七年级数学下册《第十章 数据的收集、整理与描述》知识点归纳(pdf) (新版)新人教版

合集下载

人教版七年级数学(下册)第十章-数据的收集、整理与总结教案

人教版七年级数学(下册)第十章-数据的收集、整理与总结教案

人教版七年级数学(下册)第十章-数据的收
集、整理与总结教案
教学目标
1. 理解数据的概念和数据在日常生活中的作用。

2. 掌握数据的收集方法,包括观察法、实验法和调查法。

3. 学会整理数据的方法,包括制作频数表、制作条形统计图和
折线统计图。

4. 能够运用所学知识对数据进行分析和总结。

教学准备
1. 教材:人教版七年级数学(下册)第十章教材。

2. 教具:白板、黑板、多媒体课件、绘图工具。

教学过程
1. 导入:通过实例引入数据的概念和作用,激发学生的研究兴趣。

2. 授课:介绍数据的收集方法,包括观察法、实验法和调查法,并进行详细讲解和示范。

3. 练:分组进行实践操作,让学生亲自收集数据,并使用合适
的方法整理和表达数据。

4. 深化:引导学生分析和总结所收集的数据,提出问题并讨论。

5. 归纳:对本节课所学内容进行归纳总结,强化学生对数据收集、整理和总结方法的理解。

6. 作业:布置相应的练题和作业,巩固所学知识。

教学评价
1. 观察学生在课堂上的表现和参与程度。

2. 检查学生的作业完成情况和答案正确率。

3. 进行小组或个别评价,关注学生的理解深度和解决问题的能力。

教学活动设计合理,有助于学生对数据的收集、整理和总结方
法有更深入的认识。

第十章+数据的收集、整理与描述+提升能力 2022—2023学年人教版数学七年级下册章节复习讲义

第十章+数据的收集、整理与描述+提升能力 2022—2023学年人教版数学七年级下册章节复习讲义

第十章数据的收集、整理、描述提升能力2022-2023学年人教版七年级下学期数学章节复习讲义第一:例题解析保护环境,让我们从垃圾分类做起.某区环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况(如图1),进行整理后,绘制了如下两幅尚不完整的统计图:根据图表解答下列问题:(1)请将图2﹣条形统计图补充完整;(2)在图3﹣扇形统计图中,求出“D”部分所对应的圆心角等于度;(3)在抽样数据中,产生的有害垃圾共有吨;(4)调查发现,在可回收物中废纸垃圾约占15,若每回收1吨废纸可再造好红外线0.85吨.假设该城市每月产生的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可再造好纸多少吨?【详解】(1)由题意可得该小区垃圾总量为:5÷10%=50(吨);∴A类垃圾有:50×54%=27(吨);B类垃圾有:50×30%=15(吨);∴C类垃圾有:50-27-15-5=3(吨);由此,补充完整条形统计图如下:(2)扇形统计图中,D类所对应的圆心角为:360°×10%=36°;(3)由(1)中计算可知,在抽样数据中,有害垃圾有3吨;(4)由题意可得,该城市每月回收的废纸可再造纸的数量为:10000×54%×15×0.85=918(吨).【分析】(1)由统计图中的信息可知D类垃圾5吨,占总数的10%,由此可计算出垃圾的总量,结合统计图中的信息即可计算出ABC各类垃圾的吨数,并将条形统计图补充完整;(2)由“D类垃圾占总数的10%”可得,扇形统计图中D类所对应的圆心角为:360°×10%=36°;(3)由(1)中的计算结果可知在抽样数据中有害垃圾的数量;(4)由题意可得:该城市每月回收的废纸可再造纸:10000×54%×15×0.85(吨).第二:考点解读本章要求通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。

山东2020年新课标人教版七年级数学下册第十章数据的收集、整理与描述复习课(19张PPT)

山东2020年新课标人教版七年级数学下册第十章数据的收集、整理与描述复习课(19张PPT)

其他 车费 20% 25%
B.可以直接看出总消费额
午餐 文具
C.可以直接看出各项消费额占总消费额的百分比 40% 15%
D.可以直接看出各项消费额在一周中的具体变化情况
变式3:如图是一铭一周支出情况的统计表:
项目 午餐 文具 车费 其他
费用(元) 80 30
50
40
一、基本问题 知识梳理
变式3:如图是一铭一周支出情况的统计表:
首先按各部分所占的百分比计算出对应的圆心角的度数.
36015% 54 360 40%144
36020% 72 36025% 90
其次在同一个圆中根据计算得出的圆心角的度数画出各个扇 形,并注明各部分的名称及其相应的百分比.
扇形统计图:易于显示各部分在总体中所占的百分比,显示各 组数据相对于总体的大小 .
A.为了了解某市七年级学生的视力情况,选择抽样调查
B.为了了解某公园全年的游客流量,选择全面调查
C.为了了解某1000枚炮弹的杀伤半径,选择全面调查
D.为了了解一批袋装食品是否有防腐剂,选择全面调查
适①考总应察体于全中全体个面对体调象数查的目的调较情查少况叫且:做研全究面问调题查要. 求情况真实、准确性较高 时只.抽取一部分对象进行调查,然后根据调查数据推断出全体 ②对调象查的工情作况较,方这便种、调没查有方破法坏就性叫.做抽样调查. ③当调查的结果有特别要求时,或调查的结果有特殊意义时, 如国家的人口普查,我们仍须按全面调查的方式进行. 适合于抽样调查的情况: ①具有破坏力或者是不可再生的能源等. ②调查涉及的数量大,范围广.
费用(元) 10
30
5
40
费用(元)
折线统计图:能清楚地反
50

2020-2021年人教版七年级下册数学期末复习:数据的收集、整理与描述(含答案)

2020-2021年人教版七年级下册数学期末复习:数据的收集、整理与描述(含答案)

2020-2021年人教版七年级下册数学期末复习数据的收集、整理与描述考点一调查方式的选用【例1】下列调查方式中适合的是( )A.要了解一批节能灯的使用寿命,采用全面调查方式B.调查你所在班级同学的身高,采用抽样调查方式C.环保部门调查沱江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用全面调查方式【分析】统计的调查方式有全面调查与抽样调查两种方式.对于两种调查方式的选择主要取决于调查对象的数量和性质,因为调查具有时间限制,有的调查还具有破坏性.【解答】C【方法归纳】全面调查适合的条件:(1)总体的数目较少,(2)研究的问题要求情况真实、准确性较高,(3)调查工作方面,没有破坏性;抽样调查适合的条件:(1)受客观条件限制,无法对所有个体进行调查,(2)调查具有破坏性.1.以下问题,不适合用全面调查的是( )A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱考点二收集数据的相关概念【例2】为了解我县七年级6 000名学生的数学成绩,从中抽取了300名学生的数学成绩,以下说法正确的是( )A.6 000名学生是总体B.每个学生是个体C.300名学生是抽取的一个样本D.每个学生的数学成绩是个体【分析】我们可以根据总体、个体、样本、样本容量的概念结合具体问题解决,本题的考察对象是6 000名学生的数学成绩,而不是6 000名学生,所以选项A是错误的,同理,选项B,C 也是错误的,每个学生的数学成绩是个体,所以选项D是正确的.【解答】D【方法归纳】解决本题的关键是准确把握总体、个体、样本、样本容量的概念,弄清具体问题中总体、个体、样本所指的对象,明白它们是数据而不是载体.2. 2015年河池市初中毕业升学考试的考生人数约为3.2万名,从中抽取300名考生的数学成绩进行分析,在本次调查中,样本指的是( )A.300名考生的数学成绩B.300C.3.2万名考生的数学成绩D.300名考生考点三统计图的选择与制作【例3】绵阳农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了50个谷穗作为样本,量得它们的长度(单位:cm).对样本数据适当分组后,列出了如下频数分布表:穗长 4.5≤x<5 5≤x<5.5 5.5≤x<6 6≤x<6.5 6.5≤x<7 7≤x<7.5频数 4 8 12 13 10 3(1)在下图中画出频数分布直方图;(2)请你对这块试验田里的水稻穗长进行分析,并计算出这块试验田里穗长在5.5≤x<7范围内的谷穗所占的百分比.【分析】题目已给出频数分布表,可根据表中所给数据画出频数分布直方图,再根据频数分布直方图回答(2)中的问题.【解答】(1)如图所示:(2)由(1)可知谷穗长度大部分落在5 cm至7 cm之间,其他范围较少.长度在6≤x<6.5范围内的谷穗个数最多,有13个.这块试验田里穗长在 5.5≤x<7范围内的谷穗所占百分比为(12+13+10)÷50=70%.【方法归纳】给出频数分布表求作频数分布直方图时,按照画频数分布直方图的步骤完成即可.3.某中学七年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:(1)从统计表的“频数”,“百分比”两列数据中选择一列,用适当的统计图表示;(2)估计该校七年级体育测试成绩不及格的人数.考点四统计图表中信息的获取【例4】在义乌中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了__________名学生;(2)被调查的学生中,最喜爱丁类图书的有________人,最喜爱甲类图书的人数占本次被调查人数的________%;(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1 500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.【分析】(1)结合条形统计图和扇形统计图可以看出最喜爱丙类图书的有40人,占被调查人数的20%,因此总人数=40÷20%=200(人);(2)根据总人数为200人,可以求最喜爱丁类图书的人数=200-80-65-40=15(人),最喜爱甲类图书的人数占本次被调查人数的百分比=80200×100%=40%;(3)先求出最喜爱丙类图书的总人数,然后用x表示男生人数,1.5x表示女生人数,根据男生人数与女生人数之和等于最喜爱丙类图书的总人数列出方程,求出最喜爱丙类图书的女生人数和男生人数.【解答】(1)40÷20%=200(人).(2)200-80-65-40=15(人),80200×100%=40%.(3)设最喜爱丙类图书的男生人数为x人,则女生人数为1.5x人.根据题意,得x+1.5x=1 500×20%.解得x=120.当x=120时,1.5x=180.∴最喜爱丙类图书的女生人数为180人,男生人数为120人.【方法归纳】解决此类问题的关键是牢固掌握统计的基础知识,善于从统计图表中获取相关信息,并具备良好的分析数据的能力.4.某校为了解“阳光体育”活动的开展情况,从全校2 000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有人,并补全条形统计图;(2)在扇形统计图中,m=__________,n=__________;(3)全校学生中喜欢篮球的人数大约有多少?复习测试一、选择题(每小题3分,共30分)1.下列调查中,适宜采用全面调查(普查)方式的是( )A.对全国中学生心理健康现状的调查B.对市场上的冰淇淋质量的调查C.对我市市民实施低碳生活情况的调查D.对我国首架大型民用直升机各零部件的检查2.下列调查方式合适的是( )A.为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式3.某商店一周中每天卖出的衬衣分别是:16件、19件、15件、18件、22件、30件、26件,为了反映这一周销售衬衣的变化情况,应该制作的统计图是( )A.扇形统计图B.条形统计图C.折线统计图D.直方图4.甲校的女生占所有学生的50%,乙校的男生占所有学生的60%,那么( )A.甲校的女生人数多B.乙校的女生人数多C.两个学校的女生人数一样多D.不能判断哪一个学校的女生人数多5.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如下表所示(其中每个分数段可包括最小值,不包括最大值),结合表中的信息,可得测试分数在80~90分数段的学生共有( )分数段60~70 70~80 80~90 90~100频率0.2 0.25 0.25A.250名B.200名C.150名D.100名6.某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为( )A.9.5万件B.9万件C.9 500件D.5 000件7.为调查某校2 000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有( )A.500名B.600名C.700名D.800名8.某次考试中,某班级的数学成绩统计图如下.下列说法错误的是( )A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)的人数是269.某市股票在七个月之内增长率的变化状况如图所示,从图上看出,下列结论不正确的是( )A.2~6月份股票月增长率逐渐减少B.7月份股票的月增长率开始回升C.这七个月中,每月的股票不断上涨D.这七个月中,股票有涨有跌10.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,可得出样本容量是( )A.15B.40C.50D.60二、填空题(每小题4分,共20分)11.将七年级一班分成五个组,各组人数在频数分布直方图中的小长方形高的比依次为1∶2∶5∶3∶1,人数最多的一组有25人,则该班共有__________人.12.一个样本含有下面10个数据:52,51,49,50,47,48,50,51,48,53,则最大的值是__________,最小的值是__________,如果组距为1.5,则应分成__________组.13.某区卫生局在2012年11月对全区初中毕业生进行体质健康测试,随机抽取了200名学生的测试成绩作为样本,数据整理如下表,其中x的值是__________.等级 A B C D频数150 4百分比x 0.1814.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1∶2,那么表示参加“其他”活动的人数占总人数的__________%.15.四川雅安发生地震后,某校九(1)班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图,写出一条你从图中所获得的信息:________________________________________.三、解答题(共50分)16.(7分)雅安地震,牵动着全国人民的心,地震后某中学举行了爱心捐款活动,下图是该校九年级某班学生为雅安灾区捐款情况绘制的不完整的条形统计图和扇形统计图.(1)求该班人数;(2)补全条形统计图;(3)若该校九年级有800人,据此样本,请你估计该校九年级学生中捐款15元的有多少人?17.(8分)阅读对人成长的影响是很大的.希望中学共有1500名学生,为了了解学生课外阅读的情况,就“你最喜欢的图书类别”(只选一项)随机调查了部分学生,并将调查结果统计后绘制成如下统计表和条形统计图.请你根据统计图表提供的信息解答下列问题:(1)这次随机调查了__________名学生;(2)种类频数频率科普0.15艺术78文学0.59其他8118.(10分)联合国规定每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后,制成了下面的两个统计图.其中:A:能将垃圾放到规定的地方,而且还会考虑垃圾的分类B:能将垃圾放到规定的地方,但不会考虑垃圾的分类C:偶尔会将垃圾放到规定的地方D:随手乱扔垃圾根据以上信息回答下列问题:(1)该校课外活动小组共调查了多少人?并补全下面的条形统计图;(2)如果该校共有师生2 400人,那么随手乱扔垃圾的约有多少人?19.(12分)今年,市政府的一项实事工程就是由政府投入1 000万元资金对城区4万户家庭的老式水龙头和13升抽水马桶进行免费改造.某社区为配合政府完成该项工作,对社区内1 200户家庭中的120户进行了随机抽样调查,并汇总成下表:改造情况均不改造改造水龙头改造马桶1个2个3个4个1个2个户数20 31 28 21 12 69 2(1)试估计该社区需要对水龙头、马桶进行改造的家庭共有__________户;(2)改造后,一个水龙头一年大约可节省5吨水,一个马桶一年大约可节省15吨水.试估计该社区一年共可节约多少吨自来水?(3)在抽样的120户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户?20.(13分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5(1)把上面的频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可)(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?参考答案变式练习1.D2.A3.(1)选择扇形统计图表示各种情况的百分比,图略.(2)450×10%=45(人).答:估计该校七年级体育测试成绩不及格的有45人.4.(1)100 图略(2)30 10(3)2 000×10%=200(人).答:全校学生中喜欢篮球的人数大约有200人.复习测试1.D2.C3.C4.D5.C6.A7.B8.D9.D 10.B11.60 12.53 47 4 13.0.05 14.2015.答案不唯一,可以从总体来说:该班有50人参与了献爱心活动,也可以具体分情况来说,捐款10元的有20人等16.(1)15÷30%=50(人).(2)图略.(3)800×1050=160(人).17.(1)300(2)45 0.26 9618.(1)由统计图可知B种情况的有150人,占总人数的50%,所以调查的总人数为150÷50%=300(人),D种情况的人数为300-(150+30+90)=30(人),补全图形如图.(2)因为该校共有师生2 400人,所以随手乱扔垃圾的人约为2 400×30300=240(人).19.(1)1 000(2)抽样的120户家庭一年共可节约用水:(1×31+2×28+3×21+4×12)×5+(1×69+2×2)×15=198×5+73×15=2 085(吨),所以,该社区一年共可节约用水的吨数为2 085×1000100=20 850(吨).(3)设既要改造水龙头又要改造马桶的家庭共有x户,则只改造水龙头不改造马桶的家庭共有(92-x)户,只改造马桶不改造水龙头的家庭共有(71-x)户,根据题意列方程,得x+(92-x)+(71-x)=100,解得x=63.所以既要改造水龙头又要改造马桶的家庭共有63户.20.(1)13 正 5(2)答案不唯一:如①从直方图可以看出:居民月均用水量大部分在2.0至6.5之间;②居民月均用水量在3.5<x≤5.0范围内最多,有19户;③居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.(合理即可)(3)要使60%的家庭收费不受影响,家庭月均用水量应该定为5吨,因为月均用水量不超过5吨的有30户,占总户数的60%.。

