图像的几何变换
图像几何变换(旋转和缩放)
图像几何变换的重要性
图像几何变换可以帮助我们更好地理 解和分析图像内容,例如在人脸识别 、目标检测和跟踪、遥感图像处理等 领域。
通过变换可以纠正图像的畸变,提高 图像的清晰度和可读性,从而改善图 像的质量。
图像几何变换的应用场景
医学影像处理
在医学领域,通过对医学影像进行几何变换,可以更好地 观察和分析病变部位,提高诊断的准确性和可靠性。
图像旋转
图像旋转的基本概念
图像旋转是指将图像围绕一个点 进行旋转的操作。这个点被称为
旋转中心或原点。
旋转角度是旋转的度数,通常以 度(°)为单位。
旋转可以是顺时针或逆时针方向, 取决于旋转角度的正负值。
图像旋转的算法实现
图像旋转可以通过多种算法实现,其 中最常用的是矩阵变换和插值算法。
插值算法通过在旋转过程中对像素进 行插值,以获得更平滑的旋转效果。 常用的插值算法包括最近邻插值、双 线性插值和双三次插值等。
矩阵变换算法通过将图像表示为一个 矩阵,并应用旋转矩阵来计算旋转后 的像素坐标。
图像旋转的优缺点
优点
图像旋转可以用于纠正倾斜的图像、 增强图像的视觉效果、实现特定的艺 术效果等。
缺点
图像旋转可能会改变图像的比例,导 致图像失真或变形。此外,对于大尺 寸的图像,旋转操作可能需要较长时 间和较大的计算资源。
双线性插值和双三次插值等。
重采样算法
重采样算法通过重新计算每个像 素的灰度值来实现图像缩放。这 种方法通常比插值算法更精确,
但计算量较大。
多项式拟合算法
多项式拟合算法通过拟合原始图 像中的像素点,然后根据多项式 函数来计算新的像素值。这种方 法适用于对图像进行复杂变换的
情况。
图像缩放的优缺点
图像几何变换
实验二 图像几何变换一、实验目的1结合实例学习如何在视频显示程序中增加图像处理算法;2理解和掌握图像的平移、垂直镜像变换、水平镜像变换、缩放和旋转的原理和应用;二、实验原理1 初始坐标为(x , y )的点经过平移(0x ,0y ),坐标变为('x ,'y ),两点之间的关系为:⎩⎨⎧+=+=0''y y y x x x ,以矩阵形式表示为:⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11 0 0y 1 0 0 11''00y x x y x2 图像的镜像变换是以图象垂直中轴线或水平中轴线交换图像的变换,分为垂直镜像变换和水平镜像变换,两者的矩阵形式分别为:⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11 0 00 1 0 0 0 11''y x y x ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11 0 00 1- 0 0 0 11''y x y x 3 图像缩小和放大变换矩阵相同: ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11 0 00 0 0 0 1''y x y x S S y x 当1 ,1≤≤y x S S 时,图像缩小;1 ,1≥≥y x S S 时,图像放大。
4 图像旋转定义为以图像中某一点为原点以逆时针或顺时针方向旋转一定角度。
其变换矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11 0 00 cos sin 0 sin cos 1''y x y x θθθθ 该变换矩阵是绕坐标轴原点进行的,如果是绕一个指定点(b a ,)旋转,则现要将坐标系平移到该点,进行旋转,然后再平移回到新的坐标原点。
三、实验步骤1 启动MA TLAB 程序,对图像文件分别进行生成、失真和校正。
图像的几何变换ppt课件
在下面的算法中直接采用了前一种做法。实际上,这 也是一种插值算法, 称为最邻近插值法(Nearest Neighbor Interpolation)。
17
ppt课件.
2、图像比例缩放
最简单的比例缩小是当 fx=fy=1/2时,图像被缩到一 半大小,此时缩小后图像中的(0, 0)像素对应于原图 像中的(0, 0)像素; (0, 1)像素对应于原图像中的(0, 2)像素; (1, 0)像素对应于原图像中的(2, 0)像素, 依此类推。
因此,2D图像中的点坐标(x, y)通常表示成齐次坐标 (Hx, Hy, H),其中H表示非零的任意实数,当H=1 时,则(x, y, 1)就称为点(x, y)的规范化齐次坐标。
由点的齐次坐标(Hx, Hy, H)求点的规范化齐次坐标(x, y, 1),可按如下公式进行:
x Hx y Hy
11
H
比例缩放前后两点P0(x0, y0)、P(x, y)之间的 关系用矩阵形式可以表示为:
x
fx
0
0
x
0
y 0
fx
0
y
0
1
0
0
0
1
其中fx,fy>1为放大, fx,fy<1 为缩小。
15
ppt课件.
2、图像比例缩放
放大 后
(x , y) (x0 , y0)
O
x
缩放 前
6
多见于影视特技及广告的制作。
ppt课件.
