罗氏454焦磷酸测序技术
焦磷酸光化测序技术的基本原理及运用-人类学论文-生物学论文

焦磷酸光化测序技术的基本原理及运用-人类学论文-生物学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:人类基因组计划(Human Genome Project, HGP)不仅极大地提高了人类对基因组和相关遗传信息的认识水平,而且促进了生命科学研究技术的发展和应用。
正是在这样的历史背景下,焦磷酸光化测序技术(pyrosequencing)由瑞典研究人员发明。
焦磷酸光化测序技术的基础原理是基于通过合成测序原理进行酶促反应的DNA测序方法,通过基于释放焦磷酸盐时的链式反应的可见光检测,即可获得一个特异的检测峰,峰值的高低和相匹配的碱基数成正比。
该技术可应用于DNA核苷酸序列和突变的检测、单核苷酸多态性的基因型的鉴定,以及DNA甲基化水平变化的分析等。
近年来,随着摄影器材和成像技术的快速发展,这项技术的原理是基于通过酶促反应而实时检测可见光,因此,有望在检测的敏感性方面得到更进一步的发展。
该文根据笔者在瑞典近三十年的工作经验和积累的文献,首先阐明焦磷酸光化测序的基本原理,然后介绍该技术的应用,最后讨论其发展前景。
关键词:人类基因组计划; 焦磷酸光化测序; 基因变异; 基因型; DNA甲基化;Abstract:The Human Genome Project(HGP)not only greatly improved the understanding of human genome and related genetic information, but also promoted the development of technologies in life science research. It was under this historical context that pyrosequencing was invented by Swedish researchers. Pyrosequencing is a method of DNA sequencing based on the sequencing by synthesis principle with enzymatic reactions, and relies on light detection based upon a chain reaction when pyrophosphate is released. The application of this technology involved the detection of DNA nucleotide sequences and mutations, the identification of genotypes of single nucleotide polymorphisms, the analysis of changes in DNA methylation levels etc. With the recent rapid development of photographic equipment and imaging technology, this technology is expected to have an increasing sensitivity in signal detection. Based upon the working experiences in Sweden for nearly 30 years and accumulated literature, this review first clarified the basic principles of pyrosequencing, then introduced the applications of this technology, and finally discussed its development prospects in the near future.Keyword:Human Genome Project; pyrosequencing; genetic variation; genotype; DNA methylation;1 、引言本世纪是生命科学的世纪。
高通量测序技术简介

高通量测序技术简介
高通量测序技术又称“下一代”测序技术,以能一次并行对几十万到几 百万条DNA分子进行序列测定和一般读长较短等为标志。目前用于微生物群 落多样性研究的高通量测序平台主要有来自罗氏公司的 454法、Illumina公 司Solexa法和 ABI 的 SOLiD 法
罗氏454法测序原理
GS FLX系统的测序原理是基于焦磷酸测序法,依靠生物发光对DNA序列进 行检测。在DNA聚合酶,ATP硫酸化酶,荧光素酶和双磷酸酶的协同作用下, GSFLX系统将引物上每一个dNTP的聚合与一次荧光信号释放偶联起来。通过 检测荧光信号释放的有无和强度,就可以达到实时测定DNA序列的目的。
罗氏454法测序流程
Solexa测序法测序流程
• 1.添加接头:利用物理方法将待测 样品DNA打碎,在单链DNA碎片两端 加上接头
• 表面结合:Solexa的测序时利用微注 射系统将已经加过接头和待测片断随 机添加到玻璃Flow Cell内,每一个 Flow Cell又补分成8条Lane,每条 Lane的内表面上能与共价键的形式随 机固定单链接头序列和带接头的单链 待测DNA片断
四种荧光标记的染料应用边合成边测序( Sequencing By Synthesis ) 的原理,在每个循环过程里,荧光标记的核苷和聚合酶被加入到单分子阵列中。 互补的核苷和核苷酸片断的第一个碱基配对,通过酶加入到引物上。多余的核苷 被移走。这样每个单链 DNA 分子通过互补碱基的配对被延伸,利用生物发光蛋 白,比如萤火虫的荧光素酶,可通过碱基加到引物后端时所释放出的焦磷酸盐来 提供检测信号。针对每种碱基的特定波长的激光激发结合上的核苷的标记,这个 标记会释放出荧光。荧光信号被 CCD 采集,CCD 快速扫描整个阵列检测特定的 结合到每个片断上的碱基。通过上述的结合,检测可以重复几十个循环,这样就 有可能决定核苷酸片断中的几十个碱基。
第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介

