2、化学气相沉积法(CVD)

合集下载

化学气相沉积CVD资料

化学气相沉积CVD资料

化学气相沉积——基本原理
(1)氢化物
700-1000℃ SiH4 Si + 2H2
H-H键能小,热分解温度低,产物无腐蚀性。
(2)金属有机化合物
420℃ 2Al(OC3H7 )3 Al2O3 + 6C3H6 + 3H2O
三异丙氧基铝
M-C键能小于C-C键,广泛用于沉积金属和氧化物薄膜。 金属有机化合物的分解温度非常低,扩大了基片选择范
化学合成反应是指两种或两种以上的气态反应物在热 基片上发生的相互反应。 (1) 最常用的是氢气还原卤化物来制备各种金属或半导
体薄膜;
(2) 选用合适的氢化物、卤化物或金属有机化合物来制 备各种介质薄膜。 化学合成反应法比热分解法的应用范围更加广泛。 可以制备单晶、多晶和非晶薄膜。容易进行掺杂。
SEIEE
按反应器壁的温度:热壁和冷壁
按反应激活方式:热激活和冷激活
SEIEE
CVD装置的主要部分: 反应气体输入部 分、反应激活能源供应部分和气体排出 部分。
SEIEE
化学气相沉积——基本原理
★ 化学气相沉积的基本原理
化学气相沉积的基本原理是以化学反应为基础
化学气相沉积是利用气态物质通过化学反应在基片表 面形成固态薄膜的一种成膜技术。
化学气相沉积——基本原理
①还原或置换反应
1000 ℃ SiCl 2 H Si 4HCl 4 2
②氧化或氮化反应
℃ SiH4 B2 H6 5O2 400 B2O3 SiO2 5H 2O
③水解反应
2AlCl3 3H 2O Al 2O3 6HCl
热分解反应(吸热反应,单一气源)
该方法在简单的单温区炉中,在真空或惰性气体保护 下加热基体至所需温度后,导入反应物气体使之发生热分 解,最后在基体上沉积出固体涂层。

化学气相沉积

化学气相沉积
积速率的影响将变得 迟
缓且不明显。
4.2 化学气相沉积原理
CVD反应的进行涉及到能量、动量及质量的传递。反应气体是 借着扩散效应来通过主气流与基片之间的边界层,以便将反学气相沉积合成方法发展
20世纪50年代 主要用于道具
涂层
古人类在取暖 或烧烤时在岩 洞壁或岩石上
的黑色碳层
近年来PECVD 、LCVD等高
速发展
20世纪60-70 年代用于集成
电路
80年代低压 CVD成膜技术 成为研究热潮
2
4.2 化学气相沉积原理
一、基本概念
化学气相沉积(CVD):
14
4.2 化学气相沉积原理
二、化学气相沉积法原理
2、CVD技术的热动力学原理
CVD反应结构分解:
不同物质状态的边界层对CVD沉积至关重要。所谓边界层,就是流体及物 体表面因流速、浓度、温度差距所形成的中间过渡范围。 (a)反应物已扩散通过界面边界层; (b)反应物吸附在基片的表面; (c)化学沉积反应发生; (d) 部分生成物已扩散通过界面边界层; (e)生成物与反应物进入主气流里,并离开系统 。
流速与流向均 平顺者称为 “层流”;
流动过程中产 生扰动等不均 匀现象的流动 形式,则称为
其中,d为流体流经的管径,ρ为流体的密度,
“湍流”。
ν为流体的流速,μ则为流体的粘度
两种常见的流体流动方式
20
4.2 化学气相沉积原理
假设流体在晶座及 基片表面的流速为 零,则流体及基片 (或晶座)表面将 有一个流速梯度存 在,这个区域便是 边界层。
其中:hc为“对流热传系数”
19
4.2 化学气相沉积原理
二、化学气相沉积法原理 2、CVD技术的热动力学原理

化学气相沉积法

化学气相沉积法

①原料气体向基片表面扩散; ②原料气体吸附到基片; ③吸附在基片上的化学物质的表面反应; ④析出颗粒在表面的扩散; ⑤产物从气相分离; ⑥从产物析出区向块状固体的扩散。 CVD的化学反应必须发生在基体材料和气相间的扩散 层中。 原因:(a)在气相中发生气相 -气相反应,然后生成粉末, 该粉末出现在反应系统之外。 (b)从气相析出固相的驱动力(driving force)是根据基 体材料和气相间的扩散层内存在的温差和不同化学物 质的浓度差,由化学平衡所决定的过饱和度。
(C)激光化学气相沉积(LCVD)
定义:用激光束照射封闭于气室内的反应气体, 诱发化学反应,生成物沉积在置于气室内的基 板上。是将激光应用于常规 CVD的一种新技术, 通过激光活化而使常规 CVD技术得到强化,工 作温度大大降低,在这个意义上 LCVD 类似于 PECVD。 LCVD 技术的优点:沉积过程中不直接加热整块 基板,可按需要进行沉积,空间选择性好,甚 至可使薄膜生成限制在基板的任意微区内;避 免杂质的迁移和来自基板的自掺杂;沉积速度 比CVD快。
③微波等离子体发生器本身没有内部电极,从 而消除了气体污染和电极腐蚀,有利于高纯化 学反应和延长使用寿命。 ④微波等离子体的产生不带高压,微波辐射容 易防护,使用安全。 ⑤微波等离子体的参数变化范围较大,这为广 泛应用提供了可能性。 应用:凡直流或射频等离子体能应用的领域均能 应用。目前MWPECVD已在集成电路、光导纤 维,保护膜及特殊功能材料的制备等领域得到 日益广泛的应用。
(E)微波等离子体化学气体沉积(MWPECVD) 定义:利用微波能电离气体而形成等离子体,将 微波作为 CVD过程能量供给形式的一种 CVD新 工艺。属于低温等离子体范围。 特点: ①在一定的条件下,它能使气体高度电离和离 解,产生很多活性等离子体。 ②它可以在很宽的气压范围内获得。 低压时:Te>>Tg,这对有机反应、表面处理 等尤为有利,人们称之为冷等离子体; 高压时:Te≈Tg,它的性质类似于直流弧,人 们称之为热等离子体。