1.1齐次坐标
设点P0(x0,y0)进行平移后,移到P(x,y),其中x方向的 平移量为x,y方向的平移量为y。那么,点P(x,y) 的坐标为:
x x0 x y y0 y
图像几何变换ppt课件
f(u0, v) = S(1+α)f(u -1, v)+S(α) f(u,
v)+
f(u+2, v)
S(1-α) f(u+1, v)+ S(2-α)
同理可得f(u , v-1), f(u , v+1), f(u , v+2) 22
三种方法比较
优点 最近邻法 简单快速
双线性插值 法
三次内插法
14
重采样
• 问题:
– 对输出离散图像使用逆映射函数得到的采样位 往往与输入离散图像坐标不相重合
• 解决方法:
1.将输入离散图像转换成一个连续的表面,即图 像重建过程
2.重建后,便可以在任意位置对其进行采样
• 图像重采样的两个步骤:
1.图像重建
2.采样
15
灰度插值方法
• 最近邻法 • 双线性插值法 • 三次内插法
16
出点 (u0, v0)的灰度值 (a)最近邻法; (b)双线性插值法;(c)三次内 插法
17
最近邻法
• 将与(u0, v0)点最近的整数坐标(u, v)点的灰度
值取为(u0, v0)点的灰度值
18
双线性插值法
• 用线性内插方法,根据(u0, v0)点的四个相
邻点的灰度值,插值计算出(u0, v0) 点的灰
5
几何变换
• 由两个基本操作组成
1.坐标的空间变换 2.灰度内插
6
坐标的空间变换
• (u, v)是原图像中像素的坐标 • (x, y)是变换后图像中像素的坐标 • 例如,变换(x, y) = T{(u, v)} = (u/2, v/2)
7
坐标的空间变换
重要 图像的几何变换
图像的几何变换,是指使用户获得或设计的原始图像,按照需要产生大小、形状和位置的变化。
从变换的性质分,图像的几何变换有位置变换(平移、镜像、旋转)、形状变换(比例缩放、错切)和复合变换等。
1. 图像的位置变换主要包括图像平移变换、图像镜像变换和图像旋转变换等,下面针对这三个主要的位置变换进行分析。
平移变换的几点说明:(1)平移后图像上的每一点都可以在原图像中找到对应的点。
对于不在原图像中的点,可以直接将它的像素值统一设置为0或者255(对于灰度图就是黑色或白色)。
(2)若图像平移后图像不放大,说明移出的部分被截断。
(3) 若不想丢失被移出的部分图像,将新生成的图像扩大.图像镜像变换图像的镜像变换不改变图像的形状。
图像的镜像(Mirror)变换分为三种:水平镜像,垂直镜像和对角镜像。
1. 图像水平镜像图像的水平镜像操作是将图像左半部分和右半部分以图像垂直中轴线为中心进行镜像对换。
2. 图像垂直镜像图像的垂直镜像操作是将图像上半部分和下半部分以图像水平中轴线为中心进行镜像对换。
3. 图像对角镜像图像的对角镜像操作是将图像以图像水平中轴线和垂直中轴线的交点为中心进行镜像对换。
相当于将图像先后进行水平镜像和垂直镜像。
图像旋转变换旋转(rotation)有一个绕着什么转的问题,通常的做法是以图像的中心为圆心旋转,将图像上的所有像素都旋转一个相同的角度。
图像的旋转变换是图像的位置变换,但旋转后,图像的大小一般会改变。
和图像平移一样,在图像旋转变换中既可以把转出显示区域的图像截去,旋转后也可以扩大图像范围以显示所有的图像。
2. 图像形状变换图像比例缩放变换图像比例缩放是指将给定的图像在x轴方向按比例缩放fx倍,在y轴方向按比例缩放fy倍,从而获得一幅新的图像。
(1). 图像的比例缩小变换从数码技术的角度来说,图像的缩小是将通过减少像素个数来实现的,因此,需要根据所期望缩小的尺寸数据,从原图像中选择合适的像素点,使图像缩小之后可以尽可能保持原有图像的概貌特征不丢失,下面介绍两种简单的图像缩小变换。
图像变换
如普通坐标系的点(2,3)的齐次坐标可以是:
(1,1.5,0.5),(4,6,2),(6,9,3)等。
普通坐标与齐次坐标的关系为“一对多”
普通坐标w =>齐次坐标 齐次坐标/w =>普通坐标 当w = 1时产生的齐次坐标称为“规格化坐标”
f(x,y) 减去背景图像b(x,y) g(x,y) 添加蓝色背景
图像的错切效果
在这个错切变换中,蒙娜丽莎的图像被变形,但是中心的 纵轴在变换下保持不变。(注意:角落在右边的图像中被 裁掉了。)蓝色的向量,从胸部到肩膀,其方向改变了, 但是红色的向量,从胸部到下巴,其方向不变。因此红色 向量是该变换的一个特征向量,而蓝色的不是。因为红色 向量既没有被拉伸又没有被压缩,其特征值为1。所有沿着 垂直线的向量也都是特征向量,它们的特征值相等。它们 构成这个特征值的特征空间。
=
图像的或运算
模板运算:提取感兴趣的子图像
=
图像的与运算
0 1=0 1 0=0 0 0=0 求两个子图像的相交子图
1 1=1
^
= 模板运算:提取感兴趣的图像^=图像加法运算举例
+
=
图像加法运算举例
图像加法运算举例
图像加法运算举例
图像减法运算举例
=
图像减法运算举例
因为前n个坐标是普通坐标系下的n维坐标。
图像的仿射变换
—— 齐次坐标的特点
(x,y)点的齐次坐标为(xw,yw,w) xw=wx,yw=wy,w≠0
(x,y)点对应的齐次坐标为三维空间的一条直线 :
xw yw
wx wy
zw
第四章--图像的几何变换
7 9 10 11 12 13 15 16 17 18 25 27 28 29 30 31 33 34 35 36
i=[1,6], j=[1,6]. x=[1,6*06]=[1,4], y=[1,6*0.75=[1,5]. x=[1/0.6,2/0.6,3/0.6,4/0.6]=[i2,i3,i5,i6], y=[1/0.75,2/0.75,3/0.75,4/0.75,5/0.75]=[j1,j3,j4,j5,j6].
