c≠2,d=4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4);(3)若③正确,则a≠1,b=1,c=2,d=4,符合条件的有序数组为(3,1,2,4);(4)若④正确,则a≠1,b=1,c≠2,d≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个.故答案为6.6.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是________.[答案]1 12[解析] 如图,设AB 是一长度为1的线段,a 是长度为34的线段,b 是长度为13的线段,a ,b 可在线段AB 上自由滑动,a ,b 重叠部分的长度即为M ∩N 的“长度”,显然,当a ,b各自靠近线段AB 两端时,重叠部分最短,其值为34+13-1=112.三、解答题7.已知集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},试探求a 取何实数时,(A ∩B )Ø与A ∩C =Ø同时成立.[解析] B ={x |x 2-5x +6=0}={2,3},C ={x |x 2+2x -8=0}={2,-4},由A ∩BØ与A ∩C =Ø同时成立可知,3是方程x 2-ax +a 2-19=0的解,将3代入方程得a 2-3a -10=0,解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}={2,3},此时A ∩C ={2},与此题设A ∩C =Ø矛盾,故不适合.当a =-2时,A ={x |x 2+2x -15=0}={3,-5},此时(A ∩B )Ø与A ∩C =Ø同时成立,则满足条件的实数a =-2.8.设A ,B 是两个非空集合,定义A 与B 的差集A -B ={x |x ∈A ,且x ∉B }. (1)试举出两个数集,求它们的差集;(2)差集A -B 与B -A 是否一定相等?说明理由;(3)已知A ={x |x >4},B ={x |-6<x <6},求A -(A -B )和B -(B -A ). [解析] (1)如A ={1,2,3},B ={2,3,4}, 则A -B ={1}. (2)不一定相等,由(1)B -A ={4},而A -B ={1}, 故A -B ≠B -A .又如,A =B ={1,2,3}时,A -B =Ø,B -A =Ø,此时A -B =B -A ,故A -B 与B -A 不一定相等. (3)因为A -B ={x |x ≥6},B -A ={x |-6<x ≤4}, A -(A -B )={x |4<x <6}, B -(B -A )={x |4<x <6}.第一章 1.2 1.2.1函数的概念基础巩固一、选择题1.下列四种说法中,不正确的是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素 [答案] B2.f (x )=1+x +x1-x 的定义域是( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)∪(1,+∞)[答案] D[解析] ⎩⎪⎨⎪⎧1+x ≥01-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1,故定义域为[-1,1)∪(1,+∞),选D.3.各个图形中,不可能是函数y =f (x )的图象的是( )[答案] A[解析] 因为垂直x 轴的直线与函数y =f (x )的图象至多有一个交点,故选A. 4.(2015·曲阜二中月考试题)集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f x →y =12xB .f x →y =13xC .f x →y =23xD .f x →y =x[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.5.下列各组函数相同的是( )A .f (x )=x 2-1x -1与g (x )=x +1B .f (x )=-2x 3与g (x )=x ·-2x C .f (x )=2x +1与g (x )=2x 2+xxD .f (x )=|x 2-1|与g (t )=t 2-12[答案] D[解析] 对于A.f (x )的定义域是(-∞,1)∪(1,+∞),g (x )的定义域是R ,定义域不同,故不是相同函数;对于B.f (x )=|x |·-2x ,g (x )=x ·-2x 的对应法则不同;对于C ,f (x )的定义域为R 与g (x )的定义域是{x |x ≠0},定义域不同,故不是相同函数;对于D.f (x )=|x 2-1|,g (t )=|t 2-1|,定义域与对应关系都相同,故是相同函数,故选D.6.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上[答案] C[解析] 当a 在f (x )定义域内时,有一个交点,否则无交点. 二、填空题 7.已知函数f (x )=11+x,又知f (t )=6,则t =________. [答案] -56[解析] f (t )=1t +1=6.∴t =-568.用区间表示下列数集: (1){x |x ≥1}=________; (2){x |2<x ≤4}=________; (3){x |x >-1且x ≠2}=________.[答案] (1)[1,+∞) (2)(2,4] (3)(-1,2)∪(2,+∞) 三、解答题9.求下列函数的定义域,并用区间表示:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[分析] 列出满足条件的不等式组⇒解不等式组⇒求得定义域[解析] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠01-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}=(-∞,-1)∪(-1,1].(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}=(-∞,-3)∪(-3,3)∪(3,5]. [规律总结] 定义域的求法:(1)如果f (x )是整式,那么函数的定义域是实数集R ;(2)如果f (x )是分式,那么函数的定义域是使分母不为0的实数的集合;(3)如果f (x )为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;(4)如果f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合.(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况. 函数定义域要用集合或区间形式表示,这一点初学者易忽视. 10.已知函数f (x )=x +3+1x +2. (1)求函数的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.[解析] (1)使根式x +3有意义的实数x 的集合是{x |x ≥-3},使分式1x +2有意义的实数x 的集合是{x |x ≠-2},所以这个函数的定义域是{x |x ≥-3}∩{x |x ≠-2}={x |x ≥-3,且x ≠-2}. (2)f (-3)=-3+3+1-3+2=-1; f (23)=23+3+123+2=113+38=38+333. (3)因为a >0,故f (a ),f (a -1)有意义.f (a )=a +3+1a +2;f (a -1)=a -1+3+1a -1+2=a +2+1a +1.能力提升一、选择题1.给出下列从A 到B 的对应:①A =N ,B ={0,1},对应关系是:A 中的元素除以2所得的余数 ②A ={0,1,2},B ={4,1,0},对应关系是f :x →y =x 2③A ={0,1,2},B ={0,1,12},对应关系是f :x →y =1x其中表示从集合A 到集合B 的函数有( )个.( ) A .1 B .2 C .3 D .0[答案] B[解析] 由于③中,0这个元素在B 中无对应元素,故不是函数,因此选B. 2.(2012·高考安徽卷)下列函数中,不满足:f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x [答案] C[解析] f (x )=kx 与f (x )=k |x |均满足:f (2x )=2f (x )得:A ,B ,D 满足条件. 3.(2014~2015惠安中学月考试题)A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列图形中能表示以A 为定义域,B 为值域的函数的是( )[答案] B[解析] A 、C 、D 的值域都不是[1,2],故选B. 4.(2015·盘锦高一检测)函数f (x )=11-2x 的定义域为M ,g (x )=x +1的定义域为N ,则M ∩N =( )A .[-1,+∞)B .[-1,12)C .(-1,12)D .(-∞,12)[答案] B 二、填空题5.若函数f (x )的定义域为[2a -1,a +1],值域为[a +3,4a ],则a 的取值范围是________. [答案] (1,2)[解析] 由区间的定义知⎩⎪⎨⎪⎧2a -1<a +1,a +3<4a⇒1<a <2.6.函数y =f (x )的图象如图所示,那么f (x )的定义域是________;其中只与x 的一个值对应的y 值的范围是________.[答案] [-3,0]∪[2,3] [1,2)∪(4,5] [解析] 观察函数图象可知f (x )的定义域是[-3,0]∪[2,3];只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 三、解答题7.求下列函数的定义域: (1)y =31-1-x;(2)y =x +10|x |-x;(3)y =2x +3-12-x +1x.[解析] (1)要使函数有意义,需⎩⎨⎧1-x ≥0,1-1-x ≠0⇔⎩⎪⎨⎪⎧x ≤1,x ≠0⇔x ≤1且x ≠0,所以函数y =31-1-x的定义域为(-∞,0)∪(0,1].(2)由⎩⎪⎨⎪⎧x +1≠0,|x |-x ≠0得⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}. (3)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为[-32,0)∪(0,2).[点评] 求给出解析式的函数的定义域的步骤为:(1)列出使函数有意义的x 所适合的式子(往往是一个不等式组);(2)解这个不等式组;(3)把不等式组的解表示成集合(或者区间)作为函数的定义域.8.已知函数f (x )=1+x 21-x 2,(1)求f (x )的定义域. (2)若f (a )=2,求a 的值.(3)求证:f ⎝ ⎛⎭⎪⎫1x=-f (x ). [解析] (1)要使函数f (x )=1+x 21-x 2有意义,只需1-x 2≠0,解得x ≠±1,所以函数的定义域为{x |x ≠±1}. (2)因为f (x )=1+x21-x2,且f (a )=2,所以f (a )=1+a 21-a 2=2,即a 2=13,解得a =±33. (3)由已知得f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1,-f (x )=-1+x 21-x 2=x 2+1x 2-1, ∴f ⎝ ⎛⎭⎪⎫1x =-f (x ).第一章 1.2 1.2.2 第一课时函数的表示方法基础巩固一、选择题1.已知y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x[答案] C[解析] 设y =k x ,由1=k 2得,k =2,因此,y 关于x 的函数关系式为y =2x.2.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则它的解析式为( ) A .y =20-2xB .y =20-2x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)[答案] D[解析] 由题意得y +2x =20,∴y =20-2x .又∵2x >y ,∴2x >20-2x ,即x >5.由y >0,即20-2x >0得x <10,∴5<x <10.故选D.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是( ) A .g (x )=2x +1 B .g (x )=2x -1 C .g (x )=2x -3 D .g (x )=2x +7[答案] B[解析] ∵g (x +2)=f (x )=2x +3,∴令x +2=t ,则x =t -2,g (t )=2(t -2)+3=2t -1.∴g (x )=2x -1.4.(2015·安丘一中月考)某同学在一学期的5次大型考试中的数学成绩(总分120分)如下表所示:A .成绩y 不是考试次数x 的函数B .成绩y 是考试次数x 的函数C .考试次数x 是成绩y 的函数D .成绩y 不一定是考试次数x 的函数 [答案] B5.如果二次函数的二次项系数为1,图象开口向上,且关于直线x =1对称,并过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1 B .f (x )=-(x -1)2+1 C .f (x )=(x -1)2+1 D .f (x )=(x -1)2-1[答案] D6.(2015·武安中学周测题)若f (x )满足关系式f (x )+2f (1x)=3x ,则f (2)的值为( )。