化学气相沉积

化学气相沉积

集成电路芯片工艺化学气相沉积(CVD)化学汽相淀积(CVD)化学汽相淀积是指通过气态物质的化学反应在衬底上淀积一层薄膜材料的过程。

CVD膜的结构可以是单晶、多晶或非晶态,淀积单晶硅薄膜的CVD过程通常被称为外延。

CVD技术具有淀积温度低、薄膜成分和厚度易于控制、均匀性和重复性好、台阶覆盖优良、适用范围广、设备简单等一系列优点。

利用CVD方这几乎可以淀积集成电路工艺中所需要的各种薄膜,例如掺杂或不掺杂的SiO:、多晶硅、非晶硅、氮化硅、金属(钨、钼)等。

一:化学气相沉积方法常用的CVD方法主要有三种:常压化学汽相淀积(APCVD)、低压化学汽相淀积(LPCVIi~)和等离子增强化学汽相淀积(PECVD).APCVD反应器的结构与氧化炉类似,如图1-1所示,该系统中的压强约为一个大气压,因此被称为常压CVD。

气相外延单晶硅所采用的方法就是APCVD。

图1-1APCVD反应器的结构示意图,LPCVD反应器的结构如图1-2所示,石英管采用三温区管状炉加热,气体由一端引入,另一端抽出,半导体晶片垂直插在石英舟上。

由于石英管壁靠近炉管,温度很高,因此也称它为热壁CVD装置,这与利用射频加热的冷壁反应器如卧式外延炉不同.这种反应器的最大特点就是薄膜厚度的均匀性非常好、装片量大,一炉可以加工几百片,但淀积速度较慢.它与APCVD的最大区别是压强由原来的1X10SPa降低到1X102Pa左右。

图1-2LPCVD反应器的结构示意图图1-3平行板型PECVD反应器的结构示意图PECVD是一种能量增强的CVD方法,这是因为在通常CVD系统中热能的基础上又增加了等离子体的能量.图1-3给出了平行板型等离子体增强CVD反应器,反应室由两块平行的金属电极板组成,射频电压施加在上电极上,下电极接地。

射频电压使平板电极之间的气体发生等离子放电。

工作气体由位于下电极附近的进气口进入,并流过放电区。

半导体片放在下电极上,并被加热到100—400;C左右.这种反应器的最大优点是淀积温度低。

化学气相沉积CVD

化学气相沉积CVD
离解和离化,从而大大提高了参与反应的物质活性;
这些具有高反应活性的物质很容易被吸附到较低温度的基
体表面上,于是,在较低的温度下发生非平衡的化学反应
沉积生成薄膜,这就大大降低了基体的温度,提高了沉积
速率。
16
3. PECVD装置
普通CVD+高频电源(用于产生等离子体)
用高频产生辉光放电等离子体的卧式反应
主要由反应器(室)、供气系统和加热系统等组成
图8.3.1
Si片PN结构微细加工的CVD装置意示图
6
反应器的类型:
图8.3.2 CVD反应器的类型
7
沉积过程:
① 在主气流区域,反应物从反应器入口到分解区域的质
量输运;
② 气相反应产生膜形成的前驱体和副产物;
③ 成膜前驱体质量输运至生长表面;
④ 成膜前驱体吸附在生长表面;
可有效解决普通CVD基体温度高,沉积速率慢的不足。
1.等离子体
(1)物质的第四态
给物质以能量,即T↗:
固 液 气 电离,离子+自
由电子,等离子体,第四态。
(2)产生
自然界:大气电离层,高温太阳
实验室:气体放电,供给能量,维持;
图8.3.3 物质的四态
15
(3)性质及应用
气体高度电离的状态;
下进行沉积的某些场合,如沉积平面
硅和MOS集成电路的纯化膜。
(2)按照沉积时系统压强的大小分类:
常压CVD(NPCVD),~1atm;
低压CVD(LPCVD),10~100Pa;
LPCVD具有沉积膜均匀性好、台阶覆盖及一致性较好、
针孔较小、膜结构完整性优良、反应气体的利用率高等优
点,不仅用于制备硅外延层,还广泛用于制备各种无定形

cvd化学气相沉积

cvd化学气相沉积

cvd化学气相沉积
cvd化学气相沉积(CVD)是一种利用特定剂量的一氧化碳(CO)、氨(NH3)、甲烷等气体,在温度和压力特定的情况下,以一定比例的能量进行添加,使这些气体在表面形成单一或多层膜的一种技术。

传统的cvd方法已经开发出很多种,如固体化学气相沉积,液体化学气相沉积,电化学气相沉积,光致电化学气相沉积,电子束气相沉积等。

这些技术在应用于金属、硅、陶瓷、复合物和有机体等材料表面时,都可以获得良好的膜层,从而可以用于改善材料的物理和化学性能。

cvd技术以精细、灵活、高效地进行表面改性而闻名。

首先,cvd 技术最大的优点是可以在大规模产品上进行表面改变,并且能够满足用户的高要求,从而节省生产时间和费用,且具有一定的环保性能。

其次,cvd技术也可以提高材料的抗污性能,从而提高材料的防腐蚀性能,从而大大延长产品的使用寿命。

此外,cvd技术还可以提高材料的光学性能,如它可以使材料具有抗反射和吸收可见光的特性,从而大大提高材料的光学特性。

由于cvd技术具有多种优点,因此它在很多领域都有应用,如用于汽车制造业形成防护层,或用于日常消费类型制造业,多用于涂料和电子行业,以及航空、航天等领域。

由于cvd技术可以使材料具有良好的抗磨损性能和抗静电性能,因此在电子行业的应用尤其广泛。

总之,cvd技术在低温下高效地形成表面膜层,同时它可以提高材料的物理和化学性能,并且可以满足用户的高要求,因此它已被广
泛地应用于各行各业。

化学气相沉积法

化学气相沉积法

化学气相沉淀法摘要:化学气相沉积Chemical vapor deposition,简称CVD;是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。