素值的填充是不连续的。 因此可以采用插值填充的方法来解决。
4.1.3.3 图像旋转的后处理
最简单的方法是行插值(列插值)方法
1. 找出当前行的最小和最大的 非背景点的坐标,记作:
(i,k1)、(i,k2)。
4.1.3.3 图像旋转的后处理
2. 在(k1,k2)范围内进行插值, 插值的方法是:空点的像素 值等于前一点的像素值。
•注意:平移后的景物与原图像相同,但“画 布”一定是扩大了。否则就会丢失信息。
4.1.2 图像的镜像
镜像分为水平镜像和垂直镜像
水平镜像计算公式如下(图像大小为M*N):
x' y'
x
(水平镜#39; x
平移:
y
''
y '
N
1
N
1
y
123 1
2
3
-1 -2 -3 1
2
3
N 3
图像的旋转计算公式如下: x' x cos y sin y' x sin y cos
• 这个计算公式计算出的值为小数,而坐标值为正整数。 • 这个计算公式计算的结果值所在范围与原来的值所在 的范围不同。
• 因此需要前期处理:扩大画布,取整处理,平移处理
图像变换原理
图像变换原理图像变换是一种通过改变图像的像素值或空间关系,以得到新的视觉效果或数据表示的技术。
它在计算机图形学、计算机视觉、图像处理等领域中具有重要的应用。
图像变换可以分为两类:几何变换和像素变换。
几何变换是通过改变图像的形状、位置、大小或者方向来实现的。
常见的几何变换包括平移、旋转、缩放和错切等操作。
平移是通过将图像在水平和垂直方向上的像素值进行移动来实现的,旋转是将图像绕着某个中心点旋转一定角度,缩放是通过改变图像的像素间距来改变图像的大小,而错切是通过改变图像像素之间的相对位置来改变图像的形状。
像素变换是通过改变图像的像素值来实现的。
常见的像素变换包括亮度调整、对比度调整、颜色空间转换和直方图均衡化等操作。
亮度调整是通过改变图像的亮度值来调整图像的明暗程度,对比度调整是通过改变图像的像素值范围来调整图像的清晰程度,颜色空间转换是将图像从一个颜色空间转换到另一个颜色空间,而直方图均衡化是通过改变图像的像素分布来增强图像的对比度和细节。
图像变换的原理主要包括以下几个方面:1. 像素级处理:图像变换是在图像的每个像素上进行的,通过改变每个像素的数值或颜色来实现图像的变换。
2. 空间转换:图像变换可以在图像的整个空间范围内进行,也可以只在图像的局部区域进行。
3. 插值方式:在对图像进行变换时,需要对新像素的像素值进行估计。
插值是一种常用的方法,通过对周围已知像素的像素值进行加权平均或其他数学处理来估计新像素的像素值。
4. 变换模型:不同的图像变换可以使用不同的数学模型来描述。
常见的变换模型包括仿射变换、透视变换和非线性变换等。
图像变换的原理和方法是计算机图形学和图像处理领域的基础知识,它为我们理解图像的特征提取、目标识别、图像增强和图像生成等问题提供了重要的工具和思路。
随着计算机技术的不断发展,图像变换的应用和研究也在不断深入和扩展,为我们实现更加丰富多样的图像处理和图像生成效果提供了可能。
图像几何变换的原理及应用
图像几何变换的原理及应用1. 引言图像几何变换是指通过对图像进行旋转、平移、缩放和仿射变换等操作,改变图像的位置、大小和形状,以达到特定的目的。
在计算机视觉、图像处理和计算机图形学等领域中,图像几何变换被广泛应用于图像的校正、增强、变换和特征提取等任务。
2. 原理图像几何变换的原理基于几何学的相关理论。
对于二维图像来说,可以通过变换矩阵对图像进行坐标变换,从而实现图像的几何变换。
以下是常见的图像几何变换操作及其原理:2.1 旋转旋转是指将图像按一定角度绕某个中心点进行旋转变换。
旋转操作可以通过变换矩阵实现,变换矩阵如下所示:cosθ -sinθ 0sinθ cosθ 00 0 1其中,θ表示旋转的角度。
通过对每个像素进行坐标变换,可以实现图像的旋转。
2.2 平移平移是指将图像沿着水平或垂直方向进行平移操作,即改变图像的位置。
平移操作可以通过变换矩阵实现,变换矩阵如下所示:1 0 tx0 1 ty0 0 1其中,tx和ty分别表示在x轴和y轴上的平移距离。
通过对每个像素进行坐标变换,可以实现图像的平移。
2.3 缩放缩放是指改变图像的尺寸大小。
缩放操作可以通过变换矩阵实现,变换矩阵如下所示:sx 0 00 sy 00 0 1其中,sx和sy分别表示在x轴和y轴上的缩放比例。
通过对每个像素进行坐标变换,并根据缩放比例进行采样,可以实现图像的缩放。
2.4 仿射变换仿射变换是指通过线性变换和平移来对图像进行变换。
仿射变换可以通过变换矩阵实现,变换矩阵如下所示:a11 a12 txa21 a22 ty0 0 1其中,a11、a12、a21和a22分别表示仿射变换的线性变换部分,tx和ty分别表示平移部分。
通过对每个像素进行坐标变换,并根据变换矩阵进行计算,可以实现图像的仿射变换。
3. 应用图像几何变换在各个领域中有着广泛的应用,以下列举了一些常见的应用场景:3.1 图像校正在图像处理中,由于各种因素的影响,例如相机畸变、透视变换等,图像可能会出现失真或畸变。
