(完整版)材料科学基础第一章全部作业
完整版材料科学基础习题库第一章晶体结构
完整版材料科学基础习题库第⼀章晶体结构(⼀).填空题1.同⾮⾦属相⽐,⾦属的主要特性是___________2.晶体与⾮晶体的最根本区别是____________3.⾦属晶体中常见的点缺陷是___________ ,最主要的⾯缺陷是__________ 。
4.位错密度是指___________ ,其数学表达式为 __________ 。
5.表⽰晶体中原⼦排列形式的空间格⼦叫做__________________ ,⽽晶胞是指6.在常见⾦属晶格中,原⼦排列最密的晶向,体⼼⽴⽅晶格是____________ ,⽽⾯⼼⽴⽅晶格是__________ 。
7.晶体在不同晶向上的性能是___________ ,这就是单晶体的__________ 现象。
⼀般结构⽤⾦属为___________ 晶体,在各个⽅向上性能 ____________ ,这就是实际⾦属的___________ 现象。
8.实际⾦属存在有__________ 、__________ 和__________ 三种缺陷。
位错是___________ 缺陷。
实际晶体的强度⽐理想晶体的强度___________ 得多。
9.常温下使⽤的⾦属材料以__________ 晶粒为好。
⽽⾼温下使⽤的⾦属材料在⼀定范围内以___________ 晶粒为好。
‘10.⾦属常见的晶格类型是_________ 、____________ 、__________ 。
11.在⽴⽅晶格中,各点坐标为:A (1,0,1),B (0,1,1),C(1,1,1/2),D(1/2 ,1,1/2),那么AB晶向指数为________ ,0(晶向指数为_________ , 0E晶向指数为___________ 。
1 2.铜是__________ 结构的⾦属,它的最密排⾯是 __________ 若铜的晶格常数a=0.36nm,那么最密排⾯上原⼦间距为 ___________ 。
13 a -Fe、丫-Fe、Al、Cu、Ni、Pb Cr、V、Mg Zn中属于体⼼⽴⽅晶格的有 ,属于⾯⼼⽴⽅晶格的有 _________________________ ,属于密排六⽅晶格的有3 14. ________________________________________________________ 已知Cu 的原⼦直径为0. 256nm那么铜的晶格常数为_______________________ 。
(完整版)材料科学基础第1-2章作业及解答彭
第一章作业——材料结构的基本知识1、简述一次键与二次键的差异及各键的特点。
2、简述三大类材料中的结合键类型及性能(物性、力性)特点。
3、为什么金属材料的密度比陶瓷材料及高分子材料密度高?4、用金属键的特征解释金属材料的性能-----①良好的导电;②良好的导热性;③正的电阻温度系数;④不透明性及具有金属光泽;⑤良好的塑性⑥金属之间的溶解性(固溶能力)。
5、简述晶体与非晶体的主要区别。
6、简述原子结构、原子结合键、原子的排列方式及显微组织对材料性能的影响。
第一章作业解答1、述一次键与二次键的差异及各键的特点。
解答:(1)一次键结合力较强,包括金属键、离子键、共价键;二次键结合力较弱,包括范德华键和氢键。
一次键主要依靠外壳层电子转移或共享以形成稳定的电子壳层;二次键是借原子之间的偶极吸引力结合而成。
(2)金属键电子共有化,没有方向性和饱和性;离子键没有方向性,但要满足正负电荷平衡要求;共价键有明显的方向性和饱和性;范德华键没有方向性、饱和性;氢键(X-H…Y)有饱和性、方向性。
2、简述三大类材料中的结合键类型及性能(物性、力性)特点。
解答:(1)三大类材料主要指金属材料、陶瓷材料和高分子材料。
(2)金属材料中的结合键主要是金属键,其次是共价键、离子键,使金属材料具有较高的熔点、密度,良好的导电、导热性能及较高的弹性模量、强度和塑性。
陶瓷材料中的结合键主要是离子键和共价键,使其熔点高、密度低,具有良好的绝缘性能和绝热性能,高的弹性模量和强度,但塑性差,脆性大。
高分子材料中分子链内部虽为共价键结合,但分子链之间为二次键结合,使其具有较低的熔点、密度,良好的绝缘性能、绝热性能及较低的弹性模量、强度和塑性。
3、为什么金属材料的密度比陶瓷材料及高分子材料密度高?金属材料的密度较高是因为①金属元素具有较高的相对原子质量,②金属材料主要以金属键结合,金属键没有方向性和饱和性,使金属原子总是趋于密集排列,达到密堆结构。
(完整版)1《材料科学基础》第一章晶体学基础
晶向、晶
钯的PDF卡片-----Pd 89-4897
crystal system,space
图 2 CdS纳米棒的TEM照片(左)和 HRTEM照片(右)
图2 选区电子衍射图
图1. La(Sr)3SrMnO7的低 温电子衍射图
晶向、晶面、晶面间距
晶向:空间点阵中行列的方向代表晶体中原子排 列的方向,称为晶向。
晶面:通过空间点阵中任意一组结点的平面代表 晶体中的原子平面,称为晶面。
L M
P点坐标?
(2,2,2)或222
N
一、晶向指数
1、晶向指数:表示晶体中点阵方向的指数,由晶向上结点的 坐标值决定。
2、求法 1)建立坐标系。 以晶胞中待定晶向上的某一阵点O为原点,
联系:一般情况下,晶胞的几何形状、大小与对应的单胞是 一致的,可由同一组晶格常数来表示。
不区分 图示
晶 胞
空间点阵
单
胞
•NaCl晶体的晶胞,对应的是立方面心格子 •晶格常数a=b=c=0.5628nm,α=β=γ=90°
大晶胞
大晶胞:是相对 于单位晶胞而言 的
例:六方原始格子形式的晶胞就是常见的大晶胞
① 所选取的平行六面体应能反映整个空间点阵的对称性; ② 在上述前提下,平行六面体棱与棱之间的直角应最多; ③ 在遵循上两个条件的前提下,平行六面体的体积应最小。
具有L44P的平面点阵
单胞表
3、单胞的表征
原点:单胞角上的某一阵点 坐标轴:单胞上过原点的三个棱边 x,y,z 点阵参数:a,b,c,α,β,γ
准晶
是一种介于晶体和非晶体之间的固体。准晶具有长程定向有 序,然而又不具有晶体所应有的平移对称性,因而可以具有 晶体所不允许的宏观对称性。
(完整版)材料科学基础-张代东-习题答案
第1章 习题解答1-1 解释下列基本概念金属键,离子键,共价键,范德华力,氢键,晶体,非晶体,理想晶体,单晶体,多晶体,晶体结构,空间点阵,阵点,晶胞,7个晶系,14种布拉菲点阵,晶向指数,晶面指数,晶向族,晶面族,晶带,晶带轴,晶带定理,晶面间距,面心立方,体心立方,密排立方,多晶型性,同素异构体,点阵常数,晶胞原子数,配位数,致密度,四面体间隙,八面体间隙,点缺陷,线缺陷,面缺陷,空位,间隙原子,肖脱基缺陷,弗兰克尔缺陷,点缺陷的平衡浓度,热缺陷,过饱和点缺陷,刃型位错,螺型位错,混合位错,柏氏回路,柏氏矢量,位错的应力场,位错的应变能,位错密度,晶界,亚晶界,小角度晶界,大角度晶界,对称倾斜晶界,不对称倾斜晶界,扭转晶界,晶界能,孪晶界,相界,共格相界,半共格相界,错配度,非共格相界(略)1-2 原子间的结合键共有几种?各自特点如何? 答:原子间的键合方式及其特点见下表。
类 型 特 点离子键 以离子为结合单位,无方向性和饱和性 共价键 共用电子对,有方向性键和饱和性 金属键 电子的共有化,无方向性键和饱和性分子键 借助瞬时电偶极矩的感应作用,无方向性和饱和性 氢 键依靠氢桥有方向性和饱和性1-3 问什么四方晶系中只有简单四方和体心四方两种点阵类型?答:如下图所示,底心四方点阵可取成更简单的简单四方点阵,面心四方点阵可取成更简单的体心四方点阵,故四方晶系中只有简单四方和体心四方两种点阵类型。