CVD技术可以生长高质量的单晶薄膜,能够获得所需的掺杂类型和厚度,易于实现大批量生产,因而在工业上得到广泛的应用。

工业上利用CVD制备的外延片常有一个或多个埋层可用扩散或离子注入的方式控制器件结构和掺杂分布;外延层的氧和碳含量一般很低。

但是CVD外延层容易形成自掺杂,要用一定措施来降低自掺杂。

CVD生长机理很复杂,反应中生成多种成分,也会产生一些中间成分,影响因素有很多,如:先躯体种类:工艺方法Levi,Devi,Pend;反应条件温度,压力,流量;触媒种类:气体浓度;衬基结构;温度梯度;炉内真空度等外延工艺有很多前后相继,彼此连贯的步骤。

关键词:化学气相沉淀积,薄膜,应用,工艺正文:原理:将两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成--种新的材料,沉积到基体表面上。

反应物多为金属氯化物,先被加热到一定温度,达到足够高的蒸汽压,用载气一般为Ar或H2送入反应器。

如果某种金属不能形成高压氯化物蒸汽,就代之以有机金属化合物。

在反应器内,被涂材料或用金属丝悬挂,或放在平面上,或沉没在粉末的流化床中,或本身就是流化床中的颗粒。

化学反应器中发生,产物就会沉积到被涂物表面,废气多为HC1或HF被导向碱性吸收或冷阱。

除了需要得到的固态沉积物外,化学反应的生成物都必须是气态沉积物本身的饱和蒸气压应足够低,以保证它在整个反应、沉积过程中都一直保持在加热的衬底上。

反应过程:1反应气体向衬底表面扩散2反应气体被吸附于衬底表面3在表面进行化学反应、表面移动、成核及膜生长4生成物从表面解吸5生成物在表面扩散。

所选择的化学反应通常应该满足:①反应物质在室温或不太高的温度下最好是气态,或有很高的蒸气压,且有很高的纯度:②通过沉积反应能够形成所需要的材料沉积层:③反应易于控制在沉积温度下,反应物必须有足够高的蒸气压。

化学气相沉积法CVD

化学气相沉积法CVD
2、在层状外延生长表面是表面能比较高的晶面时,为了降低表面能, 薄膜面力图将暴露的晶面改变为低能,因此薄膜在生长到一定厚 度之后,生长模式会由层状模式向岛状模式转变。
外延工艺的主要分类
气相外延工艺(Vapor-Phase Epitaxy,VPE)
液相外延工艺(LPE)
CVD
其他:RTCVD、UHVCVD
在层状-岛状生长模式中,在最开始一两个原子层厚度的层 状生长之后,生长模式转化为岛状模式。导致这种模式转变的物 理机制比较复杂,原因是由于薄膜生长过程中各种能量的相互消 长。
导致生长模式转变的物理机制
1、虽然开始时的生长是外延式的层状生长,但是由于薄膜与衬底之 间晶格常数不匹配,因而随着沉积原子层的增加,应变能(应力) 逐渐增加。为了松弛这部分能量,薄膜在生长到一定厚度之后, 生长模式转化为岛状模式。
MOCVD设备
MOCVD 系统
气体处理 系统
反应腔
计算机控制
真空及排气 系统
气体处理系统
气体处理系统的功能是混合与测量进入反应室的 气体。调节进入反应室气体的速率与成分将决定 外延层的结构。
气路的密封性至关重要。 阀门的快速转换对薄膜和突变界面结构的生长很
重要。 流速,压强和温度的精确控制能保证生长薄膜的
(e)生成物与反应物进入主气流里,并离开系统
输送现象
以化学工程的角度来看,任何流体的传递或输送现象,都会涉及 到热能的传递(传导、辐射、对流)、动量的传递及质量的传递 等三大传递现象。
(1)热量传递-热传导
热传导是固体中热传递的主要方式
(1)热量传递-热辐射
物体因自身温度而具有向外发射能量的本领,这种热传递的方式叫 做热辐射。热辐射能不依靠媒介把热量直接从一个系统传到另一个 系统。

化学气相沉积法CVD

化学气相沉积法CVD

化学气相沉积(CVD)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。

从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。

淀积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮反应形成的。

概述反应室中的反应是很复杂的,有很多必须考虑的因素,沉积参数的变化范围是很宽的:反应室内的压力、晶片的温度、气体的流动速率、气体通过晶片的路程(如图所示)、气体的化学成份、一种气体相对于另一种气体的比率、反应的中间产品起的作用、以及是否需要其它反应室外的外部能量来源加速或诱发想得到的反应等。

额外能量来源诸如等离子体能量,当然会产生一整套新变数,如离子与中性气流的比率,离子能和晶片上的射频偏压等。

然后,考虑沉积薄膜中的变数:如在整个晶片内厚度的均匀性和在图形上的覆盖特性(后者指跨图形台阶的覆盖),薄膜的化学配比(化学成份和分布状态),结晶晶向和缺陷密度等。

当然,沉积速率也是一个重要的因素,因为它决定着反应室的产出量,高的沉积速率常常要和薄膜的高质量折中考虑。

反应生成的膜不仅会沉积在晶片上,也会沉积在反应室的其他部件上,对反应室进行清洗的次数和彻底程度也是很重要的。

化学家和物理学家花了很多时间来考虑怎样才能得到高质量的沉积薄膜。

他们已得到的结论认为:在晶片表面的化学反应首先应是形成“成核点”,然后从这些“成核点”处生长得到薄膜,这样淀积出来的薄膜质量较好。

另一种结论认为,在反应室内的某处形成反应的中间产物,这一中间产物滴落在晶片上后再从这一中间产物上淀积成薄膜,这种薄膜常常是一种劣质薄膜。

化学气相沉积法是传统的制备薄膜的技术,其原理是利用气态的先驱反应物,通过原子、分子间化学反应,使得气态前驱体中的某些成分分解,而在基体上形成薄膜。

化学气相沉积包括常压化学气相沉积、等离子体辅助化学沉积、激光辅助化学沉积、金属有机化合物沉积等。

化学气相沉积法cvd

化学气相沉积法cvd

化学气相沉积法cvd1. 什么是化学气相沉积法(CVD)?CVD是chemical vapor deposition的缩写,是一种用于有机薄膜或无机薄膜制造的技术。

