圆锥曲线高考真题专练(含答案)

合集下载

2024_2025年高考数学真题分类汇编15圆锥曲线选填题

2024_2025年高考数学真题分类汇编15圆锥曲线选填题

圆锥曲线小题一、选择题1.(2024年高考全国甲卷理科)已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为 ( )A B C D 【答案】A解析:因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==, 所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即2e =.故选:A2.(2024年高考全国乙卷理科)设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的随意一点P 都满意||2PB b ≤,则C 的离心率的取值范围是 ( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭ C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C3.(2024年高考数学课标Ⅰ卷理科)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p = ( )A .2B .3C .6D .9【答案】C【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p =+,解得6p.故选:C .4.(2024年高考数学课标Ⅱ卷理科)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为 ( )A .4B .8C .16D .32【答案】B 解析:2222:1(0,0)x y C a b a b-=>> ∴双曲线的渐近线方程是by x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△ 双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==∴C 的焦距的最小值:8故选:B .5.(2024年高考数学课标Ⅲ卷理科)设双曲线C :22221x y a b-=(a >0,b >0)左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a = ( )A .1B .2C .4D .8【答案】A解析:5ca=,c ∴=,依据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .6.(2024年高考数学课标Ⅲ卷理科)设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为 ( ) A .1,04⎛⎫⎪⎝⎭ B .1,02⎛⎫⎪⎝⎭C .(1,0)D .(2,0)【答案】B解析:因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 依据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B .7.(2024年高考数学课标Ⅲ卷理科)双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为 ( )A .4B C .D .【答案】A【解析】由2,a b c ====,2P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在b y x a =上,则2P y ==1133262224PFO P S OF y ∴=⋅=⨯⨯=△,故选A . 8.(2024年高考数学课标全国Ⅱ卷理科)设F 为双曲线:C 22221x y a b-=()0,0a b >>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点,若PQ OF =,则C的离心率为()( )A .2B .3C .2D .5【答案】A【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又∵||PQ OF c ==,∴||2c PA =, PA 为以OF 为直径的圆的半径,∴A 为圆心||2c OA =.∴,22c c P ⎛⎫⎪⎝⎭,又P 点在圆222x y a +=上,∴22244c c a +=,即222c a =,∴2222c e a==,∴2e =,故选A .9.(2024年高考数学课标全国Ⅱ卷理科)若抛物线()220y px p =>的焦点是椭圆2213x y p p+=的一个焦点,则p = ( ) A .2 B .3 C .4 D .8【答案】D【解析】因为抛物线22(0)y px p =>的焦点,02p ⎛⎫⎪⎝⎭是椭圆2231x y p p +=的一个焦点,所以232p p p ⎛⎫-= ⎪⎝⎭,解得8p =,故选D .10.(2024年高考数学课标全国Ⅰ卷理科)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若222AF F B =,1AB BF =,则C 的方程为( )A .2212x y +=B .22132x y += C .22143x y += D .22154x y +=【答案】B解析:如图,设2BF t =,则212,3AF t BF t ==,由12122AF AF BF BF a +=+=,可得12AF t =,12AF AF =,所以点A 为椭圆的上顶点或下顶点.在1ABF △中,由余弦定理可得2222129491cos 12sin 2323t t t BAF OAF t t +-∠=-∠==⨯⨯,)的左、右OP ,则C 的离心率为 ( )A B .2CD【答案】C解析:法一:依据双曲线的对称性,不妨设过点2F 作渐近线by x a=的垂线,该垂线的方程为()a y x c b =--,联立方程()b y x aa y x cb ⎧=⎪⎪⎨⎪=--⎪⎩,解得2P Pab y c ax c ⎧=⎪⎪⎨⎪=⎪⎩由22116PF PF OP =⇒=222222266a ab ab a c a c c c c ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⇒++=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭整理可得42222240a a c c a b -++=即()422222240a a c c a c a -++-= 即4223c a c =即223c a =,所以23e =,所以e =C .法二:由双曲线的性质易知2PF b =,2OF c =,所以222OP c b a =-= 在2Rt POF ∆中,222cos PF bPF O OF c∠== 在12PF F ∆中,由余弦定理可得22221212212cos 2PF F F PF bPF O PF F F c+-∠==所以)222422b c bb cc+-=⋅,整理可得2222464b c a b =-=,即()222224633c a b c a -==-所以223c a =,所以e =C .12.(2024年高考数学课标Ⅱ卷(理))已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A .23 B .12 C .13D .14【答案】D解析:因为12PF F ∆为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==,由余弦定理得1PF =,所以(2)P c ,而(,0)A a -,由已知AP k =,得4a c =,即14e =,故选D .13.(2024年高考数学课标Ⅱ卷(理))双曲线22221(0,0)x y a b a b-=>>线方程为( ) A.y = B.y =C.y = D.y = 14.(2024年高考数学课标卷Ⅰ(理))已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,M N .若OMN ∆为直角三角形,则MN =( )A .32B .3C.D .4【答案】B解析:双曲线22:13x C y -=的渐近线方程为:y x =,渐近线的夹角为:60,不妨设过()2,0F 的直线为:)2y x =-,则)2y x y x ⎧=-⎪⎨=⎪⎩解得3,22M ⎛⎫ ⎪ ⎪⎝⎭;)23y x y x ⎧=-⎪⎨=-⎪⎩解得:(3,N ,则3MN ==,故选B .15.(2024年高考数学课标卷Ⅰ(理))设抛物线2:4C y x =的焦点为F .过点()2,0-且斜率为23的直线与C 交于,M N 两点,则FM FN = ( ) A .5 B .6 C .7D .8【答案】D解析:抛物线2:4C y x =的焦点为()1,0F ,过点()2,0-且斜率为23的直线为:324y x =+,联立直线与抛物线2:4C y x =,消去x 可得:2680y y -+=,解得122,4y y ==,不妨()1,2M ,()4,4N ,()0,2FM =,()3,4FN =,则()()0,23,48FM FN ==,故选D . 16.(2017年高考数学新课标Ⅰ卷理科)已知F 为抛物线2:4C y x =的焦点,过F 作两条相互垂直的直线1l ,2l ,直线1l 与C 交于,A B 两点,直线2l 与C 交于,D E 两点,则AB DE +的是小值为( )A .16B .14C .12D .10【答案】A【解析】设1122(,),(,)A x y B x y ,3344(,),(,)D x y E x y ,直线1l 方程为1(1)y k x =-取方程214(1)y x y k x ⎧=⎨=-⎩,得2222111240k x k x x k --+=∴21122124k x x k --+=-212124k k += 同理直线2l 与抛物线的交点满意22342224k x x k ++= 由抛物线定义可知1234||||2AB DE x x x x p +=++++22122222121224244448816k k k k k k ++=++=++≥= 当且仅当121k k =-=(或1-)时,取得等号.17.(2017年高考数学课标Ⅲ卷理科)已知椭圆2222:1x y C a b+=,()0a b >>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A.3B.3C.3D .13【答案】A【解析】以线段12A A 为直径的圆的圆心为原点,半径为R a =,该圆与直线20bx ay ab -+=相切所以圆心()0,0到直线20bx ay ab -+=的距离d R a ===,整理可得223a b =所以c e a ==3==,故选A .18.(2017年高考数学课标Ⅲ卷理科)已知双曲线()2222:10,0x y C a b a b-=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 ( ) A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 【答案】B【解析】由渐近线的方程y x =,可设双曲线的方程为2245x y λ-= 又椭圆221123x y +=的焦点坐标为()3,0± 所以0λ>,且24531λλλ+=⇒=,故所求双曲线C 的方程为:22145x y -=,故选B . 19.(2017年高考数学课标Ⅱ卷理科)若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为 ( )A .2BCD.3【解析】解法一:常规解法依据双曲线的标准方程可求得渐近线方程为by x a=±,依据直线与圆的位置关系可求得圆心到=,解得2e =.解法二:待定系数法设渐进线的方程为y kx =∴=23k =;由于渐近线的斜率与离心率关系为221k e =-,解得2e =. 解法三:几何法从题意可知:112OA OO O A ===,1OO A ∆为等边三角形,所以一条渐近线的倾斜较为3π由于tan k θ=,可得3k渐近线的斜率与离心率关系为221k e =-,解得2e =. 解法四:坐标系转化法依据圆的直角坐标系方程:()2224x y -+=,可得极坐标方程4cos ρθ=,由4cos 2θ=可得极 角3πθ=,从上图可知:渐近线的倾斜角与圆的极坐标方程中的极角相等,所以3k =渐近线的斜率与离心率关系为221k e =-,解得2e =. 解法五:参数法之直线参数方程如上图,依据双曲线的标准方程可求得渐近线方程为by x a =±,可以表示点A 的坐标为()2cos ,2sin θθ,∵ cos a c θ=,sin b c θ= ∴ 点A 的坐标为22,a b c c ⎛⎫⎪⎝⎭,代入圆方程中,解得2e =.20.(2016高考数学课标Ⅲ卷理科)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A B 、分别为C 的左、右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A .13B .12C .23D .34【答案】A【解析】由题意,设直线l 的方程为()y k x a =+,分别令x c =-与0x =,得点()FM k a c =-,OE ka =,由△OBE ∽△CBM ,得12OE OB FM BC =,即2()ka ak a c a c=-+,整理得13c a =,所以椭圆的离心率13e =,故选A. 21.(2016高考数学课标Ⅱ卷理科)已知12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为 ( ) A .2 B .32C .3D .2【答案】A【解析1】由题可令21|MF |=3,|MF |=1,则22a 所以1a ,248c ,所以2c ,所以2e故选A.22.(2016高考数学课标Ⅰ卷理科)以抛物线C 的顶点为圆心的圆交C 于,A B 两点,交C 的准线于,D E 两点.已知42AB =,25DE =,则C 的焦点到准线的距离为 ( ) (A)2(B)4(C)6(D)8【解析】以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,题目条件翻译如图:设(0,22A x ,52p D ⎛-⎝, 点(0,22A x 在抛物线22ypx =上,∴082px =……①点52p D ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②点(0A x 在圆222x y r +=上,∴2208x r +=……③ 联立①②③解得:4p =,焦点到准线的距离为4p =. 故选B .23.(2016高考数学课标Ⅰ卷理科)已知方程222213-x y m n m n-=+错误!未指定书签。

圆锥曲线高考真题专练(含答案)

圆锥曲线高考真题专练(含答案)