高一数学必修一集合练习题及单元测试(含答案及解析)学习资料

高一数学必修一集合练习题及单元测试(含答案及解析)学习资料

收集于网络,如有侵权请联系管理员删除
精品文档
而 a 5时, A B与 A I C 矛盾,
∴ a 2 ……………………………………………………………………………… 12 20. 全集 S 1,3, x3 3x2 2x , A 1, 2x 1 ,如果 C S A 0 , 则这样的实数 x 是否
存在?若存在,求出 x ;若不存在,请说明理由 解:由 CS A 0 得 0 S,即 S 1,3,0 , A 1,3 ,…………………… 6
5C
A 0,1,3 ,真子集有 23 1 7
6. A (1)错的原因是元素不确定,( 2)前者是数集,而后者是点集,种类 不同,
( 3) 3 6 , 1 0.5 ,有重复的元素,应该是 3 个元素,( 4)本集合还包 24 2
括坐标轴
7D
当 m 0 时, B , 满足 A U B A ,即 m 0 ;当 m 0 时,
的取值范围是
.
14. 某班有学生 55 人,其中体育爱好者 43 人,音乐爱好者 34 人,还有 4
人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为
人 _______________ 15. 若 A 1,4, x , B 1, x2 且 A I B B ,则 x
三、解答题:本大题共 6 分,共 75 分。 16.设 A { x Z || x | 6} , B 1,2,3 , C 3,4,5,6 , 求:( 1) A ( B C ) ;( 2) A CA (B C)
13. ( , 5] (5, )
14 26 全班分 4 类人:设既爱好体育又爱好音乐的人数为 x 人;仅爱好 体育的人数为 43 x 人;仅爱好音乐的人数为 34 x 人;既不爱好体育又不爱好 音乐的人数为 4 人 ∴ 43 x 34 x x 4 55 ,∴ x 26 15 0,2, 或 2 由 A I B B得 B A ,则 x2 4或 x2 x ,且 x 1

高一数学必修1集合练习题

高一数学必修1集合练习题

高一数学必修1集合练习题集合是数学中最基本的概念之一,它在高中数学中占有非常重要的地位。

以下是一些高一数学必修1的集合练习题,旨在帮助学生巩固集合的基本概念和运算。

练习题1:集合的表示方法1. 用描述法表示下列集合:- 所有自然数的集合- 所有正整数的集合- 所有小于10的正整数的集合练习题2:集合的运算2. 已知集合A={1, 2, 3},B={2, 3, 4},求:- A∪B(A并B)- A∩B(A交B)- A∪(B的补集)练习题3:子集与真子集3. 判断下列说法是否正确,并给出理由:- 空集是任何集合的子集- 空集是任何集合的真子集- 任何集合都是它自己的子集练习题4:集合的包含关系4. 已知集合C={x | x是奇数},D={x | x是偶数},判断C和D的关系,并说明理由。

练习题5:集合的相等5. 给出两个集合E={1, 3, 5, 7, 9}和F={x | x是1到9之间的奇数},判断E和F是否相等,并给出证明。

练习题6:集合的幂集6. 求集合G={a, b}的幂集,并说明幂集的元素个数。

练习题7:集合的笛卡尔积7. 已知集合H={1, 2},I={x, y},求H×I(H和I的笛卡尔积)。

练习题8:集合的元素个数8. 求下列集合的元素个数:- 集合J={1, 2, 2, 3, 3, 3}- 集合K={x | x是1到10的整数,且x不能被3整除}练习题9:集合的划分9. 将集合L={1, 2, 3, 4, 5}划分为两个不相交的子集,使得这两个子集的并集等于L。

练习题10:集合的自反性、对称性和传递性10. 判断下列关系是否具有自反性、对称性和传递性:- 相等关系- 同余关系- 子集关系通过这些练习题,学生可以加深对集合概念的理解,掌握集合的基本运算,以及如何应用集合理论解决实际问题。

希望这些练习题能够帮助学生在数学学习中取得进步。

(压轴题)高中数学必修一第一单元《集合》测试(含答案解析)

(压轴题)高中数学必修一第一单元《集合》测试(含答案解析)

