复习(数理逻辑部分)
05a数理逻辑总复习
(QR)(PP)) =(PQR)(PQR)(PQR)(P
QR)
43
补充例题
求G=(PQ)(PR)(QR)主析取范式。
(PQR) (PQR) (PQR) (PQR)
P
第五周 第二讲
数理逻辑 单元总复习
1
原子命题、复合命题
命题的定义:客观上能够确定真假的陈述句。 命题的分类:
原子命题: 不能分解为更简单的陈述句。
复合命题: 由联结词、标点符号和原 子命题复合构成的命题。
2
命题变元、命题常量
命题常量: 用来表示确定命题的标识符。
例如:P表示“今天下雨。”
命题变元: 表示任意命题位置标志的命题标识符。
换名的范围是该约束变元的辖域; 新名不要与谓词公式中已有的变元重名。
自由变元的改名叫代入。 约束变元的换名 自由变元的代入
33
有限域中消去量词
若x的个体域是有限集{a1,a2,…,an},则有:
(x)A(x) A(a1)∧A(a2)∧…∧A(an) (x)A(x) A(a1)∨A(a2)∨…∨A(an)
Q
R
G
0
0
0
0
0
0
1
1
0
1
0
0
0
1
1
1
1
0
0
0
1
0
1
0
1
1
0
1
1
1
1
1
44
补充例题
判断公式G=(PQ)PQ是否恒假? 解:G=(PQ)PQ
数理逻辑复习题
一、选择题1、永真式的否定是(2)(1) 永真式 (2) 永假式 (3) 可满足式 (4) (1)--(3)均有可能2、设P :2×2=5,Q :雪是黑的,R :2×4=8,S :太阳从东方升起,则下列真命题为(1) (1)R Q P ∧→ (2)S P R ∧→ (3)R Q S ∧→ (4) )()(S Q R P ∧∨∧。
3、设P :我听课,Q :我看小说,则命题R “我不能一边听课,一边看小说”的符号化为⑵ ⑴ P Q → ⑵Q P ⌝→(3) Q P →⌝ ⑷ P Q ⌝→⌝()P Q ⌝∧ 提示:()R P Q P Q ⇔⌝∧⇔→⌝4、下列表达式错误的有⑷⑴()P P Q P ∨∧⇔ ⑵()P P Q P ∧∨⇔ ⑶()P P Q P Q ∨⌝∧⇔∨ ⑷()P P Q P Q ∧⌝∨⇔∨ 5、下列表达式正确的有⑷⑴ P P Q ⇒∧ ⑵ P Q P ⇒∨ ⑶ ()Q P Q ⌝⇒⌝→⑷Q Q P ⌝⇒→⌝)( 6、下列联接词运算不可交换的是(3)⑴∧ ⑵∨ (3)→ ⑷ ↔6、设D :全总个体域,F (x ):x 是花,M(x) :x 是人,H(x,y):x 喜欢y ,则命题“有的人喜欢所有的花”的逻辑符号化为⑷⑴(()(()(,))x M x y F y H x y ∀∧∃→ ⑵(()(()(,))x M x y F y H x y ∀∧∀→ (3) (()(()(,))x M x y F y H x y ∃∧∃→ ⑷(()(()(,))x M x y F y H x y ∃∧∀→7、设L(x):x 是演员,J(x):x 是老师,A(x , y):x 钦佩y ,命题“所有演员都钦佩某些老师”的逻辑符号化为⑵⑴)),()((y x A x L x →∀ ⑵))),()(()((y x A y J y x L x ∧∃→∀ (3) )),()()((y x A y J x L y x ∧∧∃∀ ⑷)),()()((y x A y J x L y x →∧∃∀ 8、谓词公式)())()((x Q y yR x P x →∃∨∀中的 x 是⑶⑴自由变元 ⑵约束变元 ⑶既是自由变元又是约束变元 ⑷既不是自由变元又不是约束变元 9、下列表达式错误的有⑴⑴(()())()()x A x B x xA x xB x ∀∨⇒∀∨∀ ⑵(()())()()x A x B x xA x xB x ∃∧⇒∃∧∃ (3) (()())()()x A x B x xA x xB x ∀∧⇔∀∧∀ ⑷(()())()()x A x B x xA x xB x ∃∨⇔∃∨∃10、下列推导错在⑶①)(y x y x >∃∀ P ②)(y z y >∃ US ① ③)(z C z > ES ② ④)(x x x >∀UG ③⑴② ⑵③ ⑶④ ⑷无 11、下列推理步骤错在⑶①(,)x yF x y ∀∃ P ②),(y z yF ∃ US ① ③),(c z F ES ② ④),(c x xF ∀ UG ③ ⑤),(y x xF y ∀∃EG ④ ⑴①→② ⑵②→③ ⑶③→④ ⑷④→⑤12、设个体域为{a,b},则(),x yR x y ∀∃去掉量词后,可表示为⑷⑴()()()(),,,,R a a R a b R b a R b b ∧∧∧ ⑵()()()(),,,,R a a R a b R b a R b b ∨∨∨ (3) ()()()()()()b b R a b R b a R a a R ,,,,∨∧∨ ⑷()()()()()()b b R a b R b a R a a R ,,,,∨∧∨ 提示:原式()()()()()()()(),,,,,,yR a y yR b y R a a R a b R b a R b b ⇔∃∧∃⇔∨∧∨二、填充题1、一个命题含有n 个原子命题,则对其所有可能赋值有2n种。
交大数理逻辑课件数理逻辑和集合论复习提纲
4.使用推理规则证明: P(QR),S∨P, Q S R
《数理逻辑》样卷
六.应用题(共20分)
1. 甲、乙、丙、丁四人参加考试,有人问他们,谁的成绩最 好,甲说:“不是我”,乙说:“是丁”,丙说:“是乙”, 丁说:“不是我”.四人的回答只有一人符合实际,问是 谁的成绩最好,若只有一人成绩最好,他是谁?
A.A=B
B.BA
C.AB
D.A≠B
8.下列一阶谓词公式中,是逻辑有效 式的是____________。
A. x(F(x) G(x))
B. xF(x) xF(x)
C. Байду номын сангаасF(x,y) R(x,y)) R(x,y)
D. xyF(x,y) xyF(x,y)
9.设 f:B→C, g:A→B. 则下面命 题是错误的是___________。
第11章 函 数
11.1 函数 11.2 函数的合成和函数的逆
第12章 集合的基数
12.2 集合的等势 12.3 有限集合与无限集合 12.4 集合的基数
试题结构
卷面
一. 选择题(10%) 二. 填空题(20%) 三. 判断题(10%) 四. 运算题(20%) 五. 证明题(20%) 六. 应用题(20%)
《数理逻辑》样卷
6.设A、B是集合,右图的文氏图的 阴影部分的区域可用________表 达式表示
A. A∩B B. A∪B
C. A-B D. (A∪B)-(A∩B)
7.集合A和B定义如下,则它们之间 满足_________关系。
《离散数学》复习题及答案
《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式?x((A(x)?B(y,x))??z C(y,z))?D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)P↔(4)QP→⌝P⌝Q→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。
(1) ?x?y(x+y=0) (2) ?y?x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ?x?y (xy=y) ( ) (2) ?x?y(x+y=y) ( )(3) ?x?y(x+y=x) ( ) (4) ?x?y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式?x(P(x)?Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
面向计算机科学的数理逻辑复习文档
绪论一、数理逻辑研究什么?★研究前提和结论的可推导性关系,它是由命题的逻辑形式而非内容所决定的二、数理逻辑如何研究?★形式语言第一章预备知识第一节集合一、集合1、集合的内涵和外延(所有元素的共同性质/构成集合的所有元素)2、有序偶和笛卡儿集二、关系1、概念:集合S上的n元关系R2、特殊情况:集合S上的一元关系R(集合S上的性质R)三、函数(映射)1、概念:函数(集合+有序偶+性质)、定义域dom(f)、值域ran(f)2、概念:f(x)(函数f在x处的值)3、概念:f:S->T(函数f是由S到T的映射)、满射、一一映射四、等价1、概念:关系R是集合S上的等价关系(自反+对称+传递)2、概念:元素x的R等价类3、性质:R等价类对集合S的一个划分(两两不相交,且并为S)五、基数1、概念:S~T(两个集合S和T是等势的)2、概念:集合S的基数|S|(集合中的元素个数)3、概念:可数无限集第二节归纳定义和归纳证明一、归纳定义1、集合的归纳定义⑴、直接生成某些元素⑵、给出运算,将其作用在已有元素上,以产生新的元素⑶、只有这样才是集合中的元素,除此之外,再也没有了2、典例:自然数集N的两个归纳定义二、归纳证明1、归纳定理:设R是一个性质,如果⑴、R(0)⑵、对于任何n∈N,如果R(n),则R(n’)那么,对于任何n∈N,都有R(n)2、概念:归纳基础、归纳步骤(包括归纳变元和归纳假设)、归纳命题、归纳证明3、概念:串值归纳法及其变形三、递归定义1、递归定义(在归纳定义的集合上,定义函数)在自然数集N上定义一个这样的函数f:g,h是N上的已知函数f(0)=g(0)f(n’)=h(f(n))2、递归定义原理(这样的函数是存在而且唯一的)第二章经典命题逻辑第一节联结词一、基本概念1、概念:命题(陈述句+确定值)(要么是真,要么是假)2、概念:简单命题和复合命题(区分的关键)3、小结:只考虑复合命题的真假是如何确定的二、联结词1、非A:2、A与B:A为真并且B为真3、A或B:A为真或B为真(A为真或B为真或AB同时为真)4、A蕴涵B:如果A真,则B真(并非A假B真)5、A等值于B:如果A蕴涵B,同时B蕴涵A第二节命题语言一、基本概念1、概念:命题语言(命题逻辑使用的形式语言)2、归纳:命题语言的三类符号(命题符号+联结符号+标点符号)3、概念:表达式、长度、空表达式、两个表达式相等4、概念:段、真段、初始段、结尾段二、基本概念1、定义:原子公式,记为Atom(L P)(单独一个命题符号)2、定义:公式,记为Form(L P)(经典归纳定义及其两种变形)★经典定义容易理解,然而两种变形更容易使用3、定理:如何证明L P的所有公式都满足R性质?★关键:假设S={A∈Form(L P)| R(A)}4、概念:对公式的结构做归纳(上述归纳证明)三、习题解析1、关键:利用二叉树表示公式的生成过程2、关键:蕴涵有多种不同的叙述方式(关键:分清楚充分条件和必要条件)⑴、◆如果p,则q⑵、◆只要p,则q⑶、◆p仅当q⑷、◆只有p,才q⑸、◆除非p,否则q(思路:想方设法转化为上述情形)第三节公式的结构一、引理1、引理1:L P的公式是非空的表达式2、引理2:在L P的每个公式中,左括号和右括号出现的数目相同3、引理3:真初始段不是公式(在L P的公式的任何非空的真初始段中,左括号出现的次数比右括号多。
《离散数学》复习题及答案
页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
篇数理逻辑复习题