(一)数学全国1卷设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 解:(1)由已知得(1,0)F ,l 的方程为x=1.由已知可得,点A 的坐标为或(1,.所以AM 的方程为y x =+y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++.则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠.综上,OMA OMB∠=∠.已知椭圆C:2222=1x ya b+(a>b>0),四点P1(1,1),P2(0,1),P3(–1,P4(1,C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.解:(1)由于3P,4P两点关于y轴对称,故由题设知C经过3P,4P两点.又由222211134a b a b+>+知,C不经过点P1,所以点P2在C上.因此222111314ba b⎧=⎪⎪⎨⎪+=⎪⎩,解得2241ab⎧=⎪⎨=⎪⎩.故C的方程为2214xy+=.(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知0t≠,且||2t<,可得A,B的坐标分别为(t,),(t,).则121k k+-=-,得2t=,不符合题设.从而可设l:y kx m=+(1m≠).将y kx m=+代入2214xy+=得222(41)8440k x kmx m+++-=由题设可知22=16(41)0k m∆-+>.设A(x1,y1),B(x2,y2),则x1+x2=2841kmk-+,x1x2=224441mk-+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-) 数学全国1卷设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E. (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C1,直线l 交C1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(I )13422=+y x (0≠y );(II ))38,12[ 【解析】试题分析:(I )利用椭圆定义求方程;(II )把面积表示为关于斜率k 的函数,再求最值。