它是一种通过将溶剂热散发形成薄膜的过程。

在溶剂中添加了几种原料,其原理是热释放过程中会产生气态原料。

当这些气态化合物沉积(即固化)在共晶材料表面(如金属和绝缘体表面)上,就形成了膜。

2. CVD的工艺流程CVD的工艺流程大体由以下几步组成:(1)预处理:为了提高沉积物的附着性,之前必须进行表面清洁处理,以去除表面杂质或灰尘,在清洁过程中包括清洁、光饰、腐蚀等工艺;(2)CVD反应:使用适当的存在溶解性的原料制成气相,并将其放入加热的真空容器中,使存在的气态原料发生反应,被吸附在真空容器中的易沉积材料上,以形成膜;(3)膜层检测:膜厚测量或影像技术,横断面或芯片的扫描电子显微镜技术或接触角测量等方法;(4)产品评估:分析能够表明膜的界面强度,膜厚,抗划痕性能,耐腐蚀性以及相关介电性质等,为满足不同产品要求,对CVD参数进行适当调整,确保产品达到规定的质量。

3. CVD的优缺点(1)优点:(a)CVD制备的膜可以用于制备多种复合薄膜,可以使用单种原料或多个原料来改变所需的膜功能;(b)CVD可以成功地在某些维持低工作温度、低原料充放温度的薄膜制备中,能够有效地防止薄膜退化及基材损坏;(c)比较适合制备大区域的膜,且制备的膜厚度一致性良好,沉积膜所需时间比较短;除此之外,CVD还有改变膜特性可控性高,维护简单等优点。

(2)缺点:(a)制备多金属复合膜时易出现困难;(b)CVD由多个立体结构构成的微纳米膜在活度调节和温度控制方面难以得到一致的条件;(c)当原料遇到有机结构时,很容易产生氧化,从而减弱了其膜性能;(d)还容易出现沉积反应系统中氧化物及污染阴离子等杂质污染物,影响膜层的清洁性及性能。

4. CVD的应用范围CVD非常适合制备有机薄膜以实现有效阻挡载流子(如氧)和气体(如水蒸气)的分子穿过,保护容器不受环境污染。

化学气相沉淀法

化学气相沉淀法
化学气相沉积法 (chemical vapor depositபைடு நூலகம்on method)
1
CVD法简述
目录
2
CVD法分类及应用
1.CVD法简述
定义
一种或数种反应气体通 过热、激光、等离子体等发 生化学反应析出超微粉的方 法。
1.1 CVD法原理
图1 化学气相沉积的五个主要的步骤 (a)反应物已扩散通过界面边界层;(b)反应物吸附在基片的表面; (c)化学沉积反应发生; (d) 部分生成物已扩散通过界面边界层;(e)生 成物与反应物进入主气流里,并离开系统
a.热分解或高温分解反应:SiH4(g)
Ni(CO)4(g) b.还原反应 SiCl4(g) + 2H2(g) WF6(g) + 3H2(g) c.氧化反应 d.水解反应 e.复合反应 SIH4(g)+O2(g) 2AlCl3(s) + 3H2O(g)
Si(s) + 2H2 (g)
Ni(s) + 4CO(g) Si(s) + 4HCl(g) W(s) + 6HCl(g) Si(s)+H2O(g) Al2O3(s)+6H2O(g)
无机晶体材料晶体的生长过程
由于化学气相沉积法所制备的大多是无机晶体材料涉及到晶
体的生长。晶体生长:第一步是获得结晶核心,后续的结晶过程
通过该核心的生长完成。结晶核心可以是外来的即引入子晶,也 可以是母相中形成的。第二步:在完成晶核以后,晶体的生长过
程是通过结晶界面不断向母相中推进。
1.2 采用CVD法应具备的条件
(1)在沉积温度下反应物应保证足够的压力,以适当 的速度引入反应室 (2)除需要的沉积物外,其它反应物或生成物应是挥 发性的。 (3)沉积薄膜本身必须具有足够的蒸汽压,保证沉积 反应过程始终在受热基片上进行,而基片的蒸汽压必 须足够低。

化学气相沉积CVD

化学气相沉积CVD

围以及避免了基片变形问题。
SEIEE
化学气相沉积——基本原理
(3)氢化物和金属有机化合物系统
630 675℃ Ga(CH3 )3 + AsH3 GaAs + 3CH4 475℃ Cd(CH3 )2 + H2S CdS + 2CH4
广泛用于制备化合物半导体薄膜。 ( 4 )其它气态络合物、复合物(贵金属、过渡金属沉积)
原则上可制备任一种无机薄膜。
SEIEE
化学气相沉积——基本原理
化学输运反应
将薄膜物质作为源物质(无挥发性物质),借助适当 的气体介质(输运剂)与之反应而形成气态化合物,这种 气态化合物经过化学迁移或物理输运到与源区温度不同的 沉积区,在基片上再通过逆反应使源物质重新分解出来, 这种反应过程称为化学输运反应。
1000 ℃ SiCl 2 H Si 4HCl 4 2
H、Cl、Si三元体系
SEIEE
化学气相沉积——基本原理
CVD的(化学反应)动力学
反应动力学是一个把反应热力学预言变为现实,使反 应实际进行的问题;它是研究化学反应的速度和各种因素 对其影响的科学。 动力学的因素决定了上述过程发生的速度以及他在有限时 间内可进行的程度 CVD 反应动力学分析的基本任务是:通过实验研究薄 膜的生长速率,确定过程速率的控制机制,以便进一步调 整工艺参数,获得高质量、厚度均匀的薄膜。
其自由能变化
ΔGr=cGc-bGb-aGa
Gi Gi0 RT ln ai
SEIEE
化学气相沉积——基本原理
Gr 与反应系统的化学平衡常数K有关
G RT ln K
K Pi (生成物)iBiblioteka 1 n或m j 1 j