七年级数学下册第十章数据的收集整理与描述考点总结(带答案)

七年级数学下册第十章数据的收集整理与描述考点总结(带答案)

七年级数学下册第十章数据的收集整理与描述考点总结单选题1、某市有3000名初一学生参加期末考试,为了了解这些学生的数学成绩,从中抽取200名学生的数学成绩进行统计分析.在这个问题中,下列说法:①这3000名初一学生的数学成绩的全体是总体;②每个初一学生的数学成绩是个体;③200名初一学生的数学成绩是总体的一个样本;其中说法正确的是()A.3个B.2个C.1个D.0个答案:A分析:根据总体、个体、样本、样本容量的定义,总体是我们把所要考查的对象的全体,个体是把组成总体的每一个考查对象,样本是从总体中取出的一部分个体叫做这个总体的一个样本;样本容量是一个样本包括的个体数量,样本容量没有单位,判断即可.解:①这3000名初一学生的数学成绩的全体是总体,说法正确;②每个初一学生的数学成绩是个体,说法正确;③200名初一学生的数学成绩是总体的一个样本,说法正确;所以其中说法正确的是3个.故选:A.小提示:本题考查了总体、个体、样本、样本容量的定义,熟练掌握相关定义是解本题的关键.2、如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有()A.45人B.75人C.120人D.300人答案:C分析:根据大学生的人数与所占的百分比求出总人数为300人,再用初中生所占的百分比乘以总人数即可得到答案.解:总人数=60÷20%=300(人);300×40%=120(人),故选:C.小提示:本题主要考查了根据扇形统计图求总人数和单项的人数,关键在于公式的灵活运用.3、为了解某市七年级15000名学生的体重情况,从中抽取了500名学生进行测量,这500名学生的体重是()A.总体B.个体C.总体的一个样本D.样本容量答案:C分析:总体是指考查的对象的全体;个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.解:A、总体是七年级15000名学生的体重情况,这500名学生的体重是样本,故A错误;B、个体是七年级每一名学生的体重,故B错误;C、这500名学生的体重是总体的一个样本,故C正确;D、样本容量是500,故D错误;故选:C.小提示:解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4、如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB=()A.149°B.149.5°C.150°D.150.5°答案:B分析:过点E作EG∥AB,根据平行线的性质可得“∠ABE+∠BEG=180°,∠GED+∠EDC=180°”,根据角的计算以∠ABE+∠CDE)”,再依据四边形内角和为360°结合角的计算即可得出及角平分线的定义可得“∠FBE+∠EDF=12结论.如图,过点E作EG∥AB,∵AB∥CD,∴AB∥CD∥GE,∴∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠BED=360°;又∵∠BED=61°,∴∠ABE+∠CDE=299°.∵∠ABE和∠CDE的平分线相交于F,∴∠FBE+∠EDF=1(∠ABE+∠CDE)=149.5°,2∵四边形的BFDE的内角和为360°,∴∠BFD=360°-149.5°-61°=149.5°.故选B.小提示:本题考查了平行线的性质、三角形内角和定理以及四边形内角和为360°,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.5、下列调查中,适合采用全面调查(普查)方式的是()A.调查北京冬奥会开幕式的收视率B.调查某批玉米种子的发芽率C.调查昆仑学校的空气质量情况D.调查疫情期间某超市人员的健康码答案:D分析:根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,抽样调查得到的调查结果比较近似进行解答.解:A.调查北京冬奥会开幕式的收视率,适合抽样调查,故选项A不符合题意;B.调查某批玉米种子的发芽率,适合抽样调查,故选项B不符合题意;C.调查昆仑学校的空气质量情况,适合抽样调查,故选项C不符合题意;D.调查疫情期间某超市人员的健康码,适合全面调查,故选项D符合题意;故选:D.小提示:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %答案:C分析:观察直方图,根据直方图中提供的数据逐项进行分析即可得.观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的4×100%=8 %,故D选项错误,50故选C.小提示:本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.7、从某公司3000名职工随机抽取30名职工,每个职工周阅读时间(单位:min)依次为.1800D.2100答案:A分析:依据抽取的样本中周阅读时间超过一个半小时的职工人数所占的百分比,即可估计该公司所有职工中,周阅读时间超过一个半小时的职工人数.=1200(人),解:由题可得,3000×10+230∴该公司所有职工中,周阅读时间超过一个半小时的职工人数约为1200人,故选A.小提示:本题主要考查了用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,对总体的估计也就越精确.8、平顶山某校有3000名学生,随机抽取了300名学生进行睡眠质量调查,下列说法错误的是()A.总体是该校3000名学生的睡眠质量B.个体是每一个学生C.样本是抽取的300名学生的睡眠质量D.样本容量是300答案:B分析:根据题意可得3000名学生的睡眠质量情况,从中抽取了300名学生进行睡眠质量调查,这个问题中的总体是3000名学生的睡眠质量情况,样本是抽取的300名学生睡眠质量情况,个体是每一个学生的睡眠质量情况,样本容量是300,注意样本容量不能加任何单位.解:A.总体是该校3000名学生的睡眠质量,故此选项正确,不合题意;B.个体是每名学生的睡眠质量,故此选项错误,符合题意;C.样本是抽取的300名学生的睡眠质量,故此选项正确,不合题意;D.样本容量是300,故此选项正确,不合题意;故选:B.小提示:本题主要考查了总体、个体、样本、样本容量,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.9、从A地到B地有驾车、公交、地铁三种出行方式,为了选择适合的出行方式,对6:00—10:00时段这三种出行方式不同时刻出发所用时长(从A地到B地)进行调查、记录与整理,数据如图所示.根据统计图提供的信息,下列推断合理的是()A.若7:00前出发,地铁是最快的出行方式B.若选择公交出行且需要30分钟以内到达,则7:00之前出发均可C.驾车出行所用时长受出发时刻影响较小D.在此时段里,地铁出行的所用时长都在30分钟至40分钟之间答案:D分析:根据折线统计图中的信息进行判定即可得出答案.解:A.根据统计图可得,7:00出行,公交快,故A选项说法不正确,不符合题意;B.根据统计图可得,若选择公交出行且需要30分钟以内到达,则6:00之前出发均可,故B选项说法不正确,不符合题意;C.根据统计图可得,地铁出行所用时长受出发时刻影响较小,故C选项说法不正确,不符合题意;D.在此时段里,地铁出行的所用时长都在30分钟至40分钟之间,故D选间说法正确,符合题意.故选:D.小提示:本题主要考查了折线统计图,根据题目要求读懂折线统计图中的信息进行求解是解决本题的关键.10、如图是某种学生快餐的营养成分统计图,若脂肪有30g,则蛋白质有()A.135gB.130gC.125gD.120g答案:A分析:脂肪有30g占总质量的10%,可知总质量为300g,再根据蛋白质所占比例即可求解.由题意可得,30÷10%×45%=300×0.45=135g,即快餐中蛋白质有135克,故选:A.小提示:本题考查了扇形统计图的知识点,数量掌握扇形统计图并正确计算是解答本题的关键.填空题11、下列调查中必须用抽样调查方式来收集数据的有________.①检查一大批灯泡的使用寿命;②调查某大城市居民家庭的收入情况;③了解全班同学的身高情况;④了解NBA各球队在2015-2016赛季的比赛结果.答案:①②分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.解:①检查一大批灯泡的使用寿命采用抽样调查方式;②调查某大城市居民家庭的收入情况采用抽样调查方式;③了解全班同学的身高情况采用全面调查方式;④了解NBA各球队在2015-2016赛季的比赛结果采用全面调查方式,故答案是:①②.小提示:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12、经调查,我区高中学生上学所用的交通方式中,选择“电瓶车”、“自行车”、“其他”的比例为5:2:5,若该校学生有600人,则选择“电瓶车”的学生人数是___________.答案:250人分析:用总人数600乘以选择“电瓶车”的比例即可.=250人,解:选择“电瓶车”的学生人数是600×55+2+5所以答案是:250人.小提示:此题考查了利用总体中部分的比例求总体中的数量,正确理解题意是解题的关键.13、为了解本校六年级学生数学成绩的分布情况,从中抽取400名学生的数学成绩进行统计分析,在这个调查中,样本是______.答案:抽取400名学生的数学成绩分析:根据样本的定义解答.解:为了解本校六年级学生数学成绩的分布情况,从中抽取400名学生的数学成绩进行统计分析,在这个调查中,样本是抽取400名学生的数学成绩,所以答案是:抽取400名学生的数学成绩.小提示:此题考查了样本的定义:抽取的部分的调查对象是样本,熟记定义是解题的关键.14、某教育网站正在就问题“中小学生对上课拖堂现象的反应”进行在线调查,你认为调查结果________普遍代表性.答案:不具有分析:样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.利用样本的代表性和广泛性即可作出判断.解:在某教育网站正在就问题“中小学生对上课拖堂现象的反应”进行在线调查,范围和人群太集中,不具有代表性.所以答案是:不具有小提示:本题考查了调查的对象的选择,要读懂题意,分清调查的内容所对应的调查对象是什么是解题的关键.注意所选取的对象要具有代表性.15、某校为了了解某个年级的学习情况,在这个年级抽取了50名学生,对某学科进行测试,将所得成绩(成绩均为整数)整理后,列出表格:(2)本次测试这50名学生成绩的及格率是________;(60分以上为及格,包括60分)(3)这个年级此学科的学习情况如何?请在下列三个选项中,选一个填在题后的横线上________.A.好 B.一般 C.不好答案:(1)21;(2) 96% ;(3)A试题分析:(1)根据总人数=频数÷频率计算;(2)得出60分以上的频率和除以总即为本次测试这50名学生成绩的及格率=96%;(3)由及格率很高,故由频数分布表可以看出该年级此学科的成绩较好.试题解析:(1)由题意可知:测试90分以上(包括90分)的人数为50×0.42=21人;=96%;(2)本次测试这50名学生成绩的及格率是0.04+0.16+0.34+0.421(3)由频数分布表可以看出该年级此学科的及格率比较高,优秀人数比较多,成绩较好.故选A.解答题16、某校将举办的“壮乡三月三”民族运动会中共有四个项目:A跳长绳,B抛绣球,C拔河,D跳竹竿舞.该校学生会围绕“你最喜欢的项目是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:舞请结合统计图表,回答下列问题:(1)填空:a=;(2)本次调查的学生总人数是多少?(3)请将条形统计图补充完整;(4)李红同学准备从抛绣球和跳竹竿舞两个项目中选择一项参加,但她拿不定主意,请你结合调查统计结果给她一些合理化建议进行选择.答案:(1)10%(2)100人(3)见解析(4)建议选择跳竹竿舞,因为选择跳竹竿舞的人数比较少,得名次的可能性大分析:(1)用1分别减去A、C、D类的百分比即可得到a的值;(2)用A类学生数除以它所占的百分比即可得到总人数;(3)用35%乘以总人数得到B类人数,再补全条形统计图画树状图;(4)根据选择两个项目的人数得出答案.(1)解:a=1﹣35%﹣25%﹣30%=10%,所以答案是:10%;(2)解:25÷25%=100(人),答:本次调查的学生总人数是100人;(3)解:B类学生人数:100×35%=35,补全条形统计图如图,(4)解:建议选择跳竹竿舞,因为选择跳竹竿舞的人数比较少,得名次的可能性大.小提示:本题考查的是条形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.17、2021年秋季教育部明确提出,要减轻义务教育阶段学生的作业负担,学生的校外培训负担.依据政策要求,初中书面作业平均完成时间不超过90分钟,学生每天的完成作业时长不能超过2小时.某中学为了积极推进教育部的新政策实施,对本校学生的作业情况进行了抽样调查,统计结果如图所示:(1)这次抽样共调查了名学生,并补全条形统计图.(2)计算扇形统计图中表示作业时长为2.5小时对应的扇形圆心角度数.(3)若该中学共有学生3000人,请据此估计该校学生的作业时间不少于2小时的学生人数.答案:(1)500;补全条形统计图见解析(2)扇形统计图中表示作业时长为2.5小时对应的扇形圆心角度数57.6°(3)估计该校学生的作业时间不少于2小时的学生人数为1320人分析:(1)用完成作业时间是2小时的学生人数除以相应的比例即可得到调查总数,然后用总数乘以1.5小时人数所在的比例;(2)作业时长为2.5小时对应的扇形圆心角度数等于80×360°=57.6°;500(3)不少于2小时的学生人数为总数乘以不少于2小时的学生所占比例.(1)140÷28%=500;500×36%=180(人),(2)作业时长为2.5小时对应的扇形圆心角度数为80×360°=57.6°;500=1320 (人)(3)3000×140+80500小提示:本题考查了条形统计图和扇形统计图的知识,从图中获取正确的信息是本题的解题关键.18、某中学初二年级抽取部分学生进行跳绳测试.并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟跳100~109次的为中等;每分钟跳110~119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)参加这次跳绳测试的共有________人;(2)补全条形统计图;(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是________;(4)如果该校初二年级的总人数是450人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.答案:(1)50(2)见解析(3)72°(4)该校初二年级跳绳成绩为“优秀”的人数为90人分析:(1)利用条形统计图以及扇形统计图得出良好的人数和所占比例,即可得出全班人数;(2)利用(1) 中所求,结合条形统计图得出优秀的人数,进而求出答案;(3)利用中等的人数,进而得出“中等”部分所对应的圆心角的度数;(4)利用样本估计总体进而利用“优秀”所占比例求出即可.(1)解:由扇形统计图和条形统计图可得:参加这次跳绳测试的共有:20÷40%=50(人);所以答案是:50;(2)由(1)的优秀的人数为:50-3-7-10-20=10,如图所示:;(3)×360°=72°,“中等”部分所对应的圆心角的度数是:1050所以答案是:72°;(4)该校初二年级跳绳成绩为“优秀”的人数为:450×10=90(人).50答:该校初二年级跳绳成绩为“优秀”的人数为90人.小提示:此题主要考查了扇形统计图以及条形统计图和利用样本估计总体等知识,利用已知图形得出正确信息是解题关键.。

人教版七年级数学下第十章数据的收集、整理10.2直方图

人教版七年级数学下第十章数据的收集、整理10.2直方图

1. 为了解某校九年级男生的身高情况,该校从九年级随机找来 50 名男生进 行了身高测量,根据测量结果(均取整数,单位:cm) 列出了下表.
根据表中提供的信息回答下列问题: (1) 数据在 161~165 范围内的频数是_1_2__; (2) 频数最大的一组数据的范围是_1_6_6~_1_7_0__; (3) 估计该校九年级男生身高在 176 cm (含 176
2
1
横轴
0 149 152 155 158 161 164 167 170 173 身高/cm
小长方形的宽是组距
2. 为了解某地区新生儿体重状况,某医院随机调取了该地区 60 名新生儿 出生体重,结果(单位:克)如下:
3850 2500 4000 3850 3300 3520 3400
3900 2700 3300 3610 3450 3850 3400
3300 2850 2800 3800 3100 2850 3400
3500 3800 2150 3280 3400 3450 3120
3315 3500 3700 3100 4160 3800 3600
3800 2900 3465 3000 3300 3500 2900
2550 2850 3680 2800 2750 3100
39 (1) 请用你所学的数学统计知识,补全频数分布直方图;
(2) 如果此地汽车时速不低于 80 千米/时即为违章,求这组汽 车的违章频数;
解:18 + 22 = 40.
(3) 如果请你根据调查数据绘制扇形统计图,那么时速在 70~
80 范围内的车辆数所对应的扇形圆心角的度数是__1_4_4_°___.
24.4 19.1 22.7 20.4 21.0 21.6 22.8 20.9 21.8 18.6 24.3 20.5 19.7 23.5 21.6 19.8 20.3 22.4 20.2 22.3 21.9 22.3 21.4 19.2 23.5 20.5 22.1 22.7 23.2 21.7 21.1 23.1 23.4 23.3 21.0 24.1 18.5 21.5 24.4 22.6 21.0 20.0 20.7 21.5 19.8 19.1 19.1 22.4