1-4 试证明在立方晶系中,具有相同指数的晶向和晶面必定相互垂直。
证明:根据晶面指数的确定规则并参照下图,(hkl )晶面ABC 在a 、b 、c 坐标轴上的截距分别为h a 、k b 、l c ,k h b a AB +-=,l h c a AC +-=,lk ca BC +-=;根据晶向指数的确定规则,[hkl ]晶向cb a L l k h ++=。
利用立方晶系中a=b=c , 90=γ=β=α的特点,有0))((=+-++=⋅kh l k h ba cb a AB L 0))((=+-++=⋅lh l k h ca cb a AC L 由于L 与ABC 面上相交的两条直线垂直,所以L 垂直于ABC 面,从而在立方晶系具有相同指数的晶向和晶面相互垂直。
《材料科学基础》作业-答案全
绪论一、填空题1、材料科学主要研究的核心问题是结构和性能的关系。
材料的结构是理解和控制性能的中心环节,结构的最微细水平是原子结构,第二个水平是原子排列方式,第三个水平是显微组织。
2. 根据材料的性能特点和用途,材料分为结构材料和功能材料两大类。
根据原子之间的键合特点,材料分为金属、陶瓷、高分子和复合材料四大类。
第一章材料的原子结构一、填空题1. 金属材料中原子结合以金属键为主,陶瓷材料(无机非金属材料)以共价键和离子键结合键为主,聚合物材料以共价键和氢键以及范德华键为主。
第二章材料的结构一、填空题1、晶体是基元(原子团)以周期性重复方式在三维空间作有规则的排列的固体。
2、晶体与非晶体的最根本区别是晶体原子排布长程有序,而非晶体是长程无序短程有序。
3、晶胞是晶体结构中的最小单位。
4、根据晶体的对称性,晶系有三大晶族,七大晶系,十四种布拉菲Bravais点阵,三十二种点群,230种空间群。
5、金属常见的晶格类型有体心立方、面心立方、密排六方。
6、fcc晶体的最密排方向为<110>,最密排面为{111},最密排面的堆垛顺序为ABCABCABCABC……。
7、fcc晶体的致密度为0.74,配位数为12,原子在(111)面上的原子配位数为6。
8、bcc晶体的最密排方向为<111>,最密排面为{110},致密度为0.68,配位数为8。
9、晶体的宏观对称要素有对称点、对称轴、对称面。
10、CsCl型结构属于简单立方格子,NaCl型结构属于面心立方格子,CaF2型结构属于面心立方格子。
11、MgO晶体具有NaCl型结构,其对称型是3 L44L36L29PC,晶族是高级晶族,晶系是立方晶系,晶体的键型是离子键。
12、硅酸盐晶体结构中的基本结构单元是硅氧四面体[SiO4]。
?13、几种硅酸盐晶体的络阴离子分别为[Si2O7]6-、[Si2O6]4-、[Si4O10]4-、[AlSi3O8]1-,它们的晶体结构类型分别为组群状,链状,层状,和架状。
材料科学基础习题与参考答案(doc 14页)(优质版)
第一章材料的结构一、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化。
二、填空题1、材料的键合方式有四类,分别是(),(),(),()。
2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成()。
3、我们把原子在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。
4、三种常见的金属晶格分别为(),()和()。
5、体心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有体心立方晶格的常见金属有()。
6、面心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有面心立方晶格的常见金属有()。
7、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),具有密排六方晶格的常见金属有()。
8、合金的相结构分为两大类,分别是()和()。
9、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。
10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。
11、金属化合物(中间相)分为以下四类,分别是(),(),(),()。
12、金属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。
13、CuZn、Cu5Zn8、Cu3Sn的电子浓度分别为(),(),()。
14、如果用M表示金属,用X表示非金属,间隙相的分子式可以写成如下四种形式,分别是(),(),(),()。
(完整版)材料科学基础习题及答案
第一章材料的结构一、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化.二、填空题1、材料的键合方式有四类,分别是(),( ),(),().2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成( )。
3、我们把原子在物质内部呈( )排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),( ),( ).4、三种常见的金属晶格分别为(),( )和().5、体心立方晶格中,晶胞原子数为( ),原子半径与晶格常数的关系为( ),配位数是(),致密度是( ),密排晶向为(),密排晶面为( ),晶胞中八面体间隙个数为(),四面体间隙个数为( ),具有体心立方晶格的常见金属有()。
6、面心立方晶格中,晶胞原子数为( ),原子半径与晶格常数的关系为(),配位数是( ),致密度是(),密排晶向为( ),密排晶面为(),晶胞中八面体间隙个数为( ),四面体间隙个数为(),具有面心立方晶格的常见金属有()。
7、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为( ),密排晶面为(),具有密排六方晶格的常见金属有( )。
8、合金的相结构分为两大类,分别是()和( )。
9、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。
10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。
11、金属化合物(中间相)分为以下四类,分别是( ),( ),( ),( )。
12、金属化合物(中间相)的性能特点是:熔点()、硬度( )、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。
13、CuZn、Cu5Zn8、Cu3Sn的电子浓度分别为(),( ),( ).14、如果用M表示金属,用X表示非金属,间隙相的分子式可以写成如下四种形式,分别是( ),(),( ),( ).15、Fe3C的铁、碳原子比为(),碳的重量百分数为(),它是( )的主要强化相。
材料科学基础课后习题答案
材料科学基础课后习题答案第一篇:材料科学基础课后习题答案第1章习题1-10 纯铁点阵常数0.286nm,体心立方结构,求1cm3中有多少铁原子。
解:体心立方结构单胞拥有两个原子,单胞的体积为V=(0.286×10-8)3 cm3,所以1cm3中铁原子的数目为nFe= 122⨯2=8.55⨯10(2.86⨯10-8)31-11 一个位错环能否各部分都是螺型位错,能否各部分都是刃型位错?为什么?解:螺型位错的柏氏矢量与位错线平行,一根位错只有一个柏氏矢量,而一个位错环不可能与一个方向处处平行,所以一个位错环不能各部分都是螺型位错。