化学气相沉积法名词解释

化学气相沉积法名词解释

化学气相沉积法名词解释
化学气相沉积法(Chemical Vapor Deposition,CVD)是一种常用的化学气相沉积技术,用于在固体表面上沉积薄膜或纳米结构材料。

在CVD过程中,化学气体通过化学反应在固体表面上沉积出固体产物,通常在高温和大气压下进行。

CVD通常包括热CVD、等离子体增强CVD、金属有机化学气相沉积等多种形式。

在CVD过程中,通常需要提供一种或多种反应气体,这些气体在反应室中与固体表面发生化学反应,生成沉积物。

反应气体通常是一些有机物、金属有机物或卤化物,可以通过热解或氧化反应来沉积出所需的材料。

CVD技术可以用于生长碳纳米管、石墨烯、金属薄膜、氧化物薄膜等材料。

CVD技术具有许多优点,例如可以在大面积、复杂形状的基板上进行沉积,可以控制沉积薄膜的厚度和成分,并且可以在较低的温度下进行。

同时,CVD也存在一些挑战,例如需要严格控制反应条件、气体流动和温度分布,以确保沉积物的均匀性和质量。

总的来说,化学气相沉积法是一种重要的薄膜和纳米结构材料制备技术,广泛应用于半导体、光电子、纳米材料等领域。

通过
CVD技术,可以制备出具有特定性能和功能的薄膜和纳米结构材料,为现代科学技术的发展提供了重要支持。

化学气相沉积CVD

化学气相沉积CVD

化学气相沉积1 前言化学气相沉积CVD(Chemical Vapor Deposition)是利用加热,等离子体激励或光辐射等方法,使气态或蒸汽状态的化学物质发生反应并以原子态沉积在置于适当位置的衬底上,从而形成所需要的固态薄膜或涂层的过程。

一般地说,化学气相沉积可以采用加热的方法获取活化能,这需要在较高的温度下进行;也可以采用等离子体激发或激光辐射等方法获取活化能,使沉积在较低的温度下进行。

另外,在工艺性质上,由于化学气相沉积是原子尺度内的粒子堆积,因而可以在很宽的范围内控制所制备薄膜的化学计量比;同时通过控制涂层化学成分的变化,可以制备梯度功能材料或得到多层涂层。

在工艺过程中,化学气相沉积常常在开放的非平衡状态下进行,根据耗散结构理论,利用化学气相沉积可以获得多种晶体结构。

在工艺材料上,化学气相沉积涵盖无机、有机金属及有机化合物,几乎可以制备所有的金属(包括碳和硅),非金属及其化合物(碳化物、氮化物、氧化物、金属间化合物等等)沉积层。

另外,由于气态原子或分子具有较大的转动动能,可以在深孔、阶梯、洼面或其他形状复杂的衬底及颗粒材料上进行沉积。

为使沉积层达到所需要的性能,对气相反应必须精确控制。

正是由于化学气相沉积在活化方式、涂层材料、涂层结构方面的多样性以及涂层纯度高工艺简单容易进行等一系列的特点,化学气相沉积成为一种非常灵活、应用极为广泛的工艺方法,可以用来制备各种涂层、粉末、纤维和成型元器件。

特别在半导体材料的生产方面,化学气相沉积的外延生长显示出与其他外延方法(如分子束外延、液相外延)无与伦比的优越性,即使在化学性质完全不同的衬底上,利用化学气相沉积也能产生出晶格常数与衬底匹配良好的外延薄膜。

此外,利用化学气相沉积还可生产耐磨、耐蚀、抗氧化、抗冲蚀等功能涂层。

在超大规模集成电路中很多薄膜都是采用CVD方法制备。

经过CVD 处理后,表面处理膜密着性约提高30%,防止高强力钢的弯曲,拉伸等成形时产生的刮痕。

化学气相沉积法制备单壁碳纳米管

化学气相沉积法制备单壁碳纳米管

化学气相沉积法制备单壁碳纳米管
化学气相沉积法(CVD)是制备单壁碳纳米管的一种常用方法。

该方法通过将碳源气体(例如甲烷、乙烯等)和载体气体(例如氢气)引入反应炉中,在一定的温度和压力条件下催化生成碳纳米管。

具体的制备步骤如下:
1. 准备反应器:首先需要准备一台带有石英管道的炉子,并对石英管道进行表面处理以去除任何杂质。

2. 处理衬底:将所选衬底(常用的有石英、硅片等)放入炉子中,在高温下煅烧衬底,以去除表面的有机和无机杂质。

3. 导入前驱体气体:将所选的碳源气体和载体气体通过气体管道导入炉子中,在适当的比例下控制气体的流量。

4. 上升温:炉子开始升温,将温度逐渐升高至制备碳纳米管的反应温度(通常在600~1000℃之间,具体温度取决于碳源气体和载体气体的选择)。

5. 反应形成碳纳米管:在反应温度下,碳源气体会在催化剂的作用下分解并在衬底上生长出碳纳米管。

常用的催化剂有金属纳米颗粒(如铁、镍、钯等)。

6. 此后,将系统冷却至室温时,停止碳源气体和载体气体的流动。

将衬底取出并洗净,即可得到单壁碳纳米管样品。

需要注意的是,CVD方法制备的单壁碳纳米管通常会存在一定的多壁碳纳米管和其他杂质。

因此,在实际应用中,通常还需要后续的分离和纯化步骤,以获取单壁碳纳米管纯净样品。

化学气相沉积CVD

化学气相沉积CVD

化学气相沉积1 前言化学气相沉积CVD(Chemical Vapor Deposition)是利用加热,等离子体激励或光辐射等方法,使气态或蒸汽状态的化学物质发生反应并以原子态沉积在置于适当位置的衬底上,从而形成所需要的固态薄膜或涂层的过程。