图像的几何变换
3.2 图像的镜像变换
1. 理论基础
图像的镜像变换分为两种:一种是 水平镜像,另一种是垂直镜像。
图像的水平镜像操作是以原图像的 垂直中轴线为中心,将图像分为左右两 部分进行对称变换;
以此类推。在原图基础上,每行隔一个像素取一 点,每割一行进行操作。如下图3-4所示。
●●
●
●●
(a)原图中的某4个像素 素
(b)对应新图的1个像
从上可见图,3-放4 大图像与缩缩小示小意的图原理不同。
2. 理论验证
(a)原图
(b)长宽缩小0.5倍的效果图
(c)长宽各放大2倍的效果图
3.流程设计
(1) 取得原图的数据区指针。 (2) 通 过 对 话 框 获 得 放 大 整 数 比 例 :
1. 理论基础
tx
坐标原点
(x0,y0)
ty
(x1,y1)
图3-1 像素平移示意图
显然(x0,y0)和(x1,y1)的关系如下:
x1=x0+tx y1=y0+ty
2. 理论验证
x
(y
3. 流程设计
(1) 取得原图的数据区指针。 (2) 通过对话框输入偏移量tx,ty。 (3) 开辟一个同样大小的缓冲区。 (4) 对原图依次循环每个像素,每读入一
第3章 图像的几何变换
本章要点:
➢ 图像的平移 ➢ 图像的镜像变换 ➢ 图像的缩放 ➢ 图像的转置 ➢ 图像的旋转
3.1 图像的平移
1. 理论基础
图 像 平 移 ( Translation ) 是 将 图 像中所有的点都按照指定的平移量,进 行水平、垂直移动。
10、图像的几何变换——平移、镜像、缩放、旋转、仿射变换
10、图像的⼏何变换——平移、镜像、缩放、旋转、仿射变换1.⼏何变换的基本概念 图像⼏何变换⼜称为图像空间变换,它将⼀副图像中的坐标位置映射到另⼀幅图像中的新坐标位置。
我们学习⼏何变换就是确定这种空间映射关系,以及映射过程中的变化参数。
图像的⼏何变换改变了像素的空间位置,建⽴⼀种原图像像素与变换后图像像素之间的映射关系,通过这种映射关系能够实现下⾯两种计算:原图像任意像素计算该像素在变换后图像的坐标位置变换后图像的任意像素在原图像的坐标位置对于第⼀种计算,只要给出原图像上的任意像素坐标,都能通过对应的映射关系获得到该像素在变换后图像的坐标位置。
将这种输⼊图像坐标映射到输出的过程称为“向前映射”。
反过来,知道任意变换后图像上的像素坐标,计算其在原图像的像素坐标,将输出图像映射到输⼊的过程称为“向后映射”。
但是,在使⽤向前映射处理⼏何变换时却有⼀些不⾜,通常会产⽣两个问题:映射不完全,映射重叠映射不完全输⼊图像的像素总数⼩于输出图像,这样输出图像中的⼀些像素找不到在原图像中的映射。
上图只有(0,0),(0,2),(2,0),(2,2)四个坐标根据映射关系在原图像中找到了相对应的像素,其余的12个坐标没有有效值。
映射重叠根据映射关系,输⼊图像的多个像素映射到输出图像的同⼀个像素上。
上图左上⾓的四个像素(0,0),(0,1),(1,0),(1,1)都会映射到输出图像的(0,0)上,那么(0,0)究竟取那个像素值呢?要解决上述两个问题可以使⽤“向后映射”,使⽤输出图像的坐标反过来推算改坐标对应于原图像中的坐标位置。
这样,输出图像的每个像素都可以通过映射关系在原图像找到唯⼀对应的像素,⽽不会出现映射不完全和映射重叠。
所以,⼀般使⽤向后映射来处理图像的⼏何变换。
从上⾯也可以看出,向前映射之所以会出现问题,主要是由于图像像素的总数发⽣了变化,也就是图像的⼤⼩改变了。
在⼀些图像⼤⼩不会发⽣变化的变换中,向前映射还是很有效的。
简述图像几何变换的类型与方法
程序开始⎩简述图像几何变换的类型和方法数字图像处理,就是利用数字计算机或则其他数字硬件,对从图像信息转换而得到的电信号进行某些数学运算,以提高图像的实用性。
例如从卫星图片中提取目标物的特征参数, 三维立体断层图像的重建等。
总的来说,数字图像处理包括点运算、几何处理、图像增强、图像复原、图像形态学处理、图像编码、图像重建、模式识别等。
目前数字图像处理的应用越来越广泛,已经渗透到工业、医疗保健、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。
图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等。
程序基本框架如下:图 图 图 图 图 像 像 像 像 像 的 的 的 的 的 平 移镜 像 转 置 缩 放旋 转1 图像的平移图像的平移是几何变换中最简单的变换之一。
1.1 理论基础图像平移就是将图像中所有的点都按照指定的平移量水平、垂直移动。
设(x0,y0)为原图像上的一点,图像水平平移量为 tx ,垂直平移量为 ty , 则平移后点(x0,y0)坐标将变为(x1,y1)。