篇数理逻辑复习题第一篇数理逻辑复习题第1章命题逻辑一、单项选择题1. 下列命题公式等值的是( )B B A A Q P Q Q P Q B A A B A A Q P Q P ),()D (),()C ()(),()B (,)A (∧∨?∨∨?∨→→→?→→∨?∧? 2. 设命题公式G :)(R Q P ∧→?,则使公式G 取真值为1的P ,Q ,R 赋值分别是 ( ) 0,0,1)D (0,1,0)C (1,0,0)B (0,0,0)A (3. 命题公式Q Q P →∨)(为 ( )(A) 矛盾式 (B) 仅可满足式 (C) 重言式 (D) 合取范式4 命题公式)(Q P →?的主析取范式是( ).(A) Q P ?∧ (B) Q P ∧? (C) Q P ∨? (D) Q P ?∨5. 前提条件P Q P ,?→的有效结论是( ).(A) P (B) ?P (C) Q (D)?Q6. 设P :我将去市里,Q :我有时间.命题“我将去市里,仅当我有时间时”符号化为( )Q P Q P Q P P Q ?∨??→→)D ()C ()B ()A (二、填空题 1. 设命题公式G :P →?(Q →P ),则使公式G 为假的真值指派是2. 设P :我们划船,G :我们跑步,那么命题“我们不能既划船,又跑步”可符号化为3. 含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是4. 若命题变元P ,Q ,R 赋值为(1,0,1),则命题公式G =)())((Q P R Q P ∨??→∧的真值是5. 命题公式P →?(P∧Q )的类型是.6. 设A ,B 为任意命题公式,C 为重言式,若C B C A ∧?∧,那么B A ?是式(重言式、矛盾式或可满足式)三、解答化简计算题1. 判别下列语句是否命题?如果是命题,指出其真值.(1) 中国是一个人口众多的国家. (2) 存在最大的质数.(3) 这座楼可真高啊! (4) 请你跟我走! (5) 火星上也有人.2.作命题公式))(()(P Q P Q P ∨∧→→的真值表,并判断该公式的类型.3. 试作以下二题:(1) 求命题公式(P ∨?Q )→(P ∧Q )的成真赋值.(2) 设命题变元P ,Q ,R 的真值指派为(0,1,1),求命题公式))()(()(Q R Q P R P →?∨→?∧?的真值.4. 化简下式命题公式))()((P Q P Q P ∧?∧?∨∧5. 求命题公式))()((Q P P Q P ∧?∧→→的主合取范式.6. 求命题公式R P R Q P P R Q ∨?∨→?∧→?∧)())((的真值.7. 求命题公式)()(Q P Q P ?→∧→?的主析取范式,并求该命题公式的成假赋值.8. 将命题公式)(P R Q P →?∧?∧?化为只含∨和?的尽可能简单的等值式.9. 求命题公式)()(Q P Q P ?∨?∧∧的真值表.四、证明题1. 证明S S P R R Q Q P ∨∧?∧∨?∧→)()()(2. 构造推理证明:S R Q P R S Q P →?∧→∧→→)())((3. 证明命题公式(P →(Q ∨?R ))∧?P ∧Q 与?(P ∨?Q )等值.4. 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式.参考答案一、1. C 2. D 3. B 4. A 5. D 6. B二、1. 1,0;1,1 2. )(Q P ∧?或Q P ?∨? 3. (P ∧Q ∧R )∨(P ∧Q ∧?R )4. 05. 非永真式的可满足式6. 重言三、1. (1) 是命题,真值为1. (2) 是命题,真值为0. (3), (4)不是命题. (5) 是命题.1. 判别下列语句是否命题?如果是命题,指出其真值.(1) 中国是一个人口众多的国家. (2) 存在最大的质数.(3) 这座楼可真高啊! (4) 请你跟我走! (5) 火星上也有人.2. 命题公式的真值表原式为可满足式.3. (1) (P ∨?Q )→(P ∧Q )?(?P ∧Q )∨(P ∧Q )?(?P ∨P )∧Q ?Q可见(P ∨?Q )→(P ∧Q )的成真赋值为(0,1),(1,1).(2) ))()(()(Q R Q P R P →?∨?→?∧?0))10()01(()10(?→∨→∧??4. ))()((P Q P Q P ∧?∧?∨∧P Q P Q P ∧?∧?∨∧?)()()()(P P Q P Q P ∧?∧?∨∧∧?0)(∨∧?Q PQ P ∧?5. ))()((Q P P Q P ∧?∧→→))()((Q P P Q P ∧?∧∨?∨??)())(Q P P Q P Q P ∧?∧∨∧?∧?∨??)00(∧∨??P)(Q Q P ?∧∨??)()(Q P Q P ?∨?∧∨??6. R P R Q P P R Q ∨?∨→?∧→?∧)())((R P R Q P P R Q ∨?∨∨∧∨∨??)()(R P Q Q R P ∨?∧?∨∨?)(1?7. )()()()(Q P Q P Q P Q P ?∨?∧?∧??→∧→?Q P ?∧?因为成真赋值是(1,0),故成假赋值为(0,0),(0,1),(1,1)8. ))()()(R P Q P P R Q P ∨∧∨??→?∧?∧?))()((R P Q P ∨?∨∨??不唯一.9.四、证明题1. 证明S S P R R Q Q P ∨∧?∧∨?∧→)()()(①?Q ∨R P②?R P③?Q T ①,②析取三段论④P →Q P⑤P ? T ③,④拒取式⑥P ∨?S P⑦?S ⑤,⑥析取三段论2. 构造推理证明:S R Q P R S Q P →?∧→∧→→)())((.前提:Q P R S Q P ,)),((→→→结论:S R →证明:① R 附加前提② R →P 前提引入③ P ①,②假言推理④P →(Q →S ) 前提引入⑤ Q →S ③,④假言推理⑥ Q 前提引入⑦ S ⑤,⑥假言推理3. 证明命题公式(P →(Q ∨?R ))∧?P ∧Q 与?(P ∨?Q )等值.证明:(P →(Q ∨?R ))∧?P ∧Q ?(?P ∨(Q ∨?R ))∧?P ∧Q(?P ∧?P ∧Q )∨(Q ∧?P ∧Q )∨(?R ∧?P ∧Q )(?P ∧Q )∨(?P ∧Q )∨(?P ∧Q ∧?R )P ∧Q(P ∨?Q )4. 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式.证明.方法1.)()(Q R Q P →∨→?)()(Q R Q P ∨?∨∨?∨∧??Q R P )(Q R P →∧)(因为两命题公式等值,由主合取范式的惟一性,可知两命题公式的主合取范式是相同.4. 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式.方法2.)()(Q R Q P →∨→?)()(Q R Q P ∨?∨∨?R Q P Q R P ?∨∨??∨?∨??R Q P Q R P Q R P ?∨∨??∨?∨??→∧)(因为它们的主合取范式相同,可知它们的主析取范式也相同.第2章谓词逻辑一、单项选择题1. 谓词公式)())()((x Q y yR x P x →?∨?中量词?x 的辖域是( )(A) ))()((y yR x P x ?∨? (B) P (x ) (C) )()(y yR x P ?∨ (D) )(x Q2. 谓词公式?xA (x )∧??xA (x )的类型是()(A) 永真式 (B) 矛盾式(C) 非永真式的可满足式 (D) 不属于(A ),(B ),(C )任何类型3 设个体域为整数集,下列公式中其真值为1的是( )(A) )0(=+??y x y x (B) )0(=+??y x x y(C))0(=+??y x y x (D) )0(=+y x y x4 设L (x ):x 是演员,J (x ):x 是老师,A (x ,y ):x 佩服y. 那么命题“所有演员都佩服某些老师”符号化为( )(A) ),()(y x A x xL →? (B) ))),()(()((y x A y J y x L x ∧?→?(C) )),()()((y x A y J x L y x ∧∧?? (D) )),()()((y x A y J x L y x →∧??5. 设个体域是整数集合,P 代表?x ?y ((x <="" )→(x="" -y=""(A) P 是真命题 (B) P 是逻辑公式,但不是命题(C) P 是假命题 (D) P 不是逻辑公式6. 表达式))(),(())(),((z zQ y x R y z Q y x P x ?→?∧∨?中x ?的辖域是( ) (A) P (x ,y ) (B)R (x ,y ) (C)P (x ,y )∧R (x ,y ) (D) P (x ,y )∨Q (z )二、填空题1. 设个体域D ={1,2},那么谓词公式)()(y yB x xA ?∨?消去量词后的等值式为 .2. 设个体域D ={a ,b },公式)),()((y x yH x G x ?→?消去量词化为3. 设N (x ):x 是自然数,Z (y );y 是整数,则命题“每个自然数都是整数,而有些整数不是自然数”符号化为4. 谓词公式?x (F (x )→G (x ))∧??y (F (y )→G (y ))的类型是.5. 设个体域{1,2},谓词P (1)=1,P(2)=0,Q(1)=0,Q (2)=1,则?x (P (x )∨Q (x ))的真值是三、解答化简计算题1. 判别谓词公式),(),(y x xF y y x yF x ??→??的类型.2. 指出谓词公式)())()),()(((x S x xR y x Q x P x ∧?∧→?中?x 和?x 的辖域,并指出该公式的约束变元和自由变元以及约束出现次数和自由出现次数.3. 求谓词公式))(())((a f R x Q P x ∧→?的真值.其中P :4>3,Q (x ):x >1,R (x ):x ≤2.f (-3)=1,f (1)=5,f (5)= -3.a :5.个体域D =(-3,1,5).4.说明公式))(),(()(x xP y x yG x xP ?→?→?是逻辑有效式(永真式).5. 通过等值演算说明下列等值式成立: )()())()((x xQ x xP x Q x P x ?→??→?6. 求谓词公式),,()),(),((z y x zH y x yG y x xF ?∧?→?的前束范式.四、证明题1. 试利用代换实例证明谓词公式))(),(()(x xF z x zG y x xF ?→??→?是逻辑有效式(永真式).2. 构造推理证明))()(()()(x Q x P x x xQ x xP →→?.(提示:))()(()()(x B x A x x xB x xA ∨∨?.)参考答案一、1. C ;2.. B ;3 A ;4. B ;5. A 6. D二、1. A (1)∨A (2)∨(B (1)∧B (2)) 2. (G (a )→(H (a ,a )∨H(a ,b )))∧ (G (b )→(H (b ,a )∨H (b ,b )))3. ))()(())()((x N x Z x x Z x N x ?∧?∧→?4. 永假式5. 1三、1.设I 为任意一个解释,D 为I 的个体域. 若在解释I 下,该公式的前件为0,无论),(y x xF y ??如何取值,),(),(y x xF y y x yF x ??→??为1;若在解释I 下,该公式的前件为1,则,0D x ∈?使得),(y x yF ?为1,它蕴含着),(,0y x F D y '∈'?为1),(y x xF '??