圆锥曲线专题20题练习含答案

圆锥曲线专题20题练习含答案

1.如图,曲线22:1(0,0)x y E m n m n+=>>与正方形L(1)求m n +的值; (2)设直线:l y x b =+交曲线E 于A ,B ,交L 于C ,D ,是否存在这AB 成等差数列?若存在,求出实数b样的曲线E ,使得CA ,的取值范围;若不存在,请说明理由.2.已知点1(0,)2F ,直线l :12y =-,P 为平面上的动点,过点P 作直线l 的垂线,垂足为H ,且满足()0HF PH PF ⋅+=. (1)求动点P 的轨迹C 的方程;(2)过点F 作直线'l 与轨迹C 交于A ,B 两点,M 为直线l 上一点,且满足MA MB ⊥,若MAB ∆的面积为'l 的方程.3.已知圆22:4O x y +=,点(F ,以线段FP 为直径的圆内切于圆O ,记点P 的轨迹为C . (1)求曲线C 的方程;(2)若()11,A x y ,()22,B x y 为曲线C ,且⊥m n ,试问AOB △的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.4.(12分)已知抛物线()2:20C y px p =>的焦点F 与椭圆22:12x T y +=的一个焦点重合,点()0,2M x 在抛物线上,过焦点F 的直线l 交抛物线于A,B 两点.(1)求抛物线C 的标准方程以及MF 的值.(2)记抛物线的准线l x '与轴交于点H ,试问是否存在常数R λ∈,使得AF FB λ= ,且22854HA HB +=都成立.若存在,求出λ的值;若不存在,请说明理由.5.设抛物线)0(42>=m mx y 的准线与x 轴交于1F ,抛物线的焦点2F ,以21,F F 为焦点,离心率21=e 的椭圆与抛物线的一个交点为)362,32(E ;自1F 引直线交抛物线于Q P ,两个不同的点,设F F 11λ=.(1)求抛物线的方程椭圆的方程; (2)若)1,21[∈λ,求||PQ 的取值范围.6. 已知抛物线的焦点为,为轴上的点.2:4E x y =F (),0P a x(1)当时,过点作直线与相切,求切线的方程;(2)存在过点且倾斜角互补的两条直线,,若,与分别交于,和,四点,且与的面积相等,求实数的取值范围.7.设点A 为圆C :224x y +=上的动点,点A 在x 轴上的投影为Q ,动点M 满足2MQ AQ =,动点M 的轨迹为E .(1)求E 的方程;(2)设E 与y 轴正半轴的交点为B ,过点B 的直线l 的斜率为k (0k ≠),l 与E 交于另一点为P ,若以点B 为圆心,以线段BP 长为半径的圆与E 有4个公共点,求k 的取值范围.8.已知椭圆()2222:10x y E a b a b+=>>的左焦点1F 与抛物线24y x =-的焦点重合,椭圆E的离心率为,过点()3,04M m m ⎛⎫> ⎪⎝⎭作斜率不为0的直线,交椭圆E 于,A B 两点,点5,04P ⎛⎫⎪⎝⎭,且PA PB ⋅ 为定值.(1)求椭圆E 的方程; (2)求OAB △面积的最大值.9.已知椭圆1C ,抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从1C ,2C 上分别取两个点,将其坐标记录于下表中:12(2)若直线():0l y kx m k =+≠与椭圆1C 交于不同的两点,M N ,且线段MN 的垂直平分线过定点1,08G ⎛⎫⎪⎝⎭,求实数的取值范围. 10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为分别为椭圆的左、右焦点,点在椭圆上,当时,内切圆的半径为.(1)求椭圆的方程;0a ≠P l E l P 1l 2l 1l 2l E A B C D FAB ∆FCD ∆a(2)已知直线与椭圆相较于两点,且,当直线的斜率之和为2时,问:点到直线的距离是否存在最大值?若存在,求出最大值;若不存在,说明理由.11. 已知抛物线2:C y x =-,点A ,B 在抛物线上,且横坐标分别为12-,32,抛物线C 上的点P 在A ,B 之间(不包括点A ,点B ),过点B 作直线AP 的垂线,垂足为Q . (1)求直线AP 斜率k 的取值范围; (2)求|||PA PQ ⋅的最大值.12. 如图,分别过椭圆()2222:10x y E a b a b+=>>左、右焦点12,F F 的动直线12,l l 相交于P 点,与椭圆E 分别交于,A B 与,C D 不同四点,直线,,,OA OB OC OD 的斜率1234,,,k k k k 满足1234k k k k +=+.已知当1l 与x 轴重合时,AB =CD =(Ⅰ)求椭圆E 的方程;(Ⅱ)是否存在定点,M N ,使得PM PN +为定值?若存在,求出,M N 点坐标并求出此定值;若不存在,说明理由.13.(本小题满分12分)已知椭圆C: 12222=+by a x (a>b>0)的离心率为22,过右焦点F 且与长轴垂直的直线被椭圆截得的线段长为2,0为坐标原点. (1)求椭圆C 的标准方程;(2)设经过点M(0,2)作直线l 交椭圆C 于A 、B 两点,求△AOB 面积的最大值及相应的直线l 的方程.1.【答案】(1)16m n +=;(2【解析】(1,得()28160n m x mx m mn +-+-=,有()()2644160m m n m mn ∆=-+-=,···········2分 化简的()4640mn m n mn +-=.又0m >,0n >,所以0mn >从而有16m n +=;···········4分 (2)由2AB CA BD =+,AB =···········5分 ,得()2220n m x bmx mb mn +++-=, 由2224440nmb n m m n ∆=-++>可得216b m n <+=,且122bmx x n m-+=+,212mb mn x x n m -=+,···········7分···········8分 323=,···········10分符合216b m n <+=,故当实数b 时,存在直线和曲线E ,使得CA ,AB ,BD 成等差数列.···········12分 2.解:(1)设(,)P x y ,则1(,)2H x -,1(,1),(0,),2HF x PH y ∴=-=--1(,)2PF x y =-- ,(,2)PH PF x y +=-- ,()0HF PH PF += ,220x y ∴-=,即轨迹C 的方程为22x y =.(II )法一:显然直线l '的斜率存在,设l '的方程为12y kx =+,由2122y kx x y ⎧=+⎪⎨⎪=⎩,消去y 可得:2210x kx --=, 设1122(,),(,)A x y B x y ,1(,)2M t -,121221x x kx x +=⎧∴⎨⋅=-⎩,112211(,),(,)22MA x t y MB x t y =-+=-+ MA MB ⊥ ,0MA MB ∴= ,即121211()()()()022x t x t y y --+++=2121212()(1)(1)0x x x x t t kx kx ∴-+++++=,22212210kt t k k ∴--+-++=,即2220t kt k -+=∴2()0t k -=,t k ∴=,即1(,)2M k -,∴212|||2(1)AB x x k =-==+,∴1(,)2M k -到直线l '的距离2d ==,3221||(1)2MABS AB d k ∆==+=,解得1k =±, ∴直线l '的方程为102x y +-=或102x y -+=. 法2:(Ⅱ)设1122(,),(,)A x y B x y ,AB 的中点为()00,y x E则211121212120212222()()2()2AB x y y y x x x x y y x k x x x y ⎧=-⎪⇒-+=-⇒==⎨-=⎪⎩ 直线'l 的方程为012y x x =+, 过点A,B 分别作1111B 于,于l BB A l AA ⊥⊥,因为,⊥MA MB E 为AB 的中点,所以在Rt AMB 中,11111||||(||||)(||||)222==+=+EM AB AF BF AA BB 故EM 是直角梯形11A B BA 的中位线,可得⊥EM l ,从而01(,)2M x -点M 到直线'l的距离为:2d ==因为E 点在直线'l 上,所以有20012y x =+,从而21200||1212(1)AB y y y x =++=+=+由2011||2(22MAB S AB d x ==⨯+= 01x =± 所以直线'l 的方程为12y x =+或12y x =-+.3.【答案】(1)2214y x +=;(2)答案见解析.【解析】(1)取(0,F ',连结PF ',设动圆的圆心为M , ∵两圆相内切,∴122OM FP =-,又12OM PF =',∴4PF PF FF +=>='',···········3分∴点P 的轨迹是以F ,F '为焦点的椭圆,其中24a =,2c =,∴2a =,c =,∴2221b a c =-=,∴C 的轨迹方程为2214y x +=.···········5分(2)当AB x ⊥轴时,有12x x =,12y y =-,由⊥m n ,得112y x =,又221114y x +=,∴1x =1y =∴11112122AOB S x y ∆=⨯⨯=⨯=.···········7分 当AB 与轴不垂直时,设直线AB 的方程为y kx m =+,()2224240k x kmx m +++-=, 则12224kmx x k -+=+,212244m x x k -=+,···········9分由0⋅=m n ,得121240y y x x +=,∴()()121240kx m kx m x x +++=, 整理得()()22121240k x x km x x m ++++=,···········10分 ∴2224m k =+,12m21m==,综上所述,AOB △的面积为定值.···········12分5.解:(1)设椭圆的标准方程为)0(12222>>=+b a by ax ,由题意得⎪⎪⎩⎪⎪⎨⎧=-==+211924942222a b a ac b a ,解得⎪⎩⎪⎨⎧==3422b a∴椭圆的方程为13422=+y x ∴点2F 的坐标为)0,1(,∴1=m ,∴抛物线的方程是x y 42=(2)由题意得直线PQ 的斜率存在,设其方程为)0)(1(≠+=k x k y ,由⎩⎨⎧=+=xy x k y 4)1(2消去x 整理得0442=+-k y ky ()∵直线PQ 与抛物线交于两点, ∴016162>-∆k ,设),(),,(2211y x Q y x P ,则421=y y ①,ky y 421=+②, ∵Q F P F 11λ=,)0,1(1-F ∴),1(),1(2211y x y x +=+λ ∴21y y λ=,③由①②③消去21,y y 得22)1(4+=λλk . ∴||PQ 22221221222121616)11(4))[(11())(11(kk ky y y y ky y k-+=-++=-+=441616kk -=,即=2||PQ 441616k k -,将22)1(4+=λλk 代入上式得,=2||PQ 16)21(16)12(16)4(222224-++=-++=-+λλλλλλλ,∵λλλ1)(+=f 在)1,21[∈λ上单调递减,∴)21()()1(f f f ≤<λ,即2512≤+<λλ, ∴<041716)21(2≤-++λλ, ∴217||0≤<PQ ,即||PQ 的取值范围为]217,0(. 6.解:(1)设切点为则. ∴点处的切线方程为. ∵过点,∴,解得或. 当时,切线的方程为或. (2)设直线的方程为,代入得, ①,得, ②由题意得,直线的方程为, 同理可得,即, ③ ②×③得,∴.④设,,则,.∴.点到的距离为,200,3x Q x ⎛⎫⎪⎝⎭002x x l x yk ===Q ()200042x x y x x -=-l P ()200042x x a x -=-02x a =00x =0a ≠l 0y =20ax y a --=1l ()y k x a =-24x y =2440x kx ka -+=216160k ka ∆=->()0k k a ->2l ()y k x a =--()0k k a --->()0k k a +>()2220k k a ->22a k <()11,A x y ()22,B x y 224x x k +=224x x ka=AB =FAB d =∴的面积为同理的面积为由已知得,化简得, ⑤欲使⑤有解:则,∴.又,得,∴. 综上,的取值范围为或或.7.解:(1)设点(,)M x y ,由2MQ AQ =,得(,2)A x y ,由于点A 在圆C :224x y +=上,则2244x y +=,即点M 的轨迹E 的方程为2214x y +=. (2)由(1)知,E的方程为2214x y +=, 因为E 与y 轴的正半轴的交点为B ,所以(0,1)B ,所以故B 且斜率为k 的直线l 的方程为1y kx =+(0k ≠).由221,1,4y kx x y =+⎧⎪⎨+=⎪⎩得22(14)80k x kx ++=, 设11(,)B x y ,22(,)P x y ,因此10x =,22814kx k =-+,12|||BP x x =-=由于圆与椭圆的公共点有4个,由对称性可设在y 轴左侧的椭圆上有两个不同的公共点P ,T ,满足||||BP BP =,此时直线BP 斜率0k >,FAB ∆41S =+FCD ∆41S =-4141+=-()2221a k -=22a <a <22212a k k=-<21k ≠21a ≠a 1a <<-11a -<<1a <<设直线BT 的斜率为1k ,且10k >,1k k ≠,则||BT ==10-=,即221(14(14k k +=+所以222222111()(18)0k k k k k k -++-=, 由于12k k ≠,因此222211180k k k k ++-=,故22122111198188(81)k k k k +==+--. 因为20k >,所以21810k ->,因此22119188(81)8k k =+>-,又因为0k >,所以k >, 又因为1k k ≠,所以2222180k k k k ++-≠,所以428210k k --≠,又因为0k >,解得2k ≠,所以)k ∈+∞ , 综上所述,k的取值范围为(,()-∞+∞ .8.(本小题满分12分)【答案】(1)2212x y +=;(2). 【解析】(1)设1(,0)F c ,∵抛物线24y x =﹣的焦点坐标为(1,0)-,且椭圆E 的左焦点1F 与抛物线24y x =﹣的焦点重合,∴1c =,···········2分 又椭圆Ea =···········3分 于是有2221b ac ==﹣.故椭圆E 的标准方程为:2212x y +=.···········4分 (2)设11,A x y (),22,B x y (),直线的方程为:x ty m =+, 由2222x ty m x y =+⎧⎨+=⎩整理得2222220t y tmy m +++=()﹣ 12222tm y y t -+=+,212222m y y t -=+,···········6分 115(,)4PA x y =- ,225(,)4PB x y =- , 121255()()44PA PB x x y y ⋅=--+ 2212125525(1)()()4216t y y tm t y y m m =++-++-+222225(2)(2)5722216m m t m m m t -+-+-=+--+.···········8分 要使PA PB ⋅ 为定值,则22522212m m m -+--=,解得1m =或23m =(舍), ···········9分当1m =时,2122|)2t AB y y t +==+﹣,···········10分点O 到直线AB的距离d =,···········11分OAB △面积1s ==. ∴当0t =,OAB △··········12分 9.【答案】(1)1C :22143x y +=.22:4C y x =;(2),⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭. 【解析】(1)设抛物线()22:20C y px p =≠,则有()220y p x x =≠,据此验证4个点知(3,-,()4,4-在抛物线上,易求22:4C y x =.·········2分 设()2222:10x y C a b a b +=>>,把点()2,0-,⎭代入得: 222412614⎧=+⎪⎪⎨⎪⎪⎩=a ab ,解得2243==⎧⎨⎩a b ,所以1C 的方程为22143x y +=.·········5分 (2)设()11,M x y ,()22,N x y ,将y kx m =+代入椭圆方程,消去y 得()2223484120k x kmx m +++-=, 所以()()()22284344120km k m ∆=-+->,即2243m k <+.① 由根与系数关系得122834km x x k+=-+,则122634m y y k +=+,·········7分 所以线段MN 的中点P 的坐标为2243,3434km m k k ⎛⎫- ⎪++⎝⎭.·········8分 又线段MN 的垂直平分线的方程为118y x k ⎛⎫=-- ⎪⎝⎭,·········9 由点P 在直线上,得22314134348m km k k k ⎛⎫=--- ⎪++⎝⎭, 即24830k km ++=,所以()21438m k k =-+,·········10分 由①得()2222434364k k k +<+,所以2120k >,即k <或k >,所以实数的取值范围是,⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭.·········12分 10.(1)依题意: PF 1 + PF 2 − F 1F 2 2=r ,则 PF 1 + PF 2 − F 1F 2 =4−2 3,即2a −2c =4−2 3又c a = 32,联立解得:a =2,c = 3,故b =1,所以椭圆的方程为x 24+y 2=1 (2)设, 联立直线和椭圆的方程得:, 当时有: 由得:,即, 整理得:,所以, 化简整理得:,代入得:, 解之得:或, 点到直线的距离, 设,易得或,则, 当时;当时,, 若,则;若,则,当时, 综上所述:,故点到直线的距离没有最大值.11.(1)由题可知11(,)24A --,39(,)24B -,设2(,)p p P x x -,1322p x -<<,所以 21412p p x k x -+=+12p x =-+∈(1,1)-,故直线AP 斜率k 的取值范围是(1,1)-.(2)直线11:24AP y kx k =+-,直线93:042BQ x ky k ++-=,联立直线AP ,BQ 方程可知点Q 的横坐标为223422Q k k x k --=+,||PQ =()Q p x x -22341()222k k k k --=+-+2=1||)2p PA x =+)k =-,所以3||||(1)(1)PA PQ k k ⋅=-+,令3()(1)(1)f x x x =-+,11x -<<,则2'()(1)(24)f x x x =---22(1)(21)x x =--+,当112x -<<-时'()0f x >,当112x -<<时'()0f x <,故()f x 在1(1,)2--上单调递增,在1(,1)2-上单调递减. 故max 127()()216f x f =-=,即||||PA PQ ⋅的最大值为2716. 12.解:(Ⅰ)当1l 与x 轴重合时,1230k k k k +=+=,即34k k =-2l ∴垂直于x轴,得2AB a ==,223b CD a ==得a b =,∴椭圆E 的方程为:22132x y +=. (Ⅱ)焦点12,F F 坐标分别为()()1,0,1,0-当直线1l 或2l 斜率不存在时,P 点坐标为()1,0-或()1,0当直线1l 、2l 斜率存在时,设斜率分别为12,m m ,设()()1122,,,A x y B x y , 由()2211321x y y m x ⎧+=⎪⎨⎪=+⎩得:()2222111236360m x m x m +++-= 由求根公式并化简得:211221623m x x m +=-+或2112213623m x x m -⋅=+ 121212112112121212111422y y x x x x m k k m m x x x x x x m ⎛⎫⎛⎫++++=+=+=+=- ⎪ ⎪-⎝⎭⎝⎭ 同理:2342242m k k m +=--.1234k k k k +=+ ,()()1212212212442022m m m m m m m m -=-⇒⋅+-=--,由题意知:210m m -≠,1220m m ∴⋅+=. 设(),P x y ,则+2=01+1y y x x ⋅-,即()22112y x x +=≠± 当直线1l 或2l 斜率不存在时,P 点坐标为()1,0-或()1,0,也满足此方程,所以点P 在椭圆()22112y x x +=≠±上,存在点()0,1M -和()0,1N ,使得PM PN +为定值,定值为。