第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介第三代测序技术简介如果有人告诉你用显微镜实时观测单分子DNA聚合酶复制DNA,并用它来测序,你一定会认为他异想天开,没有一点生物的sense。
我最初就是这样认为的,然而它不仅可以实现,而且已经实现了~这个就是被称为第三代的测序技术,Pacific Biosciences公司推出的“Single Molecule Real Time(SMRT) DNA Sequencing”(单分子实时DNA测序)。
我有幸在NIH听到了这个技术发明人Stephen Turner博士的讲座,根据自己粗浅的理解记录整理一下。
要实现单分子实时测序,有三个关键的技术。
第一个是荧光标记的脱氧核苷酸。
显微镜现在再厉害,也不可能真的实时看到“单分子”。
但是它可以实时记录荧光的强度变化。
当荧光标记的脱氧核苷酸被掺入DNA链的时候,它的荧光就同时能在DNA链上探测到。
当它与DNA链形成化学键的时候,它的荧光基团就被DNA聚合酶切除,荧光消失。
这种荧光标记的脱氧核苷酸不会影响DNA聚合酶的活性,并且在荧光被切除之后,合成的DNA链和天然的DNA链完全一样。
第二个是纳米微孔。
因为在显微镜实时记录DNA链上的荧光的时候,DNA链周围的众多的荧光标记的脱氧核苷酸形成了非常强大的荧光背景。
这种强大的荧光背景使单分子的荧光探测成为不可能。
Pacific Biosciences公司发明了一种直径只有几十纳米的纳米孔[zero-mode waveguides (ZMWs)],单分子的DNA聚合酶被固定在这个孔内。
在这么小的孔内,DNA链周围的荧光标记的脱氧核苷酸有限,而且由于A,T,C,G这四种荧光标记的脱氧核苷酸非常快速地从外面进入到孔内又出去,它们形成了非常稳定的背景荧光信号。
而当某一种荧光标记的脱氧核苷酸被掺入到DNA链时,这种特定颜色的荧光会持续一小段时间,直到新的化学键形成,荧光基团被DNA聚合酶切除为止(见图)。
454测序技术基本原理

454测序技术基本原理454测序技术是一种基于DNA串联式测序的高通量测序技术。
该技术利用PCR扩增的方式将DNA分子固定在微球上,然后将这些微球均匀地分散在pico流水仪上,通过单个核苷酸连续测序的方式得到DNA序列信息。
本文将从实验步骤、原理和优缺点三个方面阐述454测序技术的基本原理。
实验步骤1、DNA提取测序前需要从样品中提取目标DNA物质。
对于不同的样品,提取方法不同,通常采用化学试剂、机械破碎或针刺取等方法提取DNA。
2、PCR扩增PCR扩增是将DNA序列按照一定的温度循环条件进行复制的过程。
PCR扩增由若干次循环组成,通常可分为三步:a) 熔解(Denaturation):高温(95℃~98℃)使DNA双链分离成两个单链,形成单链DNA模板。
b) 合成(Annealing):温度回降(50℃~70℃),引物结合到单链DNA上,形成DNA 双链结构。
c) 延伸(Extension):DNA聚合酶将双链DNA沿模板链向3'端延伸合成新的DNA链。
PCR扩增反应得到的DNA产物可分为两种类型:大量扩增的目标DNA和微球放置板上随机捕获的非模板DNA。
3、微球固定4、测序反应测序反应通过单个核苷酸的连续探测,对目标DNA序列进行识别和测序。
精细的光学和声学系统检测每次核苷酸加入后发出的光信号,然后排除错误数据并将相邻的场景、质量和信号强度合并以产生最终测序可靠的序列。
原理1、基于串联式测序在测序反应中,每个核苷酸单元依次加入为该反应产物的单一串联链的一部分。
这种串联式测序方式将初步测序的精度扩展到所有测序反应产物的终端序列。
2、基于荧光原理测序反应中每个核苷酸单元的加入和检测均通过荧光技术实现。
特殊荧光分子被加入到产物反应液中,随着核苷酸单元的加入和反应的进行,每个反应产生的荧光信号与特定的核苷酸单元有关。
3、基于高通量454测序技术结合了反应批处理和DNA克隆,大大增加了读取的序列数量。
DNA第一代,第二代,第三代测序的介绍

原理是:核酸模板在DNA聚合酶、引物、4 种单脱氧核苷三磷酸 ( d NTP,其中的一种用放射性P32标记 )存在条件下复制时,在四管反应系统中分别按比例引入4种双脱氧核苷三磷酸 ( dd NTP ),因为双脱氧核苷没有3’-O H,所以只要双脱氧核苷掺入链的末端,该链就停止延长,若链端掺入单脱氧核苷,链就可以继续延长。
如此每管反应体系中便合成以各自的双脱氧碱基为3’端的一系列长度不等的核酸片段。
反应终止后,分4个泳道进行凝胶电泳,分离长短不一的核酸片段,长度相邻的片段相差一个碱基。
经过放射自显影后,根据片段3’端的双脱氧核苷,便可依次阅读合成片段的碱基排列顺序。
Sanger法因操作简便,得到广泛的应用。
后来在此基础上发展出多种DNA 测序技术,其中最重要的是荧光自动测序技术。
荧光自动测序技术荧光自动测序技术基于Sanger 原理,用荧光标记代替同位素标记,并用成像系统自动检测,从而大大提高了D NA测序的速度和准确性。
20世纪80 年代初Jorgenson 和 Lukacs提出了毛细管电泳技术( c a p il l ar y el ect r ophor es i s )。
1992 年美国的Mathies实验室首先提出阵列毛细管电泳 ( c a p il l ar y ar r a y el ectr ophor es i s ) 新方法,并采用激光聚焦荧光扫描检测装置,25只毛细管并列电泳,每只毛细管在内可读出350 bp,DNA 序列,分析效率可达6 000 bp/h。
1995年Woolley研究组用该技术进行测序研究,使用四色荧光标记法,每个毛细管长,在9min内可读取150个碱基,准确率约 97 % 。
目前, 应用最广泛的应用生物系统公司 ( ABI ) 37 30 系列自动测序仪即是基于毛细管电泳和荧光标记技术的D NA测序仪。
如ABI3730XL 测序仪拥有 96 道毛细管, 4 种双脱氧核苷酸的碱基分别用不同的荧光标记, 在通过毛细管时不同长度的 DNA 片段上的 4 种荧光基团被激光激发, 发出不同颜色的荧光, 被 CCD 检测系统识别, 并直接翻译成 DNA 序列。
运用454焦磷酸测序技术对断奶前后仔猪肠道菌群的分析