为1,由y '的任意性,必有),(y x xF y ??为1,于是),(),(y x xF y y x yF x ??→??为1.所以,),(),(y x xF y y x yF x ??→??是永真式.2. ?x 的辖域为:P (x )→Q (x ,y )∧?xR (x )x 的辖域为:R (x )x 既是约束变元,也是自由变元,约束出现3次,自由出现1次.y 是自由变元,自由出现1次.3. ))(())((a f R x Q P x ∧→? =))5(())5(())1(())3((f R Q P Q P Q P ∧→∧→∧-→=)3()11()01()01(-∧→∧→∧→R01100=∧∧∧=4. 已知1)()(?∨?∨??∨?∨??→→P Q P P Q P P Q P因为))(),(()(x xP y x yG x xP ?→?→?是)(P Q P →→的代换实例,可知))(),(()(x xP y x yG x xP ?→?→?是逻辑有效式.或))(),(()(x xP y x yG x xP ?∨??∨??1)(),()(?∨??∨x P y x yG x xP5. ?→?))()((x Q x P x )()((x Q x P x ∨??))()(x xQ x P x ?∨)()(x xQ x xP ?∨)()(x xQ x xP ?→??6. ),,()),(),((z y x zH y x yG y x xF ?∧?→?),,()),(),((z y x zH y x yG y x xF ?∧?∨),,()),(),((z y x zH v u vG y u F u ?∧?∨)),,()),(),((z y x zH v u vG y u F u ?∧?∨)),,()),(),(((z y x H v u Q y u F z v u ∧∨(或)),,()),(),(((z y x H v u Q y u F z v u ∧→)四、1.谓词公式))(),(()(x xF z x zG y x xF ?→??→? 是命题公式)(P Q P →→ 的代换实例.因为命题公式∨?∨??→→P Q P P Q P )( 1 是永真式,故))(),(()(x xF z x zG y x xF ?→??→?是逻辑有效式.2.前提:)()(x xQ x xP ?→?.结论:)()(x xQ x xP ?→?.证① )()(x xQ x xP ?→? 前提引入② )()(x xQ x xP ?∨?? T ①,蕴含等值式③ )()(x xQ x P x ?∨?? T ②,量词否定④ ))()((x Q x P x ∨??⑤ ))()((x Q x P x →? T ④,蕴含等值式。
复习(数理逻辑部分)
第1章命题逻辑的基本概念一:基本概念:1.称能判断真假而不是可真可假的陈述句为命题。
2.真值为真的命题称为真命题。
3.真值为假的命题称为假命题。
4.简单命题(原子命题)。
5.由简单命题通过联结词而成的陈述句,称这样的命题为复合命题。
例1判断下列句子是否为命题。
(1)4是素数。
(2)x大于y。
(3)充分大的偶数等于两个素数之和。
(4)北京是中国的首都。
(5)请不要吸烟!(6)我正在说假话。
6.合式公式: 命题符号与联结词组成不是合式公式的例子:pq→r;(p→(r→q)7.公式的类型:重言式、永真式、可满足式重言式(永真式):都是1矛盾式(永假式):都是0可满足式:有1,也有0二. 联结词:否定:┐p非p合取:p∧q p并且q(或“p与q”)析取:p∨q p或q蕴涵:p→q如果p,则q等价:p↔q p当且仅当q本书规定的联结词优先顺序为:( ),┐,∧,∨,→,↔,对于同一优先级的联结词,先出现者先运算。
例2令p:北京比天津人口多。
q:2+2=4.r:乌鸦是白色的。
求下列复合命题的真值:(1)(q∨r)→(p→┐r)(2)(┐p∨r)↔(p∧┐r)解:p、q、r的真值分别:1、1、0(1) 1 (2) 0例3求下列公式的真值表,并求成真赋值和成假赋值。
判断公式类型(1)(p∧┐p)↔(q∧┐q)(2)(┐p∧q)→┐r(3)┐(p→q)∧q∧r解:先做真值表(1)是永真式,00,01,10,11是成真赋值,没有成假赋值。
(2)是可满足式,011是成假赋值,其余是成真赋值。
(3)是永假式,都是成假赋值,没有成真赋值。
第2章命题逻辑等值演算一:验证两个公式是否等值:方法一:真值表方法二:等值演算1.双重否定律 A ⇔┐┐A2.幂等律 A ⇔ A∨A, A ⇔ A∧A3.交换律A∨B ⇔ B∨A,A∧B ⇔ B∧A4.结合律(A∨B)∨C ⇔ A∨(B∨C)(A∧B)∧C ⇔ A∧(B∧C)5.分配律 A∨(B∧C) ⇔ (A∨B)∧(A∨C)(∨对∧的分配律)A∧(B∨C) ⇔ (A∧B)∨(A∧C)(∧对∨的分配律)6.德·摩根律┐(A∨B) ⇔┐A∧┐B┐(A∧B) ⇔┐A∨┐B7.吸收律 A∨(A∧B) ⇔ A,A∧(A∨B) ⇔ A8.零律A∨1 ⇔ 1,A∧0 ⇔ 09.同一律A∨0 ⇔ A,A∧1 ⇔ A10.排中律A∨┐A ⇔ 111.矛盾律A∧┐A ⇔ 012.蕴涵等值式A→B ⇔┐A∨B13.等价等值式A↔B ⇔ (A→B)∧(B→A)例1.用等值演算法验证等值式(p∨q)→r ⇔ (p→r)∧(q→r)解:方法一:真值表方法二:等值演算:(p→r)∧(q→r)⇔ (┐p∨r)∧(┐q∨r) (蕴含等值式)⇔ (┐p∧┐q)∨r (分配律)⇔┐(p∨q)∨r (德摩根律)⇔ (p∨q)→r (蕴含等值式)二:基本概念(理解):1. 在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项和它的否定式不同时出现,而二者之一必出现且仅出现一次,称这样的简单合取式(简单析取式)为极小项(极大项)。
数理逻辑复习题
数理逻辑复习题⼀、选择题1、永真式的否定是(2)(1) 永真式 (2) 永假式 (3) 可满⾜式 (4) (1)--(3)均有可能2、设P :2×2=5,Q :雪是⿊的,R :2×4=8,S :太阳从东⽅升起,则下列真命题为(1) (1)R Q P ∧→ (2)S P R ∧→ (3)R Q S ∧→ (4) )()(S Q R P ∧∨∧。
3、设P :我听课,Q :我看⼩说,则命题R “我不能⼀边听课,⼀边看⼩说”的符号化为⑵⑴ P Q →⑵Q P ?→(3) Q P →? ⑷ P Q ?→?()P Q ?∧提⽰:()R P Q P Q ??∧?→?4、下列表达式错误的有⑷⑴()P P Q P ∨∧? ⑵()P P Q P ∧∨?⑶()P P Q P Q ∨?∧?∨⑷()P P Q P Q ∧?∨?∨ 5、下列表达式正确的有⑷⑴ P P Q ?∧⑵ P Q P ?∨⑶ ()Q P Q →⑷Q Q P →?)( 6、下列联接词运算不可交换的是(3)⑴∧⑵∨ (3)→⑷ ? 6、设D :全总个体域,F (x ):x 是花,M(x) :x 是⼈,H(x,y):x 喜欢y ,则命题“有的⼈喜欢所有的花”的逻辑符号化为⑷⑴(()(()(,))x M x y F y H x y ?∧?→⑵(()(()(,))x M x y F y H x y ?∧?→(3) (()(()(,))x M x y F y H x y ?∧?→⑷(()(()(,))x M x y F y H x y ?∧?→7、设L(x):x 是演员,J(x):x 是⽼师,A(x , y):x 钦佩y ,命题“所有演员都钦佩某些⽼师”的逻辑符号化为⑵⑴)),()((y x A x L x →? ⑵))),()(()((y x A y J y x L x ∧?→? (3) )),()()((y x A y J x L y x ∧∧?? ⑷)),()()((y x A y J x L y x →∧??8、谓词公式)())()((x Q y yR x P x →?∨?中的 x 是⑶⑴⾃由变元⑵约束变元⑶既是⾃由变元⼜是约束变元⑷既不是⾃由变元⼜不是约束变元 9、下列表达式错误的有⑴⑴(()())()()x A x B x xA x xB x ?∨??∨? ⑵(()())()()x A x B x xA x xB x ?∧??∧? (3) (()())()()x A x B x xA x xB x ?∧??∧? ⑷(()())()()xA xB x xA x xB x ?∨??∨? 10、下列推导错在⑶①)(y x y x >?? P②)(y z y >? US ①③)(z C z >ES ②④)(x x x >? UG ③⑴②⑵③⑶④⑷⽆ 11、下列推理步骤错在⑶①(,)x yF x y ?? P②),(y z yF ? US ①③),(c z F ES ②④),(c x xF ?UG ③⑤),(y x xF y ?? EG ④⑴①→②⑵②→③⑶③→④⑷④→⑤12、设个体域为{a,b},则(),x yR x y ??去掉量词后,可表⽰为⑷⑴()()()(),,,,R a a R a b R b a R b b ∧∧∧⑵()()()(),,,,R a a R a b R b a R b b ∨∨∨(3) ()()()()()()b b R a b R b a R a a R ,,,,∨∧∨⑷()()()()()()b b R a b R b a R a a R ,,,,∨∧∨提⽰:原式()()()()()()()() ,,,,,,yR a y yR b y R a a R a b R b a R b b ??∧??∨∧∨⼆、填充题1、⼀个命题含有n 个原⼦命题,则对其所有可能赋值有2n 种。
数理逻辑复习题
数理逻辑复习题复习要求: 掌握命题、逻辑联结词的概念;公式与解释的概念,用基本等价式化简其他公式;会用真值表法和主范式判断公式的类型;公式蕴涵与逻辑结果的概念;形式演绎方法判断公式的类型;公式蕴涵与逻辑结果的概念;形式演绎方法..一阶逻辑的基本概念,一阶逻辑公式及其解释,等值演算,推理理论;一阶逻辑公式的三种类型,即逻辑有效式(永真式),矛盾式和可满足式;用联结词产生复合命题的方法;公式在解释下的真值;公式范式的概念;形式演绎和蕴涵的关系生复合命题的方法;公式在解释下的真值;公式范式的概念;形式演绎和蕴涵的关系..命题逻辑与一阶逻辑推理理论理理论. .一、命题逻辑部分1、填空题.⑴ 公式(p ÙØq )Ú(Øp Ùq )的成真赋值为)的成真赋值为 01,10 .⑵ 设p 、r 为真命题,q 、s 为假命题,则复合命题(p ®q )«(Ør ®s )的真值为)的真值为 0 . ⑶ 设p 、q 为命题,在为命题,在 p 、q 不能同时发生不能同时发生 条件下,p 与q 的排斥或也可以写成p 与q 的相容或.⑷ 设A 为任意公式,B 为重言式,则A ÚB 的类型是的类型是 重言式重言式⑸ 设A 是含命题变项p 、q 、r 的重言式,则公式A Ú((p Ùq )®r )的类型为重言式.⑹ 设B 是含命题变项p 、q 、r 的矛盾式,则公式B Ù((p «q )®r )的类型为矛盾式)的类型为矛盾式 . ⑺ 矛盾式的主析取范式是矛盾式的主析取范式是 0 .⑻ 重言式的主合取范式是重言式的主合取范式是 1 .⑼ 设公式A 含命题变项p 、q 、r 已知A 主合取范式是M 0ÙM 2ÙM 5ÙM 6,则A 的主析取范式是的主析取范式是 .⑽ 已知公式Ø(q ®p )Ùp 是矛盾式,则公式Ø(q ®p )Ùp ÙØr 的成真赋值是的成真赋值是 成假赋值 .⑾已知公式(p ®(p Úq ))Ù((p Ùq )®p )是重言式,公式p ®(p Úq )及(p Ùq )®p 类型是 .