高考数学圆锥曲线专题练习及答案解析

高考数学圆锥曲线专题练习及答案解析
2
X = —½距离为6,点P,Q是椭圆上的两个动点©
C
(1)求椭圆C的方程;
(2)若直线AP丄40,求证:直线P0过泄点R,并求出R点的坐标。
【例二・】已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设该动圆圆心的轨迹为曲 线C。
(1)求曲线C的方程;
(2)过点N(1,O)任意作两条互相垂直的直线∕1,∕2,分别交曲线C于不同的两点A,B和
的焦点,直线4F的斜率为少,O为坐标原点。
3
(1)求E方程;
(2)设过点A的直线/与E相交于PQ两点,当AOP0的面积最大时,求/的方
程。
专题练习
1•在平面直角坐标系XOy中,已知点A(O,—OB点在直线y = -3±, M点满足
MB//QA,莎•亦=屁•鬲M点的轨迹为曲线C。
(1)求C的方程:
(2)P为C上的动点,/为C在P点处的切线,求O点到/距离的最小值。
10.抛汤钱屮阿基来德三角形鲂纟见般质及疝用
11.(S傩曲钱屮的戒切後龜哩
锥曲线中的求轨迹方程问题
解题技巧
求动点的轨迹方程这类问题可难可易是高考中的髙频题型,求轨迹方程的主要方法有直译法、
相关点法、泄义法、参数法等。它们的解题步骤分别如下:
1.直译法求轨迹的步骤:
(1)设求轨迹的点为P(χ,y);
(2)由已知条件建立关于x,y的方程;
D,Q设线段ABQE的中点分别为几。・
①求证:直线P0过左点R,并求出泄点/?的坐标;
②求PGl的最小值。
专题练习
1.设椭圆E:丄y+ =y=l(α> b > 0)的右焦点到直线x-y + 2√z2=0的距离为3,且过点Cr Ir
I

圆锥曲线历年高考题(整理)附答案

圆锥曲线历年高考题(整理)附答案
圆锥曲线测试题
一、选择题:(60分)
1.椭圆 的离心率是()
A. B. C. D.
2.已知椭圆中心在坐标原点,焦点在 轴上,并且长轴长为12,离心率为 ,则该椭圆的方程为()
A. B. C. D.
3.方程 所表示的曲线是()
A.双曲线B.椭圆C.线段D.圆
4.已知双曲线的一条渐近线方程为y=x,则双曲线的离心率曲线的实轴长和虚轴长。
(2)若 ,点 是双曲线上的任意一点,求 的最小值。
20.已知双曲线 。
(1)求与双曲线 有相同的焦点,且过点 的双曲线 的标准方程。
(2)直线 分别交双曲线的两条渐近线与A,B两点,当 时,求实数 的值。
(A)(B)(C)(D)
5.已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则三角形ABC的周长是()
(A)2(B)6(C)4(D)12
6.已知双曲线虚轴的一个端点为M,两个焦点为 , ,则双曲线的离心率为()
A. B. C. D.
7.曲线 与曲线 的()
A. B. C. D.
二、填空题:(30分)
11.双曲线 的虚轴长是实轴长的2倍,则 。
12.已知椭圆的中心在原点,一个焦点为 ,且长轴长是短轴长的2倍,则求该椭圆的标准方程为。
13.已知椭圆 的焦点为 ,点P在椭圆上。若 ,则 的大小为
14.已知点 ,椭圆 与直线 交于点A,B,则 的周长为()
15.已知双曲线 与双曲线 有相同的渐近线,且 的右焦点为 ,则 ( ), ()。
(A)焦距相等(B)离心率相等(C)焦点相同(D)准线相同
8.已知F是双曲线 的右焦点,O为坐标原点,设P是双曲线上一点,则 的大小不可能是()

高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)

高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)

高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)1.(2022·浙江·统考高考真题)如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =−+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求||CD 的最小值.【解析】(1)设,sin )H θθ是椭圆上任意一点,(0,1)P ,222221144144||12cos (1sin )1311sin 2sin 11sin 111111PH θθθθθ⎛⎫=+−=−−=−+≤⎭+ ⎪⎝,当且仅当1sin 11θ=−时取等号,故PH(2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++−= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=−⎪+⎪⎪⎨⎪=−⎛⎫⎪+ ⎪⎪⎝⎭⎩, 因为直线111:1y PA y x x −=+与直线132y x =−+交于C , 则111114422(21)1C x x x x y k x ==+−+−,同理可得,222224422(21)1D x x x x y k x ==+−+−.则224||(21)1C D x CD x k x −=+−====≥=当且仅当316k=时取等号,故CD2.(2022·全国·统考高考真题)已知双曲线2222:1(0,0)x yC a ba b−=>>的右焦点为(2,0)F,渐近线方程为y=.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点()()1122,,,P x y Q x y在C上,且1210,0x x y>>>.过P且斜率为Q M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在AB上;②PQ AB∥;③||||MA MB=.注:若选择不同的组合分别解答,则按第一个解答计分.【解析】(1)右焦点为(2,0)F,∴2c=,∵渐近线方程为y=,∴ba=∴b=,∴222244c a b a=+==,∴1a=,∴b=∴C的方程为:2213yx−=;(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而12x x=,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为()2y k x=−,则条件①M在AB上,等价于()()2000022y k x ky k x=−⇔=−;两渐近线的方程合并为2230x y−=,联立消去y 并化简整理得:()22223440k x k x k −−+=设()()3344,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===−=−−, 设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y −+−=−+−, 移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤−−++−−+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x −⎡⎤⎡⎤−++−+=⎣⎦⎣⎦−,即()000N N x x k y y −+−=,即200283k x ky k +=−;由题意知直线PM的斜率为直线QM∴由))10102020,y y x x y y x x −=−−=−,∴)121202y y x x x −=+−, 所以直线PQ的斜率)1201212122x x x y y m x x x x +−−==−−,直线)00:PM y x x y =−+,即00y y =, 代入双曲线的方程22330x y −−=,即)3yy +−=中,得:()()00003y y ⎡⎤−=⎣⎦, 解得P的横坐标:100x y ⎛⎫+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎫−=++−=−−⎪−−⎭∴03x m y =, ∴条件②//PQ AB 等价于003m k ky x =⇔=, 综上所述:条件①M 在AB 上,等价于()2002ky k x =−;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283k x ky k +=−;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==−−,∴③成立; 选①③推②:由①③解得:20223k x k =−,20263k ky k =−,∴003ky x =,∴②成立; 选②③推①:由②③解得:20223k x k =−,20263k ky k =−,∴02623x k −=−,∴()2002ky k x =−,∴①成立.3.(2022·全国·统考高考真题)设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ−取得最大值时,求直线AB 的方程.【解析】(1)抛物线的准线为2px =−,当MD 与x 轴垂直时,点M 的横坐标为p , 此时=32pMF p +=,所以2p =, 所以抛物线C 的方程为24y x =;(2)[方法一]:【最优解】直线方程横截式设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my −−=,120,4y y ∆>=−,由斜率公式可得12221212444MN y y k y y y y −==+−,34223434444AB y y k y y y y −==+−, 直线112:2x MD x y y −=⋅+,代入抛物线方程可得()1214280x y y y −−⋅−=, 130,8y y ∆>=−,所以322y y =,同理可得412y y =,所以()34124422MN AB k k y y y y ===++ 又因为直线MN 、AB 的倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===, 若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++, 当且仅当12k k =即k =所以当αβ−最大时,AB k =:AB x n +,代入抛物线方程可得240y n −−=, 34120,4416y y n y y ∆>=−==−,所以4n =,所以直线:4AB x +. [方法二]:直线方程点斜式 由题可知,直线MN 的斜率存在.设()()()()11223344,,,,,,,M x y N x y A x y B x y ,直线():1MN y k x =− 由 2(1)4y k x y x=−⎧⎨=⎩得:()2222240k x k x k −++=,121x x =,同理,124y y =−.直线MD :11(2)2y y x x =−−,代入抛物线方程可得:134x x =,同理,244x x =. 代入抛物线方程可得:138y y =−,所以322y y =,同理可得412y y =,由斜率公式可得:()()21432143212121.22114AB MN y y y y y y k k x x x x x x −−−====−−⎛⎫− ⎪⎝⎭(下同方法一)若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++ 当且仅当12k k =即k =所以当αβ−最大时,AB k =:AB x n +,代入抛物线方程可得240y n −−=,34120,4416y y n y y ∆>=−==−,所以4n =,所以直线:4AB x =+. [方法三]:三点共线设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,设(),0P t ,若 P 、M 、N 三点共线,由221212,,44y y t y t PM PN y ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭,所以22122144y y t y t y ⎛⎫⎛⎫−=− ⎪ ⎪⎝⎭⎝⎭,化简得124y y t =-, 反之,若124y y t =-,可得MN 过定点(),0t 因此,由M 、N 、F 三点共线,得124y y =−,由M 、D 、A 三点共线,得138y y =−, 由N 、D 、B 三点共线,得248y y =−,则3412416y y y y ==−,AB 过定点(4,0)(下同方法一)若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++ 当且仅当12k k =即2k =时,等号成立,所以当αβ−最大时,AB k =:4AB x =+. 【整体点评】(2)法一:利用直线方程横截式,简化了联立方程的运算,通过寻找直线,MN AB的斜率关系,由基本不等式即可求出直线AB 的斜率,再根据韦达定理求出直线方程,是该题的最优解,也是通性通法;法二:常规设直线方程点斜式,解题过程同解法一;法三:通过设点由三点共线寻找纵坐标关系,快速找到直线AB 过定点,省去联立过程,也不失为一种简化运算的好方法.4.(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛−−⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P −的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛−−⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B −−,所以2:23+=AB y x ,①若过点(1,2)P −的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M,N ,代入AB 方程223y x =−,可得(3,T ,由MT TH =得到(5,H −.求得HN 方程:(22y x =−,过点(0,2)−. ②若过点(1,2)P −的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y −−+=. 联立22(2)0,134kx y k x y −−+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +−+++=, 可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234k y y k k k y y k ⎧−++=⎪+⎪⎨+−⎪=⎪+⎩,且1221224(*)34kx y x y k −+=+联立1,223y y y x =⎧⎪⎨=−⎪⎩可得111113(3,),(36,).2y T y H y x y ++− 可求得此时1222112:()36y y HN y y x x y x x −−=−+−−, 将(0,2)−,代入整理得12121221122()6()3120x x y y x y x y y y +−+++−−=, 将(*)代入,得222241296482448482436480,k k k k k k k +++−−−+−−= 显然成立,综上,可得直线HN 过定点(0,2).−5.(2022·全国·统考高考真题)已知点(2,1)A 在双曲线2222:1(1)1x yC a a a −=>−上,直线l 交C于P ,Q 两点,直线,AP AQ 的斜率之和为0. (1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.【解析】(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a −=>−上,所以224111a a −=−,解得22a =,即双曲线22:12x C y −=.易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y , 联立2212y kx m x y =+⎧⎪⎨−=⎪⎩可得,()222124220k x mkx m −−−−=, 所以,2121222422,2121mk m x x x x k k ++=−=−−,()()222222Δ16422210120m k m k m k =−+−>⇒−+>且≠k .所以由0AP AQk k +=可得,212111022y y x x −−+=−−, 即()()()()122121210x kx m x kx m −+−+−+−=, 即()()()1212212410kx x m k x x m +−−+−−=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+−−−−−= ⎪−−⎝⎭, 化简得,()2844410k k m k +−++=,即()()1210k k m +−+=,所以1k =−或12m k =−,当12m k =−时,直线():21l y kx m k x =+=−+过点()2,1A ,与题意不符,舍去, 故1k =−.(2)[方法一]:【最优解】常规转化不妨设直线,PA AQ 的倾斜角为π,2αβαβ⎛⎫<< ⎪⎝⎭,因为0AP AQ k k +=,所以παβ+=,由(1)知,212220x x m =+>,当,A B 均在双曲线左支时,2PAQ α∠=,所以tan 2α=2tan 0αα+,解得tan α=(负值舍去) 此时P A 与双曲线的渐近线平行,与双曲线左支无交点,舍去; 当,A B 均在双曲线右支时,因为tan PAQ ∠=()tan βα−=tan 2α=−2tan 0αα−,解得tan α,于是,直线):21PA y x =−+,直线):21QA y x =−+,联立)222112y x x y ⎧=−+⎪⎨−=⎪⎩可得,)23241002x x ++−,因为方程有一个根为2,所以P x =,P y=,同理可得,103Q x +=,Q y=53−. 所以5:03PQ x y +−=,163PQ =,点A 到直线PQ的距离d = 故PAQ △的面积为11623⨯=. [方法二]:设直线AP 的倾斜角为α,π02α⎛⎫<< ⎪⎝⎭,由tan PAQ ∠=tan 2PAQ ∠由2PAQ απ+∠=,得tan AP k α=1112y x −−,联立1112y x −=−221112x y −=得1x1y ,同理,2x 2y =12203x x +=,12689x x =而1||2|AP x −,2||2|AQ x −,由tan PAQ ∠=sin PAQ ∠故12121||||sin 2()4|2PAQSAP AQ PAQ x x x x =∠=−++= 【整体点评】(2)法一:由第一问结论利用倾斜角的关系可求出直线,PA PB 的斜率,从而联立求出点,P Q 坐标,进而求出三角形面积,思路清晰直接,是该题的通性通法,也是最优解;法二:前面解答与法一求解点,P Q 坐标过程形式有所区别,最终目的一样,主要区别在于三角形面积公式的选择不一样.。