摘 要 :本研 究 旨在运 用 4 5 4焦磷 酸 测 序 技 术分 析 断 奶 前 后 仔 猪 肠 道 菌 群 的 变化 。 随 机 选 取 胎 次和 出生 时 间相 近 的 、 体 重差 异 不 显著 的健 康 “ 杜 X长 ×大 ” 外 三 元新 生 仔 猪 l 2头用 于 试验 。
整个 试验 期 间 由母 猪按 常规 哺 乳 直 到 断奶 ( 2 5 日龄 ) , 母 猪 饲 粮 不合 有 抗 生 素 , 仔猪 于 1 2 日龄
有 减 少的趋 势 ( P> 0 . 0 5 ) , 而 Ne g a t i v i c u t e s 纲、 E r y s i p e l o t r i c h i a纲 和 未 知 厚 壁 菌纲 含 量 有 增加 的 趋势 ( P>0 . 0 5 ) 。从 门到属 的水 平 , 断奶前 后 仔 猪 肠道 菌群 相对 丰 度 不 同 , 有 些 菌是 断奶 前仔 猪 肠道特有的, 如 嗜胆 菌属 ( B i l o p h i l a ) 、 具核梭杆 菌属 ( F u s o b a c t e r i u m n u c l e a t u m) 、 黄 杆 菌属 ( F l a —
群 多样 性 增 加 ; 肠 道 中拟 杆 茵 门 ( B a c t e r o i d e t e s ) 含 量 变化 不 显 著 ( P>0 . 0 5 ) , 厚壁 菌 门( F i r mi —
c u t e s ) 含 量 显著 增 加 了 6 3 . 9 5 %( P< 0 . 0 5 ) , 梭 杆 菌 门( F u s o b a c t e r i a ) 和 变形 茵 门( P r o t e o b a c t e r i a )
至 死亡 , 给 养 猪 生 产 造 成 巨 大 经 济 损 失 。断 奶 应 激 对肠 道 的 影 响 最 大 , 肠 道 形 态 结 构 和 功 能 都 受
Roche_454(GS_FLX_Titanium_System)超高通量测序技术原理

Roche 454(GS FLX Titanium System)超高通量测序技术原理2005年底,454公司推出了革命性的基于焦磷酸测序法的超高通量基因组测序系统——Genome Sequencer 20 System,被《Nature》杂志以里程碑事件报道,开创了边合成边测序(sequencing-by-synthesis)的先河。
之后,454公司被罗氏诊断公司以1.55亿美元收购。
2007年,他们又推出了性能更优的第二代基因组测序系统—— Genome Sequencer FLX System (GS FLX)。
2008年10月,454推出了全新的GS FLX Titanium系列试剂和软件,让GS FLX的通量一下子提高了5倍,准确性和读长也进一步提升。
想当年,GS 20的出现,揭开了测序历史上崭新的一页。
Jonathan Rothberg博士就是大规模并行测序的发明者,同时也是454的创始人。
上世纪90年代,很多学者也都想到了大规模并行测序,他们试图将Sanger测序移到芯片上,但都以失败告终,因为这项技术没有可扩展性。
1999年,Rothberg的儿子出世,他放了两个星期的陪产假。
小家伙出生后被送入婴儿特护病房,Rothberg非常担心,甚至想获取儿子的基因组信息。
这段担惊受怕的经历给了他灵感,他突然意识到焦磷酸测序(pyrosequencing)不仅简单,而且具有可扩展性。
两个星期之后,Rothberg就开始设计芯片和流动室,让测序在更小的反应室中进行,并同时进行几百万个反应。
硬件的设计和制造也只是成功的一半,在样品制备上还有同样漫长的路要走。
Rothberg摒弃了传统的细菌克隆与挑选,将DNA打断成随机片段,并寻找一种方法来克隆每个片段。
受到其他学者乳液实验的启发,他也想将DNA放入油包水的乳液中,这样就省去了反应管。
一个好汉三个帮。
在Joel Bader等人的帮助下,Rothberg验证了这些想法的可行性,并利用了炸药中的表面活性剂来维持乳液的热稳定性。
测序技术及测序仪器的比较