⑿已知公式(p Ùq )®p 是重言式,则公式((p Ùq )®p )Úr 的成真赋值是的成真赋值是 成假赋值 .⒀(A ®B )ÙØB Þ 为拒取式推理定律.⒁(A ÚØB )ÙB Þ 为析取三段论推理定律.⒂(ØA ®B )Ù(B ®ØC )Þ 为假言三段论推理定律.⒃(ØA ®ØB )ÙØA Þ 为假言推理定律.2、将下列命题或语句符号化. ⑴ 说7不是无理数是不对的. ØØp (p )⑵ 小刘既不怕苦,又很钻研. Øp Ùq⑶ 只有不怕困难,才能战胜困难只有不怕困难,才能战胜困难 q ®Øp⑷ 只要别人有困难,老王就帮助别人,除非问题解决了. Ør ®(p ®q );(Ør Ùp )®q 或Øq ®(Øp Úr ) ⑸ 整数n 是偶数当且仅当n 能被2整除. p «q ⑹ 若地球上没有树木,则人类不能生存. q p Ø®Ø⑺ 若422=+,则地球是静止不动的. q p ®3、求下列复合命题真值. P :2能整除5,q :旧金山美国的首都,r :一年有四季:一年有四季⑴((p Úq )®r )Ù(r ®(p Ùq )⑵((Øq «p )®(r Úp ))Ú((Øp ÙØq )ÚØr )4、判断下面一段论述是否为真:“3是无理数.并且,如果3是无理数,则2也是无理数.另外,只有6能被22⑥ p ÙØq ®r 前提引入前提引入⑦ r ⑤ ⑥假言推理⑥假言推理二、一阶逻辑部分1.在一阶逻辑中将下列命题符号化.⑴ 所有的整数,不是负整数,就是正整数,或者是零. 解 F (x ):x 是整数G (x ):x 是正整数H (x ):x 是负整数L (x ):x 是0 "x (F (x )® G (x )ÚH (x )ÚL (x ))或"x (F (x )ÙØ G (x )®H (x )ÚL (x )) ⑵ 有的实数是有理数有的实数是无理数. 解 F (x ):x 是实数是实数 G (x ):x 是有理数是有理数H (x ):x 是无理数是无理数 $x (F (x )ÙG (x ))Ù$y (F (y )Ù H (y )) ⑶ 不存在能表示成分数无理数. 解 F (x ):x 能表示成分数能表示成分数 G (x ):x 是无理数是无理数Ø$x (G (x )Ù F (x ))Û"x (G (x )®Ø F (x )) ⑷ 若x 、y 都是实数,且x>y ,则x+2>y+2. 解 F (x ):x 是实数是实数 H (x ,y ):x>y "x "y (F (x )ÙF (y )Ù H (x ,y )® H (x+2,y+2)) ⑸不存在最大的自然数. 解 F (x ):x 是自然数是自然数 H (x ,y ):x>y Ø$x (F (x )Ù"y (F (y )® H (x ,y ))⑹ 在北京卖菜的人不全是外地人. 解 设)(x M :x 是外地人. )(x F :x 在北京卖菜. 则符号化为))()((x F x M x ÙØ$. ⑺ 设:)(x M :x 是火车. )(x H :x 是轮船. )(x F :x 是汽车. ),(y x G :x 比y 快. 则“火车都比轮船快.”符号化为)),()()((y x G y H x M y x ®Ù"". 则“有的火车比有的汽车快.”符号化为)),()()((y x G y F x M y x ÙÙ$$. 则“不存在比所有火车都快的汽车.”符号化为)))),()(()(((y x G y M y x F x ®"Ù$Ø. 4、 指出下列公式中的指导变元,量词的辖域,各个体变项的自由出现和约束出现:指出下列公式中的指导变元,量词的辖域,各个体变项的自由出现和约束出现:(1))),()((y x G x F x ®"解 x "的辖域:),()(y x G x F ®.x 是指导变元. x 是约束出现,y 是自由出现. (2)),(),(y x yG y x xF $®"解 x "的辖域:),(y x F .x 是指导变元. x 是约束出现,y 是自由出现. y $的辖域:),(y x G .y 是指导变元. x 是自由出现,y 是约束出现. 5、 证明下面公式既不是永真式也不是矛盾式:证明下面公式既不是永真式也不是矛盾式:(1)))),()(()((y x H y G y x F x Ù$®"证明1解释1I :R D =,)(x F :x 是正数.)(y G :y 是负数.),(y x H :0=+y x . ))),()(()((y x H y G y x F x Ù$®"指对任意正数x ,存在负数y ,使得0=+y x .在该解释下,命题为“真”. 2解释2I :}3,2,1{-=D ,)(x F :x 是正数.)(y G :y 是负数.),(y x H :0=+y x .则对1=x 时,不存在负数D y Î,使0=+y x ,故在该解释下,命题为“假”,所以(1)公式既不是永真式也不是矛盾式. (2))),()()((y x H y G x F y x ®Ù""6、设个体域},,{c b a D =,消去下列各式的量词:,消去下列各式的量词:(1)))()((y G x F y x Ù$")))()(((y G a F y Ù$Û)))()(((y G b F y Ù$Ù)))()(((y G c F y Ù$ÙÚÙÛ))()(((a G a F ÚÙ))()((b G a F ÙÙ)))()((c G a F ÚÙ))()(((a G b F ÚÙ))()((b G b F ÙÙ)))()((c G b F ÚÙ))()(((a G c F ÚÙ))()((b G c F )))()((c G c F Ù(2)))()((y G x F y x Ú"")))()(((y G a F y Ú"Û)))()(((y G b F y Ú"Ù)))()(((y G c F y Ú"ÙÙÚÛ))()(((a G a F ÙÚ))()((b G a F ÙÚ)))()((c G a FÙÚ))()(((a G b F ÙÚ))()((b G b F ÙÚ)))()((c G b FÙÚ))()(((a G c F ÙÚ))()((b G c F )))()((c G c F Ú7、求前束范式⑴Ø$x "yF (x ,y )(Û "x $y ØF (x ,y ))⑵($xF (x ,y )®"yG (x ,y ,z ))®$z H (z ). (Û$x $y $z (F (x ,t )®G (u ,y ,v )®H (z )))⑶Û"®"),()(y x yG x xF ),()(y z yG x xF "®")),()((y z G x F y x ®"$Û⑷ Û$®")),,(),((z y x yG y x F x Û$®")),,(),((z y x yG t x F x )),,(),((z y x G t x F y x ®$" ⑸ Û$«"),(),(y x xG y x xF ),(),(y z zG t x xF $«")),(),(()),(),((t x xF y z zG y z zG t x xF "®$Ù$®"Û)),(),(()),(),((h r rF g s sG y z G t x F z x "®$Ù®$$Û)),(),(()),(),((h r F g s G r s y z G t x F z x ®""Ù®$$Û))),(),(()),(),(((h r F g s G y z G t x F r s z x ®Ù®""$$Û8、在自然推理系统在自然推理系统N L 中构造下面推理的证明. ⑴前提:$xF (x )®"y (G (y )®H (y )),$xR (x )®$yG (y )结论:$x ( F (x )Ù R (x ))®$x H (x )证明1 ⑴ $x ( F (x )Ù R (x ))⑵ F (c )Ù R (c )⑶ F (c )⑷ R (c )⑸ $x F (x )⑹$xF (x )®"y (G (y )®H (y ))⑺ "y (G (y )®H (y ))⑻ G (c )®H (c )⑼R (c )⑽$x R (x )⑾$xR (x )®$yG (y )⑿$yG (y )⒀G (c )⒁H (c )⒂$x H (x )证明2: ⑴$x ( F (x )Ù R (x ))⑵$x F (x )Ù$x R (x ))⑶$x F (x )⑷$xF (x )®"y (G (y )®H (y ))⑸"y (G (y )®H (y ))⑹G (c )®H (c )⑺$xR (x )®$yG (y )⑻$x R (x ))⑼$yG (y )⑽G (c )⑾H (c )⑿$x H (x )⑵人都喜欢吃蔬菜.但说所有的人都喜欢吃鱼是不对的.所以存在只喜欢吃蔬所以存在只喜欢吃蔬菜而不喜欢吃鱼的人. F (x ):x 是人是人G (x ):喜欢吃蔬菜:喜欢吃蔬菜 H (x ):喜欢吃鱼:喜欢吃鱼前提:"x (F (x )®G (x )) Ø"x (F (x )®H (x ))结论:$x ( F (x )Ù G (x )ÙØH (x ))证明:证明: ⑴⑴ Ø"x (F (x )®H (x )) ⑵$ x Ø(F (x )®H (x ))⑶$ x (F (x )ÙØH (x ))⑷F (c )ÙØH (c )⑸"x (F (x )®G (x ))⑹F (c )®G (c )⑺ F (c )⑻ G (c )⑼F (c )ÙØH (c )Ù G (c )⑽$x ( F (x )Ù G (x )ÙØH (x ))⑶任意三角形的内角和等于1800,ABC 三角形,则ABC 的内角和等于1800. 证明 设F (x ):x 是三角形是三角形 G (x ):x 的内角和等于1800 a :ABC 前提:"x (F (x )®G (x )) F (a )结论:结论: G (a )证明:证明: ⑴"x (F (x )® G (x )) ⑵F (a )® G (a )⑶F (a )⑷G (a )(4)每个喜欢步行的人都不喜欢骑自行车.每个人或者喜欢骑自行车或者喜欢乘汽车.有的人不喜欢乘汽车.所以有的人不喜欢步行.(个体域为人类集合). 证明 设F (x ):x 喜欢步行喜欢步行 G (x ):x 喜欢骑自行车喜欢骑自行车 H (x ):x 喜欢乘车喜欢乘车{"x (F (x )®Ø G (x )),"x (G (x )Ú H (x ),$x ØH (x ))®$x ØF (x )① $x ØH (x )② ØH (c )③ "x (G (x )Ú H (x ))④ G (c )Ú H (c )⑤ G (c )⑥ "x (F (x )®Ø G (x ))⑦ F (c )®Ø G (c )⑧ Ø F (c )⑨$x ØF(x)(5)每个科学工作者都是刻苦钻研的,每个刻苦钻研而有聪明的人在他的事业中都将获得成功.王大海是科学工作者,并且是聪明的所以王大海在他的事业中将获得成功(个体域为人类集合). 聪明喜欢钻研 H(x):x聪明证明设F(x):x是科学工作者是科学工作者 G(x):x喜欢钻研W(x):x事业成功:王大海事业成功 a:王大海{"x(F(x)®G(x)),"x(G(x)ÙH(x)®W(x)),F(a),H(a)}®W(a)①"x(F(x)®G(x))②F(a)®G(a))③"x (G(x)ÙH(x)®W(x))④G(a)ÙH(a)®W(a)⑤F(a)⑥G(a)⑦H(a)⑧G(a)ÙH(a)⑨W(a)。
(完整版)数理逻辑知识点总结
(完整版)数理逻辑知识点总结什么是数理逻辑?数理逻辑是一门研究命题、命题之间关系以及推理规律的学科。