(完整版)圆锥曲线练习题含标准答案(最新整理)

(完整版)圆锥曲线练习题含标准答案(最新整理)

当 0 m 1 时,
y2 1
x2 1
1, e2
a2 b2 a2
1m
3,m 4
1 ,a2 4
1 m
4, a
2
m
20. x2 y2 1 20 5
设双曲线的方程为 x2 4 y2 , ( 0) ,焦距 2c 10, c2 25
5 /9

0 时,
x2
y2
1,
4
25,
20 ;
4

0
时,
y2
x2
1,
(
)
4
25,
20
4
21. (, 4) (1, ) (4 k)(1 k) 0, (k 4)(k 1) 0, k 1,或k 4
22. x 3 2 p 6, p 3, x p 3
2
22
23.1
焦点在 y 轴上,则 y2 x2 1, c2 5 1 4, k 1
28. ( 7, 0) 渐近线方程为 y m x ,得 m 3, c 7 ,且焦点在 x 轴上 2
29. b2 a2
设A( x1 ,y1), NhomakorabeaB(x2 ,
y2
)
,则中点
M
(
x1
2
x2
,
x
, 2
x2
8x
4
0,
x1
x2
8,
y1
y2
x1
x2
4
4
中点坐标为 ( x1 x2 , y1 y2 ) (4, 2)
2
2
27. , 2
t2 设 Q(
,t) ,由
PQ
a
t2 得(

高考经典圆锥曲线习题(含答案)

高考经典圆锥曲线习题(含答案)

高考圆锥曲线试题精选一、选择题:(每小题5分,计50分)1、(2008海南、宁夏文)双曲线22110x y -=的焦距为( )2.(2004全国卷Ⅰ文、理)椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23 B .3 C .27D .4 3.(2006辽宁文)方程22520x x -+=的两个根可分别作为( )A.一椭圆和一双曲线的离心率B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率4.(2006四川文、理)直线y=x-3与抛物线x y 42=交于A 、B 两点,过A 、B 两点向 抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为( ) (A )48. (B )56 (C )64 (D )72.5.(2007福建理)以双曲线116922=-y x 的右焦点为圆心,且与其渐近线相切的圆的方程是( )A .B.C .D.6.(2004全国卷Ⅳ理)已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线 x y 42-=的焦点重合,则此椭圆方程为( )A .13422=+y xB .16822=+y xC .1222=+y x D .1422=+y x 7.(2005湖北文、理)双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163B .83C .316D .388. (2008重庆文)若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( )(A)2(B)3(C)4(D)429.(2002北京文)已知椭圆1532222=+n y m x 和双曲线1322222=-n y m x 有公共的焦点,那么 双曲线的渐近线方程是( ) A .y x 215±= B .x y 215±= C .y x 43±= D .x y 43±= 二、填空题:(每小题5分,计20分)11. (2005上海文)若椭圆长轴长与短轴长之比为2,它的一个焦点是()0,152,则椭圆的标准方程是_________________________12.(2008江西文)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程为y x =, 若顶点到渐近线的距离为1,则双曲线方程为 .13.(2007上海文)以双曲线15422=-y x 的中心为顶点,且以该双曲线的右焦点为焦点的 抛物线方程是 .三、解答题:(15—18题各13分,19、20题各14分)15.(2006北京文)椭圆C:22221(0)x y a b a b +=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,且11212414,||,||.33PF F F PF PF ⊥== (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 过圆x 2+y 2+4x-2y=0的圆心M , 交椭圆C 于,A B 两点, 且A 、B 关于点M 对称,求直线l 的方程..16.(2005重庆文)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.17.(2007安徽文)设F 是抛物线G :x 2=4y 的焦点.(Ⅰ)过点P (0,-4)作抛物线G 的切线,求切线方程:(Ⅱ)设A 、B 为抛物线G 上异于原点的两点,且满足0·=FB FA ,延长AF 、BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.18.(2008辽宁文) 在平面直角坐标系xOy 中,点P 到两点(0-,,(0的距离之和等于4,设点P 的轨迹为C . (Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB 的值是多少?19. (2002广东、河南、江苏)A 、B 是双曲线x 2-y22=1上的两点,点N(1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?20.(2007福建理)如图,已知点F (1,0),直线l :x =-1,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且=。

高三数学圆锥曲线试题答案及解析

高三数学圆锥曲线试题答案及解析

高三数学圆锥曲线试题答案及解析1.设、是定点,且均不在平面上,动点在平面上,且,则点的轨迹为()A.圆或椭圆B.抛物线或双曲线C.椭圆或双曲线D.以上均有可能【答案】D【解析】以为高线,为顶点作顶角为的圆锥面,则点就在这个圆锥面上,用平面截这个圆锥面所得截线就是点的轨迹,它可能是圆、椭圆、抛物线、双曲线,因此选D.【考点】圆锥曲线的性质.2.已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是( )A.B.C.D.【答案】D【解析】设直线:求直线与渐近线的交点,解得:是的中点,利用中点坐标公式,得,在双曲线上,所以代入双曲线方程得:,整理得,解得.故选D.【考点】1.双曲线的几何性质;2.双曲线的方程.3.已知椭圆的焦点重合,则该椭圆的离心率是.【答案】【解析】抛物线的焦点为,椭圆的方程为:,所以离心率.【考点】1、椭圆与抛物线的焦点;2、圆的离心率.4.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.5.已知动点到定点和的距离之和为.(Ⅰ)求动点轨迹的方程;(Ⅱ)设,过点作直线,交椭圆异于的两点,直线的斜率分别为,证明:为定值.【答案】(Ⅰ);(Ⅱ)证明过程详见解析.【解析】本题考查椭圆的基本量间的关系及韦达定理的应用.第一问是考查椭圆的基本量间的关系,比较简单;第二问是直线与椭圆相交于两点,先设出两点坐标,本题的突破口是在消参后的方程中找出两根之和、两根之积,整理斜率的表达式,但是在本问中需考虑直线的斜率是否存在,此题中蕴含了分类讨论的思想的应用.试题解析:(Ⅰ)由椭圆定义,可知点的轨迹是以为焦点,以为长轴长的椭圆.由,得.故曲线的方程为. 5分(Ⅱ)当直线的斜率存在时,设其方程为,由,得. 7分设,,,.从而.11分当直线的斜率不存在时,得,得.综上,恒有. 12分【考点】1.三角形面积公式;2.余弦定理;3.韦达定理;4.椭圆的定义.6.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.7.已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆.(1)求椭圆的标准方程;(2)若圆与轴相切,求圆被直线截得的线段长.【答案】(1);(2).【解析】(1)先根据题中的条件确定、的值,然后利用求出的值,从而确定椭圆的方程;(2)先确定点的坐标,求出圆的方程,然后利用点(圆心)到直线的距离求出弦心距,最后利用勾股定理求出直线截圆所得的弦长.试题解析:(1)设椭圆的方程为,由题意知,,解得,则,,故椭圆的标准方程为 5分(2)由题意可知,点为线段的中点,且位于轴正半轴,又圆与轴相切,故点的坐标为,不妨设点位于第一象限,因为,所以, 7分代入椭圆的方程,可得,因为,解得, 10分所以圆的圆心为,半径为,其方程为 12分因为圆心到直线的距离 14分故圆被直线截得的线段长为 16分【考点】椭圆的方程、点到直线的距离、勾股定理8.已知为抛物线的焦点,抛物线上点满足(Ⅰ)求抛物线的方程;(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.【答案】(Ⅰ),(Ⅱ).【解析】(Ⅰ)利用抛物线的定义得到,再得到方程;(Ⅱ)利用点的坐标表示直线的斜率,设直线的方程,通过联立方程,利用韦达定理计算的值.试题解析:(Ⅰ)由题根据抛物线定义,所以,所以为所求. 2分(Ⅱ)设则,同理 4分设AC所在直线方程为,联立得所以, 6分同理 (8分)所以 9分设AB所在直线方程为联立得, 10分所以所以 12分【考点】抛物线标准方程,直线与抛物线位置关系的应用.9.极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度. (Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;(Ⅱ)若椭圆的两条弦交于点,且直线与的倾斜角互补,求证:.【答案】(Ⅰ)(Ⅱ)详见解析【解析】将椭圆的极坐标方程转化为一般标准方程,再利用换元法求范围,利用参数方程代入,计算得到结果.试题解析:(Ⅰ)该椭圆的直角标方程为, 2分设,所以的取值范围是 4分(Ⅱ)设直线的倾斜角为,直线的倾斜角为,则直线的参数方程为(为参数),(5分)代入得:即 7分同理 9分所以(10分)【考点】极坐标、参数方程,换元法应用.10.已知直线,,过的直线与分别交于,若是线段的中点,则等于()A.12B.C.D.【答案】B【解析】设、,所以、.所以.故选B.【考点】两点之间的距离点评:主要是考查了两点之间的距离的运用,属于基础题。