人教版七年级数学下册知识点总结(第十章 数据的收集、整理与描述)

人教版七年级数学下册知识点总结(第十章 数据的收集、整理与描述)

第十章数据的收集、整理与描述
知识要点
1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。

2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。

3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。

4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。

要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。

5、画频数直方图的步骤:①计算数差(最大值与最小值的差);
②确定组距和组数;③列频数分布表;④画频数直方图。

1。

初中七年级数学《数据的收集、整理与描述》期末复习建议

初中七年级数学《数据的收集、整理与描述》期末复习建议

第十章《数据的收集、整理与描述》期末复习建议1★样本和总体的关系是部分与整体的关系,选取样本的目的是了解总体。

★全面调查是通过调查总体的方式来收集数据;抽样调查是通过调查样本的方式来收集数据。

★抽样调查对样本最基本的要求是,样本在总体中要合适或具有典型性。

2、统计图表:(1)扇形统计图(2)条形统计图(3)折线统计图(4)频数分布直方图★选择合适的统计图时,要根据给出的数据的特点来选择,如果数据表示的是各部分所占百分比,宜用扇形统计图;如果数据表示的是变化的情况,宜用折线统计图;如果数据表示的是具体数字,宜用条形统计图★直方图:用一组长方形去表达统计数据分布状态的统计图★组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)★频数:落在各个小组内的数据的个数。

★制作直方图的步骤:①计算最大值与最小值的差;②决定组距和组数;③列频数分布表;④画频数分布直方图。

二、知识点练习:1. (1) 为了了解一批显像管的质量,从中抽取20个进行试验检查,这是 (2) 为了了解某班同学对球类运动的喜好情况,对全班同学进行调查,这是 .(以上两题填“全面调查”或“抽样调查” )。

(3) 小芳为了知道饭煮熟了没有,从饭煲中舀出一勺饭尝试,这样抽样调查的方法 (填“合适”或“不合适” )。

(4) 为了了解某校初中毕业生的身高情况,从中抽取了20名学生测量身高,在这个问题中,总体是 ;个体是 ; 样本是 ;样本容量是 。

2. 利用统计结果作出判断或决策:(06福州)今年5·18海交会上,台湾水果成为一大亮点,如图63是其中四种水果成交金额的统计图, 从中可以看出成交金额比菠萝多的水果是( ) A.香蕉 B.芒果 C.菠萝 D.猕猴桃三、 例题:例1、 现从我市区近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘 出如图所示的统计图,请结合图82中的信息, 解答下列问题:(l) 卖出面积为110-130cm 2,的商品房有 套, 并在右图中补全统计图;(2) 从图中可知,卖出最多的商品房约占全部卖出的商品房的 %;(3) 假如你是房地产开发商,根据以上提供的信息,你会多建住房面积在什么范围内的住房?为什么?例2、(07鄂尔多斯)某市教育行政部门为了解初中学生参加综合实践活动的情况,随机抽取了本市初一、初二、初三年级各500名学生进行了调查.调查结果如图78所示,请你根据图中的信息回答问题.图63人数 100 200300 400 500 45035015060%14%16% 文体活动 社会调查 社区服务 科技活动图82(1)在被调查的学生中,参加综合实践活动的有多少人?参加科技活动的有多少人? (2)如果本市有3万名初中学生,请你估计参加科技活动的学生约有多少名?例3:(2009年齐齐哈尔市)为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3∶5∶2,随机抽取一定数量的观众进行调查,得到如下统计图.(1)上面所用的调查方法是_________(填“全面调查”或“抽样调查”);(2)写出折线统计图中A 、B 所代表的值; A :_____________;B :_____________;(3)求该地区喜爱娱乐类节目的成年人的人数.四、 基础训练(A 组)1、(2009宁波)下列调查适合作全面调查的是( ) A .了解在校大学生的主要娱乐方式 B .了解宁波市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查 2、(2009杭州) 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( ) A .调查全体女生 B .调查全体男生C .调查九年级全体学生D .调查七、八、九年级各100名学生 3、(2009年新疆)要反映乌鲁木齐市一天内气温的变化情况宜采用( ) A .条形统计图 B .扇形统计图 C .频数分布直方图 D .折线统计图4、(2009湘西)要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是( ) A .个体B .总体C .样本容量D .总体的一个样本5、(2009年肇庆市)如图1是1998年参加国际教育评估的15个国家学生的数学平均成绩的统计图,节目 新闻 娱乐 动画 图二:成年人喜爱的节目统计图 新闻娱乐 动画108°书画电脑35% 音乐 体育人数(人)电脑 体育 音乐 书画 兴趣小组2824 20 16 12 8 4图66图67则平均成绩大于或等于60的国家个数是( )A .4B .8C .10D .12图2 6、(2009年安徽)如图2,将小王某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为 .7、 (07三明)某班有40名学生,其中男、女生所占比例如图65所示,则该班男生有 人. 8、(07安顺) 某工厂生产了一批零件共1600件,从中任意抽取了80件进行检查,其中合格产品78件,其余不合格,则可估计这批零件中有 件不合格.9、(07宁德)育才中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行一次抽样调查.根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:(1)图66中“电脑”部分所对应的圆心角为 度; (2)在图67中,将“体育”部分的图形补充完整;(3)爱好“书画”的人数占被调查人数的百分数 是 ;(4)估计育才中学现有的学生中,有 人爱好“书画”.10、(07长沙)为了改进银行的服务质量,随机抽查了30名顾客在窗口办理业务所用的时间(单位: 分钟).图68是这次调查得到的统计图.请你根 据图中的信息回答下列问题:(1)办理业务所用的时间为11分钟的人数是 ; (2)补全条形统计图; 五、能力训练(B 组)11、 (07四川)某商店按图69-1给出的比例,从甲、乙、丙三个厂家共购回饮水机150台,商店质检员对购进的这批饮水机进行检测,并绘制了如图69-2所示的统计图.请根据图中提供的信息回答下列问题.图658 9 10 11 12 13 时间24 6 8 10 人数图688 6 4 2 O 40 50 60 70 80 图1 成绩 频数(国家个数)(1)求该商店从乙厂购买的饮水机台数? (2)求所购买的饮水机中,非优等品的台数?(3)从优等品的角度考虑,哪个工厂的产品质量较好些?为什么?12.、(2009年福州)以下统计图描述了九年级(1)班学生在为期一个月的读书月活动中,三个阶段(上旬、中旬、下旬)日人均阅读时间的情况:(1)从以上统计图可知,九年级(1)班共有学生人; (2)图7-1中a 的值是 ;(3)从图7-1、7-2中判断,在这次读书月活动中,该班学生每日阅读时间 (填“普遍增加了”或“普遍减少了”);(4)通过这次读书月活动,如果该班学生初步形成了良好的每日阅读习惯,参照以上统计图的变化趋势,至读书月活动结束时,该班学生日人均阅读时间在0.5~1小时的人数比活动开展初期增加了 人。

七年级数学下册第十章数据的收集、整理与描述知识点总结素材(新版)新人教版

七年级数学下册第十章数据的收集、整理与描述知识点总结素材(新版)新人教版

数据的收集、整理与描述
一.知识框架
二.知识概念
1.全面调查:考察全体对象的调查方式叫做全面调查。

2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

3.总体:要考察的全体对象称为总体。

4.个体:组成总体的每一个考察对象称为个体。

5.样本:被抽取的所有个体组成一个样本。

6.样本容量:样本中个体的数目称为样本容量。

7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数
8.频率:频数与数据总数的比为频率。

9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

本章要求通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。

八年级数学(上)知识点
人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。

1。

2023–2024学年七年级数学下册(人教版)第十章 数据的收集、整理与描述知识突破(解析版)

2023–2024学年七年级数学下册(人教版)第十章 数据的收集、整理与描述知识突破(解析版)

第十章数据的收集、整理与描述(知识归纳+8题型突破)1.了解全面调查和抽样调查的优缺点,能选择合适的调查方式,解决有关问题;2.了解总体、样本、样本容量等相关概念;3.会用扇形统计图、条形统计图和折线统计图表示数据,并能从统计图或表中获取信息.4.会制作频数分布表,理解频数分布表的意义和作用;5.会画频数分布直方图,理解频数分布直方图的意义和作用.知识点一统计调查1.统计相关概念总体:调查时,调查对象的全体叫做总体.个体:组成总体的每一个调查对象叫做个体.样本:从总体中取出的一部分个体叫做总体的一个样本.样本容量:样本中个体的数量叫做样本容量(不带单位).2.调查的方法:全面调查和抽样调查(1)全面调查:考察全体对象的调查叫做全面调查.(2)抽样调查:从调查对象中抽取部分对象进行调查,然后根据调查的数据推断全体对象的情况,这种调查方式称为抽样调查.(3)调查方法的选择:①全面调查是对考查对象的全体调查,它要求对考查范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则只是对总体中的部分个体进行调查,以样本来估计总体的情况.②在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.知识点二数据的描述描述数据的方法有两种:统计表和统计图.统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.(1)条形统计图:用线段长度表示数据,根据数据的多少画成长短不同的长方形直条,然后按顺序把这些直条排列起来,条形统计图很容易看出数据的大小,便于比较,但不能清楚地反映各部分占总体的百分比.(2)扇形统计图:用整个圆表示总体,用圆内各个扇形的大小表示各部分数量,从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.(3)折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.知识点三组距、频数与频数分布表的概念1.组距:每个小组的两个端点之间的距离(组内数据的取值范围).2.频数:落在各小组内数据的个数.3.频数分布表:把各个类别及其对应的频数用表格的形式表示出来,所得表格就是频数分布表.特别说明(1)求频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表;(2)频数之和等于样本容量.(3)频数分布表能清楚、确切地反映一组数据的大小分布情况,将一批数据分组,一般数据越多,分的组也越多,当数据在100个以内时,按数据的多少,常分成5~12组,在分组时,要灵活确定组距,使所分组数合适,一般组数为最大值-最小值组距的整数部分+1.知识点四频数分布直方图1.频数分布直方图:是以小长方形的面积来反映数据落在各个小组内的频数的大小,直方图由横轴、纵轴、条形图三部分组成.(1)横轴:直方图的横轴表示分组的情况(数据分组);(2)纵轴:直方图的纵轴表示频数;(3)条形图:直方图的主体部分是条形图,每一条是立于横轴之上的一个长方形、底边长是这个组的组距,高为频数.2.作直方图的步骤:(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.要点诠释:(1)频数分布直方图简称直方图,它是条形统计图的一种.(2)频数分布直方图用小长方形的面积来表示各组的频数分布,对于等距分组的数据,可以用小长方形的高直接表示频数的分布.3.直方图和条形图的联系与区别:(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;(2)区别:由于分组数据具有连续性,直方图中各矩形之间通常是连续排列,中间没有空隙,而条形图中各矩形是分开排列,中间有一定的间隔;直方图是用面积表示各组频数的多少,而条形图是用矩形的高表示频数.知识点五频数分布折线图频数分布折线图的制作一般都是在频数分布直方图的基础上得到的,具体步骤是:首先取直方图中每一个长方形上边的中点;然后再在横轴上取两个频数为0的点(直方图最左及最右两边各取一个,它们分别与直方图左右相距半个组距);最后再将这些点用线段依次连接起来,就得到了频数分布折线图.【考点一判断全面调查与抽样调查】例题:(2024上·四川成都·八年级校考期末)下列调查中,适合进行普查的是()A.《新闻联播》电视栏目的收视率B.某小型企业给在职员工做工作服前进行尺寸大小调查C.一批灯泡的使用寿命D.环保部门对长江某段水域的污染情况的调查【答案】B【分析】本题主要考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于破坏性的调查、无法进行普查、普查的意义和价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.由此逐项判断即可.【详解】解:A.《新闻联播》电视栏目的收视率,适合进行抽样调查,不合题意;B.某小型企业给在职员工做工作服前进行尺寸大小调查,适合进行普查,符合题意;C.一批灯泡的使用寿命,适合进行抽样调查,不合题意;D.环保部门对长江某段水域的污染情况的调查,适合进行抽样调查,不合题意;故选B.【变式训练】1.(2024上·山西忻州·七年级校联考期末)下列调查中,适宜采用抽样调查方式的是()A.中国东方航空公司飞行员视力的达标率B.调查乘坐飞机的旅客是否携带了违禁物品C.调查得力圆珠笔芯的使用寿命D.调查本班同学对晋中市总面积的知晓情况【答案】C【分析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,据此求解即可.【详解】解:A、中国东方航空公司飞行员视力的达标率,涉及安全性,应采用普查,不符合题意;B、调查乘坐飞机的旅客是否携带了违禁物品,涉及安全性,应采用普查,不符合题意;C、调查得力圆珠笔芯的使用寿命,具有破坏性,应采用抽样调查,符合题意;D、调查本班同学对晋中市总面积的知晓情况,范围小,人数不多,应采用普查,不符合题意;故选:C.2.(2024上·山东济南·七年级济南十四中校考期末)下列调查中,调查方式选择合理的是()A.为了解济南市初中生每天做作业所用的时间,小亮抽查了自己班级的学生B.为了解济南市本年度的空气质量,小莹连续10天记录空气质量污染指数C.铁路工作人员为了解乘坐高铁的乘客是否携带危险物品,对所有乘客进行全面检查D.为保证神舟十七号载人飞船顺利发射,工作人员抽检了部分相关零件【答案】C【分析】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A.为了解济南市初中生每天做作业所用的时间,小亮抽查了自己班级的学生,范围小,不具有普遍性,原说法不合理,不符合题意;B.为了解济南市本年度的空气质量,小莹连续10天记录空气质量污染指数,时间太少,不具有代表性,原说法不合理,不符合题意;C.铁路工作人员为了解乘坐高铁的乘客是否携带危险物品,对所有乘客进行全面检查,说法合理,符合题意;D.为保证神舟十七号载人飞船顺利发射,工作人员抽检了部分相关零件,不精确,需全面检查,原说法不合理,不符合题意;故选:C.【考点二总体、个体、样本、样本容量】例题:(2023上·山东青岛·七年级统考期末)某校从800名学生中随机抽取100名学生进行百米测试,下列说法正确的是()A.该调查方式是普查B.800名学生是总体C.样本是100名学生D.每名学生的百米测试成绩是个体【答案】D【分析】题主要考查了普查与抽样调查的定义,总体,个体,以及样本容量的定义,根据普查与抽样调查的定义,总体,个体,以及样本容量的定义进行逐一判断是解题的关键.【详解】解:A.该调查方式是抽样调查,原说法错误;B.800名学生的百米测试成绩是总体,原说法错误;C.样本是100名学生百米测试成绩,原说法错误;D.每名学生的百米测试成绩是个体,说法正确;故选D.【变式训练】1.(2024上·江苏宿迁·八年级统考期末)为了解某县区八年级学生每天做家庭作业所用的时间,从该县区八年级学生中抽取100名学生进行调查.该调查中的个体是()A.100B.该县区八年级每名学生每天做家庭作业所用的时间C.从中抽取的100名学生D.从中抽取的100名学生每天做家庭作业所用的时间【答案】B【分析】根据个体的的定义:“组成总体的每一个考察对象称为个体”进行判断即可.【详解】解:由题意,调查的个体是:该县区八年级每名学生每天做家庭作业所用的时间;故选B.2.(2023上·江西吉安·七年级统考期末)初中生骑电动车上学存在安全隐患,为了解某校初中2000个学生家长对“中学生骑电动车上学”的态度,随机调查100个家长,结果有90个家长持反对态度,则下列说法正确的是()【考点三由样品的所占比求总体的数量】【变式训练】【考点四求条形统计图的相关数据】【答案】131个25.3%【分析】根据条形统计图可以得到平均每天卖出的A解题.【详解】解:由条形统计图可知平均每天卖出的A种雪糕数为【变式训练】该品牌汽车在2023年2—5月份新能源型汽车销量最多月份的销量是【答案】4.8【分析】根据月销售总量及新能源汽车销量占比求出每个月新能源型汽车销量,比较大小即可.【详解】解:由图可知,2023年2—5月份新能源型汽车的月销量分别为:⨯=(万辆),2月份:2015%3【答案】6012【分析】3月份销售额等于销售总额减去其余三个月的销售额;根据2月份的销售额是80万元,音乐手机占15%可得2月份音乐手机的销售额.【详解】解:290-85-80-65=60(万元),答:3月份销售额是60万元;80×15%=12(万元),答:2月份音乐手机的销售额是12万元.故答案为:60,12.【点睛】本题考查条形统计图和折线统计图,能够根据统计图得到相关信息是解题关键.【考点五求扇形统计图的圆心角】【答案】144︒或144【分析】本题主要考查了求扇形统计图中对应项目的圆心角度数,用可得到答案.【详解】解:360︒⨯36040%=︒⨯144=︒,∴金牌对应扇形的圆心角的度数是144︒.故答案为:144︒【变式训练】【答案】45度/45︒【分析】将参加体操训练所占比例乘以【详解】解:40681293604540----⨯︒=︒,45︒请你根据图中提供的信息,解答下列问题:【考点六条形统计图和扇形统计图信息关联】根据以上信息可知,该校初一学生中最喜爱足球课程的人数是【变式训练】【答案】20【分析】根据饼图中B类的比例是15%,在条形图中的人数,由此可求出D类的人数.÷=(名),【详解】解:调查总人数为:3015%200⨯=(名),“A骑车”的人数为:20040%80∴“D乘坐公共交通工具”的人数为:200803070---=故答案为:20.【点睛】本题主要考查数据的统计,理解饼图,条形图的信息,掌握相关样本数量与比例的相关计算方法是解题的关键.2.(2023下·山东济南·六年级统考期末)某中学开展排球,乒乓球,篮球三个项目的活动,陈老师统计了该班参加这三项活动的人数,并绘制了如图所示的条【答案】15【分析】由两图形中关于“排球”项目的数据信息可求出总体人数,进一步根据条形图求出篮球项目的人数.÷=(人),【详解】解:调查人数为:2550%50--=(人),参加篮球活动的人数为:50251015故答案为:15.【点睛】本题考查条形统计图和扇形统计图,运用两图形的信息联系求出总体人数是解题的关键.【考点七根据数据描述求频数/频率】【变式训练】【答案】28.6%【分析】本题考查了频率的计算,将图中成绩在题.【详解】解:优秀的百分率=23++故答案为:28.6%.【考点八频数分布直方图/折线图】(1)求抽取的学生总人数和m的值;(2)补全频数分布直方图;(3)在扇形统计图中,求C所在扇形的圆心角的度数.【答案】(1)50人,30(2)见解析(3)解:736050.4 50⨯︒=︒.答:C所在扇形的圆心角的度数为50.4【变式训练】1.(2024上·江西鹰潭·七年级统考期末)通工具,为了解某社区居民每周使用共享单车的时间情况,随机对该社区选择共享单车出行的部分居民进(1)本次调研,随机抽取名社区居民进行调查;(2)表中m的值为,n的值为;(3)第2组居民人数在扇形图中所对应的扇形的圆心角度数是;(4)请补全频数分布直方图.【答案】(1)100(2)25;202.(2024上·重庆沙坪坝·七年级重庆一中校考期末)狮舞龙腾歌辞旧,春乃岁首斗换班.满怀收获的2023年已经过去,2024年正全新开启.某校为庆祝元旦晚会,准备从初一年级共320名同学中挑选身高相差不多的同学参加舞龙舞狮节目.为此通过随机抽样的方法收集了部分同学的身高数据(用x 表示,单位:cm ),并根据测得的数据绘制了两幅不完整的统计图(共分为四个等级:A .150155x ≤<,B .155160x ≤<,C .160165x ≤<,D .165170x ≤<,E .170175x ≤≤),请根据图中提供的信息完成以下问题:(1)上述统计中抽取的样本容量为__________,C 所在扇形的圆心角度数是__________︒;(2)补全频数分布直方图;(3)元旦晚会舞龙舞狮节目要求身高大于或等于165cm ,请你根据调查结果,估计该年级身高符合要求的学生有多少名?【答案】(1)40,54(2)见解析(3)估计该年级身高符合要求的学生有80名【分析】(1)由E 组人数及其所占百分比可得样本容量,用360︒乘以C 组人数所占比例即可;(2)根据各组人数之和等于总人数求出B 组人数即可补全图形;(3)用总人数乘以样本中D 、E 组人数和所占比例即可.【详解】(1)解:上述统计中抽取的样本容量为410%40÷=,(3)解:064342080+⨯=(名),答:估计该年级身高符合要求的学生有【点睛】本题主要考查频数分布直方图、扇形统计图、用样本估计总体等知识点,理解两个统计图中数量之间的关系是解决问题的前提,掌握频率3.(2024上·陕西咸阳·七年级统考期末)学生的视力状况受到社会的普遍关注对全校学生进行了一次视力抽样调查,小颖根据调查结果将数据整理成下表,并绘制了不完整的频数分布直方图和扇形统计图(每组包括最小值,不包括最大值)请根据图表信息,解答下列问题:(1)此次共调查_____了名同学;;(3)解:由图形及(2)得,A 组的圆心角为:36010%36︒⨯=︒,C 组的圆心角为:180360108600⨯=︒︒.。