一、选择题1.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2D .-1或22.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( ) A .0B .1-C .1D .1或1-3.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉4.对任意x M ∈,总有2x M ∉且x M ∉,若{}0,1,2,3,4,5M ⊆,则满足条件的非空集合M 的个数是( ) A .11B .12C .15D .165.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-26.已知集合302x A xx ⎧⎫+⎪⎪=⎨⎬-⎪⎪⎩⎭,{}B y y m =<,若A B ⊆,则实数m 的取值范围为( ) A .()2∞+,B .[)2∞+,C .()3∞-+,D .[)3∞-+,7.如图所示的韦恩图中,A 、B 是非空集合,定义*A B 表示阴影部分的集合,若x ,y ∈R ,2{|4}{|3,0}x A x y x x B y y x ==-==>,则A *B 为( )A .{|04}x x <≤B .{|01x x ≤≤或4}x >C .{|01x x ≤≤或2}x ≥D .{|01x x ≤≤或2}x >8.集合2|01x A x x -⎧⎫=<⎨⎬+⎩⎭,{|()()0}B x x a x b =--<,若“2a =-”是“A B ⋂≠∅”的充分条件,则b 的取值范围是( ) A .1b <-B .1b >-C .1b ≤-D .12b -<<-9.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈10.设{}|13A x x =≤≤,(){}|lg 321B x x =-<,则A B =( )A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤⎥⎝⎦11.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m <B .23m ≤≤C .3m ≤D .23m <<12.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,1二、填空题13.已知集合{|M m Z =∈关于x 的方程2420x mx +-=有整数解},集合A 满足条件:①A 是非空集合且A M ⊆;②若a A ∈,则a A -∈.则所有这样的集合A 的个数为______.14.设集合{}0,4A =-,B ={}22|2(1)10,x x a x a x R +++-=∈.若B A ⊆,求实数a 的取值范围_______________15.已知非空集合{}|121A x m x m =+≤≤-,集合{}2|1030B x x x =+-≥,若A B =Φ,则实数m 的取值范围为__________16.设全集{|35}Ux x =-≤≤,集合1{|||1},{|0}2A x xB x x =≤=>+,则()UC A B ⋂=_____________.17.已知集合{}{}2430,21xA x x xB x =++≥<,则AB =____________18.设集合1{|0}x A x x a-=≥-,集合{}21B x x =-,且B A ⊆,则实数a 的取值范围为______.19.设集合{}1,2,3A =,若B ≠∅,且B A ⊆,记G(B)为B 中元素的最大值和最小值之和,则对所有的B ,G(B)的平均值是_______.20.若不等式34x b -<的解集中的整数有且仅有5,6,则b 的取值范围是______.三、解答题21.已知集合{}2210,A x ax x a R =++=∈. (1)若A 中只有一个元素,求a 的值; (2)若A 中至少有一个元素,求a 的取值范围; (3)若A 中至多有一个元素,求a 的取值范围. 22.已知全集为R ,集合{}503x A x R x -=∈>+,()2{|21050}B x R x a x a =∈-++≤. (1)若RB A ⊆,求实数a 的取值范围;(2)从下面所给的三个条件中选择一个,说明它是RB A ⊆的什么条件(充分必要性).①[)7,10a ∈-;②(]7,10a ∈-;③(]6,10a ∈. 23.已知集合612A xx ⎧⎫=≥⎨⎬+⎩⎭,{}2(4)70B x x m x m =-+++<.(1)若3m =时,求()RAB ;(2)若A B A ⋃=,求实数m 的取值范围.24.已知全集为R ,函数()()lg 1f x x =-的定义域为集合A ,集合(){}16B x x x =->. (1)求AB ;(2)若{}11C x m x m =-<<+,()()R C AC B ⊆,求实数m 的取值范围.25.已知集合{121}A xa x a =-<<+∣,{}03B x x =<≤,U =R . (1)若12a =,求A B ;()U A B ⋂. (2)若A B =∅,求实数a 的取值范围.26.已知集合A x y ⎧⎫⎪==⎨⎪⎩,集合1228xB x ⎧⎫=<<⎨⎬⎩⎭.(1)求AB ;(2)若集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.2.B解析:B 【分析】根据集合相等以及集合元素的互异性可得出关于a 、b 的方程组,解出这两个未知数的值,由此可求得20192019a b +的值. 【详解】b a 有意义,则0a ≠,又{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,0b a ∴=,可得0b =,所以,{}{}21,,00,,a a a =,21a ∴=,由集合中元素的互异性可得1a ≠,所以,1a =-, 因此,()2019201920192019101ab +=-+=-.故选:B. 【点睛】本题考查利用集合相等求参数,同时不要忽略了集合中元素互异性的限制,考查计算能力,属于中等题.3.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xy z x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.4.A解析:A 【分析】根据题意,0M ∉且1M ∉,且2、4不同时在集合M 中,对集合M 分两种情况讨论:①2M ∉且4M ∉;②2和4有且只有一个在集合M 中,分别列举出符合条件的集合M ,即可得出答案. 【详解】2111==,200=,由题意可知0M ∉且1M ∉,由于242=, 所以,2和4不同时在集合M 中.①当2M ∉且4M ∉时,则符合条件的集合M 有:{}3、{}5、{}3,5,共3种; ②若2和4有且只有一个在集合M 中,则符合条件的集合M 有:{}2、{}2,3、{}2,5、{}2,3,5、{}4、{}3,4、{}4,5、{}3,4,5,共8种.综上所述,满足条件的非空集合M 的个数是3811+=. 故选:A. 【点睛】本题考查满足条件的集合个数的求解,列举出满足条件的集合即可,考查分类讨论思想的应用,属于中等题.5.D解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值; 【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.6.B解析:B 【分析】求出集合A ,由A B ⊆,结合数轴,可得实数m 的取值范围. 【详解】解不等式302x x +≤-,得32x -≤<,[)3,2A ∴=-. A B ⊆,可得2m ≥.故选:B . 【点睛】本题考查集合间的关系,属于基础题.7.B解析:B 【分析】弄清新定义的集合与我们所学知识的联系:所求的集合是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合.再利用函数的定义域、值域的思想确定出集合A ,B ,代入可得答案. 【详解】依据定义,*A B 就是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合;对于集合A ,求的是函数y =解得:{|04}A x x =≤≤;对于集合B ,求的是函数3(0)x y x =>的值域,解得{}1B y y =; 依据定义,借助数轴得:*{|01A B x x =≤≤或4}x >. 故选:B . 【点睛】本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确性,属于中档题.8.B解析:B 【分析】由题意知{}|12A x x =-<<,当2a =-时,()(){}|20B x x x b =+-<,且A B ⋂≠∅成立,通过讨论2b <-,2b =-,2b >-三种情况,可求出b 的取值范围.【详解】 解:{}2|0|121x A x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭,当2a =-时,()(){}|20B x x x b =+-< 当2b <- 时,{}|2B x b x =<<-,此时AB =∅不符合题意;当2b =-时,B =∅ ,此时AB =∅不符合题意;当2b >-时,{}|2B x x b =-<<因为A B ⋂≠∅,所以1b >-.综上所述,1b >-. 故选:B. 【点睛】本题考查了分式不等式求解,考查了一元二次不等式,考查了由两命题的关系求参数的取值范围.本题的关键是由充分条件,分析出两集合的关系.9.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.故选:B 【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.10.B解析:B 【分析】求出集合,A B 后可得A B .【详解】13{|}A x x =≤≤,73{|03210}{|}22B x x x x =<-<=-<<; ∴31,2A B ⎡⎫⎪⎢⎣=⎭⋂,故选:B. 【点睛】本题考查一元二次不等式的解、对数不等式的解及集合的交集运算,解对数不等式时注意真数恒为正,属于中档题.11.C解析:C【分析】由B A ⊆,分B =∅和B ≠∅两种情况讨论,利用相应的不等式(组),即可求解. 【详解】由题意,集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,因为B A ⊆, (1)当B =∅时,可得121m m +>-,即2m <,此时B A ⊆,符合题意;(2)当B ≠∅时,由B A ⊆,则满足12121215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩,解得23m ≤≤,综上所述,实数m 的取值范围是3m ≤. 故选:C. 【点睛】本题主要考查了了集合的包含关系求解参数的取值范围问题,其中解答中熟记集合件的基本关系,合理分类讨论列出方程组是解答的根据,着重考查分类讨论思想,以及运算能力.12.C解析:C 【分析】由集合描述求集合,A B ,结合韦恩图知阴影部分为()()U C A B A B ⋂⋂⋃,分别求出()U C A B 、()A B ⋃,然后求交集即可.【详解】(){}20{|20}A x x x x x =+<=-<<,{}1{|11}B x x x x =≤=-≤≤,由图知:阴影部分为()()U C A B A B ⋂⋂⋃,而{|10}A B x x ⋂=-≤<,{|21}A B x x ⋃=-<≤,∴(){|1U C A B x x ⋂=<-或0}x ≥,即()(){|21U C A B A B x x ⋂⋂⋃=-<<-或01}x ≤≤,故选:C 【点睛】本题考查了集合的基本运算,结合韦恩图得到阴影部分的表达式,应用集合的交并补混合运算求集合.二、填空题13.15【分析】先依题意化简集合M 再根据条件确定集合A 是由互为相反数的四组数字构成的非空集合即得这样的集合的个数【详解】设为方程的两个根则当时;当时;当时;当时;由条件①知且又由条件②知A 是有一些成对的解析:15 【分析】先依题意化简集合M ,再根据条件确定集合A 是由互为相反数的四组数字构成的非空集合,即得这样的集合的个数. 【详解】设a ,b 为方程2420x mx +-=的两个根,则a b m +=-,42ab =-, 当1=a ,42b =时,41m =±; 当2=a ,21b =时,19m =±; 当3a =,14b =时,11m =±; 当6a =,7b =时,1m =±;{}{}{}{}{}1,111,1119,1941,411,1,11,11,19,19,41,41M =-⋃-⋃-⋃-=----,由条件①知A ≠∅且A M ⊆,又由条件②知A 是有一些成对的相反数组成的集合. 所以M 的4对相反数共能组成42115-=个不同的非空集合A . 故答案为:15. 【点睛】 关键点点睛:本题解题关键在于明确题中条件要求集合A 是由互为相反数的四组数字构成的非空集合,即计算集合个数突破难点.14.