新课标高考《圆锥曲线》大题专题含答案.doc

新课标高考《圆锥曲线》大题专题含答案.doc

全国高考理科数学试题分类汇编9:圆锥曲线一、选择题1 .(2013年高考江西卷(理))过点引直线l与曲线y =A,B 两点,O 为坐标原点,当∆AOB 的面积取最大值时,直线l 的斜率等于 ( )A .y EB BC CD=++3B.3-C.3±D.2 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))双曲线2214x y -=的顶点到其渐近线的距离等于 ( )A .25B .45CD3 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )A.2214x = B .22145x y -=C .22125x y -=D.2212x -=4 .(2013年高考新课标1(理))已知双曲线C :22221x y a b -=(0,0a b >>)则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±5 .(2013年高考湖北卷(理))已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的 ( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等6 .(2013年高考四川卷(理))抛物线24y x =的焦点到双曲线2213y x -=的渐近线的距离是 ( ) A .12BC .1 D7 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是[来源:12999数学网]( )A .2B .3C .23D .268 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p = ( )A .1B .32C .2D .39 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是 ( )A .1324⎡⎤⎢⎥⎣⎦,B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦,D .314⎡⎤⎢⎥⎣⎦,10.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知抛物线2:8C y x=与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k = ( )A .12B.2CD .211.(2013年高考北京卷(理))若双曲线22221x y a b-=则其渐近线方程为( )A .y =±2xB .y= C .12y x =±D.y x = 12.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知抛物线1C :212y xp =(0)p >的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限的点M .若1C 在点M 处的切线平行于2C 的一条渐近线,则p =( )A.B.C.D.13.(2013年高考新课标1(理))已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 14.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,5MF =,若以MF 为直径的圆过点)2,0(,则C 的方程为( )A .24y x =或28y x =B .22y x =或28y x =C .24y x =或216y x =D .22y x =或216y x =15.(2013年上海市春季高考数学试卷(含答案))已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅,其中λ为常数,则动点M 的轨迹不可能是 ( )A .圆B .椭圆C .抛物线D .双曲线16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为 ( )A.4 B1C.6-D二、填空题17.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))双曲线191622=-y x 的两条渐近线的方程为_____________.18.(2013年高考江西卷(理))抛物线22(0)x py p =>的焦点为F,其准线与双曲线22133x y -=相交于,A B 两点,若ABF ∆为等边三角形,则P =_____________19.(2013年高考湖南卷(理))设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___.20.(2013年高考上海卷(理))设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,BC =,则Γ的两个焦点之间的距离为________24.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________25.(2013年高考陕西卷(理))双曲线22116x y m-=的离心率为54, 则m 等于_______.26.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,连接,A F B F ,若410,6,cos ABF 5AB AF ==∠=,则C 的离心率e =______.27.(2013年上海市春季高考数学试卷(含答案))抛物线28yx =的准线方程是_______________三、解答题30.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分4分,第2小题满分9分.已知椭圆C 的两个焦点分别为1(10)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、(1)若112F B B ∆为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P FQ ⊥,求直线l 的方程.31.(2013年高考四川卷(理))已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;32.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别是12,F F ,,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (Ⅰ)求椭圆C 的方程;36.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D (1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.37.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =过左焦点1F 作x 轴的垂线交椭圆于,A A '两点,4AA '=.(1)求该椭圆的标准方程;38.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设椭圆2222:11x y E a a +=-的焦点在x 轴上(Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程; .39.(2013年高考新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|.40.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))设椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 且与x.(Ⅰ) 求椭圆的方程; 【答案】41.(2013年高考江西卷(理))如图,椭圆2222+=1(>>0)x y C a b a b:经过点3(1,),2P 离心率1=2e ,直线l的方(第21题图)程为=4x .(1) 求椭圆C 的方程;42.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.(Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程;43.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))平面直角坐标系xOy中,过椭圆2222:1(0)x y M a b a b+=>>的右焦点F 作直0x y +=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ABCD 的对角线CD AB ⊥,求四边形ABCD 面积的最大值.【答案】46.(2013年高考陕西卷(理))已知动圆过定点A (4,0), 且在y 轴上截得的弦MN 的长为8.(Ⅰ) 求动圆圆心的轨迹C 的方程;47.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,抛物线()2212:4,:20C x y C x py p ==->,点()00,M x y 在抛物线2C 上,过M 作1C 的切线,切点为,A B (M 为原点O 时,,A B 重合于O )01x =,切线.MA 的斜率为12-.(I)求p 的值;(II)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程.(),,.A B O O 重合于时中点为48.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12F F ,,离心率为3,直线2y =与C 的两个交点间. (I)求,;a b ;49.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分6分,第2小题满分6分.已知抛物线24C y x =: 的焦点为F .(1) 点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 的轨迹方程; 全国高考理科数学试题分类汇编9:圆锥曲线【答案】B 【答案】C 【答案】B 【答案】C 【答案】D 【答案】B 【答案】D 【答案】C 【答案】B 【答案】D 【答案】B 【答案】D 【答案】D 【答案】C 【答案】C 【答案】A 二、填空题【答案】 【答案】6 【答案】 【答案】.【答案】【答案】9 【答案】 【答案】三、解答题【答案】[解](1)设椭圆的方程为. 根据题意知, 解得,故椭圆的方程为.(2)容易求得椭圆的方程为.当直线的斜率不存在时,其方程为,不符合题意;当直线的斜率存在时,设直线的方程为.由得.设,则因为,所以,即,解得,即.故直线的方程为或.【答案】解:所以,.又由已知,, [来源:]所以椭圆C的离心率【答案】解:(Ⅰ)由于,将代入椭圆方程得由题意知,即又所以,所以椭圆方程为【答案】解:(Ⅰ)由已知得到,且,所以椭圆的方程是;(Ⅱ)因为直线,且都过点,所以设直线,直线,所以圆心到直线的距离为,所以直线被圆所截的弦;由,所以,所以,当时等号成立,此时直线答案】解: (Ⅰ)【答案】由已知得圆的圆心为(-1,0),半径=1,圆的圆心为(1,0),半径=3.设动圆的圆心为(,),半径为R. [来源:](Ⅰ)∵圆与圆外切且与圆内切,∴|PM|+|PN|===4,由椭圆的定义可知,曲线C是以M,N为左右焦点,场半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为.(Ⅱ)对于曲线C上任意一点(,),由于|PM|-|PN|=≤2,∴R≤2,当且仅当圆P的圆心为(2,0)时,R=2.∴当圆P的半径最长时,其方程为,当的倾斜角为时,则与轴重合,可得|AB|=.当的倾斜角不为时,由≠R知不平行轴,设与轴的交点为Q,则=,可求得Q(-4,0),∴设:,由于圆M相切得,解得.当=时,将代入并整理得,解得=,∴|AB|==.当=-时,由图形的对称性可知|AB|=,综上,|AB|=或|AB|=.【答案】(Ⅰ) 依题意,设抛物线的方程为,由结合,解得. 所以抛物线的方程为.(Ⅱ) 抛物线的方程为,即,求导得设,(其中),则切线的斜率分别为,,所以切线的方程为,即,即同理可得切线的方程为因为切线均过点,所以,所以为方程的两组解.所以直线的方程为.47.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))【答案】【答案】(1)设动点的坐标为,点的坐标为,则, 因为的坐标为,所以,由得.即解得代入,得到动点的轨迹方程为.。

(完整版)圆锥曲线经典题目(含答案)

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。

2024年高考数学专题18 圆锥曲线高频压轴解答题(16大题型)(练习)(原卷版)

2024年高考数学专题18 圆锥曲线高频压轴解答题(16大题型)(练习)(原卷版)