河南农业大学本科生毕业论文(设计)题目现阶段的测序技术及测序仪器的比较学院生命科学学院专业班级2007级生物技术4班学生姓名徐志超指导教师高玉千撰写日期:2011年5月5日现阶段的测序技术及测序仪器的比较徐志超生命科学学院摘要:自sanger测序技术发明以来,经人类基因组计划的促进,测序技术有了跨越式的发展,以实验方法与实验仪器的改进为标志,测序技术经历了三代的发展,同时测序技术向着高通量测序,单分子测序,低价格测序的方向发展,目前测序技术已成为分子生物学实验中的重要的实验手段。
本文主要简单回溯了测序技术的发展历史,介绍了现阶段主流测序仪器IlluminaGA,ROCH-454,ABI 3730XL,ABI SOLID及HeliScope的原理及工作流程。
关键词:测序技术;测序仪;IlluminaGA;ROCH-454;ABI-3730XL;ABI-SOLID;HeliScope Studies on sequencing technology and sequencerXU Zhi-chaoCollege of Life SciencesAbstract:Sequencing technology has leaping developed promoted by the Human Genome Project since the Sanger sequencing technology been invented.Sequencing technology has gone through three generation by the improvement of sequencing methods and sequencer, at the same time, sequencing technology developed towards high-flux, single molecule sequencing and lower price. Sequencing technology has become the most important experimental means in molecular biology experiments currently. This paper simply reviews the historical development of sequencing technology,introduces the principle and workflow of the main sequencer.Keywords: sequencer;IlluminaGA;ROCH-454;ABI-3730XL;ABI-SOLID;HeliScope1953年Watson和Crick揭示了DNA的双螺旋结构[1],这大大激励了人们对DNA 序列的探索。
454测序

第二代测序技术(Next-Generation Sequencing)NGS之基础篇2001年,美、英、法、德、日、中六国合作,历时十年,耗资数十亿美元的人类基因组计划(Human Genome Project,HGP)宣告完成。
转眼又是十年过去,在此期间,各国科学家仍在为解读基因的密码而不懈努力,这其中最大的突破,就是第二代测序技术的推出。
HGP的顺利完成证明了我们有能力对自身的遗传信息进行研究,然而,高昂的成本、漫长的时间、巨大的人力需求,无不限制着对遗传密码的进一步认识。
从HGP开始的第一天期,科学家们就在寻求更好的方法来对基因组进行研究,“鸟枪法”就是其中之一。
2006年,美国X大奖基金会()设立了奖金高达1000万美元的基因组Archon X大奖,旨在奖励第一个在10天内以低于100万美元的成本完成100个人类基因组测序的民间团队。
而罗氏(Roche)、应用生物系统(Applied Biosystems,ABI)、Illumina三家公司先后推出了各自的第二代高通量测序平台,成为NGS领域的领头羊。
2005年底,454公司推出第一个基于焦磷酸测序原理的高通量基因组测序系统——Genome Sequencer 20 System,这是核酸测序技术发展史上里程碑式的事件。
随后,罗氏公司以1.55亿美元收购了454公司,并在2006年推出了更新的GS FLX测序系统,该系统可在10小时的运行中获得100万条读长(reads),4~6亿个碱基信息(base pair),且准确率达到99%以上。
2008年,GS FLX系统再次升级,通量提高了5倍,读长和准确率也有所增加。
虽然454 GS测序平台也许不是市场占有率最高的测序仪,但截至2011年3月,利用该系统进行研究的论文已发表超过1000余篇,而它在读长上的优势明显胜于另两套系统,因此在从头测序(de novo)和宏基因组测序(meta genome)方面有着不可替代的地位。
焦磷酸测序技术简介及临床意义

焦磷酸测序技术简介及临床意义
PyrosequencingTM (焦磷酸测序技术)是一种基于4种酶的级联反应来进行定量序列分析的技术。
通过对病人样本DNA序列的直接测定,从而与已知DNA序列进行对照,从而对病人的病情作出判断。
不仅可以指导临床用药,甚至可以对未来的病情发展做出预测。
目前焦磷酸测序技术越来越多的应用在病毒的分型和耐药分析、微生物快速鉴定和肿瘤的个性化治疗中。
与传统的检测方法相比,焦磷酸测序技术由于是直接得到目的核酸片段的序列,所以又被称为分子诊断中的“金标准”。
基因组学总结

Roche 454(GS FLX Titanium System)超高通量测序技术原理2005年底,454公司推出了革命性的基于焦磷酸测序法的超高通量基因组测序系统——Genome Sequencer 20 System,被《Nature》杂志以里程碑事件报道,开创了边合成边测序的先河。
2007年又推出了性能更优的第二代基因组测序系统——Genome Sequencer FLX System。
2008年10月,454推出了全新的GS FLX Titanium系列试剂和软件,让GS FLX的通量一下子提高了5倍,准确性和读长也进一步提升。
GS FLX 测序原理:GS FLX系统的测序原理和GS 20一样,也是一种依靠生物发光进行DNA序列分析的新技术;在DNA 聚合酶,ATP硫酸化酶,荧光素酶和双磷酸酶的协同作用下,将引物上每一个dNTP的聚合与一次荧光信号释放偶联起来(图1)。
通过检测荧光信号释放的有无和强度,就可以达到实时测定DNA序列的目的。
此技术不需要荧光标记的引物或核酸探针,也不需要进行电泳;具有分析结果快速、准确、灵敏度高和自动化的特点。
Roche GS FLX System是一种基于焦磷酸测序原理而建立起来的高通量基因组测序系统。
在测序时,使用了一种叫做“Pico TiterPlate”(PTP)的平板,它含有160多万个由光纤组成的孔,孔中载有化学发光反应所需的各种酶和底物。
测序开始时,放置在四个单独的试剂瓶里的四种碱基,依照T、A、C、G的顺序依次循环进入PTP板,每次只进入一个碱基。
如果发生碱基配对,就会释放一个焦磷酸。
这个焦磷酸在各种酶的作用下,经过一个合成反应和一个化学发光反应,最终将荧光素氧化成氧化荧光素,同时释放出光信号。
此反应释放出的光信号实时被仪器配置的高灵敏度CCD捕获到。
有一个碱基和测序模板进行配对,就会捕获到一分子的光信号;由此一一对应,就可以准确、快速地确定待测模板的碱基序列。
焦磷酸测序技术