2015-2016人教版七年级数学下册第十章 《数据的收集、整理与描述》教材分析 文字讲稿

2015-2016人教版七年级数学下册第十章  《数据的收集、整理与描述》教材分析 文字讲稿

第十章《数据的收集、整理与描述》教材分析概论新课标将初中数学内容分为了四个部分“统计与概率”,“数与代数”,“空间和图形”和“综合与实践”. 人教版教材将“统计与概率”内容分三章呈现,其中统计部分两章,概率部分一章. 统计部分第一次安排在七年级下的第10章“数据的收集、整理与描述”,第二次安排在八年级下的第20章“数据的分析”.一、课程学习目标1. 经历收集、整理、描述和分析数据的活动,了解数据处理的过程. 了解全面调查和抽样调查两种收集数据的方式,会设计简单的调查问卷收集数据.2. 体会抽样的必要性,通过实例了解简单随机抽样,初步体会用样本估计总体的思想. (P144实验与探究:捉----放-----捉问题)设计活动,通过学生动手活动体验这种方法,感受用样本估计总体的思想,并了解实验也是获得数据的有效方法,就显得尤为重要.3. 会制作扇形图,能用统计图直观、有效地描述数据.4. 通过实例,了解频数及频数分布的意义,能画频数分布直方图(等距分组),能利用频数分布直方图解释数据中蕴含的信息.会根据问题需要选择适当的统计图描述数据,进一步体会统计图在描述数据中的作用.5.能解释统计结果,根据结果做出简单的判断和预测,并能进行交流.(体现了小组合作式的学习方法)6. 通过表格,折线图,趋势图等,感受随机现象的变化趋势.(备注:趋势图,也可称为统计图或统计图表,是以统计图的呈现方式,如柱型图、横柱型图、曲线图、饼图、点图、面积图、雷达图等,来呈现某事物或某信息数据的发展趋势的图形. )7.通过经历统计活动,初步建立数据分析观念,感受统计在生活和生产中的作用,增强学习统计的兴趣.二、本章知识结构图三、 课时安排本章教学时间约需10-11课时,具体分配如下(仅供参考):10.1 统计调查 约3课时 10.2 直方图 约2课时 10.3 课题学习:从数据谈节水 约3课时( 增加1课时)数学活动与小结 约2课时四、 教学建议1、 一些想法(1) 注意培养学生对统计思想的全面理解教学中,除了通过具体案例使学生认识有关统计知识和统计方法外,应引导学生感受渗透于统计知识和方法之中的统计思想. 对统计思想的了解有助于把握解决统计问题的大方向,也有助于加深理解学习过程中的局部问题. (2) 改进学生的学习方式,注重“从做中学”对于条形图、折线图、扇形图是学生已经熟悉的知识,因此在本章教学时,应将重点放在引领学生通过实际案例亲身经历数据处理的基本过程,深入理解各种统计图的特点,避免学生产生是对已学知识简单重复的误解. 而在课题学习当中,更应引导学生设计一个完整的统计过程,既可避免抽象的概念和方法带来的学习困难,又可使学生感受统计与实际生活的联系,体会数据处理在解决现实问题中的作用. 让学生真实的经历了实际问题的统计过程,经历了数据收集以及处理工作中的各种问题,有效的提高了学生的学习热情以及知识的牢固程度.(3) 注重向学生呈现数据处理的完整过程条形图扇形图折线图直方图趋势图全章用了四个问题和一个课题学习来阐述数据收集、整理和描述的知识和方法,每个实例基本上都经历了收集数据、整理数据、描述数据和分析数据的过程. 对本章中的每个问题,一方面要按照数据处理过程中不同阶段的侧重点,来逐步安排相关的重点内容(如何调查、收集数据;如何列表、整理数据;如何画图、描述数据等),另一方面,还要注意每个问题都向学生展现出数据处理的全过程,而不是“就头论头,就尾论尾”地把统计过程割裂开来,这样才能更好的培养学生统计的观念意识.()⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧析的结论小组讨论交流,得出分分析数据图、折线图条形图、直方图、扇形统计图统计表描述数据用划记法记录数据理表格设计简洁清晰的数据整整理数据展开调查选择调查方法确定调查对象明确调查问题收集数据数据处理的基本过程: 注:这些环节有时是有交错的,不一定能分的很清楚.(4)培养学生认真读图的好习惯由于近几年的中考命题特点,对学生的识图能力有较高要求,所以应在本章开始培养学生认真读图的好习惯,使学生形成良好的识图能力,能够从统计图表中准确地读取数据. (5)准确把握教学要求①关于分析数据:它在本章中已经出现了,但属于较为简单的情形. 本套教科书在八年级下册第20章“数据的分析”中将对它有更深入的安排,而本章对分析数据的要求仅是通过简单实例,让学生初步感受它是统计全过程中必要的一环,初步体会统计思想和统计过程. 因此,在本章教学时,要特别注意准确把握教学要求,不要过早地出现较复杂分析数据的问题.②关于频数分布直方图:一般直方图是用矩形面积表示频数的,而对于等距分组的情形,为看图与画图方便可以改为用矩形的高表示频数. 本节的问题都属于后一情形,因此教学中不必过多涉及一般直方图,而应重点介绍用矩形的高表示频数的直方图.③通过具体案例使学生认识有关统计知识(如样本、总体、个体、频数等)和统计方法(如抽样调查等)2、具体内容§10.1统计调查 (一)数据收集问题1.数据来源数据的来源一般有两条渠道:一条是通过统计调查或科学实验直接得到第一手统计数据,另一条是通过查阅资料等间接获得第二手统计数据. 在本章的教学过程中,可以考虑让学生对两种收集渠道都进行尝试.2.调查问卷的设计①设计调查问卷的步骤:确定调查目的; 选择调查对象;设计调查问题②设计调查问卷要注意:问卷设计:一般包括调查中所提问题的设计、问题答案的设计、以及提问顺序的设计等.几点要求:问题设置要紧紧围绕调查的目的;提问不能涉及提问者自己的观点;问卷提供的答案尽量全面;问题要简明,问卷形式简捷,便于答卷便于整理.例1调查问卷中下列问题及答案的设置好不好? 为什么?(1) 我认为猫是一种很可爱的动物, 你说呢?(A) 非常同意(B) 同意(C) 不确定(D) 不同意(E) 坚决反对(2) 你经常躺在床上看书吗?(A) 经常(B) 不经常例2学校食堂的主食主要有:米饭、馒头、花卷、面条,你班的同学最喜欢哪种主食,请设计一个调查问卷.例3两名同学在调查时使用下面两种提问方式,哪种更好些?(1)难道你不认为科幻片比武打片更有意思吗?(2)你更喜欢哪一类电影——科幻片还是武打片?3.全面调查与抽样调查(1)全面调查与抽样调查的区别:全面调查可以得到全面数据,但是工作量相对较大;而抽样调查只能得到局部数据,可靠性相对较差,但是工作量相对较小.①当调查的结果对调查对象具有破坏性时,或者会产生一定的危害性时,通常采用抽样调查;②当客观条件(人力、物力等)限制调查不易进行时,常采用抽样调查;③当调查的对象个数较少,调查容易进行时,我们一般采用全面调查;④但当调查的结果有特别要求时,或调查的结果有特殊意义时,如国家的人口普查,我们仍须采用全面调查.注意:①被调查的对象不能太少②被调查的对象应是随机抽取的. 因此, 抽样调查时既要关注样本的广泛性, 又要关注其代表性. 有些数据调查方案不唯一, 既可采用全面调查的方式, 又可采用抽样调查.(2) 相关的一些概念,如总体、个体、样本、样本容量,应当明确.例4为了了解某校七年级400名学生的期中数学成绩的情况,从中抽取了50名学生的数学成绩进行分析. 在这个问题中,总体是,个体是,样本是,样本容量是.例5下列调查中, 适合做抽样调查的有( )4.20% 6.40%5.60%13.30%11.90%0.00%2.00%4.00%6.00%8.00%10.00%12.00%14.00%20012002200320042005① 了解一批炮弹的命中精度; ② 调查全国中学生的上网情况; ③ 审查某文章中的错别字; ④ 考查某种农作物的长势 (A ) 1个(B ) 2个(C ) 3个(D ) 4个(二)数据描述问题学生在小学已经学习过条形统计图、扇形统计图和折线统计图, 其中对条形图和折线图, 能从中读取信息, 并能按要求画出它们来描述数据; 对扇形图, 能从中读取信息, 但不要求能绘制,如何制作扇形图,这是本学段的一个教学要求. 对于直方图、趋势图,是本学段学习的新统计图. 本学期最为基本的要求是能够独立制作出各种统计图,并了解它们在反映数据信息时的不同特点,其次,是通过经历制作统计图的完整过程,把握其中的细节,能够准确的从图表中提取信息. 有时,一些信息需要从若干个统计图中经过综合分析才能够得到.1本章出现的五种统计图各自的特点:(1) 条形统计图: 能清楚地表示出每个项目的具体数目 (2) 扇形统计图: 能清楚地表示出各部分在总体中所占的百分比 (3) 折线统计图: 能清楚地反映出事物变化的情况*(4)频数分布直方图:能够显示各组频数分布的情况,易于显示各组之间频数的差别. *(5)趋势图:用一条直线刻画数据的变化趋势,根据趋势图做预测. (带*的统计图是在后两节中学习的内容) 扇形图的画法:(1) 计算各部分占总体的百分比;(2) 计算表示各部分数量的扇形的圆心角度数(圆心角=360︒⨯某部分占总体的百分比); (3) 画圆,根据计算所得的圆心角,画出各个扇形,并标注项目及百分比; 例6.如果想表示我国从1995-2016年间国民生产总值的变化情况, 最合适的是采用( ) (A ) 条形统计图 (B ) 扇形统计图(C ) 折线统计图(D ) 以上都很合适例7.如图是某校七年级学生跳绳成绩的条形统计 图(共三等), 则下面回答正确的是( ) (A ) C 等人最少, 只有40人 (B ) 该校七年级共有120人 (C ) A 等人占总人数的30% (D ) B 等人最多,占总人数的32例8.下图反映了2001至2005年间我市农村居民人均收入的年增长率.下列说法正确的是()20 40 60 80 100 120 140 ABC 人数等级图①北京市居民人均常规工作日时间利用情况A .2003年农村居民人均收入低于2002年B .农村居民人均收入年增长率低于9%的有2年C .农村居民人均收入最多的是2004年D .农村居民人均收入在逐年增加例9.下图是甲、乙两户居民家庭全年支出费用的扇形 统计图.根据统计图,以下各个判断正确的是() A .甲户比乙户食品开销多 B .甲户比乙户教育开销少 C .甲户比乙户衣着开销多 D .以上说法都不对例10.典典学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了_____名居民的年龄,扇形统计图中a =_____,b =_____; (2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.例11.通常情况居民一周时间可以分为常规工作日 (周一至周五)和常规休息日(周六和周日). 居民 一天的时间可以划分为工作时间、个人生活必须时间、家务劳 动时间和可以自由支配时间等四部分. 2008年5月,北京市统46%22%0~14岁60岁以上41~5915~40200 50250 150 100 300 0~14 15~40 41~59 60岁以上 年龄60230100人数北京市居民每天可自由支配时间利用情况1042230191510102030405060708090100110看电视读书看报上网健身游戏学习参观社会交往交通时间其他(单位:分)图②计局在全市居民家庭中开展了时间利用调查,并绘制了统计图:(1)由图①,调查表明,我市居民人均常规工作日工作时间占一天时间的百分比为; (2)调查显示,看电视、上网、健身游戏、读书看报是居民在可自由支配时间中的主要 活动方式,其中平均每天上网占可自由支配时间的12%,比读书看报的时间多8分钟. 请根据以上信息补全图②;(3)由图②,调查表明,我市居民在可自由支配时间中看电视的时间最长. 根据这一信息,请你在可自由支配时间的利用方面提出一条建议:___ ____________.§10.2直方图( 一)总数与频数总数:所有研究对象个体总的数目叫做总数.频数:在若干个数据中,每个数据出现的次数,叫做该数据的频数;将总体划分为若干个小组,落在不同小组中的数据的个数叫做该组的频数.频率:频数与数据总数的比值叫做频率.(频率⨯100%就是百分比). (二)频数分布表 (三)频数分布直方图①横轴表示相关数据对应量的大小,并标出每一组数据的两个端点,对于纵轴, 等距分组时表示频数,每个矩形的高代表对应组的频数.② 特点: 能够显示各组频数分布的情况;易于显示各组之间频数的差别. ③频数分布直方图的画图步骤ⅰ计算极差,即计算一组数据中的最大值与最小值的差;ⅱ决定组距与组数,即将一组数据分成若干个小组,组距⨯组数≈极差;=频数组距频数组距,那么小长方形面积组距频数一般直方图是表示⨯=ⅲ决定组限,即分组后,确定各个小组两个端点的数值; ⅳ列频数分布表;ⅴ画出频数分布直方图.(四)直方图和条形图的联系与区别:①联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都可以用矩形的高来表示频数的多少来反映数据的分布情况的;②区别:由于分组数据具有连续性,直方图中各矩形之间通常是连续排列,中间没有空隙,而条形图中各矩形是分开排列,中间有一定的间隔;直方图是用面积表示各组频数的多少,而条形图是用矩形的高表示频数;直方图中矩形的长宽都有意义,而条形图宽度是一定的,只有高有意义.(五)几点注意:(1) 画好频数分布直方图的关键是决定好组距和组数,因为它们的不同,甚至会对结果产生影响.其实它们两个是紧密联系的,一般是凭借经验和研究的具体问题,首先确定一个,再由“组距⨯组数≈极差”即可求出另一个,同时,在实际决定的过程中,往往有一个尝试的过程.对于这点,在教学上,应有专门的设计,使学生有所体会.(2) 组距和组数确定以后,就要根据组距和组数对数据分组.数据分组时,对数据要遵循“不重不漏”的原则,我们往往采取“上限不在内”的原则.如,152≤ x <155.(3) 对于本节的课本例题,也可以引导学生讨论,除了用统计的办法,还有没有别的办法也能选出身高差不多的40名同学. 例12.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成( ) A .10组 B .9组 C .8组 D .7组例13.已知一个样本27,23,25,27,29,31,27,30,32,28,31,28,26,27,29,28,24,26,27,30,那么频数为 8 的范围是( )A .24.5 ~26.5B .26.5~28.5C .28.5~30.5D .30.5~32.5 例14、某校八年级(1)班为了解同学们一天零花钱的消费情况,对本班同学开展了调查,将同学一周的零花钱以2元为组距,绘制如图的频率分布直方图,已知从左到右各组的频数之比为2∶3∶4∶2∶1.021 (1)若该班有48人,则零花钱用最多的是第组,有人; (2)零花钱在8元以上的共有人;(3)若每组的平均消费按最大值计算,则该班同学的日平均消费额是元(精确到0.1元)例15为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:分组 频数 50.5~60.54钱数(元)人数1210864260.5~70.5 870.5~80.5 1080.5~90.5 1690.5~100.5合计50(1)填充频率分布表的空格;(2)补全频数直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?例16以下统计图描述了九年级(1)班学生在为期一个月的读书月活动中,三个阶段(上旬、中旬、下旬)日人均阅读时间的情况:(1)从以下统计图可知,九年级(1)班共有学生______人;(2)图7-1中a的值是______;(3)从图7-1、7-2中判断,在这次读书月活动中,该班学生每日阅读时间______(填“普遍增加了”或“普遍减少了”);(4)通过这次读书月活动,如果该班学生初步形成了良好的每日阅读习惯,参照以上统计图的变化趋势,至读书月活动结束时,该班学生日人均阅读时间在0.5~1小时的人数比活动开展初期增加了______人.(六)、关于数据分析问题学生对于数据图表, 能解释统计结果;能利用频数分布直方图解释数据中蕴含的信息;通过表格,折线图,趋势图等,感受随机现象的变化趋势. 根据结果做出来简单地判断和预测,并能进行交流. 但是目前要求不宜过高§10.3从数据谈节水如何收集、整理、描述和分析数据来解决一个实际问题,是学生学习的重点. 本课既安排了学生通过查阅资料获得第二手数据,也有让学生设计问卷,亲自调查获得第一手数据,这些过程都必须给学生们充分的时间,去积极参与,认真体会、总结. 建议教师应引导学生努力从不同的角度分析数据的不同特征,从而使用上各种统计图来描述数据.本节实际上是前面所有知识方法的一个综合实践,建议分几步进行:(1) 先给学生明确调查目的, 让学生课下按组设计调查问卷(作为作业);(2) 老师批阅后, 在课上组织学生讨论、修改, 最后统一;(3) 学生分组实施调查, 利用课余或周末的时间进行;(4) 分小组整理数据, 绘制统计图表, 作简单分析;(5) 在课堂上分组汇报.五、典型题型10.1 统计调查例1下列调查中,①调査本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是()A.①B.②C.③D.④例2去年某市有近4万名考生参加中考,为了了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析.以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量例3我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操;B:跑操;C:舞蹈;D:健美操四项活动.为了了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如图32-1所示的两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有________人;(2)请将统计图②补充完整;(3)统计图①中B项目对应的扇形的圆心角是________度;(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.【练习】1.下列调查中,适宜采用全面调查(普查)方式的是【】A .调查市场上老酸奶的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了危禁物品D .调查我市市民对伦敦奥运会吉祥物的知晓率 【答案】C.【考点】调查方法的选择.【分析】A 、数量较大,普查的意义或价值不大时,应选择抽样调查;B 、数量较大,具有破坏性的调查,应选择抽样调查;C 、事关重大的调查往往选用普查;D 、数量较大,普查的意义或价值不大时,应选择抽样调查. .故选C.2.某生态示范园要对1号、2号、3号、4号四个品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出)(1)实验所用的2号果树幼苗的数量是_______株;(2)请求出3号果树幼苗的成活数,并把图2的统计图补充完整; (3)你认为应选哪一种品种进行推广?请通过计算说明理由. 【关键词】扇形图与条形图 【答案】 解:(1)100 (2) (3)1号果树幼苗成活率为2号果树幼苗成活率为 4号果树幼苗成活率为∵112%6.89%25500=⨯⨯%90%100150135=⨯%85%10010085=⨯%6.93%100125117=⨯%85%6.89.%9%6.93>>>•4号 25% 30% 1号3号 25%2号 (图1) 500株幼苗中各品种幼苗所占百分比统计图 成活数(株)品种 O 1号 2号 3号 4号 135 85 11750 100 150 (图2)各品种幼苗成活数统计图 成活数(株) 品种O1号 2号 3号 4号1358511750100 150 (图2)各品种幼苗成活数统计图117∴应选择4号品种进推广.3.配餐公司为某学校提供A 、B 、C 三类午餐供师生选择,三类午餐每份的价格分别是:A 餐5元,B 餐6元,C 餐8元.为做好下阶段的营销工作,配餐公司根据该校上周A 、B 、C 三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).请根据以上信息,解答下列问题:(1)该校师生上周购买午餐费用的众数是元;(2)配餐公司上周在该校销售B 餐每份的利润大约是元; (3)请你计算配餐公司上周在该校销售午餐约盈利多少元? 解:(3)【关键词】数据的收集与整理 【答案】解:(1)6元; (2)3元;(3)1.5×1000+3×1700+3×400 = 1500+5100+1200 = 7800(元).答:配餐公司上周在该校销售午餐约盈利7800元.4.广州市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:等级 非常了解比较了解 基本了解不太了解频数 40 12036 4 频率0.2m0.180.02(1)本次问卷调查取样的样本容量为_______,表中的m 值为_______.以往销售量与平均每份利润之间的关系统计图一周销售量(份)300~800 (不含800) 平均每份的利润(元)0.5 1 1.5 2 02.5 33.5 4 800~1200 (不含1200)1200及 1200以上AB C种类 数量(份) A 1000 B 1700 C400该校上周购买情况统计表(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图6所对应的扇形的圆心角的度数,并补全扇形统计图. (3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?【关键词】扇形统计图、样本估计总体.【答案】(1)200;0.6; (2)72°;补全图如下:(3)1800×0.6=90010.2 直方图例4为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分,发现参赛者的成绩x 均满足50≤x <100,并制作了频数分布直方图,如图32-2.根据以上信息,解答下列问题: (1)请补全频数分布直方图;(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x <90的选手中应抽多少人?(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?【练习】1.一个容量为80的样本,最大值是149,最小值是70,取组距为10,则可以分() A .10组B.9组C.8组D.7组2.为了解今年全县2000名初四学生“创新能力大赛”的笔试情况.随机抽取了部分参赛同学的成绩,整理并制作如图所示的图表(部分未完成).请你根据表中提供的信息,解答下列问题:(1)此次调查的样本容量为 300 ; (2)在表中:m= 120 ;n= 0.3 ; (3)补全频数分布直方图;(4)如果比赛成绩80分以上(含80分)为优秀,那么你估计该县初四学生笔试成绩的优60%比较了解不太了解2%18%。