一般地说,化学气相沉积可以采用加热的方法获取活化能,这需要在较高的温度下进行;也可以采用等离子体激发或激光辐射等方法获取活化能,使沉积在较低的温度下进行。

另外,在工艺性质上,由于化学气相沉积是原子尺度内的粒子堆积,因而可以在很宽的范围内控制所制备薄膜的化学计量比;同时通过控制涂层化学成分的变化,可以制备梯度功能材料或得到多层涂层。

在工艺过程中,化学气相沉积常常在开放的非平衡状态下进行,根据耗散结构理论,利用化学气相沉积可以获得多种晶体结构。

在工艺材料上,化学气相沉积涵盖无机、有机金属及有机化合物,几乎可以制备所有的金属(包括碳和硅),非金属及其化合物(碳化物、氮化物、氧化物、金属间化合物等等)沉积层。

另外,由于气态原子或分子具有较大的转动动能,可以在深孔、阶梯、洼面或其他形状复杂的衬底及颗粒材料上进行沉积。

为使沉积层达到所需要的性能,对气相反应必须精确控制。

正是由于化学气相沉积在活化方式、涂层材料、涂层结构方面的多样性以及涂层纯度高工艺简单容易进行等一系列的特点,化学气相沉积成为一种非常灵活、应用极为广泛的工艺方法,可以用来制备各种涂层、粉末、纤维和成型元器件。

特别在半导体材料的生产方面,化学气相沉积的外延生长显示出与其他外延方法(如分子束外延、液相外延)无与伦比的优越性,即使在化学性质完全不同的衬底上,利用化学气相沉积也能产生出晶格常数与衬底匹配良好的外延薄膜。

此外,利用化学气相沉积还可生产耐磨、耐蚀、抗氧化、抗冲蚀等功能涂层。

在超大规模集成电路中很多薄膜都是采用CVD方法制备。

经过CVD 处理后,表面处理膜密着性约提高30%,防止高强力钢的弯曲,拉伸等成形时产生的刮痕。

化学气相沉积法

化学气相沉积法

化学气相沉积法化学气相沉积CVD(Chemical Vapor Deposition)原理CVD(Chemical Vapor Deposition, 化学气相沉积),指把含有构成薄膜元素的气态反应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜的过程。

在超大规模集成电路中很多薄膜都是采用CVD方法制备。

经过CVD处理后,表面处理膜密着性约提高30%,防止高强力钢的弯曲,拉伸等成形时产生的刮痕。

CVD特点淀积温度低,薄膜成份易控,膜厚与淀积时间成正比,均匀性,重复性好,台阶覆盖性优良。

CVD制备的必要条件1) 在沉积温度下,反应物具有足够的蒸气压,并能以适当的速度被引入反应室;2) 反应产物除了形成固态薄膜物质外,都必须是挥发性的;3) 沉积薄膜和基体材料必须具有足够低的蒸气压。

编辑本段何为cvd,CVD是Chemical Vapor Deposition的简称,是指高温下的气相反应,例如,金属卤化物、有机金属、碳氢化合物等的热分解,氢还原或使它的混合气体在高温下发生化学反应以析出金属、氧化物、碳化物等无机材料的方法。

这种技术最初是作为涂层的手段而开发的,但目前,不只应用于耐热物质的涂层,而且应用于高纯度金属的精制、粉末合成、半导体薄膜等,是一个颇具特征的技术领域。

其技术特征在于:(1)高熔点物质能够在低温下合成;(2)析出物质的形态在单晶、多晶、晶须、粉末、薄膜等多种;(3)不仅可以在基片上进行涂层,而且可以在粉体表面涂层,等。