它运用数学的方法来研究逻辑的基本概念和原理,用符号表示和描述逻辑概念,以及通过推理规则对命题进行推导。
命题与逻辑连接词1. 命题是陈述性语句,例如,“今天是晴天”。
在逻辑中,常用字母p、q、r等表示命题。
2. 逻辑连接词是用来构建复合命题的词语,例如,“与”、“或”、“非”等。
常用的逻辑连接词有:- “与”(合取):表示两个命题同时为真;- “或”(析取):表示两个命题中至少有一个为真;- “非”(否定):表示对命题的否定。
命题逻辑的推理规则1. 合取分配律(并):(p ∧ q) ∧ r = p ∧ (q ∧ r)2. 析取分配律(或):(p ∨ q) ∨ r = p ∨ (q ∨ r)3. 合取律(并):p ∧ p = p4. 析取律(或):p ∨ p = p5. 否定律:¬(¬p) = p6. De Morgan定律:- ¬(p ∧ q) = ¬p ∨ ¬q- ¬(p ∨ q) = ¬p ∧ ¬q命题的等价性1. 蕴含:p → q 表示当p为真时,q也为真;2. 等价:p ↔ q 表示当p与q同时为真或同时为假时成立。
命题逻辑的证明方法1. 直接证明法:直接证明命题的真假;2. 反证法:假设命题为假,推导出矛盾,得出命题为真;3. 归谬法:假设命题为真,推导出矛盾,得出命题为假;4. 数学归纳法:通过证明基础情形和推导情形的真假来证明命题。
数理逻辑的应用数理逻辑在计算机科学、数学推理、形式语言学和人工智能等领域有广泛的应用。
它能够帮助我们分析问题、进行推理以及验证和证明复杂的命题。
在算法设计、数据库查询优化、自然语言处理等方面发挥着重要作用。
以上是关于数理逻辑的基本知识点总结,希望能对您有所帮助。
内蒙古自治区考研数学数理逻辑复习要点
内蒙古自治区考研数学数理逻辑复习要点1. 命题逻辑命题逻辑是数理逻辑的一个分支,也是考研数学中的重要内容。
下面列举一些命题逻辑的核心要点:1.1 命题与命题的连接词命题是一个陈述句,可以为真或假。
常见的命题连接词有与、或、非等。
与的符号表示为∧,或的符号表示为∨,非的符号表示为¬。
1.2 命题逻辑的公式与真值表命题逻辑可以使用符号来表示命题和命题的连接词,这些符号与真值表相对应。
其中,真值表列出了命题组合对应的真假情况。
1.3 命题逻辑的推理规则命题逻辑中的推理规则是根据命题的真值表和命题的连接词来进行的。
常见的推理规则有与、或的交换律、结合律、分配律等。
1.4 命题逻辑的应用命题逻辑可以用来描述和推理各种问题,如推理问题、谬误分析等。
在考研中,也会有相关的应用题目。
2. 谓词逻辑谓词逻辑是命题逻辑的扩展,它引入了谓词,可以描述对象之间的关系和属性。
下面列举一些谓词逻辑的要点:2.1 个体、谓词、量词在谓词逻辑中,个体是指具体的对象,谓词是描述个体之间关系和属性的符号,量词则用于描述谓词的范围。
2.2 谓词逻辑的公式与真值表谓词逻辑使用公式和真值表来描述谓词和量词之间的关系。
公式中包含了谓词、个体和量词。
2.3 谓词逻辑的推理规则谓词逻辑中的推理规则是根据谓词的真值表和量词的范围来进行的。
常见的推理规则有全称量词的取反、存在量词的推理等。
2.4 谓词逻辑的应用谓词逻辑可以用来描述和推理各种问题,如数学问题、自然语言理解等。
在考研中,也会有相关的应用题目。
3. 数理逻辑的例题以下是一些数理逻辑的例题,供考生参考:3.1 命题逻辑的例题例题1:已知命题p为真,命题q为假,求命题“p∧(p∨q)”的真值。
题解:根据命题连接词的优先级,先计算括号内的部分,得到“p∨q”的真值为真。
再计算“p∧真”,得到最终结果为真。
3.2 谓词逻辑的例题例题2:已知谓词P(x)表示“x是偶数”,“∀x P(x)”表示“所有数都是偶数”,求该命题的真假情况。
(完整版)数理逻辑知识点总结
(完整版)数理逻辑知识点总结
1. 命题逻辑
命题逻辑是研究命题之间的逻辑关系的数理逻辑分支。
以下是
一些重要的知识点:
- 命题:表示一个陈述或主张,可以是真或假。
- 真值表:用来列出命题的所有可能的真值组合。
- 逻辑运算符:包括非、与、或、条件、双条件运算符,用于
连接命题和构建复合命题。
- 析取范式和合取范式:将复合命题化简为仅使用或和与的形式。
- 等价式:表示两个命题具有相同真值的逻辑等式。
- 推理法则:如假言推理、拒取推理等,用于推导出新的命题。
2. 谓词逻辑
谓词逻辑是研究带有变量的陈述的逻辑。
以下是一些重要的知
识点:
- 谓词:带有变量的陈述,可以是真或假。
- 量词:包括全称量词和存在量词,用于约束变量的取值范围。
- 集合论:涉及集合的概念和运算,如并、交、补运算。
- 等价式和蕴含式:类似于命题逻辑中的等价式和推理法则,
但针对谓词逻辑的带有变量的陈述。
3. 非经典逻辑
非经典逻辑是指那些违背经典逻辑法则的逻辑系统。
以下是一
些常见的非经典逻辑:
- 模糊逻辑:处理模糊概念的逻辑系统,将命题的真值从严格
的真或假扩展到连续的真假之间。
- 异质逻辑:处理具有多个真值的逻辑系统,如三值逻辑、多
值逻辑等。
- 归纳逻辑:推理从特殊到一般的逻辑系统,用于从观察到的
个别事实中推断出一般规律。
- 模态逻辑:处理可能性和必然性的逻辑系统,用于描述可能
的世界和必然的真理。
以上是数理逻辑的部分知识点总结,希望对您有所帮助。
数理逻辑考点整理
一、命题逻辑1、公式定义:(1)单个命题变元是命题公式。
(2)如果A, B是命题公式,则(~A), (A∧B), (A∨B), (A→B), (A↔B)都是命题公式。
(~,∧,∨,→,↔,左边高于右边。
)2、公理:Ax1 ├α→(β→α)Ax2 ├ (α→β→γ)→(α→β) →α→γAx3 ├(¬α→¬β)→β→α3、推理规则:由α,α→β得β4、证明:从公理出发的证明:(1)称α是P的一个内定理,记作├α(2)如果存在公式序列α1,α2 ,α3,……αn=α,其中每个αk,或是公理,或是由序列中αk前面的公式经由推理法则得到。
从公式集出发的证明:Σ├α当且仅当存在公式序列α1,α2 ,α3,……αn=α,其中任意的αk,要么是公理,要么αk∈Σ,要么是由前面两条由推理法则得到。
5、证明的例子:二、一阶逻辑1、公式的定义:(1)原子公式是公式(2)若φ,ψ是公式,则(¬φ),(φ→ψ),是公式(3)若φ是公式,x是某个个体变元则(∀xφ)是公式2、公理:Ax1: A→B→AAx2: (A→B→C)→(A →B)→A→CAx3: (¬A→¬B)→(B→A)Ax4: ∀x(A(x)→B(x)) →(∀xA(x)→∀xB(x))Ax5: ∀xA(x)→A(x/t)Ax6: A→∀xA x∉FV(φ)Ax7: ∀x(x≡x)Ax8: ∀x1,y1,…,xn,yn (x1≡y1→x2≡y2→…→xn≡yn →f(x1,x2…xn)≡f(y1,y2,…,yn)) Ax9: ∀x1,y1,…,xn,yn (x1≡y1→x2≡y2→…→xn≡yn →r(x1,x2…xn)→r(y1,y2,…,yn)) Ax10: ∀xA, A是公理3、推理规则:A,A→B得 B4、证明:从公理出发的证明:一个公式序列α1,α2 ,α3,……αn=α,其中每个αk,或是公理,或是由序列中αk前面的公式经由推理法则得到。
数理逻辑_复习题及参考答案
从一份模拟试题中抽取出来的《数理逻辑》复习题及参考答案一、单选题(每小题2分,共20分)1 以下语句是命题的是( )。
A . y 等于x 。
B . 每个自然数都是奇数。
C . 请爱护环境。
D . 你今天有空吗?2 设α是一赋值,α(p)= α(q)=1,α(r)=0,下列公式的值为假的是( )。
A .p ∧(q ∨r)B .(p ✂r) ↔ (¬r ✂q)C .(r ✂q) ∧(q ✂p)D .(r ✂q)3 以下联结词的集合( )不是完备集。
A .{¬,∧,∨, ✂,↔}B .{¬,∧,∨}C .{¬, ✂}D .{∧,∨}4 公式A 的对偶式为A*,下列结果成立的是( )。
A .A ↔A*B .¬A ↔A*C .A|=|A*D .¬A|=|A*5 假设论域是正整数集合,下列自然语言的符号化表示中,( )的值是真的。
A .∀x ∃yG(x,y),其中G(x,y)表示xy=yB .∀x ∀yF(x,y),其中F(x,y)表示x+y=yC .∃x ∀yH(x,y),其中H(x,y)表示x+y=xD .∀x ∀yM(x,y),其中M(x,y)表示xy=x6.以下式子错误的是( )。
A .∀x ¬A(x) |=| ¬∃xA(x)B .∀x(A(x)∧B(x)) |=| ∀xA(x)∧∀x B(x)C .∃x(A(x)∨B(x)) |=| ∃xA(x)∨∃x B(x)D .∀x(A(x)∨B(x)) |=| ∀xA(x)∨∀x B(x)7. 下列式子( )不正确。
A .{x}∈{{x}}B .{x}∈{{x},x}C .{x}⊆{{x}}D .{x}⊆{{x},x}二、填空题(每小题2分,共20分)1.句子“只有小王爱唱歌,他才会弹钢琴。
”中,把“小王爱唱歌”形式化为命题符p ,“小王会弹钢琴”形式化为命题符q ,则句子形式化为公式 。
数理逻辑复习题
一、选择题1、永真式的否定是(2)(1) 永真式 (2) 永假式 (3) 可满足式 (4) (1)--(3)均有可能2、设P :2×2=5,Q :雪是黑的,R :2×4=8,S :太阳从东方升起,则下列真命题为(1) (1)R Q P ∧→ (2)S P R ∧→ (3)R Q S ∧→ (4) )()(S Q R P ∧∨∧。
3、设P :我听课,Q :我看小说,则命题R “我不能一边听课,一边看小说”的符号化为⑵ ⑴ P Q → ⑵Q P ⌝→(3) Q P →⌝ ⑷ P Q ⌝→⌝()P Q ⌝∧ 提示:()R P Q P Q ⇔⌝∧⇔→⌝4、下列表达式错误的有⑷⑴()P P Q P ∨∧⇔ ⑵()P P Q P ∧∨⇔⑶()P P Q P Q ∨⌝∧⇔∨ ⑷()P P Q P Q ∧⌝∨⇔∨ 5、下列表达式正确的有⑷⑴ P P Q ⇒∧ ⑵ P Q P ⇒∨ ⑶ ()Q P Q ⌝⇒⌝→⑷Q Q P ⌝⇒→⌝)( 6、下列联接词运算不可交换的是(3)⑴∧ ⑵∨ (3)→ ⑷ ↔ 6、设D :全总个体域,F (x ):x 是花,M(x) :x 是人,H(x,y):x 喜欢y ,则命题“有的人喜欢所有的花”的逻辑符号化为⑷⑴(()(()(,))x M x y F y H x y ∀∧∃→ ⑵(()(()(,))x M x y F y H x y ∀∧∀→(3) (()(()(,))x M x y F y H x y ∃∧∃→ ⑷(()(()(,))x M x y F y H x y ∃∧∀→7、设L(x):x 是演员,J(x):x 是老师,A(x , y):x 钦佩y ,命题“所有演员都钦佩某些老师”的逻辑符号化为⑵⑴)),()((y x A x L x →∀ ⑵))),()(()((y x A y J y x L x ∧∃→∀ (3) )),()()((y x A y J x L y x ∧∧∃∀ ⑷)),()()((y x A y J x L y x →∧∃∀8、谓词公式)())()((x Q y yR x P x →∃∨∀中的 x 是⑶⑴自由变元 ⑵约束变元 ⑶既是自由变元又是约束变元 ⑷既不是自由变元又不是约束变元 9、下列表达式错误的有⑴⑴(()())()()x A x B x xA x xB x ∀∨⇒∀∨∀ ⑵(()())()()x A x B x xA x xB x ∃∧⇒∃∧∃ (3) (()())()()x A x B x xA x xB x ∀∧⇔∀∧∀ ⑷(()())()()x A x B x xA x xB x ∃∨⇔∃∨∃ 10、下列推导错在⑶①)(y x y x >∃∀ P②)(y z y >∃ US ① ③)(z C z >ES ②④)(x x x >∀ UG ③ ⑴② ⑵③ ⑶④ ⑷无 11、下列推理步骤错在⑶①(,)x yF x y ∀∃ P②),(y z yF ∃ US ① ③),(c z F ES ② ④),(c x xF ∀UG ③⑤),(y x xF y ∀∃ EG ④⑴①→② ⑵②→③ ⑶③→④ ⑷④→⑤12、设个体域为{a,b},则(),x yR x y ∀∃去掉量词后,可表示为⑷⑴()()()(),,,,R a a R a b R b a R b b ∧∧∧ ⑵()()()(),,,,R a a R a b R b a R b b ∨∨∨ (3) ()()()()()()b b R a b R b a R a a R ,,,,∨∧∨ ⑷()()()()()()b b R a b R b a R a a R ,,,,∨∧∨提示:原式()()()()()()()(),,,,,,yR a y yR b y R a a R a b R b a R b b ⇔∃∧∃⇔∨∧∨二、填充题1、一个命题含有n 个原子命题,则对其所有可能赋值有2n 种。