刃位错的柏氏矢量与位错线垂直,如果柏氏矢量垂直位错环所在的平面,则位错环处处都是刃型位错。
这种位错的滑移面是位错环与柏氏矢量方向组成的棱柱面,这种位错又称棱柱位错。
1-15 有一正方形位错线,其柏氏矢量及位错线的方向如图1-51所示。
试指出图中各段位错线的性质,并指出刃型位错额外串原子面所处的位置。
D CA B解:由柏氏矢量与位错线的关系可以知道,DC是右螺型位错,BA是左螺型位错。
由右手法则,CB为正刃型位错,多余半原子面在纸面上方。
AD为负刃型位错,多余半原子面在纸面下方。
第二篇:会计学基础课后习题答案《会计学基础》(第五版)课后练习题答案第四章习题一1、借:银行存款400 000贷:实收资本——A企业400 0002、借:固定资产400 000贷:实收资本——B企业304 000资本公积——资本溢价0003、借:银行存款000贷:短期借款0004、借:短期借款000应付利息(不是财务费用,财务费用之前已经记过)000贷:银行存款0005、借:银行存款400 000贷:长期借款400 0006、借:长期借款000应付利息000贷:银行存款000习题二1、4月5日购入A材料的实际单位成本=(53 000+900)/980=55(元/公斤)4月10日购入A材料的实际单位成本=(89 000+1 000)/1 500=60(元)2、本月发出A材料的实际成本=(600×50+600×55)+(380×55+1 020×60)=63 000+82 100=145 100(元)3、月末结存A材料的实际成本=(600×50)+[(53 000+900)+(89 000+1 000)]-145 100=28 800(元)习题三1、借:生产成本——A产品000——B产品000贷:原材料——甲材料000——乙材料0002、借:生产成本——A产品000 ——B产品000制造费用000贷:应付职工薪酬0003、借:制造费用500贷:原材料——丙材料5004、借:制造费用000贷:银行存款0005、借:制造费用000贷:累计折旧0006、本月发生的制造费用总额=5 000+500+2 000+1 000=8 500(元)制造费用分配率=8 500/(20 000+10 000)×100%=28.33%A产品应负担的制造费用=20 000×28.33%=5 666(元)B产品应负担的制造费用=8 500-5 666=2 834(元)借:生产成本——A产品——B产品贷:制造费用7、借:库存商品——A产品贷:生产成本——A产品习题四1、借:银行存款贷:主营业务收入2、借:应收账款——Z公司贷:主营业务收入银行存款3、借:主营业务成本贷:库存商品——A产品——B产品4、借:营业税金及附加贷:应交税费——应交消费税5、借:营业税金及附加贷:应交税费6、借:销售费用贷:银行存款7、借:销售费用贷:银行存款8、借:银行存款贷:其他业务收入借:其他业务成本贷:原材料——乙材料9、借:管理费用贷:应付职工薪酬10、借:管理费用贷:累计折旧11、借:管理费用贷:库存现金12、借:财务费用贷:银行存款13、借:银行存款贷:营业外收入14、借:主营业务收入其他业务收入营业外收入666 2 834 500 47 666 47 666 80 000 80 000 201 000200 000 000 142 680 42 680000 14 000 14 000 1 400 400 3 000 000 1 000 000 4 000 000 3 000 000 4 560 560 2 000 000300300400400 3 000 000 280 000 4 000 3 000贷:本年利润287 000借:本年利润172 340贷:主营业务成本680其他业务成本000营业税金及附加400销售费用000管理费用860财务费用400 本月实现的利润总额=287 000-172 340=114 660(元)本月应交所得税=114 660×25%=28 665(元)本月实现净利润=114 660-28 665=85 995(元)习题五1、借:所得税费用贷:应交税费——应交所得税借:本年利润贷:所得税费用2、2007的净利润=6 000 000-1 500 000=4 500 000(元)借:本年利润贷:利润分配——未分配利润3、借:利润分配——提取法定盈余公积贷:盈余公积——法定盈余公积4、借:利润分配——应付现金股利贷:应付股利第五章习题一1、借:银行存款固定资产贷:实收资本——M公司——N公司2、借:原材料——A材料——B材料贷:银行存款3、借:应付账款——丙公司贷:银行存款4、借:银行存款贷:短期借款5、借:固定资产贷:银行存款6、借:生产成本——甲产品——乙产品贷:原材料——A材料——B材料 500 000500 000 1 500 000500 000 4 500 000 4 500 000450 000450 000 1 000 000 1 000 000 1 000 000 1 000 000 1 000 000 1 000 000 50 000 50 000000 50 000 50 000500 000500 000200 000200 000000 80 000000 80 0007、借:其他应收款——王军000贷:库存现金0008、借:制造费用000管理费用贷:原材料——A材料0009、借:管理费用500贷:库存现金50010、借:原材料——A材料000贷:应付账款00011、借:应付职工薪酬200 000贷:银行存款200 00012、借:银行存款320 000贷:主营业务收入——甲产品320 00013、借:应收账款250 000贷:主营业务收入——乙产品250 00014、借:短期借款200 000应付利息000财务费用000贷:银行存款209 00015、借:销售费用贷:银行存款00016、借:管理费用300贷:其他应收款——王军000库存现金30017、借:生产成本——甲产品000——乙产品000制造费用000管理费用000贷:应付职工薪酬200 00018、借:制造费用000管理费用000贷:累计折旧00019、借:生产成本——甲产品000——乙产品000制造费用000管理费用000贷:应付职工薪酬000 20、借:主营业务成本381 000贷:库存商品——甲产品196 000——乙产品185 00021、制造费用总额=5 000+10 000+35 000+1 000=51 000(元)制造费用分配率=51 000/(90 000+70 000)×100%=31.875% 甲产品应分配的制造费用=90 000×31.875%=28 687.5(元)乙产品应分配的制造费用=70 000×31.875%=22 312.5(元)借:生产成本——甲产品687.5——乙产品312.5贷:制造费用00022、甲产品的实际成本=120 000+150 000+90 000+9 000+28 687.5=397 687.5(元)借:库存商品——甲产品397 687.5贷:生产成本——甲产品397 687.523、借:主营业务收入——甲产品320 000——乙产品250 000贷:本年利润借:本年利润贷:主营业务成本管理费用销售费用财务费用24、本月利润总额=570 000-487 800=82 200(元)本月应交所得税=82 200×25%=20 550(元)借:所得税费用贷:应交税费——应交所得税借:本年利润贷:所得税费用25、本月净利润=82 200-20 550=61 650(元)提取法定盈余公积=61 650×10%=6 165(元)借:利润分配——提取法定盈余公积贷:盈余公积——法定盈余公积26、借:利润分配——应付现金股利贷:应付股利570 000 487 800381 000 53 800 50 000 000 20 550 20 550 20 550 20 550 6 165 165 30 825 30 825第三篇:《机械设计基础》课后习题答案模块八一、填空1、带传动的失效形式有打滑和疲劳破坏。