部编数学七年级下册第10章数据的收集、整理与描述(解析版)含答案

部编数学七年级下册第10章数据的收集、整理与描述(解析版)含答案

第10章数据的收集、整理与描述一、单选题1.下列调查中,适合采用全面调查(普查)的是()A.了解一批投影仪的使用寿命B.调查重庆市中学生观看电影《长津湖》的情况C.了解重庆市居民节约用水的情况D.调查“天月一号”火星探测器零部件的质量【答案】D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、对投影仪使用寿命的调查,适合采用抽样调查,故本选项不合题意;B、对重庆市中学生观看电影《长津湖》情况的调查,适合采用抽样调查,故本选项不合题意;C、对重庆市居民节约用水的情况的调查,适合采用抽样调查,故本选项不合题意;D、对“天月一号”火星探测器零部件的质量的调查,适合采用全面调查,故本选项符合题意;故选:D.【点睛】本题考查的是抽样调查和全面调查,解题的关键是选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.下列调查中,适宜采用抽样调查方法的是()A.调查中国民众对叙利亚局势持乐观态度的比例B.调查某6人小组中喜欢打篮球的人数C.调查重庆龙头寺火车站是否有乘客携带了危险物品D.调查初三某班的体考成绩的优秀率【答案】A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.由于不能调查所有中国民众对叙利亚局势持乐观态度,所以适宜采用抽样调查方式,故选项正确,符合题意;B.调查某6人小组中喜欢打篮球的人数,由于人数较少,应该调查所有人喜欢打篮球情况,故选项错误,不符合题意;C.由于调查重庆龙头寺火车站是否有乘客携带了危险物品很重要,应该采取普查,故选项错误,不符合题意;D.调查初三某班的体考成绩的优秀率应该采取全面调查,故选项错误,不符合题意;故选:A.【点睛】此题考查了抽样调查和全面调查的区别,解题的关键是选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.某网络直播平台2022年央视春晚观看学生人数统计图如图所示.若观看的小学生有30万人,则观看的大学生有()A.40万人B.50万人C.80万人D.200万人【答案】A【分析】先由小学生的人数及其所占百分比求出被调查的总人数,再用总人数乘以大学生对应的百分比即可.【详解】解:由题意知,被调查的总人数为30÷15%=200(万人),所以观看的大学生有200×20%=40(万人),故选:A.【点睛】本题主要考查扇形统计图,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.4.当今,大数据、云计算、人工智能等互联网新技术正在全方位改写中国社会,而5G应用将是推动互联网这个“最大变量”变成“最大增量”的新引擎,5G的出现将改变中国的经济格局,据预测,2020年到2030年中国5G直接经济产出和间接经济产出的情况如图所示,根据图提供的信息,下列推断不合理的是()A.2022年5G间接经济产出比5G直接经济产出多2万亿元B.2026年5G直接经济产出为2021年5G直接经济产出的4倍C.2020年到2030年,5G直接经济产出和5G间接经济产出都是逐年增长D.2023年到2024年与2028年到2029年5G间接经济产出的增长率相同【答案】D【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.【详解】解:根据折线统计图,可知:A. 2022年5G间接经济产出比5G直接经济产出多:4-2=2(万亿),故此项不合题意;B.4÷1=4(倍),故2026年5G直接经济产出为2021年5G直接经济产出的4倍,故此项不合题意;C. 2020年到2030年,5G直接经济产出和5G间接经济产出都是逐年增长,故此项不合题意;D. 2023年到2024年5G间接经济产出的增长率为:(6-5)÷5=20%,2028年到2029年5G 间接经济产出的增长率为:(9-8)÷8=12.5%,故2023年到2024年与2028年到2029年5G间接经济产出的增长率不相同,故此项符合题意;故选:D【点睛】本题考查了折线统计图,熟练读懂折线统计图是解题思的关键.5.2020年11月1日零时,我国开展第七次全国人口普查.2021年5月11日,国务院新闻办公室公布普查结果.如图是根据我国历次人口普查数据,绘制的我国每10万人中拥有大学文化(指大专及以上)程度人数的折线图.设2020年每10万人中拥有大学文化程度的人数与2010年相比的增长率为x,则下列关于x的方程正确的是()A .()10.9 1.55x +=B .()0.9110 1.55x +´=C .()0.91 1.55x +=D .()100.91 1.55x +=【答案】C 【分析】结合折线统计图,根据增长率列方程即可.【详解】解: 由图可知,2010年有0.9万人,2020年有1.55万人∵2020年每10万人中拥有大学文化程度的人数与2010年相比的增长率为x∴()0.91 1.55x +=故选:C.【点睛】本题考查了折线统计图和增长率问题,结合图形找到所需数据并理解题意是解题的关键.6.如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车 )人数的条形统计图(部分)和扇形分布图,那么下列说法正确的是( )A .九(3)班外出的学生共有42人B .九(3)班外出步行的学生有8人C .在扇形图中,步行的学生人数所占的圆心角为82°D .如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人【答案】B【分析】由乘车的人数和乘车人数所占的百分比求出总人数,再计算步行人数,步行人数所占圆心角,进而求出乘车人数所占的百分比;【详解】解:由图可知,乘车20人占总人数的百分之50%,总人数=20÷50%=40人,步行人数=40-20-12=8人,步行人数所占圆心角为836040°´=72°,骑车人数所占的百分比为1210040×%=30%,如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有500×30%=150人,综上所述,只有B选项符合题意,故选:B;【点睛】本题考查了条形统计图,扇形统计图,用样本估计总体,理解图中的数据信息是解题关键.7.某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是()A.80B.90C.144D.200【答案】A【分析】根据乙类书籍有90本,占总数的45%,即可求得总书籍数.丙类所占的比例是1-15%-45%所占的比例乘以总数即可求得丙类书的本数.【详解】解:总数是:90÷45% = 200(本),丙类书的本数是:200×(1-15%-45%)=200×40%= 80(本).故选:A.【点睛】本题考查了扇形统计图,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,正确求得总书籍数是关键.8.在进行数据统计时,随机选取了有20个数据的样本进行分组分析,其中某个小组有4个个体,该小组对应的扇形统计图圆心角度数为()A.36°B.72°C.60°D.120°【答案】B【分析】先求出该小组所占的百分比,再用360°乘以这个百分比即可求出对应的圆心角度数.【详解】解:360°×420=72°.故选:B.【点睛】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.9.小明收集到甲、乙两家汽车销售公司近三年的销售量,如果从他制作的统计图中可以反映出两家公司销售量的变化情况,他应该制作()A.折线统计图B.条形统计图C.扇形统计图D.以上三种都可以【答案】A【分析】首先要清楚每一种统计图的特点:频数直方图能够显示各组频数分布的情况;条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【详解】解:∵他制作的统计图中可以反映出两家公司销售量的变化情况,∴他应该制作折线统计图故选A【点睛】本题考查了统计图的选择,掌握折线统计图的特点解题的关键.10.图(1)表示的是某书店今年1~4月的各月营业总额的情况,图(2)表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1~4月的营业额一共是130万元,则这四个月中“党史”类书籍的营业额最高的是()A.1月B.2月C.3月D.4月【答案】D【分析】用该书店1~4月的营业总额减去1~3月的营业总额,求出该书店4月份的营业总额;再用1~4月的各月的营业总额乘以该月份“党史”类书籍所占的百分比,即可求出1~4月各月的“党史”类书籍的营业额,比较后即可得到答案.【详解】解:该书店4月份的营业总额是:130﹣(30+40+25)=35(万元),1月份的“党史”类书籍的营业额为:30×15%=4.5(万元);2月份的“党史”类书籍的营业额为:40×10%=4(万元);3月份的“党史”类书籍的营业额为:25×12%=3(万元);4月份的“党史”类书籍的营业额为:35×20%=7(万元);综上可知,4月份的“党史”类书籍的营业额最高.故选:D.【点睛】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况,如增长率.二、填空题11.一个容量为80的样本,其中数据的最大值是143,最小值是50,若取组距为10,则适合将其分成_______组【答案】10【详解】分析:求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.详解:143-50=93,93÷10=9.3,所以应该分成10组.故答案为10.点睛:本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.12.经调查某村共有银行储户若干户,其中存款额2~3万元之间的储户的频率是0.2,而存款额为其余情况的储户的频数之和为40,则该村存款额2~3万元之间银行储户有___________ 户.【答案】10【分析】首先根据各个小组的频率和是1,得到存款额为其余情况的储户的频率,再根据总数=频数÷频率,求得总数,最后根据频数=频率×总数,求得频数.【详解】解:根据题意,得:存款额为其余情况的储户的频率=1-0.2=0.8,则银行储户的总数=40÷0.8=50户,则该村存款额2~3万元之间银行储户=50×0.2=10户.【点睛】本题考查频率、频数的关系:频率=频数数据总和,频数=频率×总数,总数=频数÷频率.注意:各组的频率和是1.13.课外兴趣小组为了了解所在地区老年人的健康状况,分别做了下列四种不同的抽样调查:①在公园调查了1000名老年人的健康状况;②在医院调查了1000名老年人的健康状况;③调查了10名老年邻居的健康状况;④利用派出所的户籍网随机调查了该地区10%的老年人的健康状况.你认为抽样比较合理的是________(填序号).【答案】④【详解】试题解析:④利用派出所的户籍网随机调查了该地区10%的老年人的健康状况,是比较合理的;故答案为:④;考点:抽样调查的可靠性.14.某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为2000人,由此估计选修A课程的学生有_________人.【答案】800.【详解】试题分析:选修A课程的学生所占的比例:202012108+++=25,选修A课程的学生有:2000×25=800(人),故答案为800.考点:1.用样本估计总体;2.条形统计图.15.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2 ,则第六组的频数是_______.【答案】5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-8-9-10-12=5.考点:频数与频率16.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是_________.【答案】92%.【详解】试题分析:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.考点:频数(率)分布直方图.17.某学校“你最喜爱的球类运动”调查中,随机调查了若干名学生(每个学生分别选择了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为____名.【答案】60【详解】试题分析:设被调查的总人数是x人,根据最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,即可列方程求解.解:设被调查的总人数是x人,则40%x﹣30%x=6,解得:x=60.故答案是:60.考点:扇形统计图.18.某实验中学九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是__度.【答案】108°.