或【分析】分类讨论四种情况讨论再求并集即可【详解】因为所以或或或当时方程无实根所以解得;当时方程有两个相等的实根所以解得:;当时方程有两个相等的实根所以此时无解;当时方程有两个不相等的实根所以解得:解析:1a ≤-或1a = 【分析】分类讨论B =∅,{}0B =、{}4B =、{}0,4B =四种情况讨论,再求并集即可. 【详解】因为B A ⊆,所以B =∅或{}0B =或{}4B =或{}0,4B =, 当B =∅时,方程222(1)10x a x a +++-=无实根, 所以()()224141220a a a ∆=+--=+<,解得1a <-;当{}0B =时,方程222(1)10x a x a +++-=有两个相等的实根120x x ==,所以()1221221010x x a x x a ⎧+=-+=⎨=-=⎩ ,解得:1a =-; 当{}4B =-时,方程222(1)10x a x a +++-=有两个相等的实根124x x ==-,所以()12212218116x x a x x a ⎧+=-+=-⎨=-=⎩ ,此时无解; 当{}0,4B =时,方程222(1)10x a x a +++-=有两个不相等的实根1204,x x ==-,所以()1221221410x x a x x a ⎧+=-+=-⎨=-=⎩,解得:1a =; 综上所述:1a ≤-或1a =, 【点睛】本题主要考查了集合之间的包含关系,分类讨论的思想,属于中档题.15.或【分析】化简集合对集合是否为空集分类讨论若满足题意若根据条件确定集合的端点位置即可求解【详解】由得若满足题意;若可得或解得或;综上:或故答案为:或【点睛】本题考查集合间的运算不要遗漏空集情况属于中解析:4m >或2m < 【分析】化简集合B ,对集合A 是否为空集分类讨论,若A =∅满足题意,若A =∅,根据条件确定集合A 的端点位置,即可求解. 【详解】由21030x x +-≥得25,[2,5]x B -≤≤∴=-, 若,121,2A m m m =∅+>-<,满足题意; 若,A AB ≠∅=∅,可得12115m m m +≤-⎧⎨+>⎩或121212m m m +≤-⎧⎨-<-⎩,解得4m >或m ∈∅; 综上:4m >或2m <. 故答案为:4m >或2m < 【点睛】本题考查集合间的运算,不要遗漏空集情况,属于中档题.16.【分析】解绝对值不等式求得集合然后求得其补集解分式不等式求得集合由此求得【详解】由解得所以由解得所以故填:【点睛】本小题主要考查集合交集和补集的概念和运算考查绝对值不等式和分式不等式的解法属于基础题 解析:(2,1)(1,5]--【分析】解绝对值不等式求得集合A ,然后求得其补集.解分式不等式求得集合B ,由此求得()U C A B ⋂.【详解】由1x ≤解得11x -≤≤,所以[)(]3,11,5U C A =--⋃.由102x >+解得2x >-,所以()U C A B ⋂(2,1)(1,5]=--.故填:(2,1)(1,5]--.【点睛】本小题主要考查集合交集和补集的概念和运算,考查绝对值不等式和分式不等式的解法,属于基础题.17.【解析】【分析】根据一元二次不等式的解法和指数函数的单调性求出集合和集合然后进行交集的运算即可求解【详解】根据一元二次不等式的解法可得集合由指数函数的单调性可得集合所以【点睛】本题主要考查了集合表示 解析:(][),31,0-∞-⋃-【解析】【分析】根据一元二次不等式的解法和指数函数的单调性,求出集合A 和集合B ,然后进行交集的运算,即可求解.【详解】根据一元二次不等式的解法,可得集合(][),31,A =-∞-⋃-+∞,由指数函数的单调性,可得集合(),0B =-∞,所以A B =(][),31,0-∞-⋃-.【点睛】本题主要考查了集合表示方法、一元二次不等式的解法和指数函数的单调性,以及交集的运算,着重考查了推理与运算能力,属于基础题.18.【分析】解可得集合B 对于A 先将转化为且分三种情况讨论求出集合A 判断是否成立综合可得a 的范围即可得答案【详解】或则或对于A 且时成立符合题意时或不会成立不符合题意时或要使成立必有则a 的范围是综合可得a 的 解析:[]1,3【分析】 解21x ->可得集合B ,对于A ,先将1|0x x a -≥-转化为()()10x x a --≥且x a ≠,分1a =,1a >,1a <三种情况讨论,求出集合A ,判断B A ⊆是否成立,综合可得a 的范围,即可得答案【详解】211x x ->⇔<或3x >,则{|1B x x =<或3}x >,对于A ,()()1010x x x a x a-≥⇔--≥-且x a ≠, 1a =①时,{|1}A x x =≠,B A ⊆成立,符合题意,1a <②时,{|A x x a =<或1}x ≥,B A ⊆不会成立,不符合题意,1a >③时,{A x x a =或1}x ≤,要使B A ⊆成立,必有3a ≤,则a 的范围是13a ,综合①②③可得,a 的取值范围为13a ≤≤,即[]1,3;故答案是:[]1,3.【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.19.4【分析】根据题意列出所有可能的集合B 求出相应的求出平均数即可【详解】因为集合若且所以集合B 为:当时当时当时当时当时当时当时则G(B)的平均值是故答案为:【点睛】本题主要考查了集合间的包含关系考查学解析:4【分析】根据题意列出所有可能的集合B ,求出相应的()G B ,求出平均数即可.【详解】因为集合{}1,2,3A =,若B ≠∅,且B A ⊆所以集合B 为:{}{}{}{}{}{}{}1231,21,32,31,2,3,,,,,,当{}1B =时,()112G B =+=当{}2B =时,()224G B =+=当{}3B =时,()336G B =+=当{}1,2B =时,()123G B =+=当{}1,3B =时,()134G B =+=当{}2,3B =时,()235G B =+=当{}1,2,3B =时,()134G B =+=则G(B)的平均值是246345447++++++= 故答案为:4【点睛】本题主要考查了集合间的包含关系,考查学生分析问题和解决问题的能力,属于中档题. 20.【分析】先求得不等式的解集根据不等式的解集中的整数有且仅有得出不等式组即可求解得到答案【详解】由题意不等式即解得要使得不等式的解集中的整数有且仅有则满足解得即实数的取值范围是故答案为【点睛】本题主要 解析:[]16,17【分析】 先求得不等式34x b -<的解集4433b b x -++<<,根据不等式34x b -<的解集中的整数有且仅有5,6,得出不等式组44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,即可求解,得到答案. 【详解】 由题意,不等式34x b -<,即434x b -<-<,解得4433b b x -++<<, 要使得不等式34x b -<的解集中的整数有且仅有5,6, 则满足44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得1617b ≤≤,即实数b 的取值范围是[]16,17.故答案为[]16,17.【点睛】本题主要考查了绝对值不等式的求解,以及集合的应用,其中解答中正确求解绝对值不等式,根据题设条件得到不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题21.(1)0a =或1a =;(2)1a ≤;(3)0a =或1a ≥.【分析】根据集合中元素的个数以及方程的解即可确定a 的取值范围.【详解】解:(1)若A 中只有一个元素,则当0a =时,原方程变为210x +=,此时12x =-符合题意, 当0a ≠时,方程2210ax x ++=为二元一次方程,440a ∆=-=,即1a =, 故当0a =或1a =时,原方程只有一个解;(2)A 中至少有一个元素,即A 中有一个或两个元素,由0∆>得1a <综合(1)当1a ≤时A 中至少有一个元素;(3)A 中至多有一个元素,即A 中有一个或没有元素当44a 0∆=-<,即1a >时原方程无实数解,结合(1)知当0a =或1a ≥时A 中至多有一个元素.【点睛】关键点点睛:本题解题的关键是理解集合中的元素与方程的根之间的关系.22.(1)610a -≤≤;(2)答案见解析.【分析】()1先求集合A ,B ,A R ,再由R B A ⊆得到a 的不等式,解得即可;()2结合()1利用充分必要条件的定义逐一判定.【详解】解:()1集合5|0(3)(5,)3x A x R x -⎧⎫=∈>=-∞-⋃+∞⎨⎬+⎩⎭, 所以[]35R A =-,,集合()()()2{|21050}{|250}B x R x a x a x R x a x =∈-++≤=∈--≤,若R B A ⊆, 只需352a -≤≤, 所以610a -≤≤.()2由()1可知的充要条件是[]610a ∈-,, 选择①,则结论是既不充分也不必要条件;选择②,则结论是必要不充分条件;选择③,则结论是充分不必要条件.【点睛】关键点睛,利用集合关系求参数范围,求集合A ,B ,A R ,再由R B A ⊆得到a 的不等式,进而利用a 的范围,判定充分必要条件,属于中档题.23.(1){}22x x -<≤;(2)197,33⎡⎤-⎢⎥⎣⎦. 【分析】(1)依题意先求出集合A 和集合B ,再求出B R ,然后按照交集的定义求出结果即可; (2)由A B A ⋃=可得出B A ⊆,然后分B φ=和B φ≠两种情况进行分类讨论,进而求出结果即可.【详解】(1){}24A x x =-<≤,当3m =时,{}25B x x =<<, ∴{2C B x x =≤R 或}5x ≥,(){}22R A B x x ⋂=-<≤;(2)∵A B A ⋃=,∴B A ⊆,令()2(4)7=-+++f x x m x m , ①当B φ=时,即()0f x ≥恒成立,所以()2=44(7)0∆+-+≤m m ,解得:62m -≤≤;②当B φ≠时,即()0f x <有解,所以6m <-或2m >,令()0f x =,解得:x =,所以24≥-≤ , 解得1963-≤<-m 或723<≤m , 综合①②得m 的范围是197,33⎡⎤-⎢⎥⎣⎦. 【点睛】 易错点点睛:由A B A ⋃=可得出B A ⊆,然后进行分类讨论,切记别漏掉B φ=的情形,否则容易漏解.24.(1){|1x x <或3}x >;(2)[]1,0-.【分析】(1)化简集合A ,B ,根据并集运算即可. (2)计算()R AC B ,根据()()R C A C B ⊆,建立不等式求解即可. 【详解】(1)由10x ->得,函数()()lg 1f x x =-的定义域{}1A x x =< 260x x -->,即()()320x x -+>,解得{}32B x x x =><-或 A B ∴={|1x x <或3}x >,(2){}23R C B x x =-≤≤, (){}21R A C B x x ∴⋂=-≤<{}21C x x ⊆-≤<,则121011m m m -≥-⎧⇒-≤≤⎨+≤⎩, 故实数m 的取值范围为[]1,0-.【点睛】本题主要考查了集合的并集运算,补集、交集的运算,子集的概念,属于中档题.25.(1)1|32x x ⎧⎫-<≤⎨⎬⎩⎭,1|02x x ⎧⎫-<≤⎨⎬⎩⎭;(2){1|2a a ≤-或}4a ≥. 【分析】 (1)化简集合,利用集合的交并补运算求解即可;(2)讨论A =∅,A ≠∅两种情况,列出相应的不等式,求解即可得出答案.【详解】(1)若12a =时,12,{03}2A x x B x x ⎧⎫=-<<=<≤⎨⎬⎩⎭∣∣ ∴1|32A B x x ⎧⎫⋃=-<≤⎨⎬⎩⎭,由{|0U B x x =≤或3}x > 所以()1|02U A B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭(2)由AB =∅知 当A =∅时,121,2a a a -≥+∴≤-当A ≠∅时,21113a a a +>-⎧⎨-≥⎩或211210a a a +>-⎧⎨+≤⎩ 4a ∴≥或122a -<≤- 综上:a 的取值范围是{1|2a a ≤-或}4a ≥. 【点睛】本题主要考查了集合的交并补混合运算以及根据交集的结果求参数的范围,属于中档题. 26.(1)()3,0-;(2)312a -<<-或1a >. 【分析】(1)由已知条件分别计算出集合A 和集合B ,然后再计算出A B 的结果.(2)由已知条件()A B C ⋂⊇,则分类讨论C =∅和C ≠∅两种情况,求出实数a 的取值范围.【详解】(1)已知集合A x y ⎧⎫⎪==⎨⎪⎩,则230x x -->,解得30x -<<,即()3,0A =-,集合1228x B x ⎧⎫=<<⎨⎬⎩⎭,解得31x -<<,即()3,1B =-,所以()3,0A B ⋂=- (2)因为集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,由(1)得()3,0A B ⋂=-,则当C =∅时,21a a >+,即1a >,当C≠∅时,212310a aaa≤+⎧⎪>-⎨⎪+<⎩,得312a-<<-,综上,312a-<<-或1a>.【点睛】本题考查了集合的交集运算和子集运算,在含有参量的子集题目中需要注意分类讨论,尤其不要漏掉空集情况,然后求解不等式组得到结果.本题较为基础.。