特别是在低温下可以合成高熔点物质,在节能方面做出了贡献,作为一种新技术是大有前途的。

例如,在1000?左右可以合成a-Al2O3、SiC,而且正向更低温度发展。

CVD工艺大体分为二种:一种是使金属卤化物与含碳、氮、硼等的化合物进行气相反应;另一种是使加热基体表面的原料气体发生热分解。

CVD的装置由气化部分、载气精练部分、反应部分和排除气体处理部分所构成。

cvd 化学气相沉积

cvd 化学气相沉积

cvd 化学气相沉积CVD(化学气相沉积)是一种重要的薄膜制备技术,广泛应用于微电子、材料科学、纳米技术等领域。

本文将介绍CVD的基本原理、应用领域以及未来发展方向。

让我们来了解CVD的基本原理。

化学气相沉积是一种在气相条件下通过化学反应生成固体薄膜的技术。

它的基本原理是在高温下,将气体或液体前体物质引入反应室中,通过化学反应形成气相中间体,然后在衬底上沉积出所需的固体薄膜。

CVD的反应过程主要包括气体输运、吸附、表面反应和膜沉积等步骤。

CVD技术具有许多优点,如制备的薄膜具有高纯度、均匀性好、可控性强等特点。

此外,CVD还可以在复杂的表面形貌上进行薄膜沉积,如纳米颗粒、多孔膜等。

因此,CVD被广泛应用于微电子行业,用于制备晶体管、集成电路、显示器件等。

同时,它也被应用于材料科学领域,用于制备超硬材料、陶瓷薄膜、光学薄膜等。

除了微电子和材料科学领域,CVD还在纳米技术领域得到了广泛应用。

纳米领域的发展对CVD技术提出了更高的要求,例如制备纳米线、纳米颗粒和纳米薄膜等。

由于CVD具有优异的可控性和均匀性,它成为了纳米材料制备的重要工具。

通过调节反应条件和前体物质的选择,可以实现对纳米材料形貌、大小和组成的精确控制。

未来,CVD技术在能源领域和生物医学领域的应用也备受关注。

在能源领域,CVD可以用于制备高效的太阳能电池、燃料电池等器件。

通过优化薄膜的能带结构和界面特性,可以提高能源转换效率。

在生物医学领域,CVD可以用于制备生物传感器、药物传递系统等。

通过在表面修饰功能性薄膜,可以实现对生物分子的高灵敏检测和精确控制。

CVD是一种重要的化学气相沉积技术,广泛应用于微电子、材料科学、纳米技术等领域。

它具有优异的可控性和均匀性,可以制备高纯度、均匀性好的薄膜。

随着纳米技术和能源领域的快速发展,CVD技术在这些领域的应用前景非常广阔。

未来,我们可以期待CVD技术在更多领域的突破和创新。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




特点:通过无机途径制膜,有时只需在室温 进行干燥即可,因此容易制得10层以上而无 龟裂的多层氧化物薄膜。但是用无机法制得 的薄膜与基板的附着力较差,而且很难找到 合适的能同时溶解多种氧化物的溶剂。因 此,目前采用溶胶·凝胶法制备氧化物薄膜, 仍以有机途径为主。


溶胶-凝胶制造薄膜的特点: (A)工艺设备简单,成本低。 (B)低温制备。 (C)能制备大面积、复杂形状、不同基底的膜。 (D)便于制备多组元薄膜,容易控制薄膜的成 分及结构。 (E)对基底材料几乎无选择性。 (F)以氧化物膜为主。 (G)膜致密性较差,易收缩,开裂。

过饱和度(β)定义为 β=(pA)g/(pA)s 式中,(pA)g是气体热力学平衡求出A的分压;(pA)s是 在AB固体化合物的析出温度时的平衡蒸气压。 CVD法析出的化合物形状的决定因素:反应温度、有 助于反应的不同化学物质的过饱和度、在反应温度时 的成核速率等。 为了得到优质的薄膜,必须防止在气相中由气相-气相 反应生成均相核,即应首先设定在基片表面促进成核 的条件。
(E)微波等离子体化学气相沉积(MWPECVD)

定义:利用微波能电离气体而形成等离子体,将微波 作为CVD过程能量供给形式的一种CVD 新工艺。属于 低温等离子体范围。 特点: ①在一定的条件下,它能使气体高度电离和离解, 产生很多活性等离子体。 ②它可以在很宽的气压范围内获得。 低压时:Te>>Tg,这对有机反应、表面处理等尤为 有利,人们称之为冷等离子体; 高压时:Te≈Tg,它的性质类似于直流弧,人们称 之为热等离子体。



(C)激光化学气相沉积(LCVD)


定义:用激光束照射封闭于气室内的反应气 体,诱发化学反应,生成物沉积在置于气室内 的基板上。是将激光应用于常规CVD的一种新 技术,通过激光活化而使常规CVD技术得到强 化,工作温度大大降低,在这个意义上LCVD 类似于PECVD。 LCVD 技术的优点:沉积过程中不直接加热整 块基板,可按需要进行沉积,空间选择性好, 甚至可使薄膜生成限制在基板的任意微区内; 避免杂质的迁移和来自基板的自掺杂;沉积速 度比CVD快。

溶胶-凝胶工艺的分类:有机途径和无机途径 有机途径:通过有机金属醇盐水解与缩聚而形成溶 胶。 特点:在该工艺过程中,因涉及水和有机物,所 以通过这种途径制备的薄膜在干燥过程中容易龟裂 (由大量溶剂蒸发而产生的残余应力所引起)。客观 上限制了制备薄膜的厚度。 无机途径:将通过某种方法制得的氧化物微粒,稳 定地悬浮在某种有机或无机溶剂中而形成溶胶。




①原料气体向基片表面扩散; ②原料气体吸附到基片; ③吸附在基片上的化学物质的表面反应; ④析出颗粒在表面的扩散; ⑤产物从气相分离; ⑥从产物析出区向块状固体的扩散。 CVD的化学反应必须发生在基体材料和气相间的扩 散层中。 原因 :(a) 在气相中发生气相 - 气相反应,然后生成粉 末,该粉末出现在反应系统之外。 (b)从气相析出固相的驱动力(driving force)是根据 基体材料和气相间的扩散层内存在的温差和不同化学 物质的浓度差,由化学平衡所决定的过饱和度。
(F)纳米薄膜的低能团簇束沉积(LEBCD)

定义:将所沉积材料激发成原子状态,以Ar、He作为 载气使之形成团簇,同时采用电子束使团簇离化,利 用飞行时间质谱仪进行分离,从而控制一定质量、一 定能量的团簇束沉积而形成薄膜。 优点:可以有效地控制沉积在衬底上的原子数目;在 这种条件下所沉积的团簇在撞击表面时并不破碎,而 是近乎随机分布于表面;当团簇的平均尺寸足够大, 则其扩散能力受到限制;所沉积薄膜的纳米结构对团 簇尺寸具有很好的记忆特性。

制备氧化物薄膜的溶胶-凝胶方法: 浸渍提拉法 (dipping) 、旋覆法 (spining) 、 喷涂法(spraying)及刷涂法(painting)等。 旋覆法和浸渍提拉法最常用。 浸渍提拉法的三个步骤:浸渍、提拉和热处理。 每次浸渍所得到的膜厚约为5-30nm,为增 大薄膜厚度,可进行多次浸渍循环,但每次循 环之后都必须充分干燥和进行适当的热处理。


(B)CVD的特点





①温度:中温或高温;反应物状态:气态; 反应:气相化学反应;产物:固体。 ②压力:大气压(常压)或者低于大气压下(低 压)进行沉积。一般来说低压效果要好些。 ③等离子和激光辅助技术:可以显著地促进 化学反应,使沉积可在较低的温度下进行。 ④沉积层的化学成分可以改变,容易获得功 能梯度膜或者混合膜。 ⑤沉积层的密度和纯度可控。