材料科学基础课后习题答案
(3) cosφ
=
n3 ⋅ F | n3 || F
|
=
1 3
cosα
=
b⋅F |b || F
|
=
1 2
由 Schmid 定律,作用在新生位错滑移面上滑移方向的分切应力为:
τ 0 = σ cosϕ cos λ = 17.2 ×
1× 3
1 = 7.0 MPa 2
∴作用在单位长度位错线上的力为:
f = τb = aτ 0 = 10 − 3 N/m 2
滑移面上相向运动以后,在相遇处
。
(B
)
A、相互抵消
B、形成一排空位
C、形成一排间隙原子
7、位错受力运动方向处处垂直与位错线,在运动过程中是可变的,
晶体作相对滑动的方向
。
(C
)
A、亦随位错线运动方向而改变 B、始终是柏氏矢量方向 C、始
终是外力方向
8、两平行螺型位错,当柏氏矢量同向时,其相互作用力
。
(B
二、(15 分)有一单晶铝棒,棒轴为[123],今沿棒轴方向拉伸,请分析:
(1)初始滑移系统; (2)双滑移系统 (3)开始双滑移时的切变量 γ; (4)滑移过程中的转动规律和转轴; (5)试棒的最终取向(假定试棒在达到稳定取向前不断裂)。
三、(10
分)如图所示,某晶体滑移面上有一柏氏矢量为
v b
的圆环形位错环,并受到一均匀
14、固态金属原子的扩散可沿体扩散与晶体缺陷扩散,其中最慢的扩
散通道是:
。
(A)
A、体扩散
B、晶界扩散
C、表面扩散
15、高温回复阶段,金属中亚结构发生变化时,
。
(C)
A、位错密度增大 B、位错发生塞积 C、刃型位错通过攀移和滑移构
(完整版)材料科学基础习题库第一章-晶体结构
(一).填空题1.同非金属相比,金属的主要特性是__________2.晶体与非晶体的最根本区别是__________3.金属晶体中常见的点缺陷是__________ ,最主要的面缺陷是__________ 。
4.位错密度是指__________ ,其数学表达式为__________ 。
5.表示晶体中原子排列形式的空间格子叫做__________ ,而晶胞是指__________ 。
6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是__________ ,而面心立方晶格是__________ 。
7.晶体在不同晶向上的性能是__________,这就是单晶体的__________现象。
一般结构用金属为__________ 晶体,在各个方向上性能__________ ,这就是实际金属的__________现象。
8.实际金属存在有__________ 、__________ 和__________ 三种缺陷。
位错是__________ 缺陷。
实际晶体的强度比理想晶体的强度__________ 得多。
9.常温下使用的金属材料以__________ 晶粒为好。
而高温下使用的金属材料在一定范围内以__________ 晶粒为好。
‘10.金属常见的晶格类型是__________、__________ 、__________ 。
11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为__________ ,OC晶向指数为__________ ,OD晶向指数为__________ 。
12.铜是__________ 结构的金属,它的最密排面是__________ ,若铜的晶格常数a=0.36nm,那么最密排面上原子间距为__________ 。
13 α-Fe、γ-Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn中属于体心立方晶格的有__________ ,属于面心立方晶格的有__________ ,属于密排六方晶格的有__________ 。
材料科学基础第一章
材料科学基础第⼀章材料科学基础⼤作业——第1、2章晶体结构2015年9⽉9⽇班级:姓名:学号:分数:⼀、名词解释:固溶体、中间相、空间点阵、结合⼒、晶体、晶胞、固溶强化、相、正常价化合物、电⼦化合物、合⾦,各向异性、多晶型性、晶界、亚结构⼆、填空1. ⾦属键没有性和性。
2. 由于原⼦间结合⼒和结合能的存在,⾦属原⼦趋于规则紧密的排列。
原⼦间最⼤结合⼒对应着⾦属的。
键能决定了⾦属的和。
3. ⾃然界中的晶体结构各不相同,根据晶胞的和可将晶体结构分为14中空间点阵,归属于个晶系。
其中最典型的三中晶体结构分别为bcc 、fcc 和hcp 。
4.能够反映晶胞中原⼦排列紧密程度的两个参数为和。
其中fcc和hcp的两个参数均相同,分别为和。
bcc的两个参数⾮别为和。
5. fcc和hcp的堆垛⽅式分别为ABCABC……和ABAB……,当某些晶⾯堆垛顺序发⽣局部差错即产⽣晶体缺陷时,可能在fcc 晶体结构中出现hcp 的特征。
>6. bcc、fcc和hcp三种晶体结构中均存在四⾯体和⼋⾯体两种晶格间隙,间隙原⼦通常溶解于体间隙。
7. [221]与(221)的位置关系为。
[110]和(001)的位置关系为。
8. 塑性变形时,滑移通常沿着密排⾯和密排⽅向进⾏。
bcc的密排⾯为,密排⽅向为。
fcc的密排⾯为,密排⽅向为。
9. 铁的三种同素异构体分别为、和。
10.点缺陷主要包括三种类型,分别为、和。
⽆论哪类点缺陷都会造成其周围出现⼀个涉及⼏个原⼦间距范围的弹性畸变区,称为。
11.⼩⾓度晶界指的是相邻两晶粒的位向差⼩于。
其中对称倾侧晶界是由⼀系列相隔⼀定距离的型位错所组成,扭转晶界由相互交叉的位错所组成。
12.具有不同的两相之间的分界⾯称为相界。
其中界⾯能最⾼的是界⾯,应变能最⾼的界⾯是界⾯。
三、判断1. 晶体区别于⾮晶体的⼀个重要特征就是晶体有固定的熔点,⼆者之间在任何情况下都不能进⾏转变,即晶体不可能转变为⾮晶体,⾮晶体也不可能转变为晶体。
材料科学基础第一章全部作业
材料科学基础第⼀章全部作业(⼀)1 谈谈你对材料学科及材料四要素之间的关系的认识2 ⾦属键与其它结合键有何不同,如何解释⾦属的某些特性?3 说明空间点阵、晶体结构、晶胞三者之间的关系。
4 晶向指数和晶⾯指数的标定有何不同?其中有何须注意的问题?5 画出三种典型晶胞结构⽰意图,其表⽰符号、原⼦数、配位数、致密度各是什么?6 画出⽴⽅晶系中(011),(312),[211],[211],[101],(101)7, 画出六⽅晶系中(1120),(0110),(1012),(110),(1012)8. 原⼦间的结合键共有⼏种?各⾃特点如何?9.在⽴⽅系中绘出{110}、{111}晶⾯族所包括的晶⾯,及(112)和(120)晶⾯。
标出具有下列密勒指数的晶⾯和晶向:a)⽴⽅晶系(421),()123,(130),[211],[311];10.在⽴⽅系中绘出{110}、{111}晶⾯族所包括的晶⾯,及(112)和(120)晶⾯。
11.计算⾯⼼⽴⽅结构(111)、(110)与(100)⾯的⾯密度和⾯间距。
12. 标出具有下列密勒指数的晶⾯和晶向:a)⽴⽅晶系(421),()123,(130),[211],[311];b)六⽅晶系()2111, ()1101,()3212,[2111],1213。