(压轴题)高中数学必修一第一单元《集合》检测题(含答案解析)(4)

(压轴题)高中数学必修一第一单元《集合》检测题(含答案解析)(4)

一、选择题1.对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的非空集合M 的个数是( ) A .11B .12C .15D .162.已知全集U =R ,集合{|23}M x x =-≤≤,{|24}N x x x =<->或,那么集合()()C C U U M N ⋂等于( )A .{|34}x x <≤B .{|34}x x x ≤≥或C .{|34}x x ≤<D .{|13}x x -≤≤3.已知集合{}4A x a x =<<,{}2|560B x x x =-+>,若{|34}A B x x ⋂=<<,则a 的值不可能为( )A B CD .34.已知集合{}|10A x x =-<,{}2|20B x x x =-<,则AB =( )A .{}|0x x <B .{}|1x x <C .{}1|0x x <<D .{}|12x x <<5.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .16.已知集合22{|,N ,N}A t t m n m n = =+ ∈ ∈,且x A ∈,y A ,则下列结论中正确的是( ) A .x y A +∈ B .x y A -∈ C .xy A ∈D .xA y∈ 7.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈8.对于下列结论:①已知∅ 2{|40}x x x a ++=,则实数a 的取值范围是(],4-∞; ②若函数()1y f x =+的定义域为[)2,1-,则()y f x =的定义域为[)3,0-;③函数2y =(],1-∞;④定义:设集合A 是一个非空集合,若任意x A ∈,总有a x A -∈,就称集合A 为a 的“闭集”,已知集合{}1,2,3,4,5,6A ⊆,且A 为6的“闭集”,则这样的集合A 共有7个. 其中结论正确的个数是( ) A .0B .1C .2D .39.已知全集为R ,集合A ={﹣2,﹣1,0,1,2},102x B xx -⎧⎫=<⎨⎬+⎩⎭∣,则A ∩(∁R B )的子集个数为( ) A .2B .3C .4D .810.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m <B .23m ≤≤C .3m ≤D .23m <<11.已知集合{}{}21239A B x x ==<,,,,则A B =( )A .{}210123--,,,,,B .{}21012--,,,,C .{}123,, D .{}12, 12.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若AB B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.已知,a b ∈R ,若{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为_____________. 14.若集合{}{,,,}1,2,3,4,a b c d =且下列四个关系:①1a =;②1b ≠;③2c =;④4d ≠中有且只有一个是正确的,则符合条件的所有有序数组(,,,)a b c d 的个数是________.15.集合1{}2|Ax x ≤=<,{|}B x x a =<,若A B B ⋃=,则a 的取值范围是_______.16.已知集合{}2|60M x x x =+->,{}2|230,0N x x ax a =-+≤>,若M N ⋂中恰有一个整数,则a 的最小值为_________. 17.用列举法表示集合*6,5A aN a Z a ⎧⎫=∈∈=⎨⎬-⎩⎭__________.18.若{}2230P x x x =--<,{}Q x x a =>,且P Q P =,则实数a 的取值范围是______.19.已知点H 是正三角形ABC 内部一点,HAB ∆,HBC ∆,HCA ∆的面积值构成一个集合M ,若M 的子集有且只有4个,则点H 需满足的条件为________.20.设集合{}1,2,3A =,若B ≠∅,且B A ⊆,记G(B)为B 中元素的最大值和最小值之和,则对所有的B ,G(B)的平均值是_______.三、解答题21.设全集U =R ,集合A ={x |-1<x -m <5},集合1{|24}.2x B x =<< (1)当m =-1时,求();UA B ⋂(2)若A ∪B =A ,求实数m 的取值范围. 22.已知集合4231a A a a ⎧⎫-=≤⎨⎬+⎩⎭,{}12B a a =+≤,{3}C x m x m =-<≤+(1)求AB ;(2)若()C AC ⊆,求m 的取值范围.23.设集合{}|34A x x =-≤≤,{|132}B x m x m =-≤≤- (1)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围; (2)若AB B =,求实数m 的取值范围.24.设集合{}14A x x =-<<,352B x x ⎧⎫=-<<⎨⎬⎩⎭,{}122C x a x a =-<<.(1)若C =∅,求实数a 的取值范围;(2)若C ≠∅且()C A B ⊆⋂,求实数a 的取值范围.25.已知集合{}02A x x =<<,{}1B x x a =<<-(1)若3a =-,求()R A B ⋃;(2)若AB B =,求a 的取值范围.26.已知全集为R ,函数()()lg 1f x x =-的定义域为集合A ,集合(){}16B x x x =->. (1)求AB ;(2)若{}11C x m x m =-<<+,()()R C AC B ⊆,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意,0M ∉且1M ∉,且2、4不同时在集合M 中,对集合M 分两种情况讨论:①2M ∉且4M ∉;②2和4有且只有一个在集合M 中,分别列举出符合条件的集合M ,即可得出答案.2111==,200==,由题意可知0M ∉且1M ∉,由于242=,所以,2和4不同时在集合M 中.①当2M ∉且4M ∉时,则符合条件的集合M 有:{}3、{}5、{}3,5,共3种; ②若2和4有且只有一个在集合M 中,则符合条件的集合M 有:{}2、{}2,3、{}2,5、{}2,3,5、{}4、{}3,4、{}4,5、{}3,4,5,共8种.综上所述,满足条件的非空集合M 的个数是3811+=. 故选:A. 【点睛】本题考查满足条件的集合个数的求解,列举出满足条件的集合即可,考查分类讨论思想的应用,属于中等题.2.A解析:A 【分析】先分别求出C ,C U U M N ,再求()()C C U U M N ⋂即可 【详解】∵C {|}23U M x x x =<>-或,C {|24}U N x x =-≤≤, ∴()()C C {|34}U U M N x x ⋂=<≤. 故选:A . 【点睛】本题考查交集与补集的混合运算,属于中档题3.A解析:A 【分析】求出{2B x x =<或}3x >,利用{|34}A B x x ⋂=<<,得23a ≤≤. 【详解】集合{}4A x a x =<<,{}{25602B x x x x x =-+=<或}3x >,{|34}A B x x ⋂=<<, ∴23a ≤≤, ∴a故选:A. 【点睛】本题考查了根据集合间的基本关系求解参数范围的问题,属于中档题.解决此类问题,一般要把参与运算的集合化为最简形式,借助数轴求解参数的范围.4.C【分析】求出A 、B 中不等式的解集确定出A 、B ,找出A 与B 的交集即可. 【详解】集合{}{}|10|1A x x x x =-<=<,集合{}{}2|20|02B x x x x x =-<=<<,所以A B ={}1|0x x <<.故选:C【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.5.B解析:B 【解析】 【分析】首先求解方程组3y x y x ⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.6.C解析:C 【分析】 设22x m n =+,22N,N N,,,N n b b ya ma ,再利用22()()xy ma nb mb na =++-,可得解.【详解】 由x A ∈,yA ,设22x m n =+,22N,N N,,,N n b b y a m a ,所以22222222222222()()()()xy m n a b m a m b n a n b ma nb mb na =++=+++=++-, 且N,N ma nb mb na +-∈∈, 所以xy A ∈, 故选:C. 【点睛】关键点点睛,本题的解题关键是2222222222()()m a m b n a n b ma nb mb na +++=++-,另外本题可以通过列举法得到集合的一些元素,进而排除选项可得解.7.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.故选:B 【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.8.D解析:D 【分析】A .考虑方程有解的情况;B .根据抽象函数定义域求解方法进行分析;C .根据二次函数的取值情况分析函数值域;D .根据定义采用列举法进行分析. 【详解】①由∅ 2{|40}x x x a ++=可得²40x x a ++=有解,即2440a ∆=-,解得4a ≤,故①正确;②函数()1y f x =+的定义域为[)2,1-,则21x ,故112x -≤+<,故()y f x =的定义域为[)1,2-,故②错误;③函数21y ==[)1,+∞,故(]2,1y =-∞,故③正确;④集合{}1,2,3,4,5,6A ⊆且A 为6的“闭集”,则这样的集合A 共有{}3,{}1,5,{}2,4,{}1,3,5,{}2,4,6,{}1,2,4,5,{}1,2,3,4,5共7个,故④正确.故正确的有①③④. 故选:D . 【点睛】本题考查命题真假的判定,考查集合之间的包含关系,考查函数的定义域与值域,考查集合的新定义,属于中档题.9.D解析:D 【分析】解不等式得集合B ,由集合的运算求出()R A B ,根据集合中的元素可得子集个数.【详解】10{|21}2x B x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭∣,{|2R B x x =≤-或1}x ≥,所以()R A B {2,1,2}=-,其子集个数为328=.故选:D . 【点睛】本题考查集合的综合运算,考查子集的个数问题,属于基础题.10.C解析:C 【分析】由B A ⊆,分B =∅和B ≠∅两种情况讨论,利用相应的不等式(组),即可求解. 