【详解】试题分析:首先求出“A”所在的百分比为1-35%-20%-15%=30%,则圆心角的度数为:360°×30%=108°.三、解答题19.某校对学生课外数阅读状况进行了一次问卷调查,并根据调查结果绘制了中学生每学期阅读课外书籍数量的统计图(不完整).设x表示阅读书籍的数量(x为正整数,单位:本),其中A:1≤x≤2;B:3≤x≤4;C:5≤x≤6;D:x≥7.请你根据两幅图提供的信息解答下列问题:⑴本次共调查了多少名学生?⑵补全条形统计图,并判断中位数在哪一组;⑶计算扇形统计图中扇形D的圆心角的度数.【答案】⑴本次调查了200名学生.⑵D高40,中位数在B组⑶圆心角度数为72o.【详解】试题分析:通过扇形图可得A所占得百分比为19%,通过条形图可得A的频数为38,用A的频数除以A所占的百分比即可求出调查的学生总数;(2)用总人数减去A、B、C的频数,求出D的频数即可补全条形图,从而判断中位数;(3)用D的频数除以总人数求出D所占百分比,再乘以360°即可求出扇形D的圆心角.试题解析:⑴本次调查了3819%=200名学生.⑵ 200-38-74-48=40,D高40,中位数在B组.⑶圆心角度数为40200×360°=72°.20.中学生带手机上学的现象越来越受到社会的关注,为此,某记者随机调查了某城区若干名学生家长对这种现象的态度(态度分为:A:无所谓;B:基本赞成;C:赞成;D:反对),并将调查结果绘制成频数折线图1和统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样检查中,共调查了 名学生家长;(2)将图1补充完整;(3)根据抽样检查的结果,请你估计该市城区6000名中学生家长中有多少名家长持反对态度?【答案】(1)200;(2)详见解析;(3)3600(名)【分析】(1)根据总量=频数÷频率,由B 的数据可得此次抽样检查中,调查的学生家长数:40÷20%=200(名)(2)∵C 人数为:()200115%20%60%10´---=(名).∴根据以上数据将图1补充完整.(3)用样本估计总体即可.【详解】解:(1)40÷20%=200(名),故答案为200.(2)将图1补充完整如下:(3)∵样本中持反对态度的占60%,∴估计该市城区6000名中学生家长中持反对态度有6000×60%=3600(名)答:估计该市城区6000名中学生家长中有3600名家长持反对态度.【点睛】补全折线图,用样本估计总体.21.为了提升学生的交通安全意识,学校计划开展全员“交通法规”知识竞赛,七(3)班班主任赵老师给全班同学定下的目标是:合格率达90%,优秀率达25%(x <60为不合格;x≥60为合格;x≥90为优秀),为了解班上学生对“交通法规”知识的认知情况,赵老师组织了一次模拟测试,将全班同学的测试成绩整理后作出如下频数分布直方图.(图中的70~80表示7080x£<,其余类推)(1)七(3)班共有多少名学生?(2)赵老师对本次模拟测试结果不满意,请通过计算给出一条她不满意的理由;(3)模拟测试后,通过强化教育,班级在学校“交通法规”竞赛中成绩有了较大提高,结果优秀人数占合格人数的13,比不合格人数多10人.本次竞赛结果是否完成了赵老师预设的目标?请说明理由.【答案】(1)七(3)班共有50名学生;(2)合格率为80%以及优秀率为18%均小于定下的目标;(3)合格率及优秀率均达到目标.理由见解析.【分析】(1)计算各频数之和即可求解;(2)计算得出合格率和优秀率,与目标值比较即可;(3)设优秀人数为x人,则合格人数为3x人,不合格人数为(x-10)人,根据题意列出一元一次方程求解即可.(1)解:4+6+9+10+12+9=50(名),答:七(3)班共有50名学生;(2)解:x≥90的学生人数有9人,则优秀率为9¸50×100%=18%<25%;x≥60的学生人数有9+10+12+9=40人,则合格率为40¸50×100%=80%<90%;答:合格率为80%以及优秀率为18%均小于定下的目标;(3)解:合格率及优秀率均达到目标.理由如下:设优秀人数为x人,则合格人数为3x人,不合格人数为(x-10)人,依题意得:3x+x-10=50,解得:x=15,合格人数为3x=3×15=45(人),则合格率为45¸50×100%=90%;优秀人数为x=15(人),则合格率为15¸50×100%=30%>25%;答:合格率及优秀率均达到目标.【点睛】本题考查了条形统计图,一元一次方程的应用,解决本题的关键是掌握条形统计图.22.为丰富学生的课余生活,某学校准备组织学生举行各类球赛活动(每个学生只能参加一种球类活动),将全校学生参加球类活动的调查结果制成如图所示的扇形统计图.其中参加乒乓球的学生有320人.(1)求全校一共有多少名学生?(2)求参加足球的学生的人数比参加篮球的学生的人数多了几分之几?【答案】(1)1000(2)6 19【分析】(1)用参加乒乓球人数除以其占总人数的百分比可得答案;(2)用足球所占百分比减去篮球所占百分比,再除以篮球所占百分比即可.(1)320÷32%=1000(名),答:全校一共有1000名学生;(2)(25%−19%)÷19%=6 19,答:参加足球的学生的人数比参加篮球的学生的人数多了6 19.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.解题关键是通过扇形统计图表示出各部分数量同总数之间的关系.23.为庆祝中国共产党成立100周年,某校举行了“感党恩、听党话、跟党走”党史知识竞赛活动,七年级(1)班选派部分学生参加了这次活动,班主任龙老师把本班参赛选手的成绩分为四类进行统计:A:优;B:良;C:中;D:差,并将结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出七年级(1)班参加竞赛活动的人数;(2)求出在扇形图中,表示“C 类”扇形的圆心角度数;(3)计算出A 类男生和C 类女生的人数,并将条形统计图补充完整.【答案】(1)七年级(1)班参加竞答活动的有20人(2)表示“C 类”扇形的圆心角为54°(3)A 类男生人数为2人,C 类女生人数为2人,补全条形统计图见解析【分析】(1)利用B 类人数除以其所占的百分比即可得到答案;(2)由C 类所占的百分比乘以360°,从而可得答案;(3)先求解A ,C 类总人数,再求解A 类男生人数,C 类女生人数,再画图即可.(1)解:由B 类有12人,占比20%, 可得:()7560%20+¸=人,答:七年级(1)班参加竞答活动的有20人.(2)解:()360160%15%10%54°´--=°﹣答:表示“C 类”扇形的圆心角为54°(3)A 类人数为:2015%3´=、C 类人数为:2015%3´=,A 类男生人数为:312-=、C 类女生人数为:312-=,所以A 类男生人数为2人,C 类女生人数为2人,补全图形如图:【点睛】本题考查的是从条形图与扇形图中获取信息,求解某部分扇形所对应的圆心角的大小,补全条形统计图,熟练从条形图与扇形图中获取互相关联的信息是解本题的关键.24.4月23日是“世界读书日”,我校校团委发起了“让阅读成为习惯”的读书活动,鼓励学生利用周末积极阅读课外书籍.为了解学生周末两天的读书时间,校团委随机调查了部分学生的读书时间x(单位:分钟),把读书时间分为四组:A(30≤x<60),B.(60≤x<90),C.(90≤x<120),D(120≤x<150).部分数据信息如下:a.B组和C组的所有数据:85 90 60 70 110 75 65 78 100 90 80 95 90b.根据调查结果绘制了如下尚不完整的统计图:请根据以上信息,回答下列问题:(1)被调查的学生共有多少人,并补全频数分布直方图;(2)在扇形统计图中,C组所对应的扇形圆心角是_____;(3)请结合统计图给全校学生发出一条合理化的倡议.【答案】(1)20,作图见解析(2)108°(3)书是人类进步的阶梯,同学们周末两天只有少部分人读书时间在两小时以上,需增加读书的时间.(答案不唯一)【分析】(1)由扇形统计图中A所占扇形比例为20%和频数分布直方图中A组频数为4,即可得总人数为4÷20%=20人,再由题干可求得B组人数为7人,D组人数为3人,补全频数分布直方图即可.(2)由(1)知频数分布直方图中C组频数为6,故C组所对应扇形圆心角为6360108°´=°20(3)与统计图的数据相关即可,答案不唯一(1)总人数为4÷20%=20人B组人数为13-6=7人D组人数为20-4-6-7=3人补全频数分布直方图如图所示(2)6 36010820°´=°故C组所对应的扇形圆心角是108°.(3)书是人类进步的阶梯、同学们周末两天只有少部分人读书时间在两小时以上,需增加读书的时间.(答案不唯一)【点睛】本题考查了数据的调查及整理.频数分布直方图是用小长方形的面积来反映数据落在各个小组内的频数的大小的统计图.扇形统计图,特点:扇形统计图能清楚地表示出各部分在总体中所占的百分比,缺点:在两个扇形统计图中,若一个统计图中的某一个量所占的百分比比另一个统计图中的某一个量所占的百分比多,容易造成第一个统计量大于第二个统计量的错觉.注意:扇形统计图中,用圆代表总体,扇形的大小代表各部分数量占总体数量的百分数,但是没有给出具体数值,因此不能通过两个扇形统计图来比较两个统计量的多少.25.第24届冬季奥林匹克运动会即将于2022年2月4日至2月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会.随着冬奥会的日益临近,北京市民对体验冰雪活动也展现出了极高的热情.下图是随机对北京市民冰雪项目体验情况进行的一份网络调查统计图,请根据调查统计图表提供的信息,回答下列问题:(1)都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的___________%,并在图中将统计图补面完整;(2)此次网络调查中体验过冰壶运动的有120人,则参加过滑雪的有___________人;(3)此次网络调查中体验过滑雪的人比体验过滑冰的人多百分之几?【答案】(1)12%.补图见解析(2)270(3)12.5%【分析】(1)用冰壶的人所占百分比减去4个百分点即可求出百分比,按照百分比补全统计图即可;(2)用120人除以体验过冰壶运动的百分比求出总人数,再乘以滑雪的百分比即可;(3)求出体验过滑雪的人比体验过滑冰的人多多少人,再求出百分比即可.(1)解:都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的百分比为:16%-4%=12%,不全统计图如图:故答案为:12%.(2)解:调查的总人数为:120÷24%=500(人),参加过滑雪的人数为:500×54%=270(人),故答案为:270(3)解:体验过滑冰的人数为:500×48%=240(人),(270-240)÷240=12.5%,体验过滑雪的人比体验过滑冰的人多12.5%.【点睛】本题考查了条形统计图,解题关键是准确从条形统计图中获取信息,正确进行计算求解.26.某校兴趣小组想了解球的弹性大小,准备了A、B两个球,分别让球从不同高度自由下落到地面,测量球的反弹高度,记录数据后绘制成如图所示的统计图.。

人教版七年级下册数学《直方图》数据的收集、整理与描述培优说课教学复习课件

人教版七年级下册数学《直方图》数据的收集、整理与描述培优说课教学复习课件

问题
选择身高在哪个范围内的学生参加呢?
为了使选取的参赛选手身高比较整齐,需要知道数据的分 布情况,即在哪些身高范围的学生比较多,哪些身高范围 内的学生人数比较少.为此可以通过对这些数据适当分组 来进行整理.
用直方图描述数据.
一般步骤: (1) 计算极差(最大值与最小值的差); (2) 决定组距和组数; 决定分点; (3) 列出频数分布表; (4) 画出频数分布直方图。
158 158 160 168 159 159 151 158 159 168 158 154 158 154 169 158 158 158 159 167 170 153 160 160 159 159 160 149 163 163 162 172 161 153 156 162 162 163 157 162 162 161 157 157 164 155 156 165 166 156 154 166 164 165 156 157 153 165 159 157 155 164 156 选择身高在哪个范围的同学参加呢?
63 名同学的身高(单位:cm)如下:
158 158 160 168 159 159 151 158 159 168 158 154 158 154 169 158 158 158 159 167 170 153 160 160 159 159 160 149 163 163 162 172 161 153 156 162 162 163 157 162 162 161 157 157 164 155 156 165 166 156 154 166 164 165 156 157 153 165 159 157 155 164 156
组距
7 33
所以要将数据分成 8 组:149 ≤ x < 152,152 ≤ x < 155,…,