13 在体⼼⽴⽅晶系中画出{111}晶⾯族的所有晶⾯。
14 画出<110>晶向族所有晶向15.写出密排六⽅晶格中的[0001],(0001),()1120,()1100,()121016. 在⼀个简单⽴⽅晶胞内画出⼀个(110)晶⾯和⼀个[112]晶向。
17. 标出具有下列密勒指数的晶⾯和晶向:⽴⽅晶系(421),()123,(130),[211],[311];18.计算晶格常数为a 的体⼼⽴⽅结构晶体中⼋⾯体间隙的⼤⼩。
19.画出⾯⼼⽴⽅晶体中(111)⾯上的[112]晶向。
20.已知某⼀⾯⼼⽴⽅晶体的晶格常数为a ,请画出其晶胞模型并分别计算该晶体的致密度、{111}晶⾯的⾯密度以及{110}晶⾯的⾯间距。
材料科学基础作业1-答案
《材料科学基础A》作业(1)一、名词解释晶体P4空间点阵P5晶格P5晶胞P5致密度P8、配位数P8细晶强化、通过细化晶粒来提高金属的强度、硬度和塑性、韧性的方法。
结构起伏P37二、简答1. 试确定简单立方、体心立方、面心立方结构中原子半径和点阵参数之间的关系。
2. 首先计算体心立方晶胞的致密度,若知道铁的原子量是55.85以及体心立方晶格的点阵参数是2.866À,计算体心立方铁的理论密度。
0.68 7.88g/cm33. 为何单晶体具有各向异性,而多晶体一般情况下不显示出各向异性?各向异性是晶体的一个重要特性,这是晶体区别于非晶体的重要标志之一。
由于晶体中不同晶面、晶向上的原子紧密程度不同,这就意味着原子之间的距离不同,从而使晶体在不同晶向上的物理、化学、力学性能也不同,呈现各向异性。
在工业用的金属材料中,通常见不到各向异性,这是由于一般固态金属都是多晶体,晶粒与晶粒之间存在着位向上的差别,晶粒的各向异性被相互抵消。
4. 分析金属强度与位错密度之间的关系。
Page 27金属的塑性变形主要由位错运动引起,因此阻碍位错运动是强化金属的主要途径。
减少或增加位错密度都可以提高金属的强度。
5. 分别写出体心立方晶格、面心立方晶格的密排面(滑移)和密排(滑移)方向。
三种常见晶格的密排面和密排方向六方底面底面对角线密排六方晶格面心立方晶格体心立方晶格6. 什么是过冷度,试从热力学条件和结构条件两方面分析在结晶时为什么会出现过冷现象? Page32热力学第二定律指出:在等温等压条件下,物质系统总是自发的从自由能较高的状态向自由能较低的状态转变。
对于结晶过程而言,结晶能否发生取决于固相的自由能是否低于液相的自由能。
在交点温度(Tm )两相自由能相等,即GL=GS 平衡共存;当T<Tm 时:液、固两相的自由能差值就是液相转变为固相(L →S )的驱动力。
过冷度越大,液态和固态的自由能差值越大,相变驱动力越大,凝固过程加快。
材料科学基础作业详细答案
材料科学基础练习题参考答案第一章原子排列1. 作图表示立方晶系中的(123),(012),(421)晶面和[102],[211],[346]晶向.附图1-1 有关晶面及晶向2. 分别计算面心立方结构与体心立方结构的{100},{110}和{111}晶面族的面间距, 并指出面间距最大的晶面(设两种结构的点阵常数均为a).解由面心立方和体心立方结构中晶面间的几何关系, 可求得不同晶面族中的面间距如附表1-1所示.附表1-1 立方晶系中的晶面间距晶面{100} {110} {111}面间距FCC2a24a33aBCC2a22a36a显然, FCC中{111}晶面的面间距最大, 而BCC中{110}晶面的面间距最大.注意:对于晶面间距的计算, 不能简单地使用公式, 应考虑组成复合点阵时, 晶面层数会增加.3. 分别计算fcc和bcc中的{100},{110}和{111}晶面族的原子面密度和<100>,<110>和<111>晶向族的原子线密度, 并指出两种结构的差别. (设两种结构的点阵常数均为a) 解原子的面密度是指单位晶面内的原子数; 原子的线密度是指晶面上单位长度所包含的原子数. 据此可求得原子的面密度和线密度如附表1-2所示.附表1-2 立方晶系中原子的面密度和线密度晶面/晶向{100} {110} {111} <100> <110> <111>面/线密度BCC21a22a233a1a22a233aFCC22a22a2433a1a2a33a可见, 在BCC中, 原子密度最大的晶面为{110}, 原子密度最大的晶向为<111>; 在FCC 中, 原子密度最大的晶面为{111}, 原子密度最大的晶向为<110>.4. 在(0110)晶面上绘出[2113]晶向.解详见附图1-2.附图1-2 六方晶系中的晶向5. 在一个简单立方二维晶体中, 画出一个正刃型位错和一个负刃型位错. 试求:(1) 用柏氏回路求出正、负刃型位错的柏氏矢量.(2) 若将正、负刃型位错反向时, 说明其柏氏矢量是否也随之反向.(3) 具体写出该柏氏矢量的方向和大小.(4) 求出此两位错的柏氏矢量和.解正负刃型位错示意图见附图1-3(a)和附图1-4(a).(1) 正负刃型位错的柏氏矢量见附图1-3(b)和附图1-4(b).(2) 显然, 若正、负刃型位错线反向, 则其柏氏矢量也随之反向.(3) 假设二维平面位于YOZ坐标面, 水平方向为Y轴, 则图示正、负刃型位错方向分别为[010]和[010], 大小均为一个原子间距(即点阵常数a).(4) 上述两位错的柏氏矢量大小相等, 方向相反, 故其矢量和等于0.6. 设图1-72所示立方晶体的滑移面ABCD平行于晶体的上下底面, 该滑移面上有一正方形位错环. 如果位错环的各段分别与滑移面各边平行, 其柏氏矢量b // AB, 试解答:(1) 有人认为“此位错环运动离开晶体后, 滑移面上产生的滑移台阶应为4个b”, 这种说法是否正确? 为什么?(2) 指出位错环上各段位错线的类型, 并画出位错移出晶体后, 晶体的外形、滑移方向和滑移量. (设位错环线的方向为顺时针方向)图1-72 滑移面上的正方形位错环 附图1-5 位错环移出晶体引起的滑移 解 (1) 这种看法不正确. 在位错环运动移出晶体后, 滑移面上下两部分晶体相对移动的距离是由其柏氏矢量决定的. 位错环的柏氏矢量为b , 故其相对滑移了一个b 的距离.(2) A ′B ′为右螺型位错, C ′D ′为左螺型位错, B ′C ′为正刃型位错, D ′A ′为负刃型位错. 位错运动移出晶体后滑移方向及滑移量见附图1-5.7. 设面心立方晶体中的(111)晶面为滑移面, 位错滑移后的滑移矢量为[110]2a .(1) 在晶胞中画出此柏氏矢量b 的方向并计算出其大小.(2) 在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向, 并写出此二位错线的晶向指数.解 (1) 柏氏矢量等于滑移矢量, 因此柏氏矢量的方向为[110], 大小为2/2a .(2) 刃型位错与柏氏矢量垂直, 螺型位错与柏氏矢量平行, 晶向指数分别为[112]和[110], 详见附图1-6.附图1-6 位错线与其柏氏矢量、滑移矢量8. 若面心立方晶体中有[101]2a b =的单位位错及[121]6a b =的不全位错, 此二位错相遇后产生位错反应.(1) 此反应能否进行? 为什么?(2) 写出合成位错的柏氏矢量, 并说明合成位错的性质.解 (1) 能够进行.因为既满足几何条件:[111]3a b b ==∑∑后前,又满足能量条件: . 22222133b a b a =>=∑∑后前. (2) [111]3a b =合, 该位错为弗兰克不全位错. 9. 已知柏氏矢量的大小为b = 0.25nm, 如果对称倾侧晶界的取向差θ = 1° 和10°, 求晶界上位错之间的距离. 