数理逻辑部分综合练习附答案
数理逻辑部分综合练习及答案一、单项选择题1.设P :我将去打球,Q :我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).A .P Q →B .Q P →C .Q P ↔D .Q P ⌝∨⌝因为语句“仅当我有时间时”是“我将去打球”的必要条件,一般地,当语句是由“……,仅当……”组成,它的符号化用条件联结词→.所以选项B 是正确的.正确答案:B问:如果把“我将去打球”改成“我将去学习”、“我将去旅游”等,怎么符号化呢?2.命题公式P ∨Q 的合取范式是 ( ).A .P ∧QB .(P ∧Q )∨(P ∨Q )C .P ∨QD .⌝(⌝P ∧⌝Q )复习合取范式的定义:定义6.6.2 一个命题公式称为合取范式,当且仅当它具有形式:A 1∧A 2∧…∧A n , (n ≥1)其中A 1,A 2,…,A n 均是由命题变元或其否定所组成的析取式.由此可知,选项B 和D 是错的.又因为P ∧Q 与P ∨Q 不是等价的,选项A 是错的.所以,选项C 是正确的. 正确答案:C3.命题公式)(Q P →⌝的析取范式是( ).A .Q P ⌝∧B Q P ∧⌝C .Q P ∨⌝D .Q P ⌝∨复习析取范式的定义:定义6.6.3 一个命题公式称为析取范式,当且仅当它具有形式:A 1∨A 2∨…∨A n , (n ≥1)其中A 1,A 2,…,A n 均是有命题变元或其否定所组成的合取式.由教材第167页中的蕴含等价式知道,公式)(Q P →⌝与Q P ⌝∧是等价的,Q P ⌝∧满足析取范式的定义,所以,选项A 是正确的.正确答案:A注:第2,3题复习了合取范式和析取范式的概念,大家一定要记住的。
如果题目改为求一个变元(P 或⌝P )命题公式的合取范式或析取范式,那么答案是什么?4.下列公式成立的为( ).A .⌝P ∧⌝Q ⇔ P ∨QB .P →⌝Q ⇔ ⌝P →QC .Q →P ⇒ PD .⌝P ∧(P ∨Q )⇒Q因为: ⌝P ∧(P ∨Q )⇒Q (析取三段论,P171公式(10))所以,选项D 是正确的.正确答案:D5.下列公式 ( )为重言式.A .⌝P ∧⌝Q ↔P ∨QB .(Q →(P ∨Q )) ↔(⌝Q ∧(P ∨Q ))C .(P →(⌝Q →P ))↔(⌝P →(P →Q ))D .(⌝P ∨(P ∧Q )) ↔Q由教材第167页中的蕴含等价式,得(P →(⌝Q →P )) ⇔⌝P ∨(Q ∨ P ),(⌝P →(P →Q )) ⇔ P ∨ (⌝P ∨Q )所以,C 是重言式,也就是永真式.正确答案:C说明:如果题目改为“下列公式 ( )为永真式”,应该是一样的.6.设A (x ):x 是人,B (x ):x 是学生,则命题“不是所有人都是学生”可符号化为( ).A .(∀x )(A (x )∧B (x )) B .⌝(∃x )(A (x )∧B (x ))C .⌝(∀x )(A (x )→B (x ))D .⌝(∃x )(A (x )∧⌝B (x ))由题设知道,A (x )→B (x )表示只要是人,就是学生,而“不是所有”应该用全称量词的否定,即⌝∀x ,得到公式C .正确答案:C7.设A (x ):x 是人,B (x ):x 是工人,则命题“有人是工人”可符号化为( ).A .(∃x )(A (x )∧B (x )) B .(∀x )(A (x )∧B (x ))C .⌝(∀x )(A (x )→B (x ))D .⌝(∃x )(A (x )∧⌝B (x ))选项A 中的A (x )∧B (x )表示x 是人,而且是工人,∃x 表示存在一个人,有一个人,因此(∃x )(A (x )∧B (x ))表示“有人是工人”.正确答案:A8.表达式))(),(())(),((z zQ y x R y z Q y x P x ∀→∃∧∨∀中x ∀的辖域是( ).A .P (x , y )B .P (x , y )∨Q (z )C .R (x , y )D .P (x , y )∧R (x , y )所谓辖域是指“紧接于量词之后最小的子公式称为量词的辖域”.那么看题中紧接于量词∀x 之后最小的子公式是什么呢?显然是P (x , y )∨Q (z ),因此,选项B 是正确的.正确答案:B注:如果该题改为判断题,即表达式))(),(())(),((z zQ y x R y z Q y x P x ∀→∃∧∨∀中x ∀的辖域是P (x , y )如何判断并说明理由呢?9.在谓词公式(∀x )(A (x )→B (x )∨C (x ,y ))中,( ).A .x ,y 都是约束变元B .x ,y 都是自由变元C .x 是约束变元,y 都是自由变元D .x 是自由变元,y 都是约束变元约束变元就是受相应的量词约束的变元.而自由变元就是不受任何量词约束的变元.所以选项C 是正确的. 正确答案:C注:如果该题改为填写约束变元或自由变元的填空题,大家也应该掌握.补充题:设个体域为自然数集合,下列公式中是真命题的为 ( )A .)1(=⋅∃∀y x y xB .)0(=+∃∀y x y xC .)(x y x y x =⋅∀∃D .)2(y y x y x =+∀∃因为选项A 表示:对任一自然数x 存在自然数y 满足xy =1,这样的y 是不存在的选项B 表示:对任一自然数x 存在自然数y 满足x +y =0,这样的y 也是不存在的选项C 表示:存在一自然数x 自然数对任意自然数y 满足xy =x ,取x =0即可,故选项C 正确正确答案:C二、填空题1.命题公式()P Q P →∨的真值是 .因为()P Q P →∨⇔⌝P ∨(Q ∨P ) ⇔1,所以应该填写:1.应该填写:1问:命题公式Q Q →、Q Q ⌝∨的真值是什么?2.设P :他生病了,Q :他出差了.R :我同意他不参加学习. 则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为 .一般地,当语句是由“如果……,那么……”,或“若……,则……”组成,它的符号化用条件联结词→. 应该填写:(P ∨Q )→R3.含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是 .复习主析取范式的定义:定义6.6.5 对于给定的命题变元,如果有一个等价公式,它仅仅有小项的析取组成,则该等价式称为原式的主析取范式.而小项的定义是:定义6.6.4 n 个命题变元的合取式,称为布尔合取或小项,其中每个变元与它的否定不能同时存在,但两者必须出现且仅出现一次.由小项的定义知道,命题公式P ∧Q 中缺少命题变项R 与它的否定,因此,应该补上,即P ∧Q ⇔P ∧Q ∧ (R ∨⌝R ) ⇔(P ∧Q ∧ R ) ∨(P ∧Q ∧⌝R )得到命题公式P ∧Q 的主析取范式.应该填写:(P ∧Q ∧R )∨ (P ∧Q ∧⌝R )4.设个体域D ={a , b },那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为 . 因为在有限个体域下,消除量词的规则为:设D ={a 1, a 2, …, a n },则)(...)()()(21n a A a A a A x xA ∧∧∧⇔∀)(...)()()(21n a A a A a A x xA ∨∨∨⇔∃所以,应该填写:(A (a )∨ A (b ))∨ (B (a )∧ B (b ))应该填写:(A (a )∨ A (b ))∨ (B (a )∧ B (b ))注:如果个体域是D ={1, 2},D ={a , b , c }, 或谓词公式变为(()())x A x B x ∃∨,怎么做?5.设个体域D ={1, 2, 3},A (x )为“x 小于3”,则谓词公式(∃x )A (x ) 的真值为 .因为 (∃x )A (x )⇔A (1)∨A (2)∨A (3)⇔1∨1∨0⇔1应该填写:1注:若个体域D ={1, 2},A (x )为“x 小于3”,则谓词公式(∃x )A (x ) 的真值是什么?或:设个体域D={1, 2, 3},A(x)为“x是奇数”,则谓词公式(∃x)A(x) 的真值是什么?6.谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为.因为自由变元就是不受任何量词约束的变元,在公式(∀x)((A(x)∧B(x)) ∨C(y))中,y是不受全称量词∀约束的变元.所以应该填写:y.应该填写:y问: 公式中的约束变元是什么?判断:谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为x,是否正确?为什么?三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式.解:设P:今天是天晴;则命题公式为:P.问:“今天不是天晴”的命题公式是什么?2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.解:设P:小王去旅游,Q:小李去旅游,则命题公式为:P∧Q.注:语句中包含“也”、“且”、“但”等连接词,命题公式要用合取“∧”.3.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.解:设P:他去旅游,Q:他有时间,则命题公式为:P→Q.注:命题公式的翻译还要注意“不可兼或”的表示.例如,教材第164页的例6 “T2次列车5点或6点钟开.”怎么翻译成命题公式?这里的“或”为不可兼或.4.请将语句“所有人都努力工作.”翻译成谓词公式.解:设P(x):x是人,Q(x):x努力工作.谓词公式为:(∀x)(P(x)→ Q(x)).四、判断说明题(判断下列各题,并说明理由.)⌝∧的真值是1.1.命题公式P P解错误.⌝∧是永假式(教材167页的否定律).因为P P2.命题公式⌝P∧(P→⌝Q)∨P为永真式.解:正确注:如果题目改为该命题公式为永假式,如何判断并说明理由?3.下面的推理是否正确,请给予说明.