七年级下册数学 《直方图》数据的收集、整理与描述

七年级下册数学 《直方图》数据的收集、整理与描述
由于身高数据具有连续性,因此我们应采用直方图来描述频数分布。
155 165 155 156 148 168 155 170 158 150 155 153 159 160 153 156 160 159 150 156 161 160 162 156 150 155 145 155 166 149 160 145 142 154 165 142 156 156 145 163 165 155 164 160 155 170 165 156 145 142 156 162 162 160 150
思考:
150
155 165 155 156 148 168 155 170 158 150 155 153 159 160 153 156 160 159 150 156 161 160
162 156 150 155 145 155 166 149 160 145 142 154 165 142 156 156 145 163 165 155 164 160
探究活动
请自己对上面的数据进行分组,并画出相关的频数分布直方图。 时间:5 ~ 8分钟
学法总结
归纳:画频数分布直方图的步骤: ①计算数据的最大值与最小值的差; ②决定组距和组数(当数据在100个以内时,按照数据的多少,常分成
5~12组); ③列频数分布表(“不重不漏”,“上限不在内”); ④以横轴表示数据,纵轴表示频数,画频数分布直方图。
的若取 取值组距范为围4),称则为有组距最 。大值组距最小值
28 4
7
即分为7组。
150
155 165 155 156 148 168 155 170 158 150 155 153 159 160 153 156 160 159 150 156 161 160 162 156 150 155 145 155 166 149 160 145 142 154 165 142 156 156 145 163 165 155 164 160 155 170 165 156 145 142 156 162 162 160 150

北京师范大学附属中学七年级数学下册第十单元《数据的收集整理与描述》知识点总结(课后培优)

北京师范大学附属中学七年级数学下册第十单元《数据的收集整理与描述》知识点总结(课后培优)

一、选择题1.某学生某月有零花钱a元,其支出情况如图所示,那么下列说法不正确的是()A.该学生捐赠款为0.6a元B.捐赠款所对应的圆心角为240°C.捐赠款是购书款的2倍D.其他消费占10%B解析:B【分析】根据扇形统计图给出的信息逐项计算即可.【详解】试题分析:捐赠款的圆心角的度数为:360°×60%=216°.选项B错误故选B【点睛】本题考查扇形统计图.2.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.96C解析:C【详解】解:根据图形,身高在169.5cm~174.5cm之间的人数的百分比为:12100%=24% 6+10+16+12+6,∴该校男生的身高在169.5cm ~174.5cm 之间的人数有300×24%=72(人). 故选C . 3.下列调查中:①检测保定的空气质量;②了解《奔跑吧,兄弟》节日收视率的情况;③保证“神舟9号“成功发射,对其零部件进行检查;④调查某班50名同学的视力情况;⑤了解一沓钞票中有没有假钞其中通合采用抽样调查的是( ) A .①②③ B .①②C .①③⑤D .②④B解析:B 【解析】根据全面调查和抽样调查的定义可知:①②可进行抽样调查,③④⑤可进行全面调查,故选B.4.“三农问题”是指农业、农村、农民这三个问题。

随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是40000元和60000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是( )A .①的收入去年和前年相同B .③的收入所占比例前年的比去年的大C .去年②的收入为2.1万D .前年年收入不止①②③三种农作物的收入C 解析:C 【分析】根据扇形统计图中各项目的圆心角即可得到每部分占总体的百分比,据此对各选项逐一判断即可得到答案. 【详解】A 、前年①的收入为40000×117360=13000,去年①的收入为60000×117360=19500,此选项错误;B 、前年③的收入所占比例为360135117360--×100%=30%,去年③的收入所占比例为360126117360--×100%=32.5%,此选项错误;C 、去年②的收入为60000×126360=21000=2.1(万元),此选项正确;D、前年年收入即为①②③三种农作物的收入,此选项错误,故选:C.【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.5.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.6B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.6.以下问题不适合全面调查方式的是()A.调查某班学生课前预习时间B.调查全国初中生课外阅读情况C.调查某校篮球队员的身高D.调查某中学教师的身体健康状况B解析:B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.调查某班学生每周课前预习的时间适合全面调查;B. 调查全国初中生课外阅读情况适合抽样调查,不适合全面调查;C.调查某校篮球队员的身高适合全面调查;D. 调查某中学教师的身体健康状况适合全面调查;故选:B.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.将100个数据分成①~⑧组,如下表所示:那么第④组的频率为()A.24 B.26 C.0.24 D.0.26C解析:C【解析】试题分析:根据表格中的数据,得:第4组的频数为100﹣(4+8+12+24+18+7+3)=24,其频率为24:100=0.24.故选C.考点:1.频数与频率;2.图表型.8.下列调查中,最适合采用抽样调查的是()A.了解全班同学每周体育锻炼的时间B.对市场上某一品牌电脑使用寿命的调查C.对旅客上飞机前的安检D.对“神州十一号”运载火箭发射前的零部件质量状况的调查B解析:B【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【详解】A.了解全班同学每周体育锻炼的时间,适合全面调查;B.对市场上某一品牌电脑使用寿命的调查,有破坏性,适合抽样调查;C.对旅客上飞机前的安检,需要全面调查;D. 对“神州十一号”运载火箭发射前的零部件质量状况的调查,需要全面调查;【点睛】本题主要考查了全面调查及抽样调查,解题的关键是熟记由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.9.为了解某市6万名八年级学生每天做家庭作业所用的时间,从该市八年级学生中抽取1000名学生进行调查,下列说法正确的是()A.6万名八年级学生是总体B.其中的每名八年级学生每天做家庭作业所用的时间是个体C.所调查的1000名学生是总体的一个样本D.样本容量是1000名学生B解析:B总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量. 【详解】解:A 、该校八年级全体学生每天做家庭作业所用的时间是总体,故A 不符合题意; B 、其中的每名八年级学生每天做家庭作业所用的时间是个体,故B 符合题意; C 、从中抽取的1000名学生每天做家庭作业所用的时间是总体的一个样本,故C 不符合题意;D 、样本容量是1000,故D 不符合题意; 故选:B . 【点睛】此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.如果整个地区的观众中青少年、成年人、老年人的人数比为3:4:3,要抽取容量为1000的样本,则成年人抽取( )合适A .300B .400C .500D .1000B解析:B 【分析】青少年、成年人、老年人的人数比约为3:4:3,所以成年人的人数所占总人数的423435=++,则根据这个条件就可以求出成年人的人数.【详解】解:因为样本容量为1000,某地区青少年、成年人、老年人的人数比约为3:4:3, 所以成年人的人数所占总人数的423435=++,故成年人应抽取1000×25=400, 故选:B . 【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.二、填空题11.已知某组数据的频数为49,频率为0.7,则样本容量为_______70【分析】根据即可求解【详解】解:样本容量为故答案为:70【点睛】本题考查频数与频率掌握是解题的关键【分析】根据=频数频率总数即可求解.【详解】解:样本容量为49=70 0.7,故答案为:70.【点睛】本题考查频数与频率,掌握=频数频率总数是解题的关键.12.某灯具厂从1万件同批次产品中随机抽取了1000件进行质检,发现其中有50件不合格,估计该厂这1万件产品中合格品约为______件.9500【分析】首先可以求出样本的合格率然后利用样本估计总体的思想即可求出这一万件产品中合格品约为多少件【详解】解:∵某灯具厂从1万件同批次产品中随机抽取了100件进行质检发现其中有5件不合格合格的解析:9500【分析】首先可以求出样本的合格率,然后利用样本估计总体的思想即可求出这一万件产品中合格品约为多少件.【详解】解:∵某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,合格的产品数为100-5=95件∴合格率为:95÷100=95%,∴估计该厂这一万件产品中合格品为10000×95%=9500件.故答案为:9500.【点睛】此题主要考查了利用样本估计总体的思想,解题时首先求出样本的合格率,然后利用样本估计总体的思想即可解决问题.13.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答问题:若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为_______人.1020【分析】先用条形统计图中达到基本了解程度的人数除以扇形统计图中其所占百分比求出抽取的人数然后用达到非常了解和基本了解程度的人数之和除以抽取的人数再乘以1800即得答案【详解】解:抽取的人数为解析:1020【分析】先用条形统计图中达到“基本了解”程度的人数除以扇形统计图中其所占百分比求出抽取的人数,然后用达到“非常了解”和“基本了解”程度的人数之和除以抽取的人数再乘以1800即得答案.【详解】解:抽取的人数为:30÷50%=60(人),所以可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为4301800102060+⨯=(人).故答案为:1020.【点睛】本题考查了条形统计图、扇形统计图和利用样本估计总体,属于常考题型,正确理解题意、读懂图象信息是解题的关键.14.某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降③音乐手机4月份的销售额比3月份有所下降④今年1-4月中,音乐手机销售额最低的是3月其中正确的结论是________(填写序号).④【分析】分别求出1-4月音乐手机的销售额再逐项进行判断即可【详解】1月份的音乐手机销售额是85×23=1955(万元)2月份的音乐手机销售额是80×15=12(万元)3月份音乐手机的销售额是60×解析:④ .【分析】分别求出1-4月音乐手机的销售额,再逐项进行判断即可.【详解】1月份的音乐手机销售额是85×23%=19.55(万元)2月份的音乐手机销售额是80×15%=12(万元)3月份音乐手机的销售额是 60×18%=10.8(万元),4月份音乐手机的销售额是 65×17%=11.05(万元).①从1月到4月,手机销售总额3-4月份上升,故①错误;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比没有连续下降,故②错误;③由计算结果得,10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.故③错误;④今年1-4月中,音乐手机销售额最低的是3月,故④正确.故答案为④.【点睛】此题主要考查了拆线统计图与条形图的综合应用,利用两图形得出正确信息是解题关键.15.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成 _______________组.10【分析】组数定义:数据分成的组的个数称为组数根据组数=(最大值-最小值)÷组距计算注意小数部分要进位【详解】解:这组数据的极差为141-50=9191÷10=91因此数据可以分为10组故答案为:解析:10【分析】组数定义:数据分成的组的个数称为组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:这组数据的极差为141-50=91,91÷10=9.1,因此数据可以分为10组,故答案为:10.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义来解即可.16.小夏同学从家到学校有A,B两条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:据此估计,早高峰期间,乘坐B线路“用时不超过35分钟”的概率为__________,若要在40分钟之内到达学校,应尽量选择乘坐__________(填A或B)线路.2A【分析】根据题意用用时不超过35分钟的人数除以总人数即可求得概率并且分别求出乘坐B路线用时不超过40分的概率进行比较判断即可【详解】解:乘坐路线用时不超过35分钟的概率为若乘坐路线用时不超过40解析:2 A【分析】根据题意用“用时不超过35分钟”的人数除以总人数即可求得概率,并且分别求出乘坐A、B路线“用时不超过40分”的概率进行比较判断即可.【详解】解:乘坐B路线“用时不超过35分钟”的概率为43571000.2500500+===,若乘坐A路线“用时不超过40分”的概率591511660.752500++==,若乘坐B路线“用时不超过40分”的概率43571490.498500++==,故若40分之内到达学校,应尽量选择乘坐A路线.故答案为:0.2;A.【点睛】本题考查用频率估计概率的知识,能够读懂图以及掌握概率计算公式是解答本题的关键. 17.为了了解某市八年级8000名学生的体重情况,从中抽查了500名学生的体重进行统计分析,在这个问题中,样本是_____________抽查的500名学生的体重【分析】总体是指考查的对象的全体个体是总体中的每一个考查的对象样本是总体中所抽取的一部分个体而样本容量则是指样本中个体的数目我们在区分总体个体样本样本容量这四个概念时首先找出解析:抽查的500名学生的体重【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:由题意知,在这个问题中,样本是指被抽取得到500名学生的体重,故答案为:抽查的500名学生的体重.【点睛】此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.18.某养殖户养殖鸡、鸭、鹅数量的扇形统计图如图所示,则养鸡的数量占鸡、鸭、鹅总数的百分比为____.25【分析】用扇形图中鸡对应的圆心角除以周角度数即可得【详解】养鸡的数量占鸡鸭鹅总数的百分比为100=25故答案为:25【点睛】本题主要考查扇形统计图扇形统计图是用整个圆表示总数用圆内各个扇形的大小解析:25%.【分析】用扇形图中鸡对应的圆心角除以周角度数即可得.【详解】养鸡的数量占鸡、鸭、鹅总数的百分比为90360100%=25%.故答案为:25%.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.19.为了了解我市2019年13752名考生的数学中考成绩,从中抽取了200名考生的成绩进行统计,在此次调查中,下列说法:①我市2019年13752名考生的数学中考成绩的全体是总体;②每个考生是个体;③从中抽取的200名考生的数学中考成绩是样本;④样本容量是200名.其中说法正确的有__________.(填序号)①③【分析】根据总体个体样本及样本容量的定义解答即可【详解】在这个事件中总体是我市2019年13752名考生的数学中考成绩的全体个体是我市2019年每名考生的数学中考成绩样本是从中抽取的200名考生解析:①③【分析】根据总体,个体,样本及样本容量的定义解答即可.【详解】在这个事件中,总体是我市2019年13752名考生的数学中考成绩的全体,个体是我市2019年每名考生的数学中考成绩,样本是从中抽取的200名考生的数学中考成绩,样本容量是200,没有单位,所以正确的说法有:①③,故答案为:①③.【点睛】此题考查统计调查中总体,个体,样本及样本容量的定义,正确理解定义并运用解题是关键.20.为了了解某校七年级 1500 名学生的身高情况,从中抽取了 300 名学生进行测量,这个样本的容量(即样本中个体的数量)是_____.300【分析】根据样本容量则是指样本中个体的数目可得答案【详解】解:为了了解某校七年级1500名学生的身高情况从中抽取了300名学生进行测量这个样本的容量(即样本中个体的数量)是300故答案为:30解析:300【分析】根据样本容量则是指样本中个体的数目,可得答案.【详解】解:为了了解某校七年级1500名学生的身高情况,从中抽取了300名学生进行测量,这个样本的容量(即样本中个体的数量)是300.故答案为:300.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.三、解答题21.在新冠肺炎疫情期间,某市防控指挥部想了解各学校教职工参与志愿服务的情况.在全市各学校随机调查了部分参与志愿服务的教职工,对他们的志愿服务时间进行统计,整理并绘制成两幅不完整的统计图表.请根据两幅统计图表中的信息回答下列问题:志愿服务时间(小时)频数A0<x≤30aB30<x≤6010C60<x≤9016D90<x≤12020(1)本次被抽取的教职工共有名;(2)表中a=,扇形统计图中“C”部分所占百分比为 %;(3)扇形统计图中,“D”所对应的扇形圆心角的度数为 °;(4)若该市共有30000名教职工参与志愿服务,那么志愿服务时间多于60小时的教职工大约有多少人?解析:(1)50;(2)4,32;(3)144;(4)21600【分析】(1)利用B部分的人数÷B部分人数所占百分比,即可算出本次被抽取的教职工人数;(2)a=被抽取的教职工总数−B部分的人数−C部分的人数−D部分的人数,扇形统计图中“C”部分所占百分比=C部分的人数÷被抽取的教职工总数;(3)D部分所对应的扇形的圆心角的度数=360°×D部分人数所占百分比;(4)利用样本估计总体的方法,用30000×被抽取的教职工总数中志愿服务时间多于60小时的教职工人数所占百分比.【详解】(1)本次被抽取的教职工共有:10÷20%=50(名),故答案为:50;(2)a=50−10−16−20=4,扇形统计图中“C”部分所占百分比为:16÷50×100%=32%,故答案为:4,32;(3)扇形统计图中,“D”所对应的扇形圆心角的度数为:360°×2050=144°.故答案为:144;(4)30000×162050=21600(人).答:志愿服务时间多于60小时的教职工大约有21600人.【点睛】此题主要考查了扇形统计图、频数(率)分布表,以及样本估计总体,关键是正确从扇形统计图和表格中得到所用信息.22.某初中要调查学校学生(总数1000人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图1)和扇形统计图(如图2).(1)请补全条形统计图,并求出a、b的值;(2)试确定这个样本的中位数和众数:(3)请估计该学校1000名学生双休日课外阅读时间不少于4小时的人数.解析:(1)统计图见解析,a=28%,b=8%;(2)中位数是3小时,众数是4小时;(3)400人【分析】(1)根据阅读5小时以上频数为6,所占百分比为12%,求出数据总数,再用数据总数减去其余各组频数得到阅读3小时的频数,进而补全频数分布直方图,分别求得阅读0小时和4小时的人数所占百分比,即可求出a、b;(2)利用各组频数和总数之间的关系确定中位数和众数;(3)用1000乘以每周课外阅读时间不小于4小时的学生所占百分比即可.【详解】解:(1)总人数:6÷12%=50(人),阅读3小时的人数:50-4-6-8-14-6=12(人),阅读4小时人数的百分比为14÷50=28%,阅读0小时人数的百分比为4÷50=8%,∴a=28%,b=8%,图如下:(2)由图可知:总数为50人,中位数是第24和25个人的时间,则中位数是3小时,4小时的人数最多,则众数是4小时;(3)1000×(28%+12%)=1000×40%=400(人)答:该学校1000名学生双休日课外阅读时间不少于4小时的人数为400人.【点睛】此题主要考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.23.为了解疫情期间学生网络学习的学习效果,高远中学随机抽取了部分学生进行调查.要求每位学生从“优秀”,“良好”,“一般”,“不合格”四个等次中,选择一项作为自我评价网络学习的效果.现将调查结果绘制成如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共抽查学生多少名?(2)请通过计算补全条形统计图;(3)若高远中学共有1600名学生,估计该中学“优秀”等次的学生有多少名?解析:(1)200名;(2)图见解析;(3)320名【分析】(1)通过条形统计图可得“优秀”的有40人,“良好”的有80人,“一般”的有60人,而“良好”的占40%,可求出调查人数;(2)计算出D等级的人数,即可补全条形统计图;(3)样本中“优秀”的占调查人数的40200,因此总体1600人的40200是“优秀”的人数.【详解】(1)80÷40%=200(名),答:这次活动共抽查学生200名;(2)200−80−40−60=20(名),补全条形统计图如图所示:(3)1600×40200=320(名),答:高远中学1600名学生中“优秀”等次的学生大约有320名.【点睛】本题考查条形统计图、扇形统计图的意义,理解两个统计图中数量之间的关系是正确解答的前提.24.小强同学对本校学生完成家庭作业的时间进行了随机抽样调查,并绘成如下不完整的三个统计图表.各组频数、频率统计表组别时间(小时)频数(人)频率A0≤x≤0.5200.2B0.5<x≤1______ aC1<x≤1.5______ ______D x>1.5300.3合计b 1.0(1)a= ______ ,b= ______ ,∠α= ______ ,并将条形统计图补充完整.(2)若该校有学生3200人,估计完成家庭作业时间超过1小时的人数.(3)根据以上信息,请您给校长提一条合理的建议.解析:(1)0.15,100,126︒,补图见解析;(2)2080人;(3)适当布置家庭作业,减少作业量,使一半左右的学生在1小时内完成【分析】(1)利用A组的频数除以频率得到总数b,用B组人数除以总人数得到a,用1减去A、B、D组的频率再乘以360度即可求出∠α;(2)用总数3200乘以完成家庭作业时间超过1小时的频率即可得到答案;(3)根据题目信息,可提建议:适当减少作业量.【详解】÷=(人),(1)调查总人数为b=200.2100÷=,a=151000.15∠α=360︒⨯(1-0.2-0.15-0.3)=126︒;100-20-15-30=35,补全条形图如图所示:故答案为:0.15,100,126︒;⨯--=(人);(2)3200(10.20.15)2080∴完成家庭作业时间超过1小时的人数为2080人;(3)适当布置家庭作业,减少作业量,使一半左右的学生在1小时内完成.【点睛】本题考查的是表格、条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小,会计算总数,圆心角度数,部分的数量.25.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的读书兴趣,七年级一班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整数据统计图(每组包括最小值不包括最大值).七年级(1)班每天阅读时间在0.5小时以内的学生占全班人数12%.根据统计图解答下列问题:(1)七年级(1)班有______名学生;(2)补全直方图;(3)七年级每天阅读时间在1~1.5小时的学生有180人,请你补全扇形统计图;(4)求该年级每天阅读时间不少于1小时的学生有多少人?解析:(1)50;(2)图见详解;(3)图见详解;(4)240.【分析】(1)用七年级(1)班每天阅读时间在0.5小时以内的学生人数除以它所占的百分比即可得到全班人数;(2)先计算出0.5-1小时的学生人数,然后补全条形统计图;(3)先计算出七年级每天阅读时间在1-1.5小时以内的学生所占的百分比,再用1分别减去其它三组的百分比即可得到每天阅读时间在0.5-1小时以内的学生所占的百分比,然后补全扇形统计图;(4)由扇形统计图得到该年级每天阅读时间不少于1小时的学生所占的百分比为40%,然后用600乘以40%即可;【详解】(1)6÷12%=50,∴七年级(1)班有50名学生;故答案为:50(2)0.5-1小时的人数=50-6-15-5=24(名)条形统计图为:。