从计算结果可得到什么结论?解 根据bD θ≈, 得到θ = 1°,10° 时, D ≈14.3nm, 1.43nm. 由此可知, θ = 10° 时位错之间仅隔5~6个原子间距, 位错密度太大, 表明位错模型已经不适用了.第二章 固体中的相结构1. 已知Cd, In, Sn, Sb 等元素在Ag 中的固熔度极限(摩尔分数)分别为0.435, 0.210, 0.130, 0.078; 它们的原子直径分别为0.3042 nm, 0.314 nm, 0.316 nm, 0.3228 nm; Ag 的原子直径为0.2883 nm. 试分析其固熔度极限差异的原因, 并计算它们在固熔度极限时的电子浓度.答: 在原子尺寸因素相近的情况下, 熔质元素在一价贵金属中的固熔度(摩尔分数)受原子价因素的影响较大, 即电子浓度e /a 是决定固熔度(摩尔分数)的一个重要因素, 而且电子浓度存在一个极限值(约为1.4). 电子浓度可用公式A B B B (1)c Z x Z x =-+计算. 式中, Z A , Z B 分别为A, B 组元的价电子数; x B 为B 组元的摩尔分数. 因此, 随着熔质元素价电子数的增加, 极限固熔度会越来越小.Cd, In, Sn, Sb 等元素与Ag 的原子直径相差不超过15%(最小的Cd 为5.5%, 最大的Sb 为11.96%), 满足尺寸相近原则, 这些元素的原子价分别为2, 3, 4, 5价, Ag 为1价, 据此推断它们的固熔度极限越来越小, 实际情况正好反映了这一规律; 根据上面的公式可以计算出它们在固熔度(摩尔分数)极限时的电子浓度分别为1.435, 1.420, 1.390, 1.312.2. 碳可以熔入铁中而形成间隙固熔体, 试分析是α-Fe 还是γ-Fe 能熔入较多的碳.答: α-Fe 为体心立方结构, 致密度为0.68; γ-Fe 为面心立方结构, 致密度为0.74. 显然, α-Fe 中的间隙总体积高于γ-Fe, 但由于α-Fe 的间隙数量多, 单个间隙半径却较小, 熔入碳原子将会产生较大的畸变, 因此, 碳在γ-Fe 中的固熔度较α-Fe 的大.3. 为什么只有置换固熔体的两个组元之间才能无限互熔, 而间隙固熔体则不能?答: 这是因为形成固熔体时, 熔质原子的熔入会使熔剂结构产生点阵畸变, 从而使体系能量升高. 熔质原子与熔剂原子尺寸相差越大, 点阵畸变的程度也越大, 则畸变能越高, 结构的稳定性越低, 熔解度越小. 一般来说, 间隙固熔体中熔质原子引起的点阵畸变较大, 故不能无限互熔, 只能有限熔解.第三章 凝固1. 分析纯金属生长形态与温度梯度的关系.答: 纯金属生长形态是指晶体宏观长大时固-液界面的形貌. 界面形貌取决于界面前沿液相中的温度梯度.(1) 平面状长大: 当液相具有正温度梯度时, 晶体以平直界面方式推移长大. 此时, 界面上任何偶然的、小的凸起深入液相时, 都会使其过冷度减小, 长大速率降低或停止长大, 而被周围部分赶上, 因而能保持平直界面的推移. 长大过程中晶体沿平行温度梯度的方向生长, 或沿散热的反方向生长, 而其它方向的生长则受到限制.(2) 树枝状长大: 当液相具有负温度梯度时, 晶体将以树枝状方式生长. 此时, 界面上偶然的凸起深入液相时, 由于过冷度的增大, 长大速率越来越大; 而它本身生长时又要释放结晶潜热, 不利于近旁的晶体生长, 只能在较远处形成另一凸起. 这就形成了枝晶的一次轴, 在一次轴成长变粗的同时, 由于释放潜热使晶枝侧旁液体中也呈现负温度梯度, 于是在一次轴上又会长出小枝来, 称为二次轴, 在二次轴上又长出三次轴……由此而形成树枝状骨架, 故称为树枝晶(简称枝晶).2. 简述纯金属晶体长大机制及其与固-液界面微观结构的关系.答: 晶体长大机制是指晶体微观长大方式, 即液相原子添加到固相的方式, 它与固-液界面的微观结构有关.(1) 垂直长大方式: 具有粗糙界面的物质, 因界面上约有50% 的原子位置空着, 这些空位都可以接受原子, 故液相原子可以进入空位, 与晶体连接, 界面沿其法线方向垂直推移, 呈连续式长大.(2) 横向(台阶)长大方式: 包括二维晶核台阶长大机制和晶体缺陷台阶长大机制, 具有光滑界面的晶体长大往往采取该方式. 二维晶核模式, 认为其生长主要是利用系统的能量起伏, 使液相原子在界面上通过均匀形核形成一个原子厚度的二维薄层状稳定的原子集团, 然后依靠其周围台阶填充原子, 使二维晶核横向长大, 在该层填满后, 则在新的界面上形成新的二维晶核, 继续填满, 如此反复进行.晶体缺陷方式, 认为晶体生长是利用晶体缺陷存在的永不消失的台阶(如螺型位错的台阶或挛晶的沟槽)长大的.第四章 相图1. 在Al-Mg 合金中, x Mg 为0.15, 计算该合金中镁的w Mg 为多少.解 设Al 的相对原子量为M Al , 镁的相对原子量为M Mg , 按1mol Al-Mg 合金计算, 则镁的质量分数可表示为Mg MgMg Al Al Mg Mg 100%x M w x M x M =⨯+.将x Mg = 0.15, x Al = 0.85, M Mg = 24, M Al = 27代入上式中, 得到w Mg = 13.56%.2. 根据图4-117所示二元共晶相图, 试完成:(1) 分析合金I, II 的结晶过程, 并画出冷却曲线.(2) 说明室温下合金I, II 的相和组织是什么, 并计算出相和组织组成物的相对量.(3) 如果希望得到共晶组织加上相对量为5%的β初的合金, 求该合金的成分.图4-117 二元共晶相图附图4-1 合金I的冷却曲线附图4-2 合金II的冷却曲线解(1) 合金I的冷却曲线参见附图4-1, 其结晶过程如下:1以上, 合金处于液相;1~2时, 发生匀晶转变L→α, 即从液相L中析出固熔体α, L和α的成分沿液相线和固相线变化, 达到2时, 凝固过程结束;2时, 为α相;2~3时, 发生脱熔转变, α→βII.合金II的冷却曲线参见附图4-2, 其结晶过程如下:1以上, 处于均匀液相;1~2时, 进行匀晶转变L→β;2时, 两相平衡共存, 0.50.9L β;2~2′ 时, 剩余液相发生共晶转变0.50.20.9L βα+;2~3时, 发生脱熔转变α→βII .(2) 室温下, 合金I 的相组成物为α + β, 组织组成物为α + βII .相组成物相对量计算如下:αβ0.900.20100%82%0.900.050.200.05100%18%0.900.05w w -=⨯=--=⨯=- 组织组成物的相对量与相的一致.室温下, 合金II 的相组成物为α + β, 组织组成物为β初 + (α+β).相组成物相对量计算如下:αβ0.900.80100%12%0.900.050.800.05100%88%0.900.05w w -=⨯=--=⨯=- 组织组成物相对量计算如下:β(α+β)0.800.50100%75%0.900.500.900.80100%25%0.900.50w w -=⨯=--=⨯=-初 (3) 设合金的成分为w B = x , 由题意知该合金为过共晶成分, 于是有β0.50100%5%0.900.50x w -=⨯=-初 所以, x = 0.52, 即该合金的成分为w B = 0.52.3. 计算w C 为0.04的铁碳合金按亚稳态冷却到室温后组织中的珠光体、二次渗碳体和莱氏体的相对量, 并计算组成物珠光体中渗碳体和铁素体及莱氏体中二次渗碳体、共晶渗碳体与共析渗碳体的相对量.