焦磷酸测序技术一、简介焦磷酸(Fluorophosphate)序列测序技术是一种以焦磷酸为序列标记物的DNA测序技术,采用的是大肠杆菌焦磷酸脱氧核酸病毒(T7 DNA polymerase)以及催化的酶促反应。
它是通过双向DNA测序的方法来检测DNA序列,它能够精确地检测每个底片包含的每一个核苷酸的序列,焦磷酸序列测序技术与其他常用的序列测序技术相比,具有可靠性高、分辨率高、序列片段速度快、数据准确性高等优点,因此被广泛应用于生物学、分子生物学和基因组学研究中。
二、原理焦磷酸序列测序技术是一种以单碱基计数(single-base counting)为基础的DNA测序技术,它是一种双向测序(bidirectional sequencing)技术。
焦磷酸测序技术的运行原理是:采用大肠杆菌焦磷酸脱氧核酸病毒(T7 DNA Polymerase),也称为DNA Polymerase I,它是一种酶激活的反应,通过无序采样来合成DNA片段,然后将被标记的焦磷酸(Fluorophosphate)注入DNA测序系统中,当它们反应时,它会对这些片段各个位置的核苷酸(nucleotides)进行标记,通过荧光检测器检测荧光结果,从而得到DNA序列。
三、应用1、病毒分类:焦磷酸序列测序技术可用于病毒的分类和鉴定,根据病毒DNA的焦磷酸序列来确定该病毒的属、种、亚种和株类。
2、研究特定基因:焦磷酸序列测序技术可以用于特定基因的研究,如基因组学研究、表达调控分析等,旨在了解基因的功能。
3、检测突变:焦磷酸序列测序技术也可以用于检测突变,可以检测多态性和突变,这些信息可以用于药理学研究、疾病诊断和基因治疗。
4、检测病毒:焦磷酸序列测序技术可以用于检测病毒,如HIV病毒,可以用来研究病毒的进化变异,从而更好地控制和预防病毒所引发的疾病。
焦磷酸测序

罗氏454测序系统中文名罗氏454测序系统测试原理基于焦磷酸测序法特点依靠生物发光对DNA序列进行检测测序流程支持各种不同来源的样品序列测定测试原理GS FLX系统的测序原理是基于焦磷酸测序法,依靠生物发光对DNA序列进行检测。
在DNA聚合酶,ATP硫酸化酶,荧光素酶和双磷酸酶的协同作用下,GSFLX系统将引物上每一个dNTP的聚合与一次荧光信号释放偶联起来。
通过检测荧光信号释放的有无和强度,就可以达到实时测定DNA序列的目的。
此技术不需要荧光标记的引物或核酸探针,也不需要进行电泳;具有分析结果快速、准确、高灵敏度和高自动化的特点。
测序流程1. 样品种类:GS FLX系统支持各种不同来源的样品序列测定,包括基因组DNA,PCR产物,BACs,cDNA及小分子RNA等,不同类型的样品测序都可在一台仪器上完成。
2. 样品DNA打断:样品如基因组DNA或BAC等被打断成300到800bp的片段;对于小分子的非编码RNA,这一步骤并不需要。
短的PCR产物则可利用GS融合引物扩增后直接进行步骤4。
3. 加接头:借助一系列标准的分子生物学技术,将3′端和5′端有特异性的A和B接头连接到DNA片段上。
接头也将在后继的纯化,扩增和测序步骤中用到。
图中仅仅显示了后续步骤中要用到的单链的DNA片段。
4. 一条DNA片段=一个磁珠:接头使成百上千条DNA片段分别结合到一个磁珠上,磁珠被单个油水混合小滴包被后,在这个小滴里进行独立的扩增,而没有其他的竞争性或者污染性序列的影响,从而实现了所有DNA片段进行平行扩增(emPCR)。
5. 一个磁珠=一条读长:经过emPCR扩增后,每个磁珠上的DNA片段拥有了成千上万个相同的拷贝。
经过富集以后,这些片段仍然和磁珠结合在一起,随后就可以放入到Pico Titer Plate板中供后继测序使用了。
6. 数据读取和分析工具:GS FLX系统提供三种不同的生物信息学工具对测序数据进行分析,适用于不同的应用。
一代、二代、三代基因测序技术的发展历史及应用