【详解】由题意,集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,因为B A ⊆, (1)当B =∅时,可得121m m +>-,即2m <,此时B A ⊆,符合题意;(2)当B ≠∅时,由B A ⊆,则满足12121215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩,解得23m ≤≤,综上所述,实数m 的取值范围是3m ≤. 故选:C. 【点睛】本题主要考查了了集合的包含关系求解参数的取值范围问题,其中解答中熟记集合件的基本关系,合理分类讨论列出方程组是解答的根据,着重考查分类讨论思想,以及运算能力.11.D解析:D 【解析】 【分析】先求出集合B ,然后与集合A 取交集即可. 【详解】由题意,{}{}2933B x x x x =<=-<<,则{}1,2A B =.故答案为D. 【点睛】本题考查了集合的交集,考查了不等式的解法,考查了学生的计算能力,属于基础题.12.D解析:D 【分析】先解方程得集合A ,再根据A B B =得B A ⊂,最后根据包含关系求实数a ,即得结果.【详解】{}2|8150{3,5}A x x x =-+==,因为AB B =,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 【点睛】本题考查集合包含关系以及集合子集,考查基本分析求解能力,属中档题.二、填空题13.【分析】由集合相等可求出直接计算即可【详解】即故解得故答案为:【点睛】本题主要考查了集合相等的概念集合中元素的互异性属于中档题 解析:1-【分析】由集合相等可求出,a b ,直接计算20192019a b +即可. 【详解】{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭, 0,0a b ∴≠=,即{}{}2,0,1,,0a a a =,故21,1a a =≠,解得1a =-,2019201920192019(1)01a b +=-+=-故答案为:1- 【点睛】本题主要考查了集合相等的概念,集合中元素的互异性,属于中档题.14.6【分析】因为①;②;③;④中有且只有一个是正确的故分四种情况进行讨论分别分析可能存在的情况即可【详解】若仅有①成立则必有成立故①不可能成立若仅有②成立则成立此时有两种情况若仅有③成立则成立此时仅有解析:6 【分析】因为①1a =;②1b ≠;③2c =;④4d ≠中有且只有一个是正确的,故分四种情况进行讨论,分别分析可能存在的情况即可. 【详解】若仅有①成立,则1a =必有1b ≠成立,故①不可能成立.若仅有②成立,则1a ≠,1b ≠,2c ≠,4d =成立,此时有(2,3,1,4),(3,2,1,4)两种情况. 若仅有③成立,则1a ≠,1b =,2c =,4d =成立,此时仅有(3,1,2,4)成立.若仅有④成立,则1a ≠,1b =,2c ≠,4d ≠成立,此时有(2,1,4,3),(3,1,4,2),(4,1,3,2)三种情况.综上符合条件的所有有序数组(,,,)a b c d 的个数是6个. 故答案为:6. 【点睛】本题主要考查了集合的综合运用与逻辑推理的问题,需要根据题设条件分情况讨论即可.属于中等题型.15.【分析】根据可知A 为B 的子集利用数轴求解即可【详解】根据题意作图如下:由图可知实数的取值范围为【点睛】本题考查利用集合的并运算求参数的取值范围;数轴的合理运用是求解本题的关键;属于中档题常考题型 解析:2a >【分析】根据A B B ⋃=,可知A 为B 的子集,利用数轴求解即可. 【详解】 根据题意,作图如下:由图可知,实数a 的取值范围为2a >. 【点睛】本题考查利用集合的并运算求参数的取值范围;数轴的合理运用是求解本题的关键;属于中档题、常考题型.16.2【分析】解一元二次不等式求得集合根据交集结果可知在只有一个整数解由二次函数性质可得解方程组求得结果【详解】令则对称轴为恰有一个整数即在只有一个整数解即解得:的最小值为故答案为:【点睛】本题考查根据解析:2 【分析】解一元二次不等式求得集合M ,根据交集结果可知()2230f x x ax =-+≤在()(),32,-∞-+∞只有一个整数解,由二次函数性质可得()()3040f f ⎧≤⎪⎨>⎪⎩,解方程组求得结果. 【详解】()(){}()()320,32,M x x x =+->=-∞-⋃+∞,令()()2230f x x ax a =-+>,则对称轴为x a =,M N ⋂恰有一个整数,即()0f x ≤在()(),32,-∞-+∞只有一个整数解,()()3040f f ⎧≤⎪∴⎨>⎪⎩,即963016830a a -+≤⎧⎨-+>⎩,解得:1928a ≤<, a ∴的最小值为2.故答案为:2 【点睛】本题考查根据交集结果求解参数范围的问题,关键是能够将整数解个数问题转化为二次函数图象的讨论,通过约束二次函数的图象得到不等关系.17.【分析】对整数取值并使为正整数这样即可找到所有满足条件的值从而用列举法表示出集合【详解】因为且所以可以取234所以故答案为:【点睛】考查描述法列举法表示集合的定义清楚表示整数集属于基础题 解析:{}1,2,3,4-【分析】对整数a 取值,并使65a-为正整数,这样即可找到所有满足条件的a 值,从而用列举法表示出集合A . 【详解】 因为a Z ∈且*65N a∈- 所以a 可以取1-,2,3,4. 所以{}1,2,3,4A =- 故答案为:{}1,2,3,4- 【点睛】考查描述法、列举法表示集合的定义,清楚Z 表示整数集,属于基础题.18.【分析】先求出集合由已知条件中即可求出实数a 的取值范围【详解】由解得又因为且则所以即实数a 的取值范围是故答案为:【点睛】本题考查了集合的交集运算在解答此类题目的方法是将其转化为子集问题在取答案时可以 解析:(],1-∞-【分析】先求出集合P ,由已知条件中PQ P =,即可求出实数a 的取值范围.【详解】 由{}2230P x x x =--<,解得{}13P x x =-<<,又因为{}Q x x a =>,且P Q P =,则P Q ⊆,所以1a ≤-,即实数a 的取值范围是(],1-∞-.故答案为:(],1-∞-【点睛】本题考查了集合的交集运算,在解答此类题目的方法是将其转化为子集问题,在取答案时可以画出数轴来得到结果,本题较为基础.19.在的三条高上且不为重心【分析】由题意知若集合的子集只有个则集合有个元素可得出三个三角形的面积有两个相等分析点的位置即可得出结论【详解】若集合的子集只有个则集合有个元素是等边内部一点三个三角形的面积值 解析:H 在ABC ∆的三条高上且H 不为ABC ∆重心【分析】由题意知,若集合M 的子集只有4个,则集合M 有2个元素,可得出HAB ∆,HBC ∆,HCA ∆三个三角形的面积有两个相等,分析点H 的位置,即可得出结论.【详解】若集合M 的子集只有4个,则集合M 有2个元素,M 是等边ABC ∆内部一点, HAB ∆,HBC ∆,HCA ∆三个三角形的面积值构成集合M ,故HAB ∆,HBC ∆,HCA ∆三个三角形的面积有且只有两个相等.若HAB ∆,HBC ∆的面积相等,则点H 在边AC 的高上且不为ABC ∆的重心; 若HBC ∆,HCA ∆的面积相等,则点H 在边AB 的高上且不为ABC ∆的重心; 若HAB ∆,HCA ∆的面积相等,则点H 在边BC 的高上且不为ABC ∆的重心. 综上所述,点H 在等边ABC ∆的三条高上且不为ABC ∆的重心.故答案为:H 在ABC ∆的三条高上且H 不为ABC ∆重心【点睛】本题考查子集的个数与元素个数之间的关系,根据已知条件得出集合元素的个数是解题的关键,考查推理能力,属于中等题.20.4【分析】根据题意列出所有可能的集合B 求出相应的求出平均数即可【详解】因为集合若且所以集合B 为:当时当时当时当时当时当时当时则G(B)的平均值是故答案为:【点睛】本题主要考查了集合间的包含关系考查学 解析:4【分析】根据题意列出所有可能的集合B ,求出相应的()G B ,求出平均数即可.【详解】因为集合{}1,2,3A =,若B ≠∅,且B A ⊆所以集合B 为:{}{}{}{}{}{}{}1231,21,32,31,2,3,,,,,,当{}1B =时,()112G B =+=当{}2B =时,()224G B =+=当{}3B =时,()336G B =+=当{}1,2B =时,()123G B =+=当{}1,3B =时,()134G B =+=当{}2,3B =时,()235G B =+=当{}1,2,3B =时,()134G B =+=则G(B)的平均值是246345447++++++= 故答案为:4【点睛】本题主要考查了集合间的包含关系,考查学生分析问题和解决问题的能力,属于中档题. 三、解答题21.(1)(){|21U AB x x =-<≤-或24}x ≤<;(2)30m -≤≤. 【分析】(1)求出集合B ,再根据集合的运算法则计算.由A B A ⋃=得B A ⊆,根据集合的包含关系得出不等式式,从而可求解.【详解】(1)1m =-时,{|115}{|24}A x x x x =-<+<=-<<,{|12}B x x =-<<, {|1U B x x =≤-或2}x ≥,∴(){|21U AB x x =-<≤-或24}x ≤<; (2)∵A B A ⋃=,∴B A ⊆,又{|15}A x m x m =-<<+,∴1152m m -≤-⎧⎨+≥⎩,解得30m -≤≤. 【点睛】本题考查集合的综合运算,考查集合的包含关系,考查指数函数的性质.解题时注意集合的运算与包含关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆.22.(1)(1,1]A B ⋂=-;(2)1m .【分析】(1)先利用分式不等式的解法和绝对值不等式的解法化简集合A ,B ,再利用交集运算求解.(2)根据()C AC ⊆,得到C A ⊆,然后分C =∅和C ≠∅两种情况讨论求解.【详解】(1)因为集合423(1,5]1a A aa ⎧⎫-=≤=-⎨⎬+⎩⎭,{}12[3,1]B a a =+≤=-, 所以(1,1]A B ⋂=-.(2)因为()C A C ⊆,所以C A ⊆,①当3m m -≥+即32m ≤-时,C =∅,符合题意, ②当3m m -<+即32m >-时,则135m m -≥-⎧⎨+≤⎩, 解得132m -<≤, 综上:1m【点睛】 本题主要考查集合的基本运算和集合的基本关系的应用以及分式不等式和绝对值不等式的解法,还考查了分类讨论思想和运算求解的能力,属于中档题.23.(1)4m ≥;(2)2m ≤.【分析】(1)根据已知条件得集合A 是B 的真子集,由此可得答案;(2)由于AB B =,故B 是A 的子集,分两种情况,分别列不等式求得m 的取值范围. 【详解】(1) 由x A ∈是x B ∈的充分不必要条件,所以A B ,13324m m -≤-⎧⎨-≥⎩等号不同时成立得4m ≥ ∴实数m 的取值范围为4m ≥(2)由题意知B A ⊆当B =∅,3132,4m m m ->-< 当B ≠∅,13324132m m m m -≥-⎧⎪-≤⎨⎪-≤-⎩,324m ≤≤ 综上所述:实数m 的取值范围为2m ≤.【点睛】本题主要考查集合的运算,根据包含关系求参数的取值范围,属于基础题.24.(1)14a a ⎧⎫≤⎨⎬⎩⎭;(2)1344a a ⎧⎫<≤⎨⎬⎩⎭. 