显然(x0,y0)和(x1,y1)的关系如下:⎧ x 1 = ⎨y 1 = x 0 + txy 0 + ty1程序结束读写 BMP 图像用矩阵表示如下:⎡x1⎤⎡1 0 tx⎤⎡x0⎤⎢y1⎥=⎢0 1 ty⎥⎢y0⎥⎢⎥⎢⎥⎢⎥⎢⎣1⎥⎦⎢⎣001⎥⎦⎢⎣1⎥⎦对该矩阵求逆,可以得到逆变换:⎡x0⎤⎡1 0-tx⎤⎡x1⎤⎢y0⎥=⎢0 1-ty⎥⎢y1⎥即⎧x0 = x1 -tx⎢⎥⎢ ⎥⎢⎥⎨y0 = y1 -ty ⎢⎣1 ⎥⎦⎢⎣00 1⎥⎦⎢⎣1⎥⎦⎩这样,平移后的图像上的每一点都可以在原图像中找到对应的点。
例如,对于新图中的(0,0)像素,代入上面的方程组,可以求出对应原图中的像素(-tx,-ty)。
如果tx 或ty 大于0,则(- tx,- ty)不在原图中。
对于不在原图中的点,可以直接将它的像素值统一设置为0 或则255(对于灰度图就是黑色或白色)。
图像几何变换实验报告
图像几何变换实验报告图像几何变换实验报告引言:图像几何变换是计算机视觉领域的重要研究方向之一。
通过对图像进行旋转、缩放、平移等变换操作,可以改变图像的形状、大小和位置,从而实现图像处理和分析的目的。
本实验旨在通过编程实现常见的图像几何变换算法,并对其效果进行评估和分析。
一、图像旋转变换图像旋转变换是指将图像按照一定的角度进行旋转操作。
在实验中,我们使用了旋转矩阵来实现图像的旋转。
通过调整旋转角度,我们可以观察到图像在不同旋转角度下的变化。
实验结果显示,当旋转角度较小时,图像的形状基本保持不变,但会出现一定程度的畸变。
随着旋转角度的增加,图像的形状逐渐发生变化,出现明显的扭曲和形变现象。
二、图像缩放变换图像缩放变换是指改变图像的尺寸大小。
在实验中,我们通过调整缩放系数来实现图像的缩放操作。
实验结果表明,当缩放系数小于1时,图像会变小,细节信息会丢失;而当缩放系数大于1时,图像会变大,但可能会出现像素过度拉伸的情况。
因此,在进行图像缩放时,需要根据实际需求选择合适的缩放系数,以保证图像的质量和清晰度。
三、图像平移变换图像平移变换是指将图像沿着水平或垂直方向进行移动操作。
在实验中,我们通过调整平移距离来实现图像的平移。
实验结果显示,当平移距离较小时,图像的位置变化不明显;而当平移距离较大时,图像的位置会发生明显的偏移。
因此,在进行图像平移时,需要根据实际需求选择合适的平移距离,以确保图像的位置调整符合预期。
四、图像仿射变换图像仿射变换是指通过线性变换和平移变换来改变图像的形状、大小和位置。
在实验中,我们通过调整仿射变换矩阵的参数来实现图像的仿射变换。
实验结果表明,仿射变换可以实现图像的旋转、缩放和平移等多种操作,且变换后的图像形状基本保持不变。
然而,当仿射变换矩阵的参数设置不当时,可能会导致图像的形变和失真现象。
五、图像透视变换图像透视变换是指通过透视投影将图像从一个平面映射到另一个平面。
在实验中,我们通过调整透视变换矩阵的参数来实现图像的透视变换。
变换图像的操作方法
变换图像的操作方法变换图像有许多不同的操作方法,可以通过修改图像的几何属性、颜色属性或者根据特定的应用进行变换。
下面将介绍几种常用的图像变换操作方法。
1. 几何变换几何变换是通过对图像的几何属性进行修改,改变图像的位置、形状、大小和方向。
常见的几何变换包括平移、旋转、缩放和剪裁等。
- 平移:平移是将图像沿着水平和垂直方向移动一定的距离。
平移操作可以通过对图像每个像素坐标进行加法运算来实现。
例如,将一个图像向右平移10个像素,就可以将图像的x坐标都加上10。
- 旋转:旋转是将图像围绕一个中心点进行旋转一定的角度。
旋转操作可以通过对图像每个像素坐标进行旋转矩阵运算来实现。
例如,将一个图像顺时针旋转30,就可以将图像的x和y坐标都根据旋转矩阵进行变换。
- 缩放:缩放是改变图像的大小。
缩放操作可以通过对图像的每个像素进行插值运算来实现。
常用的插值方法有最近邻插值、双线性插值和双三次插值等。
- 剪裁:剪裁是将图像从一个大的尺寸截取到一个较小的区域。
剪裁操作可以通过对图像的像素坐标进行判断,只保留指定区域内的像素值。
2. 色彩变换色彩变换是通过修改图像的色彩属性来变换图像。
常见的色彩变换包括调整亮度、对比度、饱和度和色调等。
- 调整亮度:调整图像的亮度可以通过对每个像素的RGB值进行加减操作来实现。
增加亮度时,可以将RGB值都加上一个较大的常数;减小亮度时,可以将RGB值都减去一个较大的常数。
- 调整对比度:调整图像的对比度可以通过拉伸图像的灰度值范围来实现。
可以使用直方图均衡化等方法将图像的灰度值分布拉伸到更广的范围。
- 调整饱和度:调整图像的饱和度可以通过修改图像的色彩空间来实现。
可以将RGB空间转换为HSV空间,然后修改饱和度分量的值,再将HSV空间转换回RGB空间。
- 调整色调:调整图像的色调可以通过修改图像的色相值来实现。
可以将RGB 空间转换为HSV空间,然后修改色调分量的值,再将HSV空间转换回RGB空间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1实验目的、要求实验目的:(1)掌握图像在空间域进行基本变换的原理与相关方法。