备注:数据来源于罗氏官网和网络
二代测序的技术平台——Thermo Fisher
ABI/SOLiD技术原理: SOLiD测序技术也是采用油包水的方式进行Emulsion PCR。
不同之处在于SOLiD形成的小水滴要比454系统小得多, 只有1μm大小,用连接酶替代了常用的DNA聚合酶。
二代测序的技术平台——Thermo Fisher
① Ion Torrent测序芯片,是一块半导体芯片; ② 孔即是测序微珠的容器,又同时是一个微型的PH计。 ③ 4种dNTP依次流过Ion芯片; ④ 发生聚合反应产生H+引起PH变化,被传感器记录下来。 每个碱基的检测只需要几秒钟。
二代测序的技术平台——Thermo Fisher
读长
2x150bp 2x150bp 2x300bp
台式测序 2x150bp
台式测序/大规 模
2x150bp
大规模 测序
2x250bp
大规模 测序
2x150bp
测序通量 1.2Gb 7.5Gb
15Gb
120Gb
330Gb
6000Gb
16Tb
最大reads数 4M
25M
25M+
运行时间 9.5-19h 4-24h
4-55h
400M 12-30h
1.1B+ 11-48h
200亿 13-44h
260亿(单) 520亿(双)
13-48h
二代测序的技术平台——华大智造
华大基因先推出了BGISEQ-500桌面化测序系统, 之后又推出: BGISEQ-50、 MGISEQ-200、 MGISEQ-2000均取得了NMPA(原CFDA)认证, 还推出了MGISEQ-T7, 2022年10月推出DNBSEQ-T10x4、DNBSEQ-T7高通量测 序仪。
运用454焦磷酸测序技术对病原菌16S-rDNA的分析

运用454焦磷酸测序技术对病原菌16S-rDNA的分析林萍;周与华;李擎天;郭晓奎【摘要】Objective To investigate the clinical application value of sequencing for determining samples infected with pathogens. Methods Polymerase chain reaction (PCR) amplification and 454 pyrosequencing were used to detect 16S-rDNA V3 diversity of samples' pathogens. The results were compared with the results of bacterial culture. Results Sequencing can detect these genera such as Mycoplasma genus, Haemophilus genus, Mora genus and so on, which were not cultured easily in the clinical application. 9 genera could be detected by the 2 methods, and 7 of the genera were P < 0. 05. Conclusions The detection sensitivities of the 2 methods are significantly different, and the clinical application of combination with bacterial culture is a kind of new trying to detect bacterium.%目的探讨运用测序技术鉴定临床感染标本中病原菌的应用价值.方法运用聚合酶链反应(PCR)扩增及454焦磷酸测序技术,对标本中病原菌16S- rDNA V3区进行多样性分析;并与细菌培养结果相比较.结果测序能检测出临床不宜培养的菌属,如支原体属、嗜血杆菌属、莫拉菌属等;9种菌属为2种方法共同检测所得,7种菌属的P值均<0.05.结论 2种方法的检测敏感性差异有统计学意义;与细菌培养相结合是临床实践中的一种新的偿试.【期刊名称】《检验医学》【年(卷),期】2011(026)006【总页数】4页(P364-367)【关键词】病原菌;16S-rDNA基因;454焦磷酸测序技术【作者】林萍;周与华;李擎天;郭晓奎【作者单位】上海交通大学医学院附属精神卫生中心检验科,上海,200030;上海交通大学医学院病原生物学教研室,上海,200025;上海交通大学医学院检验系,上海,200025;上海交通大学医学院病原生物学教研室,上海,200025【正文语种】中文【中图分类】R446.5感染性疾病病原菌的诊断是一个热点问题,对于病原菌的研究也由原来的着重阐述单菌种致病逐渐发展为分析多菌种的混合感染或协同感染[1,2]。
454测序平台介绍

使用QIAGEN 组织匀浆机高速震 荡使得水相的PCR体系和矿物油 充分混合形成油包水的乳化PCR 体系。
高倍显微镜下混合完成的乳化 PCR体系
将乳化的PCR体系等体积分装至96孔 板(100μL/孔),在PCR仪上过夜扩 增。一般每4个PCR板回收得到的模 板珠可满足一个454测序RUN。
富集磁珠
末端修复 加A
依赖T4 DNA聚合酶的5’-3’聚合酶活性, 5’-3’外切酶活性和3’-5’ 外切酶活性补平DNA片段的末端。 依靠T4 PNK酶使得被修复末端5’端磷酸化。 依靠Taq DNA聚合酶使平末端加A
接头连接
纯化和片段选择
经过末端修复和加A步骤后的DNA片段和带有T尾的Y型分子接头连接形 成连接产物,连接产物在Ampure XP磁珠和经过特殊处理的盐溶液共同 作用下进行纯化,并筛选掉片段大小低于650bp的DNA片段。
测序试剂版本 最大读长 读长期望
数据产出
通量 Read产出 运转周期
GX FLX+测序仪
XL+
XLR70
可达1000bp
可达600bp
700bp
450bp
~85%数据量来自读长>500bp read
~85%数据量来自读长>300bp read
~45%数据量来自读长>700bp read
~25%数据量来自读长>500bp read
1
2
1. 454测序平台概述 2. 454制备操作流程简介 3. 454乳化PCR流程简介 4. 454测序仪操作和数据质控简介 5. 454的主要项目应用
2005年,454生命技术公司(后被Roche诊断收 购)推出基于焦磷酸测序法的高通量测序仪GS 20 System,此举被认为是第二代测序技术进入 商品化应用的开端。从2005年至2011年, Roche/454先后推出了GS 20,GS FLX,GS FLX Titanium,GS Junior,GS FLX+等测序仪 和试剂版本,数据读长,产能和质量不断上升。 目前华大基因所用的454测序仪为2011年中推出 的GS FLX+测序平台。
转录组高通量测序