(1) (∀x)A(x) ∧ B(x) 前提引入(2) A(y) ∧B(y) US (1)解:错第2步应为:A(y) ∧B(x)因为A(x)中的x是约束变元,而B(x)中的x是自由变元,换名时,约束变元与自由变元不能混淆.五.计算题1.求P→Q∨R的析取范式,合取范式、主析取范式,主合取范式.分析:定义6.6.7 对于给定的命题变元,如果有一个等价公式,它仅仅有大项的合取组成,则该等价式称为原式的主合取范式.定义6.6.6 n个命题变元的析取式,称为布尔析取或大项,其中每个变元与它的否定不能同时存在,但两者必须出现且仅出现一次.解析取范式,合取范式、主析取范式的定义前面复习过了,由教材167的蕴含等价式P→Q∨R ⇔⌝P∨Q∨R(析取范式、合取范式、主合取范式)⇔(⌝P ∧(Q ∨⌝Q )∧(R ∨⌝R ))∨((P ∨⌝P )∧Q ∧(R ∨⌝R ))∨((P ∨⌝P )∧(Q ∨⌝Q )∧R )(补齐命题变项)⇔(⌝P ∧Q ∧R )∨(⌝P ∧Q ∧⌝R )∨(⌝P ∧⌝Q ∧R )∨(⌝P ∧⌝Q ∧⌝R )∨(P ∧Q ∧R )∨(P ∧Q ∧⌝R )∨(⌝P ∧Q ∧R )∨(⌝P ∧Q ∧⌝R )∨(P ∧Q ∧R )∨(P ∧⌝Q ∧R )∨(⌝P ∧Q ∧R )∨(⌝P ∧⌝Q ∧R ) (∧对∨的分配律)⇔(⌝P ∧⌝Q ∧⌝R )∨(⌝P ∧⌝Q ∧R )∨(⌝P ∧Q ∧⌝R )∨(⌝P ∧Q ∧R )∨(P ∧⌝Q ∧R )∨(P ∧Q ∧⌝R )∨(P ∧Q ∧R ) (主析取范式)注:如果题目只是求“析取范式”或“合取范式”,大家一定不要再进一步求“主析取范式”或“主合取范式”. 例如:求(P ∨Q )→R [或(P ∨Q )→(R ∨Q ),P →Q ∧R ]的合取范式、析取范式.2.设谓词公式()((,)()(,,))()(,)x P x y z Q y x z y R y z ∃→∀∧∀.(1)试写出量词的辖域;(2)指出该公式的自由变元和约束变元.解 (1)量词x ∃的辖域为(,)(,,)P x y zQ y x z →∀,z ∀的辖域为(,,)Q y x z ,y ∀的辖域为(,)R y z .(2)自由变元为(,)(,,)P x y zQ y x z →∀中的y ,(,)R y z 中的z .约束变元为(,)(,,)P x y zQ y x z →∀中的x ,(,,)Q y x z 中的z ,(,)R y z 中的y .3.设个体域为D ={a 1, a 2},求谓词公式∀y ∃xP (x ,y )消去量词后的等值式.解:∀y ∃xP (x , y ) ⇔(∃xP (x , a 1))∧(∃xP (x , a 2))⇔(P (a 1, a 1)∨P (a 2, a 1))∧(P (a 1, a 2)∨P (a 2, a 2))六、证明题1.试证明命题公式 (P →(Q ∨⌝R ))∧⌝P ∧Q 与⌝(P ∨⌝Q )等价.证:(P →(Q ∨⌝R ))∧⌝P ∧Q ⇔(⌝P ∨(Q ∨⌝R ))∧⌝P ∧Q⇔((⌝P ∨Q ∨⌝R )∧⌝P )∧Q⇔⌝P ∧Q (吸收律)⇔⌝(P ∨⌝Q ) (摩根律)2.试证明(∃x )(P (x )∧R (x ))⇒(∃x )P (x )∧(∃x )R (x ).分析:前提:(∃x )(P (x )∧R (x )),结论:(∃x )P (x )∧(∃x )R (x ) .证明 (1) (∃x )(P (x )∧R (x )) P(2) P (a )∧R (a ) ES (1) (存在指定规则)(3) P (a ) T (2) I (化简)(4) (∃x )P (x ) EG (3) (存在推广规则)(5) R (a ) T (2) I (化简)(6) (∃x )R (x ) EG (5) (存在推广规则)(7) (∃x )P (x )∧(∃x )R (x ) T (4)(6)I (合取引入)。
离散数学数理逻辑部分期末复习题
离散数学数理逻辑部分综合练习辅导一、单项选择题1.设P :我将去打球,Q :我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).A .P Q →B .Q P →C .Q P ↔D .Q P ⌝∨⌝因为语句“仅当我有时间时”是“我将去打球”的必要条件,所以选项B 是正确的.正确答案:B一般地,当语句是由“……,仅当……”组成,它的符号化用条件联结词→. 问:如果把“我将去打球”改成“我将去学习”、“我将去旅游”等,会符号化吗?2.设命题公式G :)(R Q P ∧→⌝,则使公式G 取真值为1的P ,Q ,R 赋值分别是 ( ).A .0, 0, 0B .0, 0, 1C .0, 1, 0D .1, 0, 0 个人收集整理 勿做商业用途当P 为真值为1时,P ⌝的真值为0,无论()Q R ∧的真值是1还是0,命题公式G 的真值为1.所以选项D 是正确的.正确答案:D3.命题公式P ∨Q 的合取范式是 ( ).A .P ∧QB .(P ∧Q )∨(P ∨Q )C .P ∨QD .⌝(⌝P ∧⌝Q )复习合取范式的定义:定义6.6.2 一个命题公式称为合取范式,当且仅当它具有形式:A 1∧A 2∧…∧A n , (n ≥1)其中A 1,A 2,…,A n 均是由命题变元或其否定所组成的析取式.由此可知,选项B 和D 是错的.又因为P ∧Q 与P ∨Q 不是等价的,选项A 是错的.所以,选项C 是正确的.正确答案:C4.命题公式)(Q P →⌝的析取范式是( ).A .Q P ⌝∧B Q P ∧⌝C .Q P ∨⌝D .Q P ⌝∨复习析取范式的定义:定义6.6.3 一个命题公式称为析取范式,当且仅当它具有形式:A 1∨A 2∨…∨A n , (n ≥1)其中A 1,A 2,…,A n 均是有命题变元或其否定所组成的合取式.公式)(Q P →⌝与Q P ⌝∧是等价的,Q P ⌝∧满足析取范式的定义,所以,选项A是正确的.正确答案:A5.下列公式成立的为( ).A.⌝P∧⌝Q ⇔P∨Q B.P→⌝Q⇔⌝P→QC.Q→P⇒ P D.⌝P∧(P∨Q)⇒Q因为:⌝P∧(P∨Q)⇒Q所以,选项D是正确的.正确答案:D6.下列公式( )为重言式.A.⌝P∧⌝Q↔P∨Q B.(Q→(P∨Q)) ↔(⌝Q∧(P∨Q))C.(P→(⌝Q→P))↔(⌝P→(P→Q)) D.(⌝P∨(P∧Q)) ↔Q(P→(⌝Q→P)) ⇔⌝P∨(Q∨ P),(⌝P→(P→Q)) ⇔ P∨(⌝P∨Q) 所以,C是重言式,也就是永真式.正确答案:C说明:如果题目改为“下列公式( )为永真式”,应该是一样的.7.设A(x):x是人,B(x):x是学生,则命题“不是所有人都是学生”可符号化为().A.(∀x)(A(x)∧B(x)) B.⌝(∃x)(A(x)∧B(x))C.⌝(∀x)(A(x)→B(x))D.⌝(∃x)(A(x)∧⌝B(x))由题设知道,A(x)→B(x)表示只要是人,就是学生,而“不是所有”应该用全称量词的否定,即⌝∀x,得到公式C.个人收集整理勿做商业用途正确答案:C8.设C(x):x是国家级运动员,G(x):x是健壮的,则命题“没有一个国家级运动员不是健壮的”可符号化为( ).个人收集整理勿做商业用途A.))G(xx)(⌝∀(→x⌝C((x()Gx∧x⌝C⌝∀B.)) C.))G(x()(x∧x⌝C⌝∃x⌝∃D.)))((x(Gx⌝→C由题设知道,C(x)∧⌝ G(x)表示国家级运动员不是健壮的,而“没有一个”就是“不存在一个”,因此用存在量词的否定,即⌝∃x,得到公式D.个人收集整理勿做商业用途正确答案:D9.表达式))RyQzyxP∧∨∃→x∀∀中x(x(,)())(zQ((zy,)∀的辖域是( ).A.P(x, y) B.P(x, y)∨Q(z) C.R(x, y) D.P(x, y)∧R(x, y)个人收集整理勿做商业用途所谓辖域是指“紧接于量词之后最小的子公式称为量词的辖域”.那么看题中紧接于量词∀x之后最小的子公式是什么呢?显然是P(x, y)∨Q(z),因此,选项B是正确的.个人收集整理勿做商业用途正确答案:B10.在谓词公式(∀x )(A (x )→B (x )∨C (x ,y ))中,( ).A .x ,y 都是约束变元B .x ,y 都是自由变元C .x 是约束变元,y 都是自由变元D .x 是自由变元,y 都是约束变元约束变元就是受相应的量词约束的变元.而自由变元就是不受任何量词约束的变元.所以选项C 是正确的.正确答案:C注:如果该题改为填写约束变元或自由变元的填空题,大家也应该掌握.二、填空题1.命题公式()P Q P →∨的真值是.因为()P Q P →∨⇔⌝P ∨(Q ∨P )⇔1,所以应该填写:1.应该填写:1问:命题公式Q Q →、Q Q ⌝∨的真值是什么?2.设P :他生病了,Q :他出差了.R :我同意他不参加学习. 则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为.个人收集整理 勿做商业用途一般地,当语句是由“如果……,那么……”,或“若……,则……”组成,它的符号化用条件联结词→.应该填写:(P ∨Q )→R3.含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是 .复习主析取范式的定义:定义6.6.5 对于给定的命题变元,如果有一个等价公式,它仅仅有小项的析取组成,则该等价式称为原式的主析取范式.个人收集整理 勿做商业用途而小项的定义是:定义6.6.4 n 个命题变元的合取式,称为布尔合取或小项,其中每个变元与它的否定不能同时存在,但两者必须出现且仅出现一次.个人收集整理 勿做商业用途由小项的定义知道,命题公式P ∧Q 中缺少命题变项R 与它的否定,因此,应该补上,即P ∧Q ⇔P ∧Q ∧ (R ∨⌝R ) ⇔(P ∧Q ∧ R ) ∨(P ∧Q ∧⌝R )得到命题公式P ∧Q 的主析取范式.应该填写:(P ∧Q ∧R )∨ (P ∧Q ∧⌝R )4.设个体域D ={a , b },那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为. 因为在有限个体域下,消除量词的规则为:设D ={a 1, a 2, …, a n },则 所以,应该填写:(A (a )∨ A (b ))∨ (B (a )∧ B (b ))应该填写:(A (a )∨ A (b ))∨ (B (a )∧ B (b ))如果个体域是D ={1, 2},D ={a , b , c }, 或谓词公式变为(()())x A x B x ∃∨,怎么做?5.设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为.因为(∃x)A(x)⇔A(1)∨A(2)∨A(3)⇔1∨1∨0⇔1应该填写:16.谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为.因为自由变元就是不受任何量词约束的变元,在公式(∀x)((A(x)∧B(x)) ∨C(y))中,y是不受全称量词∀约束的变元.所以应该填写:y.个人收集整理勿做商业用途应该填写:y问: 公式中的约束变元是什么?三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式.解:设P:今天是天晴;则命题公式为:P.问:“今天不是天晴”的命题公式是什么?2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.解:设P:小王去旅游,Q:小李去旅游,则命题公式为:P∧Q.