(2)能使用VC++实现图像平移变换、镜像变换、旋转变换、缩放变换的功能。
实验要求:A部分:(1)使用VC++设计程序:实现图像平移变换,图像缩放、图像裁剪、图像对角线镜像。
(2)使用VC++设计程序:对一幅高度与宽度均相等的图像,实现逆时针90度旋转。
B部分:(1)包括A部分全部要求。
(2)使用VC++设计程序:对任意一幅图像(高度与宽度可以不相等),实现任意角度的旋转。
(3)研究放大图像时使用的插值算法,使用VC++实现常见的三种图像插值算法:最近邻插值,双线性插值,立方卷积插值。
通过实验验证其效果。
2实验原理图像的平移:通过直角坐标系的平移变换公式:x ‘ = x +dxy’ = y + dy注:(x,y)为源图像的坐标,(x’, y’)为新图像的坐标,dx对应x的偏移量,dy对应y的偏移量。
即:平移之后新图像上坐标为(x’, y’)的像素点的颜色值,应该等于原图像上坐标为(x, y)的像素点的颜色值,以下类似。
图像的镜像:镜像分为水平镜像和垂直镜像垂直镜像计算公式如下(图像大小为宽度为M,高度为N):x’ = xy’ = N – 1 – y水平镜像计算公式为:x’ = M – 1 – xy’ = y对角线镜像(对角线为左上角至右下角)计算公式:x’ = M – 1 – xy’ = N – 1 – y图像的旋转:图像的旋转计算公式如下:X’ = X *COS Q – Y *SIN QY’ = X *SIN Q + Y*COS Q注:(x,y)为源图像的坐标,(x’, y’)为新图像的坐标。
图像缩放:设原图像大小为宽度M、高度N,调整后宽度为k1×M、高度为k2×N,则:Img.New(x,y) = Img.Old(x/k1, y/k2)图像插值:当放大图像时,像素也相应地增加,增加的过程就是插值程序自动选择信息较好的像素作为增加的像素,而并非只使用临近的像素,所以在放大图像时,图像看上去会比较平滑、干净。
常用插值算法包括:最近邻插值:近邻取样插值的缩放算法,直接取Color0颜色作为缩放后点的颜色双线性插值:需要考虑(Sx,Sy)坐标点周围4个颜色值Color0\Color1\Color2\Color3,把(Sx,Sy)到A\B\C\D坐标点的距离作为系数来把4个颜色混合出缩放后点的颜色立方卷积插值:考虑映射点周围16个点(4x4)的颜色来计算最终的混合颜色3主要设备、器材硬件环境:AMD A8-4500M 1.90G/4G RAM软件环境:操作系统:WIN7开发工具:Micrsoft Visual C++ 6.04实验步骤及原始数据记录关键代码说明:图像平移:void CImageProcessingView::OnGeoTranslation(){// 实验图像平移MessageBox("请在这里添加图像平移的代码");// 可以参考图像裁剪的代码:CImageProcessingView::OnGeoCut()// 获得当前文档对象CImageProcessingDoc* pDoc = GetDocument();// 判断图像是否已被加载if( pDoc->m_pDibInit->IsEmpty() ){MessageBox("图像未加载");return;}int width = pDoc->m_pDibInit->GetImageWidth();int height = pDoc->m_pDibInit->GetImageHeight();int bitCount = pDoc->m_pDibInit->GetImageBitCount();// 将m_pDibInit 拷贝至m_pDibTestpDoc->m_pDibTest->CloneDib(pDoc->m_pDibInit);// 设置pDoc->m_pDibTest 为全白图像int i, j;RGBQUAD rgbQuad1;rgbQuad1.rgbBlue = 255;rgbQuad1.rgbGreen = 255;rgbQuad1.rgbRed = 255;rgbQuad1.rgbReserved = 0;for(i=0; i<width; i++){for(j=0; j<height; j++){pDoc->m_pDibTest->SetPixel(i,j,&rgbQuad1);}}// 实验删除BEGINint shiftX = 30;int shiftY = 50;for(i=0; i<width-shiftX; i++){for(j=0; j<height-shiftY; j++){rgbQuad1 = pDoc->m_pDibInit->GetPixel(i,j);pDoc->m_pDibTest->SetPixel(i+shiftX, j+shiftY, &rgbQuad1);}}// 实验删除END// 交换m_pDibInit 与m_pDibTest 指针CDib* pTmp = pDoc->m_pDibInit;pDoc->m_pDibInit = pDoc->m_pDibTest;pDoc->m_pDibTest = pTmp;// 设置脏标记pDoc->SetModifiedFlag(TRUE);// 更新视图pDoc->UpdateAllViews(NULL);}图像缩放:void CImageProcessingView::OnGeoResizing(){// 实验图像缩放MessageBox("请在这里添加图像缩放的代码");// 可以参考图像裁剪的代码:CImageProcessingView::OnGeoCut()// 获得当前文档对象CImageProcessingDoc* pDoc = GetDocument();// 判断图像是否已被加载if( pDoc->m_pDibInit->IsEmpty() ){MessageBox("图像未加载");return;}int width = pDoc->m_pDibInit->GetImageWidth();int height = pDoc->m_pDibInit->GetImageHeight();int bitCount = pDoc->m_pDibInit->GetImageBitCount();// 将m_pDibInit 拷贝至m_pDibTestpDoc->m_pDibTest->CloneDib(pDoc->m_pDibInit);// 考虑将图像放大两倍的情况【注意!在实验的时候要同时做缩小与放大的测试】float nResizing = 1.5;// 获得新的图像高度int newWidth = width*nResizing;int newHeight = height*nResizing;pDoc->m_pDibTest->SetWidthHeight(newWidth, newHeight);// 实验删除BEGINint i,j, i2, j2;for(i=0; i<newWidth; i++){for(j=0; j<newHeight; j++){i2 = i/nResizing;if( i2>width ){i2 = width;}j2 = j/nResizing;if( j2>height ){j2 = height;}RGBQUAD rgbQuad1 = pDoc->m_pDibInit->GetPixel(i2,j2);pDoc->m_pDibTest->SetPixel(i,j,&rgbQuad1);}}// 实验删除END// 交换m_pDibInit 与m_pDibTest 指针CDib* pTmp = pDoc->m_pDibInit;pDoc->m_pDibInit = pDoc->m_pDibTest;pDoc->m_pDibTest = pTmp;// 设置脏标记pDoc->SetModifiedFlag(TRUE);// 更新视图pDoc->UpdateAllViews(NULL);}图像裁剪:void CImageProcessingView::OnGeoCut(){// 实验图像裁剪// 获得当前文档对象CImageProcessingDoc* pDoc = GetDocument();// 判断图像是否已被加载if( pDoc->m_pDibInit->IsEmpty() ){MessageBox("图像未加载");return;}// 将m_pDibInit 拷贝至m_pDibTestpDoc->m_pDibTest->CloneDib(pDoc->m_pDibInit);// 设置裁剪的起始坐标点int x1 = pDoc->m_pDibInit->m_lpBMIH->biWidth/4;int y1 = pDoc->m_pDibInit->m_lpBMIH->biHeight/3;// 设置裁剪的宽度与高度int cx = pDoc->m_pDibInit->m_lpBMIH->biWidth/2;int cy = pDoc->m_pDibInit->m_lpBMIH->biHeight/3;// 将m_pDibTest 的宽度与高度按照裁剪的要求进行设置pDoc->m_pDibTest->SetWidthHeight(cx, cy);// 复制像素点int i,j;RGBQUAD rgbQuad;for(i=0; i<cx; i++)for(j=0; j<cy; j++){rgbQuad = pDoc->m_pDibInit->GetPixel(i+x1, j+y1);pDoc->m_pDibTest->SetPixel(i, j, &rgbQuad);}// 交换m_pDibInit 与m_pDibTest 指针CDib* pTmp = pDoc->m_pDibInit;pDoc->m_pDibInit = pDoc->m_pDibTest;pDoc->m_pDibTest = pTmp;// 设置脏标记pDoc->SetModifiedFlag(TRUE);// 