中温 CVD(MTCVD) :典型反应温度大约 为 500 ~ 800 ℃,它通常是通过金属有机 化合物在较低温度的分解来实现的,所以 又称金属有机化合物CVD(MOCVD)。 等 离 子 体 增 强 CVD ( PECVD ) 与 激 光 CVD(LCVD) :气相化学反应由于等离子 体的产生或激光的辐照得以激活,也可以 把反应温度降低。

应用: 半导体外延沉积; 沉积金属镀层(因为某些金属卤化物在高温 下是稳定的,而用常规CVD难以实现其沉积) 沉积氧化物、氮化物、碳化物和硅化物膜层。


(B)等离子体辅助化学气相沉积(PECVD)




定义:用等离子体技术使反应气体进行化学 反应,在基底上生成固体薄膜的方法称等离子 体化学气相沉积。 发展:近二三十年来,PECVD进展非常快。 在半导体工业中,这种技术已成为大规模集成 电路干式工艺中的重要环节。 分类:PECVD薄膜反应室主要有平板电容型 和无极射频感应线圈式两种。 平板型:直流、射频、微波电源。

例:在沉积类金刚石薄膜时发现,可以控制团 簇中碳的原子数来控制C的杂化轨道,对于 C20~C32的团簇为sp3杂化,薄膜为fcc-金刚 石结构;对于C60的团簇,为sp3、sp2混合的 轨道特性;对于C900的团簇,为sp2杂化,薄 膜呈现非晶态。



(4)CVD法在纳米薄膜材料制备中的应用 CVD法是纳米薄膜材料制备中使用最多的一 种工艺,广泛应用于各种结构材料和功能材料 的制备。 范围:用它可以制备几乎所有的金属,氧化 物、氮化物、碳化合物、硼化物、复合氧化物 等膜材料。 一些典型的例子如表3.8所示。
3、溶胶-凝胶法

表面涂膜的利用是溶胶-凝胶法应用的一个新 领域,其最初的应用就是涂膜。 例:目前广泛应用的玻璃表面的反射膜、防止 反射膜以及着色膜就是用该法制得的。 溶胶-凝胶涂膜可以赋于基体各种性能,其中包 括机械的、化学保护的、光点:工艺简单,成膜均匀,成本很低。 应用:大部分熔点在500℃以上的金属、合金 以及玻璃等基体都可采用该流程制取薄膜。



旋覆法的两个步骤:旋覆与热处理。 基本过程:基片在匀胶台上以一定的角速度旋 转,当溶胶液滴从上方落于基片表面时,它就 被迅速地涂覆到基片的整个表面。溶剂的蒸发 使得旋覆在基片表面的溶胶迅速凝胶化,接着 进行一定的热处理便得到所需的氧化物薄膜。 二者比较:浸渍提拉法更简单些,但它易受环 境因素的影响,膜厚较难控制;浸渍提拉法不 适用于小面积薄膜(尤其当基底为圆片状时)的 制备,旋覆法却相反,它特别适合于在小圆片 基片上制备薄膜。



(B)CVD的种类 分类标准:发生化学反应的参数和方法 ①常压CVD法; ②低压CVD法; ③热CVD法; ④等离子CVD法; ⑤间隙CVD法; ⑥激光CVD法; ⑦超声CVD法等。
(C)CVD的流程与装置
基本组成:原料气体和载气的供给源气体的混合 系统、反应炉、废气系统及气体、反应炉的控 制系统。
(D)超声波化学气相沉积(UWCVD)


定义:是利用超声波作为 CVD 过程中能源的一 种新工艺。 分类: 分类标准:超声波的传递方式 类型:超声波辐射式、CVD基体直接振动式。 超声波辐射式优于CVD基体直接振动式 超声波辐射式 UWCVD 的原理见图 3.17 ,利 用电感线圈将基体加热到一定温度,适当调节 超声波的频率和功率,即可在基体上得到晶粒 细小、致密、强韧性好、与基体结合牢固的沉 积膜。







③微波等离子体发生器本身没有内部电极, 从而消除了气体污染和电极腐蚀,有利于高纯 化学反应和延长使用寿命。 ④微波等离子体的产生不带高压,微波辐射 容易防护,使用安全。 ⑤微波等离子体的参数变化范围较大,这为 广泛应用提供了可能性。 应用:凡直流或射频等离子体能应用的领域均 能应用。目前MWPECVD已在集成电路、光导 纤维,保护膜及特殊功能材料的制备等领域得 到日益广泛的应用。

2、化学气相沉积法(CVD) 3、溶胶凝胶法

2、化学气相沉积法(CVD)



定义:利用气相反应,在高温、等离子或激光 辅助等条件下控制反应气压、气流速率、基片 材料温度等因素,从而控制纳米微粒薄膜的成 核生长过程;或者通过薄膜后处理,控制非晶 薄膜的晶化过程,从而获得纳米结构的薄膜材 料。 分类:常压、低压、等离子体辅助气相沉积等。 应用:在制备半导体、氧化物、氮化物、碳化 物纳米薄膜材料中得到广泛应用。 反应温度:大约为900~2000℃,它取决于沉 积物的特性。


高压气体:以高纯度的为好,一般大多使用载 气,因为都要通过气体精制装置进行纯化。特 别是必须十分注意除去对薄膜性质影响极大的 水和氢。 原料要求:当室温下使用固态或液态原料时, 需使其在所规定的温度下蒸发或升华,并通过 载气送入反应炉内。还必须使废气通过放有吸 收剂的水浴瓶、收集器或特殊的处理装置后进 行排放。并且在装置和房间里不能忘记安装防 爆装置和有毒气体的检测器。




⑥绕镀性好:可在复杂形状的基体上及颗粒 材料上沉积。 ⑦气流条件:层流,在基体表面形成厚的边 界层。 ⑧沉积层结构:柱状晶,不耐弯曲。通过各 种技术对化学反应进行气相扰动,可以得到细 晶粒的等轴沉积层。 ⑨应用广泛:可以形成多种金属、合金、陶瓷 和化合物沉积层
相关文档
最新文档