注:语句中包含“也”、“且”、“但”等连接词,命题公式要用合取“∧”.3.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.解:设P:他去旅游,Q:他有时间,则命题公式为:P→Q.4.请将语句“所有人都努力工作.”翻译成谓词公式.解:设P(x):x是人,Q(x):x努力工作.谓词公式为:(∀x)(P(x)→ Q(x)).四、判断说明题(判断下列各题,并说明理由.)1.命题公式P P⌝∧的真值是1.解错误.因为P P⌝∧是永假式(教材167页的否定律).2.命题公式⌝P∧(P→⌝Q)∨P为永真式.解:正确因为,由真值表P Q ⌝P ⌝Q P→⌝Q⌝P∧(P→⌝Q)∨P0 0 1 1 1 10 1 1 0 1 110 0 1 1 1 1 1 0 0 0 1可知,该命题公式为永真式.注:如果题目改为该命题公式为永假式,如何判断并说明理由?3.下面的推理是否正确,请给予说明.(1) (∀x )A (x ) ∧ B (x ) 前提引入(2) A (y ) ∧B (y ) US (1)解:错第2步应为:A (y )∧B (x )因为A (x )中的x 是约束变元,而B (x )中的x 是自由变元,换名时,约束变元与自由变元不能混淆.五.计算题1. 求P →Q ∨R 的析取范式,合取范式、主析取范式,主合取范式.解 P →Q ∨R ⇔⌝P ∨Q ∨R (析取范式、合取范式、主合取范式)⇔(⌝P ∧(Q ∨⌝Q )∧(R ∨⌝R ))∨((P ∨⌝P )∧Q ∧(R ∨⌝R ))∨((P ∨⌝P )∧(Q ∨⌝Q )∧R )个人收集整理 勿做商业用途 (补齐命题变项)⇔(⌝P ∧Q ∧R )∨(⌝P ∧Q ∧⌝R )∨(⌝P ∧⌝Q ∧R )∨(⌝P ∧⌝Q ∧⌝R )∨(P ∧Q ∧R )∨(P ∧Q ∧⌝R )∨(⌝P ∧Q ∧R )∨(⌝P ∧Q ∧⌝R )∨(P ∧Q ∧R )∨(P ∧⌝Q ∧R )∨(⌝P ∧Q ∧R )∨(⌝P ∧⌝Q ∧R ) (∧对∨的分配律)个人收集整理 勿做商业用途⇔(⌝P ∧⌝Q ∧⌝R )∨(⌝P ∧⌝Q ∧R )∨(⌝P ∧Q ∧⌝R )∨(⌝P ∧Q ∧R )∨(P ∧⌝Q ∧R )∨(P ∧Q ∧⌝R )∨(P ∧Q ∧R ) (主析取范式)个人收集整理 勿做商业用途注:如果题目只是求“析取范式”或“合取范式”,大家一定不要再进一步求“主析取范式”或“主合取范式”.2.设谓词公式()((,)()(,,))()(,)x P x y z Q y x z y R y z ∃→∀∧∀.(1)试写出量词的辖域;(2)指出该公式的自由变元和约束变元.解 (1)量词x ∃的辖域为(,)(,,)P x y zQ y x z →∀,z ∀的辖域为(,,)Q y x z ,y ∀的辖域为(,)R y z .(2)自由变元为(,)(,,)P x y zQ y x z →∀中的y ,(,)R y z 中的z .约束变元为(,)(,,)P x y zQ y x z →∀中的x ,(,,)Q y x z 中的z ,(,)R y z 中的y .3.设个体域为D ={a 1, a 2},求谓词公式∀y ∃xP (x ,y )消去量词后的等值式.解:∀y ∃xP (x , y )⇔(∃xP (x , a 1))∧(∃xP (x , a 2))⇔(P (a 1, a 1)∨P (a 2, a 1))∧(P (a 1, a 2)∨P (a 2, a 2))六、证明题1.试证明命题公式(P→(Q∨⌝R))∧⌝P∧Q与⌝(P∨⌝Q)等价.证:(P→(Q∨⌝R))∧⌝P∧Q⇔(⌝P∨(Q∨⌝R))∧⌝P∧Q⇔((⌝P∨Q∨⌝R)∧⌝P)∧Q⇔⌝P∧Q(吸收律)⇔⌝(P∨⌝Q) (摩根律)2.试证明(∃x)(P(x)∧R(x))⇒(∃x)P(x)∧(∃x)R(x).分析:前提:(∃x)(P(x)∧R(x)),结论:(∃x)P(x)∧(∃x)R(x) .证明(1) (∃x)(P(x)∧R(x)) P(2) P(a)∧R(a) ES(1) (存在指定规则)(3) P(a) T(2) (化简)(4) (∃x)P(x) EG(3) (存在推广规则)(5)R(a) T(2) (化简)(6) (∃x)R(x) EG(5) (存在推广规则)(7) (∃x)P(x)∧(∃x)R(x) T(4)(6) (合取引入)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章命题逻辑的基本概念
一:基本概念:
1.称能判断真假而不是可真可假的陈述句为命题。
2.真值为真的命题称为真命题。
3.真值为假的命题称为假命题。
4.简单命题(原子命题)。
5.由简单命题通过联结词而成的陈述句,称这样的命题为复合命题。
例1判断下列句子是否为命题。
(1)4是素数。
(2)x大于y。
(3)充分大的偶数等于两个素数之和。
(4)北京是中国的首都。
(5)请不要吸烟!
(6)我正在说假话。
6.合式公式: 命题符号与联结词组成
不是合式公式的例子:pq→r;(p→(r→q)
7.公式的类型:重言式、永真式、可满足式
重言式(永真式):都是1
矛盾式(永假式):都是0
可满足式:有1,也有0
二. 联结词:
否定:┐p非p
合取:p∧q p并且q(或“p与q”)
析取:p∨q p或q
蕴涵:p→q如果p,则q
等价:p↔q p当且仅当q
本书规定的联结词优先顺序为:( ),┐,∧,∨,→,↔,对于同一优先级的联结词,先出现者先运算。
例2令p:北京比天津人口多。
q:2+2=4.
r:乌鸦是白色的。
求下列复合命题的真值:
(1)(q∨r)→(p→┐r)
(2)(┐p∨r)↔(p∧┐r)
解:p、q、r的真值分别:
1、1、0
(1) 1 (2) 0
例3求下列公式的真值表,并求成真赋值和成假赋值。
判断公式类型
(1)(p∧┐p)↔(q∧┐q)
(2)(┐p∧q)→┐r
(3)┐(p→q)∧q∧r
解:先做真值表
(1)是永真式,00,01,10,11是成真赋值,没有成假赋值。
(2)是可满足式,011是成假赋值,其余是成真赋值。
(3)是永假式,都是成假赋值,没有成真赋值。
第2章命题逻辑等值演算
一:验证两个公式是否等值:
方法一:真值表
方法二:等值演算
1.双重否定律 A ⇔┐┐A
2.幂等律 A ⇔ A∨A, A ⇔ A∧A
3.交换律A∨B ⇔ B∨A,A∧B ⇔ B∧A
4.结合律(A∨B)∨C ⇔ A∨(B∨C)
(A∧B)∧C ⇔ A∧(B∧C)
5.分配律 A∨(B∧C) ⇔ (A∨B)∧(A∨C)
(∨对∧的分配律)
A∧(B∨C) ⇔ (A∧B)∨(A∧C)
(∧对∨的分配律)
6.德·摩根律┐(A∨B) ⇔┐A∧┐B
┐(A∧B) ⇔┐A∨┐B
7.吸收律 A∨(A∧B) ⇔ A,A∧(A∨B) ⇔ A
8.零律A∨1 ⇔ 1,A∧0 ⇔ 0
9.同一律A∨0 ⇔ A,A∧1 ⇔ A
10.排中律A∨┐A ⇔ 1
11.矛盾律A∧┐A ⇔ 0
12.蕴涵等值式A→B ⇔┐A∨B
13.等价等值式A↔B ⇔ (A→B)∧(B→A)
例1.用等值演算法验证等值式
(p∨q)→r ⇔ (p→r)∧(q→r)
解:方法一:真值表
方法二:等值演算:(p→r)∧(q→r)
⇔ (┐p∨r)∧(┐q∨r) (蕴含等值式)
⇔ (┐p∧┐q)∨r (分配律)
⇔┐(p∨q)∨r (德摩根律)
⇔ (p∨q)→r (蕴含等值式)
二:基本概念(理解):
1. 在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项和它的否定式不
同时出现,而二者之一必出现且仅出现一次,称这样的简单合取式(简单析取式)为极小项(极大项)。
2. 定理2.4 设mi与Mi是命题变项p1,p2,…,pn形成的极小项和极大项,则┐mi ⇔Mi,
┐Mi ⇔ mi
3. 极小项构成的析取范式称为主析取范式。
极大项构成的合取范式称为主合取范式。
4. 定理2.5任何命题公式都存在着与之等值的主析取范式和主合取范式,并且是唯一的。
表p,q,r形成的极小项与极大项
三. 范式的求法(计算)
方法一、等值演算法
(1)消去联结词→、↔(若存在)。
A→B ⇔┐A∨B
A↔B ⇔ (┐A∨B)∧(A∨┐B)
(2)否定号的消去(利用德摩根律)。
(3)利用分配律:
A ∧(
B ∨C) ⇔ (A ∧B)∨(A ∧C)求析取范式, A ∨(B ∧C) ⇔ (A ∨B)∧(A ∨C)求合取范式。
并化成极小(大)项.
(4)表示成主析取(合取)范式. 方法二、真值表法 (1)写出A 的真值表,
(2)找出成真(假)赋值,得到极小(大)项, (3)表示成主析取(合取)范式.
例2 求命题公式 p →q 的主析取范式和主合取范式。
解:方法一:等值演算 (1)求主合取范式
p →q ⇔ ┐p ∨q ⇔ M 2 (2)求析取范式
p →q ⇔ ┐p ∨q ⇔ (┐p ∧(┐q ∨q )) ∨ ((┐p ∨p)∧q ) ⇔ (┐p ∧┐q)∨(┐p ∧q)∨(┐p ∧q)∨(p ∧q) ⇔ (┐p ∧┐q)∨(┐p ∧q)∨(p ∧q) ⇔ m 0∨m 1∨m 3 方法二:真值表 2.主析取范式:
成真赋值有:00,01,11
所以:p →q ⇔ m 0∨m 1∨m 3
3.主合取范式: 成假赋值:10
所以: p →q ⇔ ┐p ∨q ⇔ M 2
第3章 命题逻辑的推理理论
一.判断推理是否正确的方法:
❑ 真值表法 ❑ 等值演算法 ❑ 主析取范式法
p q p →q
0 0 1 0 1 1 1 0 0 1
1
1
例1判断下列推理是否正确。
(方法一:等值演算法)
下午马芳或去看电影或去游泳。
她没去看电影,所以,她去游泳了。
解:设p:马芳下午去看电影,q:马芳下午去游泳。
前提:p∨q,┐p
结论:q
推理的形式结构:((p∨q)∧┐p)→q
((p∨q)∧┐p)→q
⇔┐((p∨q)∧┐p) ∨q
⇔ ((┐p∧┐q)∨p) ∨q
⇔ ((┐p∨p )∧(┐q∨p)) ∨q
⇔ (┐q∨p) ∨q ⇔ 1
由定理3.1可知,推理正确。
例2判断下列推理是否正确。
(方法二:主析取范式法)
解:设p:今天是1号,q:明天是5号。
前提:p→q,q
结论:p
推理的形式结构:(p→q)∧q→p
(p→q)∧q→p⇔ (⌝p∨q)∧q→p
⇔⌝ ((⌝p∨q)∧q)∨p
⇔p⌝∨q
⇔ (⌝p⌝∧q)∨(p⌝∧q)∨ (p⌝∧q)∨(p∧q)
⇔m0∨m2∨m3
主析取范式不含m1,故不是重言式(01是成假赋值),所以推理不正确。
第4章一阶逻辑基本概念
一. 一阶逻辑命题符号化的三个基本要素:
个体词:a,b,c;x,y,z
谓词:F,G,H
量词:全称量词“∀”;存在量词“∃”
例1. x是有理数。
x是个体词,“⋯是有理数”是谓词,记为G,
命题符号化为G(x)。
例2将下列命题符号化,并讨论真值。
(1)所有的人长着黑头发。
(2)没有人登上过木星。
(3)在美国留学的学生未必都是亚洲人。
解:没有提出个体域,所以认为是全总个体域。
(1)所有的人长着黑头发。
令F(x):x长着黑头发,M(x):x是人。
命题符号化为
∀x(M(x)→F(x))。
命题真值为假。
(2)没有人登上过木星。
令H(x):x登上过木星,M(x):x是人。
命题符号化为
┐∃x(M(x)∧H(x))。
命题真值为真。
(3)在美国留学的学生未必都是亚洲人。
令F(x):x是在美国留学的学生,G(x):x是亚洲人。
符号化┐∀x(F(x)→G(x))
命题真值为真。