转录组高通量测序2010-11-22 09:48(第二代高通量测序技术-454)转录组即特定细胞在某一功能状态下所能转录出来的所有RNA的总和,是研究细胞表型和功能的一个重要手段。
与基因组不同的是,转录组的定义中包含了时间和空间的限定。
同一细胞在不同的生长时期及生长环境下,其基因表达情况是不完全相同的。
罗氏GS-FLX-Titanium第二代高通量测序仪平均读长超过400bp,在测序读长上遥遥领先于其它第二代高通量测序仪,使其成为转录组学研究的首选测序平台,已被广泛应用于基础研究、临床诊断和药物研发等领域。
一、罗氏454测序技术在环境微生物生态多样性研究中的突出优势体现在:(1)测序序列长,便于聚类拼接,可以对转录本进行从头组装(de novo assembly)。
(2)测序通量高,可以检测到低丰度转录本信息。
(3)可以对无基因组参考序列的新物种进行转录组测序,发现新的转录本和亚型。
(4)实验操作简单、结果稳定,可重复性强。
无需进行克隆的文库构建,双链cDNA连接454接头后可以直接进行测序,实验周期短。
(5)测序数据便于进行生物信息分析,可以进行基因差异表达分析、鉴定基因的可变剪切以及预测新基因。
二、美吉公司在环境微生物生态多样性研究中的突出优势体现在:(1)拥有自主实验室和高通量测序平台,可以根据客户要求灵活安排实验,实验周期短,取样方便,质量可靠。
(2)技术人员经验丰富,可以稳定地进行总RNA的提取和双链cDNA的合成,可以根据顾客要求第一时间提供实验方案。
(3)有专业的生物信息团队和大型计算机,可以为客户提供个性化的生物信息分析服务。
(4)开放式实验室,参与式服务。
客户不但可以参与整个实验过程,而且可以参与生物信息分析,提供最为增值的售后服务。
三、服务流程(1)客户提供样本背景信息、实验目的和实验预期。
(2)美吉公司设计实验方案,提供测序深度建议和生物信息分析建议。
(3)客户认可实验方案,双方签订项目合作协议。
罗氏454焦磷酸测序技术