解 根据Fe-Fe 3C 相图, w C = 4%的铁碳合金为亚共晶铸铁, 室温下平衡组织为 P + Fe 3C II + L d ′, 其中P 和Fe 3C II 系由初生奥氏体转变而来, 莱氏体则由共晶成分的液相转变而成, 因此莱氏体可由杠杆定律直接计算, 而珠光体和二次渗碳体则可通过两次使用杠杆定律间接计算出来.L d ′ 相对量: d L 4 2.11100%86.3%4.3 2.11w '-=⨯=-. Fe 3C II 相对量: 3II Fe C 4.34 2.110.77100% 3.1%4.3 2.11 6.690.77w --=⨯⨯=--. P 相对量: P 4.34 6.69 2.11100%10.6%4.3 2.11 6.690.77w --=⨯⨯=--. 珠光体中渗碳体和铁素体的相对量的计算则以共析成分点作为支点, 以w C = 0.001%和w C = 6.69%为端点使用杠杆定律计算并与上面计算得到的珠光体相对量级联得到.P 中F 相对量: F P 6.690.77100%9.38%6.690.001w w -=⨯⨯=-. P 中Fe 3C 相对量: 3Fe C 10.6%9.38% 1.22%w =-=.至于莱氏体中共晶渗碳体、二次渗碳体及共析渗碳体的相对量的计算, 也需采取杠杆定律的级联方式, 但必须注意一点, 共晶渗碳体在共晶转变线处计算, 而二次渗碳体及共析渗碳体则在共析转变线处计算.L d ′ 中共晶渗碳体相对量: d Cm L4.3 2.11100%41.27%6.69 2.11w w '-=⨯⨯=-共晶 L d ′ 中二次渗碳体相对量: d Cm L 6.69 4.3 2.110.77100%10.2%6.69 2.11 6.690.77w w '--=⨯⨯⨯=--IIL d ′ 中共析渗碳体相对量: d Cm L 6.69 4.3 6.69 2.110.770.0218100% 3.9%6.69 2.11 6.690.77 6.690.0218w w '---=⨯⨯⨯⨯=---共析 4. 根据下列数据绘制Au-V 二元相图. 已知金和钒的熔点分别为1064℃和1920℃. 金与钒可形成中间相β(AuV 3); 钒在金中的固熔体为α, 其室温下的熔解度为w V = 0.19; 金在钒中的固熔体为γ, 其室温下的熔解度为w Au = 0.25. 合金系中有两个包晶转变, 即1400V V V 1522V V V (1) β(0.4)L(0.25)α(0.27)(2) γ(0.52)L(0.345)β(0.45)w w w w w w =+===+==℃℃解 根据已知数据绘制的Au-V 二元相图参见附图4-3.附图4-3 Au-V 二元相图第五章 材料中的扩散1. 设有一条直径为3cm 的厚壁管道, 被厚度为0.001cm 的铁膜隔开, 通过输入氮气以保持在膜片一边氮气浓度为1000 mol/m 3; 膜片另一边氮气浓度为100 mol/m 3. 若氮在铁中700℃时的扩散系数为4×10-7 cm 2 /s, 试计算通过铁膜片的氮原子总数.解 设铁膜片左右两边的氮气浓度分别为c 1, c 2, 则铁膜片处浓度梯度为7421510010009.010 mol /m 110c c c c x x x --∂∆-≈===-⨯∂∆∆⨯ 根据扩散第一定律计算出氮气扩散通量为722732410(10)(9.010) 3.610 mol/(m s)c J D x---∂=-=-⨯⨯⨯-⨯=⨯∂ 于是, 单位时间通过铁膜片的氮气量为 3-22-63.610(310) 2.5410 mol/s 4J A π-=⨯⨯⨯⨯=⨯最终得到单位时间通过铁膜片的氮原子总数为-62318-1A () 2.5410 6.02102 3.0610 s N J A N =⨯=⨯⨯⨯⨯=⨯第六章 塑性变形1. 铜单晶体拉伸时, 若力轴为 [001] 方向, 临界分切应力为0.64 MPa, 问需要多大的拉伸应力才能使晶体开始塑性变形?解 铜为面心立方金属, 其滑移系为 {111}<110>, 4个 {111} 面构成一个八面体, 详见教材P219中的图6-12.当拉力轴为 [001] 方向时, 所有滑移面与力轴间的夹角相同, 且每个滑移面上的三个滑移方向中有两个与力轴的夹角相同, 另一个为硬取向(λ = 90°). 于是, 取滑移系(111)[101]进行计算.222222222222k s 0101111cos ,30011110(1)00111cos ,2001(1)011cos cos ,60.646 1.57 MPa.m mϕλϕλτσ⨯+⨯+⨯==++⨯++⨯-+⨯+⨯==++⨯-++====⨯=即至少需要1.57 MPa 的拉伸应力才能使晶体产生塑性变形.2. 什么是滑移、滑移线、滑移带和滑移系? 作图表示α-Fe, Al, Mg 中的最重要滑移系. 那种晶体的塑性最好, 为什么?答: 滑移是晶体在切应力作用下一部分相对于另一部分沿一定的晶面和晶向所作的平行移动; 晶体的滑移是不均匀的, 滑移部分与未滑移部分晶体结构相同. 滑移后在晶体表面留下台阶, 这就是滑移线的本质. 相互平行的一系列滑移线构成所谓滑移带. 晶体发生滑移时, 某一滑移面及其上的一个滑移方向就构成了一个滑移系.附图6-1 三种晶体点阵的主要滑移系α-Fe具有体心立方结构, 主要滑移系可表示为{110}<111>, 共有6×2 = 12个; Al具有面心立方结构, 其滑移系可表示为{111}<110>, 共有4×3 = 12个; Mg具有密排六方结构, 主要滑移系可表示为{0001}1120<>, 共有1×3 = 3个. 晶体的塑性与其滑移系的数量有直接关系, 滑移系越多, 塑性越好; 滑移系数量相同时, 又受滑移方向影响, 滑移方向多者塑性较好, 因此, 对于α-Fe, Al, Mg三种金属, Al的塑性最好, Mg的最差, α-Fe居中. 三种典型结构晶体的重要滑移系如附图6-1所示.3. 什么是临界分切应力? 影响临界分切应力的主要因素是什么? 单晶体的屈服强度与外力轴方向有关吗? 为什么?答:滑移系开动所需的作用于滑移面上、沿滑移方向的最小分切应力称为临界分切应力.临界分切应力τk的大小主要取决于金属的本性, 与外力无关. 当条件一定时, 各种晶体的临界分切应力各有其定值. 但它是一个组织敏感参数, 金属的纯度、变形速度和温度、金属的加工和热处理状态都对它有很大影响.如前所述, 在一定条件下, 单晶体的临界分切应力保持为定值, 则根据分切应力与外加轴向应力的关系: σs= τk/ m, m为取向因子, 反映了外力轴与滑移系之间的位向关系, 因此, 单晶体的屈服强度与外力轴方向关系密切. m越大, 则屈服强度越小, 越有利于滑移.4. 孪生与滑移主要异同点是什么? 为什么在一般条件下进行塑性变形时锌中容易出现挛晶, 而纯铁中容易出现滑移带?答:孪生与滑移的异同点如附表6-1所示.锌为密排六方结构金属, 主要滑移系仅3个, 因此塑性较差, 滑移困难, 往往发生孪生变形, 容易出现挛晶; 纯铁为体心立方结构金属, 滑移系较多, 共有48个, 其中主要滑移系有12个, 因此塑性较好, 往往发生滑移变形, 容易出现滑移带.第七章 回复与再结晶1. 已知锌单晶体的回复激活能为8.37×104 J/mol, 将冷变形的锌单晶体在-50 ℃进行回复处理, 如去除加工硬化效应的25% 需要17 d, 问若在5 min 内达到同样效果, 需将温度提高多少摄氏度?解 根据回复动力学, 采用两个不同温度将同一冷变形金属的加工硬化效应回复到同样程度, 回复时间、温度满足下述关系:122111exp t Q t R T T ⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭ 整理后得到221111ln T t R T Q t =+.