【分析】(1)根据空集的概念列出关于a 的不等式,求解出a 的取值范围;(2)先根据C ≠∅求解出a 的初步范围,然后根据条件求解出A B 的结果,最后再根据子集关系求解出a 的取值范围.【详解】解:(1)因为{}122C x a x a =-<<=∅,所以122a a -≥,所以14a ≤, 即实数a 的取值范围是14a a ⎧⎫≤⎨⎬⎩⎭. (2)因为{}122C x a x a =-<<≠∅,所以122a a -<,即14a >. 因为{}14A x x =-<<,352B x x ⎧⎫=-<<⎨⎬⎩⎭,所以312A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭, 因为()C A B ⊆⋂,所以12132214a a a ⎧⎪-≥-⎪⎪≤⎨⎪⎪>⎪⎩,解得1344a <≤, 即实数a 的取值范围是1344aa ⎧⎫<≤⎨⎬⎩⎭. 【点睛】易错点睛:根据集合的包含关系求解参数范围时的注意事项: (1)注意分析集合为空集的可能;(2)列关于参数的不等式时,注意等号是否能取到. 25.(1){2x x <或3x ≥};(2)[)2-+∞,. 【分析】(1)3a =-时,先计算B R ,再进行并集运算即可; (2)先利用交集结果判断B A ⊆,再讨论B 是否空集使其满足子集关系,列式计算即得结果.【详解】(1)因为3a =-,所以{}13B x x =<<,=B R {1x x ≤或3x ≥}, 故()=⋃R A B {2x x <或3x ≥};(2)因为AB B =,所以B A ⊆. 若B =∅,则1a -≤,解得1a ≥-;若B ≠∅,则12a a ->⎧⎨-≤⎩,解得21a -≤<-. 综上所述,a 的取值范围为[)2-+∞,. 【点睛】易错点睛:已知B A ⊆求参数范围时,需讨论集合B 是否是空集,因为空集是任意集合的子集,直接满足B A ⊆.26.(1){|1x x <或3}x >;(2)[]1,0-.【分析】(1)化简集合A ,B ,根据并集运算即可. (2)计算()R AC B ,根据()()R C A C B ⊆,建立不等式求解即可. 【详解】(1)由10x ->得,函数()()lg 1f x x =-的定义域{}1A x x =< 260x x -->,即()()320x x -+>, 解得{}32B x x x =><-或 A B ∴={|1x x <或3}x >, (2){}23R C B x x =-≤≤, (){}21R A C B x x ∴⋂=-≤< {}21C x x ⊆-≤<,则121011m m m -≥-⎧⇒-≤≤⎨+≤⎩, 故实数m 的取值范围为[]1,0-.【点睛】本题主要考查了集合的并集运算,补集、交集的运算,子集的概念,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合(选择题:较难)1、已知全集,,,则图中阴影部分所表示的集合为()A. B. C. D.2、设全集为,用集合的交集、并集、补集分别表示右边韦恩图中Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分为:Ⅰ部分:,Ⅱ部分:,Ⅲ部分:,Ⅳ部分:,其中表示错误的是()A.Ⅰ部分 B.Ⅱ部分 C.Ⅲ部分 D.Ⅳ部分3、已知全集,集合则等于()A. B. C. D.4、已知集合,集合,则等于()A. B. C. D.5、已知全集,集合,,则等于()A. B. C. D.6、已知.若对于所有的,均有,则的取值范围是()A. B. C. D.7、已知非空集合,,,则集合可以是()A. B. C. D.8、集合,则集合与集合之间的关系()A. B. C. D.9、给定全集,非空集合满足,,且集合中的最大元素小于集合中的最小元素,则称为的一个有序子集对,若,则的有序子集对的个数为( )A.48 B.49 C.50 D.5110、设a,b∈R,集合{1,a+b,a}=,则b-a等于()A.1 B.-1C.2 D.-211、已知非空集合满足以下两个条件:(ⅰ),;(ⅱ)的元素个数不是中的元素,的元素个数不是中的元素,则有序集合对的个数为()A. B. C. D.12、各项互不相等的有限正项数列,集合,集合,则集合中的元素至多有()个.A. B. C. D.13、对于任意两个正整数,定义某种运算,法则如下:当都是正奇数时,;当不全为正奇数时,,则在此定义下,集合的真子集的个数是()A. B. C. D.14、已知方程的所有解都为自然数,其组成的解集为,则的值不可能为()A. B. C. D.15、定义表示两个数中的较小者,表示两个数中的较大者,设集合都是的含有两个元素的子集,且满足:对任意的都有,,则的最大值是( )A. B. C. D.16、已知方程的所有解都为自然数,起组成的解集为,则的值不可能为()A.13 B.14 C.17 D.2217、给定全集,非空集合满足,,且集合中的最大元素小于集合中的最小元素,则称为的一个有序子集对,若,则的有序子集对的个数为()A.16 B.17 C.18 D.1918、如图,阴影部分用集合、、表示为()A. B. C. D.19、设全集,集合,,则()A. B. C. D.20、集合,则()A. B. C. D.21、设集合,集合.若中恰含有一个整数,则实数的取值范围是A. B. C. D.22、在平面直角坐标系中,定义为两点之间的“折线距离”,则下列命题中:①若,则有;②到原点的“折线距离”等于的所有点的集合是一个圆;③若点在线段上,则有;④到两点的“折线距离”相等的点的轨迹是直线.真命题的个数为()A. B. C. D.23、已知集合满足,则满足条件的组合共有()组.A.4 B.8 C.9 D.2724、已知集合,则集合B不可能是()A.B.C.D.25、设,则B的元素个数是()A.5 B.4 C.3 D.无数个26、在直角坐标系中,全集,集合,已知集合的补集所对应区域的对称中心为,点是线段上的动点,点是轴上的动点,则周长的最小值为()A. B. C. D.27、已知集合,则集合为()A. B. C. D.28、若集合A={x|(x+1)(3﹣x)>0},集合B={x|1﹣x>0},则A∩B等于()A.(1,3) B.(﹣∞,﹣1) C.(﹣1,3) D.(﹣1,1)29、若集合,,则()A. B. C. D.30、已知集合,,若,则实数的取值范围为()A. B. C. D.31、设全集U=R,A={x|x<0},B={x|x>1},则A∩U B=()A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}32、已知函数的定义域为,的定义域为,则()A. B.C. D.33、设,已知集合,,且,则实数的取值范围是()A. B. C. D.34、设集合,,则=()A.B.C.D.35、(2013•建平县校级一模)已知集合,集合N={x|2x+3>0},则(∁R M)∩N=()A.[﹣) B.(﹣) C.(﹣] D.[﹣]36、设a,b∈R,集合=A.1 B.-1 C.2 D.-237、已知集合M={},若对于任意,存在,使得成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={};②M={};③M={};④M={}.其中是“垂直对点集”的序号是()A.①② B.②③ C.①④ D.②④38、已知集合,,若,则实数的取值范围是()A. B. C. D.39、设全集,集合,,则()A. B. C. D.40、设全集为,集合,则()A. B. C. D.41、已知,则()A. B. C. D.42、已知集合,,则A. B. C. D.43、设含有8个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,则的值为______.44、已知集合,若,则等于A.9 B.8 C.7 D.645、设整数,集合.令集合.若和都在中,则下列选项正确的是()A.,B.,C.,D.,46、用C(A)表示非空集合A中的元素个数,定义A*B=.若A={1,2},B=,且A*B=1,设实数的所有可能取值集合是S,则C(S)=()A.4 B.3 C.2 D.147、(5分)(2011•陕西)设集合M={y|y=|cos2x﹣sin2x|,x∈R},N={x||x﹣|<,i为虚数单位,x∈R},则M∩N为()A.(0,1) B.(0,1] C.[0,1) D.[0,1]48、已知M=且M,则a=()A.-6或-2 B.-6 C.2或-6 D.-249、已知集合中的三个元素可构成的三边长,则一定不是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形50、在集合{a,b,c,d}上定义两种运算和如下:那么dA.a B.b C.c D.d51、已知,,,,则可以是()A. B. C. D.52、函数的定义域为集合,函数的定义域为集合,则A. B. C. D.53、已知集合,则的子集的个数()A.2 B.4 C.5 D.754、若则就称A是伙伴关系集合,集合的所有非空子集中,具有伙伴关系的集合的个数为A. B. C. D.55、.已知集合,,则=" "A. B. C. D.56、已知集合,则的子集的个数()A.2 B.4 C.5 D.757、已知集合,,则的子集个数为()A.2 B.4 C.6 D.858、设集合U=,则A. B. C. D.59、对于集合M、N,定义:且,,设=,,则= ()A.(,0] B.[,0) C. D.60、已知集合,集合,则等于A. B. C. D.61、设集合,,则集合等于( ▲ ) .A. B. C. D.62、已知集合M= ,集合为自然对数的底数),则= ()A. B. C. D.63、设集合,,,则等于A. B. C. D.64、已知全集,,则集合A. B. C. D.65、,是两个向量集合, 则A.{(1,-2)} B.{(-13,-23)} C.{(-12, -7)} D.{(-23,-13)}66、若集合, 则满足的集合的个数是A.6 B.7 C.8 D.1067、若A、B、C为三个集合,且,则一定有()A、 B、 C、 D、68、:集合,则=A.{1,2} B.{0,1,2} C.{x|0≤x<3} D.{x|0≤x≤3}69、设集合S={A0,A1,A2,A3},在S上定义运算为:A1A=A b,其中k为I+j被4除的余数,I,j=0,1,2,3.满足关系式=(x x)A2=A0的x(x∈S)的个数为A.4 B.3 C.2 D.170、已知全信U=(1,2,3, 4,5),集合A=,则集合C u A等于A. B. C. D.参考答案1、D2、D3、A4、C5、C.6、C7、B8、A9、B10、C11、A12、A13、C14、A15、C16、A17、B18、C19、C20、C21、B22、C23、D24、D25、C26、B27、D28、D29、C30、C31、C32、C33、B34、A35、C36、C37、D38、D39、B40、B42、A43、44、C45、B46、B47、C48、A49、D50、A51、C52、A53、B55、A56、B57、B58、D59、C60、A61、D62、A63、B64、C65、B66、C67、A68、:B.69、B70、B【解析】1、试题分析:由图可知,阴影部分所表示的集合,因为,所以,故应选.考点:1、集合间的基本运算.2、略3、因或,故,所以,应选答案A。