苏州木渎实验初级中学七年级数学下册第十单元《数据的收集整理与描述》知识点(答案解析)

苏州木渎实验初级中学七年级数学下册第十单元《数据的收集整理与描述》知识点(答案解析)

一、选择题1.某校八年级有1600名学生,从中随机抽取了200名学生进行立定跳远测试,下列说法正确的是()A.这种调查方式是普查B.200名学生的立定跳远成绩是个体C.样本容量是200D.这200名学生的立定跳远成绩是总体2.下列调查中:①检测保定的空气质量;②了解《奔跑吧,兄弟》节日收视率的情况;③保证“神舟9号“成功发射,对其零部件进行检查;④调查某班50名同学的视力情况;⑤了解一沓钞票中有没有假钞其中通合采用抽样调查的是()A.①②③B.①②C.①③⑤D.②④3.“三农问题”是指农业、农村、农民这三个问题。

随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是40000元和60000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.1万D.前年年收入不止①②③三种农作物的收入4.为提高学生的课外阅读水平,我市各中学开展了“我的梦,中国梦”课外阅读活动,某校为了解七年级学生每日课外阅读所用的时间情况,从中随机抽取了部分学生,进行了统计分析,整理并绘制出如图所示的频数分布直方图,有下列说法:①这次调查属于全面调查②这次调查共抽取了200名学生-的人数最少③这次调查阅读所用时间在2.53h-的人数占所调查人数的40%,其中正确的有().④这次调查阅读所用时间在1 1.5hA.②③④B.①③④C.①②④D.①②③5.为了解某校2000名学生的视力情况,从中随机调查了400名学生的视力情况,下列说法正确的是()A.该调查的方式是抽样调查B.该调查的方式是普查C.2000名学生是样本D.样本容量是400名学生6.某学校对七年级随机抽取若干名学生进行“创建文明城市”知识答题,成绩分为1分,2分,3分,4分共4个等级,将调查结果绘制成如右图所示的条形统计图和扇形统计图.根据图中信息,这些学生中得2分的有()人.A.8 B.10 C.6 D.97.党的十八大以来,脱贫工作取得巨大成效,全国农村贫困人口大幅减少.如图的统计图分别反映了2012﹣2019年我国农村贫困人口和农村贫困发生率的变化情况(注:贫困发生率=贫困人数(人)÷统计人数(人)×100%).根据统计图提供的信息,下列推断不正确的是()A.2012﹣2019年,全国农村贫困人口逐年递减B.2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年C.2012﹣2019年,全国农村贫困人口数累计减少9348万D.2019年,全国各省份的农村贫困发生率都不可能超过0.6%8.下列调查中,最适合采用抽样调查的是()A.了解全班同学每周体育锻炼的时间B.对市场上某一品牌电脑使用寿命的调查C.对旅客上飞机前的安检D.对“神州十一号”运载火箭发射前的零部件质量状况的调查9.下列调查中,适宜采用全面调查方式的是()A.调查某河的水质情况B.了解一批手机电池的使用寿命C.调查某品牌食品的色素含量是否达标D.了解全班学生参加社会实践活动的情况10.今年某市有近7千名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.每位考生的数学成绩是个体B.7千名考生是总体C.这1000名考生是总体的一个样本D.1000名学生是样本容量11.为了解七年级1000名学生的体重情况,从中抽取了300名学生的体重进行统计.有下列判断:①这种调查方式是抽样调查;②1000名学生的体重是总体;③每名学生的体重是个体;④300名学生是总体的一个样本;⑤300是样本容量.其中正确的判断有()A.1个B.2个C.3个D.4个12.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式13.某市在2020年“防欺凌,反暴力,预防青少年犯罪”主题教育活动中,为了解甲、乙两所学校学生对生命安全知识掌握情况,小安同学制定了如下方案,你认为最合理的是()A.抽取甲校初二年级学生进行调查B.在乙校随机抽取200名学生进行调查C.随机抽取甲、乙两所学校100名老师进行调查D.在甲、乙两所学校各随机抽取100名学生进行调查14.为加强锻炼增强体魄,我校初三(1)班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与各活动小组人数分布情况的扇形图和条形图如图所示:①该班有50名学生②篮球有16人③跳绳人数所占扇形圆心角为57.6°④足球人数所占扇形圆心角为120°这四种说法中正确的有()A.2个B.0个C.1个D.3个15.为了解我市中学生中15岁女生的身高状况,随机抽查了10个学校的200名15岁女生的身高,则下列表述正确的是A.总体指我市全体15岁的女中学生B.个体是200名女生的身高C.个体是10个学校的女生D.抽查的200名女生的身高是总体的一个样本二、填空题16.一个池塘中放养一些草鱼若干,现想测算一下池塘中草鱼的总条数,小明在池塘中放入60条红鲫鱼,一周后,小明在池塘中捞出200条鱼中有5条是红鲫鱼,把鱼全部放回池塘中.请你猜测池塘中现在大约有______条草鱼...17.某班有60人,其中参加读书活动的人数为15人,参加科技活动的人数占全班人数的1,参加艺术活动的比参加科技活动的多5人,如图则参加体育活动的人所占的扇形的圆6心角为____________.18.已知某组数据的频数为49,频率为0.7,则样本容量为_______19.某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄分布统计图和当地90后从事互联网行业岗位分布统计图:互联网行业从业人员年龄分布统计图 90后从事互联网行业岗位分布图对于以下四种说法,你认为正确的是_____ (写出全部正确说法的序号).①在当地互联网行业从业人员中,90后人数占总人数的一半以上②在当地互联网行业从业人员中,80前人数占总人数的13%③在当地互联网行业中,从事技术岗位的90后人数超过总人数的20%④在当地互联网行业中,从事设计岗位的90后人数比80前人数少20.如图是某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天,气温26C出现的频率是__________.21.某公司有员工700人举行元旦庆祝活动(如图),A、B、C 分别表示参加各种活动的人数的百分比,规定每人只参加一项且每人都要参加,则下围棋的员工共有_____人.22.小夏同学从家到学校有A,B两条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时频数公交车路线2530t≤≤3035t<≤3540t<≤4045t<≤总计A59151166124500 B4357149251500据此估计,早高峰期间,乘坐B线路“用时不超过35分钟”的概率为__________,若要在40分钟之内到达学校,应尽量选择乘坐__________(填A或B)线路.23.小晖统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201596则通话时间不超过10min的频率为____.24.已知一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,第三组频数是________.25.为了解某学校七年级学生每周平均课外阅读时间的情况,随机抽查了50名学生,对其每周平均课外阅读时间进行统计,绘制了扇形统计图,根据图中提供的信息,回答下列问题:(1)阅读4小时对应扇形图中的a的值为__________;(2)在扇形统计图中,阅读3小时对应扇形图的圆心角的大小为__________(度).26.某养殖户养殖鸡、鸭、鹅数量的扇形统计图如图所示,则养鸡的数量占鸡、鸭、鹅总数的百分比为____.三、解答题27.垃圾的分类处理与回收利用,可以减少污染,节省资源.重庆主城区环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况(全部分类),其相关信息如图表,根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共吨;(3)调查发现,在可回收物中塑料类垃圾占20%,每回收1吨塑料类垃圾可获得0.7吨二级原料.若重庆主城区某月产生的生活垃圾为300000吨,且全部分类处理,那么该月回收的塑料类垃圾可以获得多少吨二级原料?28.2021年4月21日是重庆一中建校90周年的校庆日,90载砥砺奋进,90年春华秋实.数以万计的学子在重庆一中求学问道,成长成才;一大批高级将领、两院院士、学界泰斗、杏坛大师、商业精英、艺术才俊、企业英雄……各级各类的人才和骨干从重庆一中走出.桃李满五洲,校友遍四海,真可谓“学府一流名高巴渝,贤才万数惠泽千秋”,引得莘莘学子都念想去本部参观,现随机抽取初一年级部分学生进行“你最想打卡重庆一中本部的哪个景点?”的问卷调查,参与调查的学生需从A、B、C、D、E五个选项(A:项家书院;B:校训壁;C:四二一广场;D:红领巾林;E:尊师亭)中任选一项(必选且只选一项).根据调查结果绘制了如下两幅不完整的统计图,请根据图中提供的信息完成以下问题:(1)参加本次调查的一共有_______名学生;在扇形统计图中,“D”所在扇形圆心角的度数是______;(2)请你补全条形统计图;(3)已知重庆一中初一年级共有2400名学生,请你根据调查结果,估计初一年级最想打卡“四二一广场”的学生有多少人?29.为了了解某地区初二学生课余时间活动安排情况,现对学生课余时间活动安排进行调查,根据调查的部分数据绘制成如图所示的扇形统计图和条形统计图(均不完整),请根据图中所给信息解答下列问题:(1)求调查中,一共抽查了名初二同学.(直接写出答案)(2)求所调查的初二学生课余时间用于安排“读书”活动人数,并补全条形统计图;(3)在扇形统计图中,“其他”类对应的圆心角是度.(4)如果该地区现有初二学生12000人,那么利用课余时间参加“体育”锻炼活动的大约有多少人?30.某区为响应市政府号召,在所有中学开展“创文创卫”活动.在活动中设置了“A.文明礼仪;B.环境保护;C.卫生保洁;D.垃圾分类”四个主题,每个学生选一个主题参与.为了解活动开展的情况,在全区随机抽取部分中学生进行调查,并根据调查结果绘制成了如下条形统计图和扇形统计图:(1)此次调查的学生人数是______人,条形统计图中m=______,n=______;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中“选项D.垃圾分类”对应扇形的圆心角的大小为______度;(4)依据本次调查的结果,估计全区12000名中学生选“A.文明礼仪”约有多少人?。

(完整版)《数据的收集、整理与描述》知识点和题型整理

(完整版)《数据的收集、整理与描述》知识点和题型整理

数据的收集、整理与描述知识点和题型1、数据处理的一般过程:2、表示数据的两种基本方法一是统计表,通过表格可以找出数据分布的规律;二是统计图,利用统计图表示经过整理的数据,能更直观地反映数据的规律.3、常见统计图1)条形统计图:能清楚地表示出每个项目的具体数目;2)扇形统计图: 能清楚地表示出各部分与总量间的比重;用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫扇形统计图。

制作扇形统计图的三个步骤:1°计算各部分在总体中所占的百分比;2°计算各个扇形的圆心角的度数=360°×该部分占总体的百分比;3°在圆中依次作出上面的扇形,并标出百分比。

扇形的面积与对应的圆心角的关系:扇形的面积越大,圆心角的度数越大。

扇形的面积越小,圆心角的度数越小。

3)折线统计图: 能反映事物变化的规律. 通过用数据点的连线来表示一些连续型数据的变化趋势,它能清楚地反映事物的变化情况。

4、全面调查与抽样调查1)全面调查:我们把对全体对象的调查称为全面调查.2)抽样调查:从总体中抽取部分对象进行的调查叫抽样调查.在统计中,需要考察对象的全体叫做总体,其中从总体中抽取的部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量。

5、直方图基本概念(1)在数据统计中,一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比称为频率。

频率反映了各组频数的大小在总数中所占的份量。

频率×100%就是百分比。

(2)在数据统计中,有时将数据按一定方式分成若干组,则我们把分成的组的个数称为组数,每一组两个端点数据的差叫做组距。

6、直方图的主要特征通过长方形的面积表示频数,反映落在同一事件中较多数据在不同区域中的分布特点。

它能:(1)清楚显示各组频数分布的情况;(2)易于显示各组之间频数的差别7、频数分布直方图(1)画频数分布直方图时,首先要找出这组数据的最大值和最小值,求出极差;分组时,组距和组数没有固定标准,一般当数据在100个以内时,分成5~12个组列出频数分布表,累计各组的频数;最后画出频数分布直方图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章数据的收集、整理与描述
二、知识定义
全面调查:考察全体对象的调查方式叫做全面调查。

抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

总体:要考察的全体对象称为总体。

个体:组成总体的每一个考察对象称为个体。

样本:被抽取的所有个体组成一个样本。

样本容量:样本中个体的数目称为样本容量。

频数:一般地,我们称落在不同小组中的数据个数为该组的频数。

频率:频数与数据总数的比为频率。

组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

相关文档
最新文档