专题18 圆锥曲线高频压轴解答题目录01 轨迹方程 (2)02 向量搭桥进行翻译 (3)03 弦长、面积背景的条件翻译 (4)04 斜率之和差商积问题 (5)05 弦长、面积范围与最值问题 (6)06 定值问题 (7)07 定点问题 (9)08 三点共线问题 (10)09 中点弦与对称问题 (11)10 四点共圆问题 (12)11 切线问题 (13)12 定比点差法 (14)13 齐次化 (16)14 极点极线问题 (16)15 同构问题 (18)16 蝴蝶问题 (19)01 轨迹方程1.(2024·重庆·高三重庆南开中学校考阶段练习)已知双曲线22221(0,0)x y a b a b-=>>的一条浙近线方程为y x =,且点P在双曲线上.(1)求双曲线的标准方程;(2)设双曲线左右顶点分别为,A B ,在直线1x =上取一点()()1,0P t t ¹,直线AP 交双曲线右支于点C ,直线BP 交双曲线左支于点D ,直线AD 和直线BC 的交点为Q ,求证:点Q 在定直线上.2.(2024·重庆·统考模拟预测)已知椭圆C :()222210x y a b a b+=>>的长轴长是短轴长的2倍,直线12y x =被椭圆截得的弦长为4.(1)求椭圆C 的方程;(2)设M ,N ,P ,Q 为椭圆C 上的动点,且四边形MNPQ 为菱形,原点О在直线MN 上的垂足为点H ,求H 的轨迹方程.3.(2024·福建莆田·统考一模)曲线C 上任意一点P 到点(2,0)F 的距离与它到直线4x =的距离之比等于(4,0)M 且与x 轴不重合的直线l 与C 交于不同的两点,A B .(1)求C 的方程;(2)求证:ABF △内切圆的圆心在定直线上.02 向量搭桥进行翻译4.(2024·陕西咸阳·校考模拟预测)已知椭圆2222:1(0)x y C a b a b +=>>的离心率是双曲线2213x y -=的离心率的倒数,椭圆C 的左、右焦点分别为12,F F ,上顶点为P ,且122PF PF ×=-uuu r uuu u r.(1)求椭圆C 的方程;(2)当过点()0,2Q 的动直线l 与椭圆C 相交于两个不同点,A B 时,设AQ QB l =uuu ruuu r,求l 的取值范围.5.(2024·上海奉贤·统考一模)已知椭圆22221(0)x y a b a b +=>>的焦距为,椭圆的左右焦点分别为1F 、2F ,直角坐标原点记为O .设点()0,P t ,过点P 作倾斜角为锐角的直线l 与椭圆交于不同的两点B 、C .(1)求椭圆的方程;(2)设椭圆上有一动点T ,求()12PT TF TF ×-uuu r uuu r uuu r的取值范围;(3)设线段BC 的中点为M ,当t ³Q ,使得非零向量OM uuuu r与向量PQ uuu r 平行,请说明理由.6.(2024·云南昆明·高三统考期末)已知动点P 到定点()0,4F 的距离和它到直线1y =距离之比为2;(1)求点P 的轨迹C 的方程;(2)直线l 在x 轴上方与x 轴平行,交曲线C 于A ,B 两点,直线l 交y 轴于点D .设OD 的中点为M ,是否存在定直线l ,使得经过M 的直线与C 交于P ,Q ,与线段AB 交于点N ,PM PN l =uuuu r uuu r ,MQ QN l =uuuur uuu r 均成立;若存在,求出l 的方程;若不存在,请说明理由.03 弦长、面积背景的条件翻译7.(2024·陕西榆林·统考一模)已知椭圆()2222:10x y C a b a b +=>>经过()830,1,,55A P æö-ç÷èø两点.(1)求C 的方程;(2)斜率不为0的直线l 与椭圆C 交于,M N 两点,且点A 不在l 上,AM AN ^,过点P 作y 轴的垂线,交直线=1x -于点S ,与椭圆C 的另一个交点为T ,记SMN V 的面积为1S ,TMN △的面积为2S ,求12S S .8.(2024·四川绵阳·高三绵阳南山中学实验学校校考阶段练习)已知椭圆()2222:10x y E a b a b +=>>的左、右焦点为1F ,2F ,若E 上任意一点到两焦点的距离之和为4,且点æççè在E 上.(1)求椭圆E 的方程;(2)在(1)的条件下,若点A ,B 在E 上,且14OA OB k k ×=-(O 为坐标原点),分别延长AO ,BO 交E 于C ,D 两点,则四边形ABCD 的面积是否为定值?若为定值,求四边形ABCD的面积,若不为定值,请说明理由.9.(2024·上海·高三上海市大同中学校考期末)已知双曲线H :2214x y -=的左、右焦点为1F ,2F ,左、右顶点为1A ,2A ,椭圆E 以1A ,2A 为焦点,以12F F 为长轴.(1)求椭圆E 的离心率;(2)设椭圆E 交y 轴于1B ,2B ,过1B 的直线l 交双曲线H 的左、右两支于C ,D 两点,求2B CD △面积的最小值;(3)设点(),M m n 满足224m n <.过M 且与双曲线H 的渐近线平行的两直线分别交H 于点P ,Q .过M 且与PQ 平行的直线交H 的渐近线于点S ,T .证明:MSMT为定值,并求出此定值.04 斜率之和差商积问题10.(2024·贵州铜仁·校联考模拟预测)在平面直角坐标系中,已知过动点(),M x y 作x 轴垂线,分别与1y =和4y =-交于P ,Q 点,且()12,0A -,()22,0A ,若实数l 使得212OP OQ MA MA l ×=×uuu r uuu r uuuu r uuuu r成立(其中O 为坐标原点).(1)求M l 为何值时M 点的轨迹为椭圆;(2)当l =()4,0B 的直线l 与轨迹M 交于y 轴右侧C ,D 两点,证明:直线1A C ,2A D 的斜率之比为定值.11.(2024·安徽·高三校联考期末)已知抛物线2:2(0)C y px p =>的焦点为F ,点()04,P y 是抛物线C 上一点,点Q 是PF 的中点,且Q 到抛物线C 的准线的距离为72.(1)求抛物线C 的方程;(2)已知圆22:(2)4M x y -+=,圆M 的一条切线l 与抛物线C 交于A ,B 两点,O 为坐标原点,求证:OA ,OB 的斜率之差的绝对值为定值.12.(2024·海南海口·统考模拟预测)在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,焦点到渐近线的距离为2.直线l 过点(),0(02)P t t <<,且垂直于x 轴,过P 的直线l ¢交C 的两支于,G H 两点,直线,AG AH 分别交l 于,M N 两点.(1)求C 的方程;(2)设直线,AN OM 的斜率分别为12,k k ,若1212k k ×=,求点P 的坐标.05 弦长、面积范围与最值问题13.(2024·陕西商洛·镇安中学校考模拟预测)已知12,F F 分别为椭圆2222:1(0)x y M a b a b +=>>的左、右焦点,直线1l 过点2F 与椭圆交于,A B 两点,且12AF F △的周长为(2a +.(1)求椭圆M 的离心率;(2)直线2l 过点2F ,且与1l 垂直,2l 交椭圆M 于,C D 两点,若a =ACBD 面积的范围.14.(2024·河南·统考模拟预测)已知抛物线2:4C y x =的焦点为F ,过F 的直线l 交C 于,A B 两点,过F 与l 垂直的直线交C 于,D E 两点,其中,B D 在x 轴上方,,M N 分别为,AB DE 的中点.(1)证明:直线MN 过定点;(2)设G 为直线AE 与直线BD 的交点,求GMN V 面积的最小值.15.(2024·上海嘉定·统考一模)抛物线24y x =上有一动点(,),0P s t t >.过点P 作抛物线的切线l ,再过点P 作直线m ,使得m l ^,直线m 和抛物线的另一个交点为Q .(1)当1s =时,求切线l 的直线方程;(2)当直线l 与抛物线准线的交点在x 轴上时,求三角形OPQ 的面积(点O 是坐标原点);(3)求出线段||PQ 关于s 的表达式,并求||PQ 的最小值;06 定值问题16.(2024·全国·模拟预测)如图,已知12,F F 分别为椭圆C :()222210x y a b a b +=>>的左、右焦点,P 为椭圆C 上一点,若12124PF PF PF PF +=-=uuu r uuu u r uuu r uuu u r,122PF F S =△.(1)求椭圆C 的标准方程;(2)若点P 坐标为),设不过点P 的直线l 与椭圆C 交于A ,B 两点,A 关于原点的对称点为A ¢,记直线l ,PB ,PA ¢的斜率分别为k ,1k ,2k ,若1213k k ×=,求证:直线l 的斜率k 为定值.17.(2024·安徽·高三校联考阶段练习)已知双曲线221222:1(0,0),,x y C a b F F a b -=>>分别是C 的左、右焦点.若C 的离心率2e =,且点()4,6在C 上.(1)求C 的方程.(2)若过点2F 的直线l 与C 的左、右两支分别交于,A B 两点(不同于双曲线的顶点),问:2211AF BF -是否为定值?若是,求出该定值;若不是,请说明理由.18.(2024·全国·高三阶段练习)如图所示,已知抛物线()21,0,1,,y x M A B =-是抛物线与x 轴的交点,过点M 作斜率不为零的直线l 与抛物线交于,C D 两点,与x 轴交于点Q ,直线AC 与直线BD 交于点P .(1)求CM DM CD×的取值范围;(2)问在平面内是否存在一定点T ,使得TP TQ ×uur uuu r为定值?若存在,求出点T 的坐标;若不存在,请说明理由.07 定点问题19.(2024·广东广州·广东实验中学校考一模)设抛物线2:2(0)E y px p =>,过焦点F 的直线与抛物线E 交于点()11,A x y 、()22,B x y .当直线AB 垂直于x 轴时,2AB =.(1)求抛物线E 的标准方程.(2)已知点()1,0P ,直线AP 、BP 分别与抛物线E 交于点C 、D .求证:直线CD 过定点.20.(2024·宁夏银川·高三银川一中校考阶段练习)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的左,右顶点分别为A 、B ,点F 是椭圆的右焦点,3AF FB =uuu r uuu r ,3AF FB ×=uuu r uuu r .(1)求椭圆C 的方程;(2)经过椭圆右焦点F 且斜率不为零的动直线l 与椭圆交于M 、N 两点,试问x 轴上是否存在异于点F 的定点T ,使||||||||MF NT NF MT ×=×恒成立?若存在,求出T 点坐标,若不存在,说明理由.21.(2024·四川甘孜·统考一模)在平面直角坐标系xOy 中,抛物线2:2(0)E y px p =>的焦点为,F E 的准线l 交x 轴于点K ,过K 的直线l 与抛物线E 相切于点A ,且交y 轴正半轴于点P .已知E 上的动点B 到点F 的距离与到直线2x =-的距离之和的最小值为3.(1)求抛物线E 的方程;(2)过点P 的直线交E 于,M N 两点,过M 且平行于y 轴的直线与线段OA 交于点T ,点H 满足MT TH =uuur uuu r.证明:直线HN 过定点.08 三点共线问题22.(2024·广东·高三校联考阶段练习)点F 是抛物线G :22y px =(0p >)的焦点,O 为坐标原点,过点F 作垂直于x 轴的直线l ,与抛物线G 相交于A ,B 两点,AB 4=,抛物线G 的准线与x 轴交于点K .(1)求抛物线G 的方程;(2)设C 、D 是抛物线G 上异于A 、B 两点的两个不同的点,直线AC 、BD 相交于点E ,直线AD 、BC 相交于点G ,证明:E 、G 、K 三点共线.23.(2024·贵州毕节·校考模拟预测)已知F 是抛物线2:2(0)C y px p =>的焦点,过点F 的直线交抛物线C 于,A B 两点,当AB 平行于y 轴时,2AB =.