4、试题分析:,所以,选C.考点:集合运算【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.5、试题分析:由题意得,,,∴,∴,故选C.考点:集合的运算.6、,,所以集合表示的图形为椭圆,集合表示的图形为直线,当时直线与椭圆恒有公共点,所以直线过的点在椭圆上或在椭圆内,由椭圆短轴顶点为可知,所以的取值范围是,选C.点睛:本题中首先由可得直线与椭圆有公共点,其中由直线方程可知直线过定点,因此只需定点在椭圆内或在椭圆上即可满足题意要求,此外本题还可以将直线方程与椭圆方程联立,将问题转化为方程组有解,通过消去得到关于的方程,只需方程始终有实数解即可.7、,首先,有或,排除A、C,由于不等式不宜解答,所以采用排除法,取进行检验,,而,不符合不等式的要求,排除D,选B. 【点睛】解答选择题的方法很多,主要有直接法,特值特例法、排除法,极限法等,有时利用直接法很费力的时候,不妨使用排除法,有时会出现意想不到的效果,但排除法最适宜求范围的问题,因为特值特例反验证还是比较方便使用并受人欢迎的方法.8、设,则,说明集合A的元素一定是集合B的元素,则,选A.9、时,的个数是时,的个数是时,的个数是,时,的个数是1时,的个数是,时,的个数是时,的个数是1,时,的个数是时,的个数是1时,的个数是1时,的个数是时,的个数是1、时,的个数是1时,的个数是1时,的个数是1的有序子集对的个数为49个,10、根据题意,集合,且,所以,即,所以,且,所以,则,故选C.点睛:本题主要考查了集合运算的特征与集合相等的含义,注意从特殊元素下手,有利用找到解题的切入点是解答此类问题的关键,本题的解答中根据集合相等,注意到后面集合中有元素,由集合相等的定义,集合集合中元素的特征,可得,进而分析可得的中,即可得到的值.11、若集合中只有个元素,则集合中只有个元素,则,即,此时有,同理,若集合中只有个元素,则集合中只有个元素,有,若集合中只有个元素,则,即,此时有,,同理,若集合中只有个元素,则集合中只有个元素,有,若集合中只有个元素,则集合中只有个元素,则,不满足条件,所以满足条件的有序集合对的个数为,故选A.【方法点睛】本题主要考查集合的交集、并集及集合与元素的关系、分类讨论思想的应用. 属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.12、各项不相等的有限正项数列,不妨假设数列是单调递增的,集合,集合,最多可取最多可取最多可取,集合中的元素至多有,故选A.13、由题意,当都是正奇数时,;当不全为正奇数时,;若都是正奇数,则由,可得,此时符合条件的数对为(满足条件的共8个;若不全为正奇数时,,由,可得,则符合条件的数对分别为共5个;故集合中的元素个数是13,所以集合的真子集的个数是故选C.【点睛】本题考查元素与集合关系的判断,解题的关键是正确理解所给的定义及熟练运用分类讨论的思想进行列举,14、当分别取时,,,排除,当分别取时,,,排除,当分别取时,,,排除,故选A.15、根据题意,对于M,含2个元素的子集有个,其中, {1,2}、{2,4}、{3,6}、{4,8}可以任选两个; {1,3}、{2,6}符合题意; {2,3}、{4,6}符合题意; {3,4}、{6,8}符合题意;即满足的任意的最多有4个,故的最大值是4,应选C.16、当分别取时,,,排除,当分别取时,,,排除,当分别取时,,,排除,故选A.17、时,的个数是时,B的个数是时,的个数是1,时,的个数是时,的个数是1,时,的个数是1,时,的个数是1,的有序子集对的个数为:17个,18、如图,观察图形可知,阴影是B的补集与集合A的交集,即,故选C.19、试题分析:,.考点:集合交集、并集和补集.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系.在求交集时注意区间端点的取舍.熟练画数轴来解交集、并集和补集的题目.20、由题意可知M集合中元素,集合N中元素,显然集合N中元素都在集合M中,所以,选C.【点睛】对于描述法表示的集合,我们处理方法一是用列举法来观察元素特点来比较两个集合关系,二是把描述的式子写成形式结构一样的式子,根据式子特征来找出两个集合关系。

相关文档
最新文档