27.1图形的相似练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.1 图形的相似
一.选择题:
1、下列各组数中,成比例的是( )
A .-7,-5,14,5
B .-6,-8,3,4
C .3,5,9,12
D .2,3,6,12 2、如果x:(x+y)=3:5,那么x:y =( )
A. B. C. D.
3、如图,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,
则BE ∶EC=( ) A 、
21 B 、31 C 、32 D 、4
1
4、下列说法中,错误的是( )
(A )两个全等三角形一定是相似形 (B )两个等腰三角形一定相似 (C )两个等边三角形一定相似 (D )两个等腰直角三角形一定相似 5、如图,Rt ΔABC 中,∠C =90°,D 是AC 边上一点,AB =5,AC =4, 若ΔABC ∽ΔBDC ,则CD = . A .2 B .32 C .43 D .94
二、填空题
6、已知a =4,b =9,c 是a b 、的比例中项,则c = .
7、如图,要使ΔABC ∽ΔACD ,需补充的条件是 .(只要写出一种) 8、如图,小东设计两个直角,来测量河宽DE ,他量得AD =2m ,BD =3m ,CE =9m ,则河宽DE 为
C
B
D
(第5题)
2383325
8
(第3题图)
9、一公园占地面积约为2m ,若按比例尺1∶2000缩小后,其面积约为 2m .
10、如图,点P 是Rt ΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点P 作一条直线,使截得的三角形与Rt ΔABC 相似,这样的直线可以作 条. 三、解答题
11、如图18—95,AB 是斜靠在墙壁上的长梯,梯脚B 距墙80cm ,梯上点D 距墙70cm ,BD 长55cm .求梯子的长.(8分)
12、如图,已知AC ⊥AB ,BD ⊥AB ,AO =78cm ,BO =42cm ,CD =159cm ,求CO 和DO .(8分)
C
B
A
P
(第10题)
A
B
C
D
(第7题)
(第8题图)
13、如图,在正方形网格上有111C B A ∆∽222A C B ∆,这两个三角形相似吗?如果
相似,求出222111A C B A C B ∆∆和的面积比.(15分)
14、已知:如图,在△ABC 中,点D 、E 、F 分别在AC 、AB 、BC 边上,且四边形CDEF 是正方形,AC =3,BC =2,求△ADE 、△EFB 、△ACB 的周长之比和面积之比.(10分)
15、如图所示,梯形ABCD 中,AD ∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P 的位置,使得以P ,A,D 为顶点的三角形与以P ,B,C 为顶点的三角形相似.
P A
B D
C
参考答案
一、选择题:1.B 2.D 3.A 4.D 5.D 二、填空题:
6、±6;
7、∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB ;
8、6m ;
9、0.2;10、3 三、解答题: 11.梯子长为440cm 12.
cm
DO cm CO 65.55,35.103==(提示:设
xcm
DO =,则
()cm
x CO -=159,因为
AB BD AB AC ⊥⊥,,︒=∠=∠90B A ,BOD AOC ∠=∠,所以△AOC ∽△BDO ,所以DO
CO
BO AO
=即x x -=1594278,所以65.55=x )
13、相似,相似比为
(提示:,且222111135C A B C A B ∠=︒=∠)
14、周长之比:ADE ∆的周长:EFB ∆的周长:ACB ∆的周长5:2:3=;
25
:4:9::=∆∆∆ACB EFB ADE S S S .设x EF =,则x AD x EF -==3,.所以
5:2:3::=AC EF AD .因为△ADE ∽△EFB ∽△ACB ,所以可求得周长比等于相似比,面积比等于相似比的平方.
15、(1)若点A,P ,D 分别与点B,C,P 对应,即△APD ∽△BCP ,
∴
AD AP BP BC =, ∴273
AP
AP =-,
1
:4,
1:22
221
11=∆∆C B A C B A S S 222112211==B A B
A C A C A
∴AP 2-7AP+6=0, ∴AP=1或AP=6,
检测:当AP=1时,由BC=3,AD=2,BP=6, ∴
AP AD
BC BP
=
, 又∵∠A=∠B= 90°,∴△APD ∽△BCP . 当AP=6时,由BC=3,AD=2,BP=1, 又∵∠A=∠B=90°, ∴△APD ∽△BCP .
(2)若点A,P ,D 分别与点B,P ,C 对应,即△APD ∽△BPC.
∴
AP AD BP BC =,∴273AP AP =-, ∴AP=14
5
.
检验:当AP=145时,由BP=21
5
,AD=2,BC=3,
∴AP AD BP BC =, 又∵∠A=∠B=90°,∴△APD ∽△BPC.
因此,点P 的位置有三处,即在线段AB 距离点A 1、14
5
、6 处.