更新视图pDoc->UpdateAllViews(NULL);}图像对角线镜像:void CImageProcessingView::OnDiagonalMirror(){// 实验对角线镜像显示图像MessageBox("请在这里添加图像对角线镜像的代码");// 可以参考:CImageProcessingView::OnGeoVerticalMirror()// 获得当前文档对象CImageProcessingDoc* pDoc = GetDocument();// 判断图像是否已被加载if( pDoc->m_pDibInit->IsEmpty() ){MessageBox("图像未加载");return;}int width = pDoc->m_pDibInit->GetImageWidth();int height = pDoc->m_pDibInit->GetImageHeight();int bitCount = pDoc->m_pDibInit->GetImageBitCount();// 将m_pDibInit 拷贝至m_pDibTestpDoc->m_pDibTest->CloneDib(pDoc->m_pDibInit);// 实验删除BEGINint i,j;for(i=0; i<width; i++){for(j=0; j<height; j++){RGBQUAD rgbQuad1 = pDoc->m_pDibInit->GetPixel(i,j);pDoc->m_pDibTest->SetPixel(j,i,&rgbQuad1);}}// 实验删除END// 交换m_pDibInit 与m_pDibTest 指针CDib* pTmp = pDoc->m_pDibInit;pDoc->m_pDibInit = pDoc->m_pDibTest;pDoc->m_pDibTest = pTmp;// 设置脏标记pDoc->SetModifiedFlag(TRUE);// 更新视图pDoc->UpdateAllViews(NULL);}图像旋转:void CImageProcessingView::OnGeoRotation(){// 实验图像旋转MessageBox("请在这里添加图像旋转的代码");// 可以参考图像裁剪的代码:CImageProcessingView::OnGeoCut()// 实现逆时针90度、180度、270度旋转效果,任选其一即可// 获得当前文档对象CImageProcessingDoc* pDoc = GetDocument();// 判断图像是否已被加载if( pDoc->m_pDibInit->IsEmpty() ){MessageBox("图像未加载");return;}int width = pDoc->m_pDibInit->GetImageWidth();int height = pDoc->m_pDibInit->GetImageHeight();int bitCount = pDoc->m_pDibInit->GetImageBitCount();if( width!=height){MessageBox("请使用正方形的图像");}// 将m_pDibInit 拷贝至m_pDibTestpDoc->m_pDibTest->CloneDib(pDoc->m_pDibInit);// 实验删除BEGINint i,j;for(i=0; i<width; i++){for(j=0; j<height; j++){int shiftX = i-width/2;int shiftY = j-height/2;// 这里展示的是逆时针旋转90度的效果int newShiftX = shiftY;int newShiftY = -shiftX;int newX = newShiftX + width/2;int newY = newShiftY + height/2;if( newX>=0 && newX<=width-1 &&newY>=0 && newY<=height-1 ){RGBQUAD rgbQuad1 = pDoc->m_pDibInit->GetPixel(i,j);pDoc->m_pDibTest->SetPixel(newX,newY, &rgbQuad1);}}}// 实验删除END// 交换m_pDibInit 与m_pDibTest 指针CDib* pTmp = pDoc->m_pDibInit;pDoc->m_pDibInit = pDoc->m_pDibTest;pDoc->m_pDibTest = pTmp;// 设置脏标记pDoc->SetModifiedFlag(TRUE);// 更新视图pDoc->UpdateAllViews(NULL);}实验数据记录:实验图像:实验图像说明:左上:原图左上二:平移过的图像左上三:放大过的图像右上:剪裁过的图像左下:对角线镜像处理过的图像左下二:逆时针旋转90°的图像。