将41211223 K,/5/(172460),8.3710 J/mol, 8.314 J/(mol K)4896T t t Q R ==⨯⨯==⨯=⋅代入上式得到2274.7 K T =.因此, 需将温度提高21274.722351.7 T T T ∆=-=-=℃.2. 纯铝在553 ℃ 和627 ℃ 等温退火至完成再结晶分别需要40 h 和1 h, 试求此材料的再结晶激活能.解 再结晶速率v 再与温度T 的关系符合阿累尼乌斯(Arrhenius)公式, 即exp()Q v A RT=-再 其中, Q 为再结晶激活能, R 为气体常数.如果在两个不同温度T 1, T 2进行等温退火, 欲产生同样程度的再结晶所需时间分别为t 1, t 2, 则122112122111exp[()]ln(/)t Q t R T T RTT t t Q T T =--⇒=-依题意, 有T 1 = 553 + 273 = 826 K, T 2 = 627 + 273 = 900 K, t 1 = 40 h, t 2 = 1 h, 则58.314826900ln(40/1)3.0810J/mol 900826Q ⨯⨯⨯=⨯-3. 说明金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别.答: 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别详见附表7-1.附表7-1 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能第八章固态相变。
材料科学基础习题答案
材料科学基础习题答案《材料科学基础》习题参考答案第一章原子结构与键合★考前复习范围概念:4个量子数、3个准则、金属键、离子键、共价键1.原子中一个电子的空间位置和能量可用哪四个量子数来决定?在多电子的原子中,核外电子的排布应遵循哪些原则?答:1).主量子数n=1、2、3、4(K、L、M、N)决定原子中电子能量以及与核的平均距离,即电子所处的量子壳层。
2).轨道角量子数li=0~(n-1),(s,p,d,f,g)给出电子在同一量子壳层内所处的能级。
(亚层)3).磁量子数mi,给出每个轨道角动量量子数的轨道数或能级数,每个li下的磁量子总数为2li+1。
(能级)4).自旋角量子数si=±1/2, 反映电子不同的自旋方向。
(电子数)Pauli不相容原理:在同一个原子中没有四个量子数完全相同的电子。
能量最低原理:电子在原子中所处的状态,总是尽可能分布到能量最低的轨道上。
Hund规则:电子分布到能量相同的等价轨道上时,总是尽先以自旋相同的方向,单独占据能量相同的轨道。
2.在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上到下元素结构有什么区别?性质如何递变?答:同一周期元素具有相同原子核外电子层数,但从左到右,核电荷依次增多,原子半径逐渐减小,电离能增加,失电子能力降低,得电子能力增加,金属性减弱,非金属性增强;同一主族元素核外电子数相同,但从上到下,电子层数增多,原子半径增大,电离能降低,失电子能力增加,得电子能力降低,金属性增加,非金属性降低。
3.何谓同位素?为什么元素的相对原子质量不总为正整数?答:在元素周期表中占据同一位置,尽管它们的质量不同,然它们的化学性质相同的物质称为同位素。
由于各同位素的含中子量不同(质子数相同),故具有不同含量同位素的元素总的相对原子质量不为正整数。
4.铬的原子序数为24,它共有四种同位素:4.31%的Cr原子含有26个中子,83.76%含28个中子,9.55%含有29个中子,且2.38%含有30个中子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)
1 谈谈你对材料学科及材料四要素之间的关系的认识
2 金属键与其它结合键有何不同,如何解释金属的某些特性?
3 说明空间点阵、晶体结构、晶胞三者之间的关系。
4 晶向指数和晶面指数的标定有何不同?其中有何须注意的问题?
5 画出三种典型晶胞结构示意图,其表示符号、原子数、配位数、致密度各是什么?
6 画出立方晶系中(011),(312),[211],[211],[101],(101)
7, 画出六方晶系中(1120),(0110),(1012),(1100),(1012)
8. 原子间的结合键共有几种?各自特点如何?
9.在立方系中绘出{110}、{111}晶面族所包括的晶面,及(112)和(120)晶面。
标出具有下列密勒指数的晶面和晶向:
123,(130),[211],[311];
a)立方晶系(421),()
10.在立方系中绘出{110}、{111}晶面族所包括的晶面,及(112)和(120)晶面。
11.计算面心立方结构(111)、(110)与(100)面的面密度和面间距。
12. 标出具有下列密勒指数的晶面和晶向:
a)立方晶系(421),()123,(130),[211],[311];
b)六方晶系()2111, ()1101,()
3212,[2111],1213⎡⎤⎣⎦。
13 在体心立方晶系中画出{111}晶面族的所有晶面。
14 画出<110>晶向族所有晶向
15.写出密排六方晶格中的[0001],(0001),()1120,()1100,()1210
16. 在一个简单立方晶胞内画出一个(110)晶面和一个[112]晶向。
17. 标出具有下列密勒指数的晶面和晶向:
立方晶系(421),()
123,(130),[211],[311];
18.计算晶格常数为a 的体心立方结构晶体中八面体间隙的大小。
19.画出面心立方晶体中(111)面上的[112]晶向。
20.已知某一面心立方晶体的晶格常数为a ,请画出其晶胞模型并分别计算该晶体
的致密度、{111}晶面的面密度以及{110}晶面的面间距。
21.表示立方晶体的(123),[211],()012
22. 写出密排六方晶格中()1120,()1100,()1210[2111],1213⎡⎤⎣⎦
23. 画出密排六方晶格中的[0001], ,()0110,()1010,[2110],[1120]
24 在面心立方晶胞中的(1 1 1)晶面上画出[110]晶向
25 指出在一个面心立方晶胞中的八面体间隙的数目,并写出其中一个八 面体间隙的中心位置坐标。
假设原子半径为r ,计算八面体间隙的半径。
26.画出密排六方晶格中的(0001),()1120,()1100,()1210
27.立方晶系中画出(010),(011),(111),(231),[231],[321]
29.计算晶格常数为a 的面心立方结构晶体中四面体间隙和八面体间隙的大小。
(4分)
30.写出立方晶系{}110、{}123晶面族的所有等价面
31.立方晶胞中画出以下晶面和晶向:()102,(112),(213),[110],
32.六方晶系中画出以下晶面和晶向:(2110),(1012),1210⎡⎤⎣⎦,0111⎡⎤⎣⎦
33.写出立方晶系{}100、{}234晶面族的所有等价面
34.画出立方晶胞内(111),[112],
35.画出六方晶胞内(1011),[1123]
36.写出<112>的晶向族中所有的晶向指数,
345的晶面族中所有的晶面指数
37.写出{}
38.画出FCC晶胞中(111)晶面上的所有<110>晶向,在HCP晶胞中画出[1120]晶向和(1100)
111晶面族包含哪些晶面?
39么是晶面族,{}
40画出立方晶系中(123),(435),[112]晶面。