仔猪肠道菌群的形成
新生动物肠道菌群形成可以划分为以下几个阶段 [3,4,5,6]。
第一阶段:新生动物出生两周以内,肠道内的细菌定 植方式基本相同。结肠内首先出现杆菌和肠链球菌,随之 很快出现双歧杆菌并成为优势菌,这个时期肠道菌群的特 点是不稳定,容易发生变化。
第二阶段:出生后两周到断奶以前,动物在母乳喂养 下,肠道内细菌主要以厌氧菌为主,主要为双歧杆菌,肠 杆菌和链球菌数量较少。这个阶段的特点是肠道菌群容易 受食物的影响,食物的微小改变就可以引起肠道菌群发生 较大的变化。
肠道菌群的研究方法进展(分子生态学研究方法)
DNA 指纹图谱技术依据分子大小、核酸序列等特征的不同,将代 表微生物群落中各物种的 DNA 分子标记物在凝胶上进行电泳分离,使 代表不同物种的分子标记迁移到胶上的不同位置,最终得到的电泳图 谱用于显示群落的组成结构。DNA 指纹图谱的最大优点是方便、快速、 直观,常用于检测微生物群落结构的动态变化或比较不同群落之间的 结构差异。最常用的 DNA 指纹图谱技术包括变性梯度凝胶电泳 (Denatured gradient gel electrophoresis,DGGE)[10,11,12]和末端片段长 度多态性(Terminalrestriction fragment length polymorphism, T-RFLP) 等。
UniFrac 是一种通过计算系统发育树上序列的进化距离,比较不同微生物群 落结构差异的系统发育进化方法。 UniFrac方法在比较不同微生物群落结构的差 异时,不仅考虑物种的丰度,更考虑序列之间的进化距离。
参考文献
1. Zoetendal E, Koike S, Mackie R, et al. Molecular ecological analysis of the gastrointestinal microbiota: A review. J of Nutrition, 2004, 134:465-472.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
腺苷双磷酸酶、底物荧光素酶和5′磷酸硫腺苷共同孵育,然后脱氧核糖核苷三磷酸即按照 碱基配对的原则依次连接到引物上。在每一轮测序反应中,只加入一种dNTP,若该dNTP与 待测模板配对, DNA 聚合酶可以将其掺入到合成链中并释放出等摩尔数的焦磷酸基团 ( PPi) 。ATP硫酸化酶在APS存在的情况下催化焦磷酸形成ATP,ATP驱动荧光素酶介导的 荧光素向氧化荧光素( oxyluciferin)的转化,氧化荧光素发出与ATP量成正比的可见光信号。 ATP和未掺入的dNTP由三磷酸腺苷双磷酸酶降解,淬灭光信号,并再生反应体系,然后加入 下一种dNTP,如此循环[13]。
仔猪肠道菌群的形成
新生动物肠道菌群形成可以划分为以下几个阶段 [3,4,5,6]。
第一阶段:新生动物出生两周以内,肠道内的细菌定 植方式基本相同。结肠内首先出现杆菌和肠链球菌,随之 很快出现双歧杆菌并成为优势菌,这个时期肠道菌群的特 点是不稳定,容易发生变化。
第二阶段:出生后两周到断奶以前,动物在母乳喂养 下,肠道内细菌主要以厌氧菌为主,主要为双歧杆菌,肠 杆菌和链球菌数量较少。这个阶段的特点是肠道菌群容易 受食物的影响,食物的微小改变就可以引起肠道菌群发生 较大的变化。
肠道菌群的研究方法进展(分子生态学研究方法)
DNA 指纹图谱技术依据分子大小、核酸序列等特征的不同,将代 表微生物群落中各物种的 DNA 分子标记物在凝胶上进行电泳分离,使 代表不同物种的分子标记迁移到胶上的不同位置,最终得到的电泳图 谱用于显示群落的组成结构。DNA 指纹图谱的最大优点是方便、快速、 直观,常用于检测微生物群落结构的动态变化或比较不同群落之间的 结构差异。最常用的 DNA 指纹图谱技术包括变性梯度凝胶电泳 (Denatured gradient gel electrophoresis,DGGE)[10,11,12]和末端片段长 度多态性(Terminalrestriction fragment length polymorphism, T-RFLP) 等。
第二代测序技术-罗氏454焦磷酸测序技术
454测序法的步骤 (1)样品输出并片段化: GS系统支持各基因组DNA、PCR产物和细菌人工染 色体(BACs) 及cDNA、小分子RNA 的测序。先将基因组DNA 和BACs等通过物 理方法打断为300-800 bp 的片段,而对于短的小分子RNA 和PCR 用在DNA片段的 5′端加上磷酸基团,3′端变成平端,然后和两个44 bp 的衔接子( adaptor)A、B进行 平端连接。将样品5′端和3′端分别连接A和B衔接子。具大类:基于 DNA 指纹图谱的分 析方法和基于DNA 测序技术的分析方法。除此之外,可用于实时定量 的荧光定量 PCR(Real time quantitative PCR)和荧光原位杂交技术 (Fluorescence in situ hybridization, FISH)也是常用的分析手段。
肠道菌群的研究方法进展(分子生态学研究方法)
分子生态学方法通常以环境中各种微生物的基因组核酸(DNA 或 RNA)为研究对象。在以肠道菌群为对象的分子生态学研究中,研究 者们最常使用核糖体小亚基RNA 基因(细菌中的 16S rRNA 基因)的 全部或部分序列作为分子标签来代表物种,以基因序列的多样性代表 物种的多样性,从而对菌群的组成结构进行分析。细菌 16S rRNA 基因 具有广泛性、进化变异小、具备高保守区和高变区(V 区)等特点, 同时序列还具有信息量巨大且更新迅速的公开数据库,如 Ribosomal Database Project(RDP)、SILVA 、Greengenes 等等,研究者们可以方 便地将自己研究中的 16S rRNA基因序列与数据库进行比对,确定细菌 的分类地位[9]。
第三阶段:断奶以后,基本类似与成年动物培养技术)
在肠道微生物学研究中,科学家们通常使用一定的选择 性液体或固体培养基,对粪便或肠道粘膜、肠道内容物等样 本进行培养和富集,并对培养得到的细菌种类进行分析[7]。 根据肠道细菌的特性,对肠道菌进行培养通常需要在厌氧的 条件下进行,严格的厌氧和培养基的选择对于肠道菌的分离 和生长具有非常重要的意义。
仔猪肠道微生物菌群的研究
目录
仔猪的肠道微生态 仔猪肠道菌群的形成 肠道菌群的研究方法进展
第二代测序技术-罗氏454焦磷酸测序技术 实验进展及后续实验计划
仔猪的肠道微生态
仔猪肠道微生物区系随宿主日龄增加逐渐变得复杂多样,且形成 一个相对动态平衡、稳定的微生态系统,对宿主的生长和健康起着重 要作用。但报道认为,自然界中很多微生物不能用现有的培养方法进 行分离和鉴定或是不能培养[1,2],而且仔猪肠道中大部分微生物的生长 需要厌氧环境,因此人们对仔猪肠道及粪样微生物及其变化规律的了 解甚少。
不同于指纹图谱技术,DNA 测序技术的目的在于通过直接获取序 列核酸信息的方法,对群落中各物种的进化地位作出判断。基于单克 隆质粒、转化细胞构建和桑格(Sanger)双脱法。
第二代测序技术-罗氏454焦磷酸测序技术
但是,局限于纯培养的方法具有很多不足之处。首先, 体外培养体系难以模拟微生物在肠道中自然生长繁殖的条件, 因此绝大多数的肠道微生物都还不能通过纯培养的方法得到 分离;其次,仅仅依靠形态学和生理生化检测也不能对菌株 进行准确的鉴定[8]。因此,在研究肠道菌群结构和功能的研 究中,研究者们通常结合分离培养方法和分子生物学方法, 对感兴趣的细菌种类进行研究。