(1)求抛物线C 的方程;(2)若O 为坐标原点,过点B 作y 轴的垂线交直线AO 于点D ,过点A 作直线DF 的垂线与抛物线C 的另一交点为,E AE 的中点为G ,证明:,,G B D 三点共线.24.(2024·贵州贵阳·高三贵阳一中校考期末)已知A ,B 为椭圆()2222:10x y C a b a b+=>>的左、右顶点,P 为椭圆上异于A ,B 的一点,直线AP 与直线BP 的斜率之积为14-,且椭圆C 过点12ö÷ø.(1)求椭圆C 的标准方程;(2)若直线AP ,BP 分别与直线:4l x =相交于M ,N 两点,且直线BM 与椭圆C 交于另一点Q ,证明:A ,N ,Q 三点共线.09 中点弦与对称问题25.(2024·福建福州·高三福建省福州格致中学校考期末)已知椭圆()2222:10x y C a b a b+=>>的离心率为12,椭圆上的点到焦点的最小距离是3.(1)求椭圆C 的方程;(2)是否存在过点31,2Q æöç÷èø的直线交曲线C 于AB 两点,使得Q 为AB 中点?若存在,求该直线方程,若不存在,请说明理由.26.(2024·全国·高三专题练习)已知圆22:(3)4M x y ++=,圆22:(3)100N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C (1)求C 的方程;(2)是否存在过点31,2Q æöç÷èø的直线交曲线C 于AB 两点,使得Q 为AB 中点?若存在,求该直线方程,若不存在,请说明理由.27.(2024·贵州黔东南·高三校考阶段练习)已知椭圆C :()222210x y a b a b +=>>的一个焦点为()1,0F -,且点F 到C 的左、右顶点的距离之积为5.(1)求椭圆C 的标准方程;(2)过点F 作斜率乘积为1-的两条直线1l ,2l ,1l 与C 交于A ,B 两点,2l 与C 交于D ,E 两点,线段AB ,DE 的中点分别为M ,N .证明:直线MN 与x 轴交于定点,并求出定点坐标.10 四点共圆问题28.(2024·湖北·高三校联考阶段练习)已知双曲线22:1x C a =的离心率为2,过C 上的动点M 作曲线C 的两渐近线的垂线,垂足分别为A 和,B ABM V .(1)求曲线C 的方程;(2)如图,曲线C 的左顶点为D ,点N 位于原点与右顶点之间,过点N 的直线与曲线C 交于,G R 两点,直线l 过N 且垂直于x 轴,直线DG ,DR 分别与l 交于,P Q 两点,若,,,O D P Q 四点共圆,求点N 的坐标.29.(2024·河南·高三校联考阶段练习)已知椭圆2222:1x y C a b+=()0a b >>的左、右焦点分别为1F ,2F ,点D 在C 上,132DF =,252DF =,212DF F F >,且12DF F △的面积为32.(1)求C 的方程;(2)设C 的左顶点为A ,直线:6l x =-与x 轴交于点P ,过P 作直线交C 于G ,H 两点直线AG ,AH 分别与l 交于M ,N 两点,O 为坐标原点,证明:O ,A ,N ,M 四点共圆.30.(2024·江苏南通·统考模拟预测)已知动圆M 过点(1,0)F 且与直线=1x -相切,记动圆圆心M 的轨迹为曲线C .(1)求曲线C 的方程;(2)若直线():0l x m m =<与x 轴相交于点P ,点B 为曲线C 上异于顶点O 的动点,直线PB 交曲线C 于另一点D ,直线BO 和DO 分别交直线l 于点S 和T .若,,,O F S T 四点共圆,求m 的值.11 切线问题31.(2024·河南周口·高三校联考阶段练习)已知点()2,1A 的椭圆2222:1(0)x y M a b a b +=>>上,点,B C 为椭圆M 上异于点A 的两点.(1)求椭圆M 的方程;(2)若AB AC ^,过点,B C 两点分别作椭圆M 的切线,这两条切线的交点为D ,求AD 的最小值.32.(2024·山东德州·高三德州市第一中学校考阶段练习)如图所示,已知椭圆C :22163x y +=与直线l :163xy +=.点P 在直线l 上,由点P 引椭圆C 的两条切线PA 、PB ,A 、B 为切点,O 是坐标原点.(1)若点P 为直线l 与y 轴的交点,求PAB V 的面积S ;(2)若OD AB ^,D 为垂足,求证:存在定点Q ,使得DQ 为定值.(注:椭圆22221x ya b+=在其上一点处()00,M x y 的切线方程为00221x x y ya b+=)33.(2024·辽宁辽阳·高三统考期末)在平面直角坐标系xOy 内,已知定点()2,0F ,定直线3:2l x =,动点P 到点F 和直线l P 的轨迹为曲线E .(1)求曲线E 的方程.(2)以曲线E 上一动点M 为切点作E 的切线l ¢,若直线l ¢与直线l 交于点N ,试探究以线段MN 为直径的圆是否过x 轴上的定点.若过定点.求出该定点坐标;若不过,请说明理由.12 定比点差法34.(2024·吉林·统考一模)已知抛物线21:2(0)C y px p =>的焦点F 到其准线的距离为4,椭圆22222:1(0)x y C a b a b +=>>经过抛物线1C 的焦点F .(1)求抛物线1C 的方程及a ;(2)已知O 为坐标原点,过点(1,1)M 的直线l 与椭圆2C 相交于A ,B 两点,若=uuuu r uuurAM mMB ,点N 满足=-uuu r uuu r AN mNB ,且||ON 最小值为125,求椭圆2C 的离心率.35.(2024·江苏·高二专题练习)已知椭圆()2222:10x y a b a bG +=>>的离心率为23,半焦距为()0c c >,且1a c -=.经过椭圆的左焦点F ,斜率为()110k k ¹的直线与椭圆交于A 、B 两点,O 为坐标原点.(1)求椭圆G 的标准方程;(2)当11k =时,求AOB S V 的值;(3)设()1,0R ,延长AR ,BR 分别与椭圆交于C ,D 两点,直线CD 的斜率为2k ,求证:12k k 为定值.36.(2024·安徽合肥·统考一模)在平面直角坐标系xOy 中,F 是抛物线()2:20C x py p =>的焦点,M是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为N ,点N 到抛物线C 的准线的距离为34.(1)求抛物线C 的方程;(2)当过点()4,1P 的动直线l 与抛物线C 相交于不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB ×=×u u u r u u u r u u u r u u r,证明:点Q 总在某定直线上.13 齐次化37.已知椭圆22:13x C y +=,()0,1B ,P ,Q 为上的两个不同的动点,23BP BQ k k =,求证:直线PQ 过定点.38.已知椭圆22:14x C y +=,设直线l 不经过点2(0,1)P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:直线l 过定点.39.如图,椭圆22:12x E y +=,经过点(1,1)M ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q(均异于点(0,1)A -,证明:直线AP 与AQ 的斜率之和为2.14 极点极线问题40.(2024·江苏南通·高二统考开学考试)已知双曲线C :22221x y a b -=(0a >,0b >)实轴端点分别为()1,0A a -,()2,0A a ,右焦点为F ,离心率为2,过1A 点且斜率1的直线l 与双曲线C 交于另一点B ,已知1A BF △的面积为92.(1)求双曲线的方程;(2)若过F 的直线l ¢与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;如不在,请说明理由.41.(2024·安徽六安·校联考一模)已知椭圆()2222:10x y C a b a b+=>>的离心率为12,短轴长为(1)求椭圆C 的方程;(2)设A ,B 分别为椭圆C 的左、右顶点,若过点()4,0P 且斜率不为0的直线l 与椭圆C 交于M 、N 两点,直线AM 与BN 相交于点Q .证明:点Q 在定直线上.42.(2024·北京海淀·统考模拟预测)已知椭圆M :22221x y a b +=(a >b >0)过A (-2,0),B (0,1)两点.(1)求椭圆M 的离心率;(2)设椭圆M 的右顶点为C ,点P 在椭圆M 上(P 不与椭圆M 的顶点重合),直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点S ,求证:直线SQ 过定点.15 同构问题43.(2024·广东广州·统考一模)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2,圆M 与y 轴相切,且圆心M 与抛物线C 的焦点重合.(1)求抛物线C 和圆M 的方程;(2)设()()000,2P x y x ¹为圆M 外一点,过点P 作圆M 的两条切线,分别交抛物线C 于两个不同的点()()1122,,,A x y B x y 和点()()3344,,,Q x y R x y .且123416y y y y =,证明:点P 在一条定曲线上.44.(2024·湖北襄阳·襄阳五中校考一模)已知抛物线21:C y x =,圆()222:41C x y -+=.(1)求圆心2C 到抛物线1C 准线的距离;(2)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于A 、B 两点,若直线2PC 的斜率为1k ,直线AB 的斜率为2k ,125·24k k =-,求点P 的坐标.45.(2024·内蒙古呼和浩特·统考一模)拋物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :2x =交C 于P ,Q 两点,且OP OQ ^.已知点M 的坐标为()4,0,M e 与直线l 相切.(1)求抛物线C 和M e 的标准方程;(2)已知点()8,4N ,点1A ,2A 是C 上的两个点,且直线1NA ,2NA 均与M e 相切.判断直线12A A 与M e 的位置关系,并说明理由.46.(2024·浙江杭州·高二萧山中学校考期末)已知圆C 的方程为:()()22210x y r r ++=>(1)已知过点15,22M æö-ç÷èø的直线l 交圆C 于,A B 两点,若1r =,求直线l 的方程;(2)如图,过点()1,1N -作两条直线分别交抛物线2y x =于点P ,Q ,并且都与动圆C 相切,求证:直线PQ 经过定点,并求出定点坐标.16 蝴蝶问题47.(2024·重庆渝中·高三重庆巴蜀中学校考阶段练习)如图,B ,A 是椭圆22:14x C y +=的左、右顶点,P ,Q 是椭圆C 上都不与A ,B 重合的两点,记直线BQ ,AQ ,AP 的斜率分别是BQ k ,AQ k ,AP k .(1)求证:14BQ AQ k k ×=-;(2)若直线PQ 过定点6,05æöç÷èø,求证:4AP BQ k k =.48.(2024·江苏宿迁·高二统考期末)已知椭圆2222:1(0)x y C a b a b +=>>的左焦点为1(F ,且过点P .(1)求椭圆C 的标准方程;(2)已知12,A A 分别为椭圆C 的左、右顶点,Q 为直线1x =上任意一点,直线12,AQ A Q 分别交椭圆C 于不同的两点,M N .求证:直线MN 恒过定点,并求出定点坐标.49.如图,椭圆的长轴12A A 与x 轴平行,短轴12B B 在y 轴上,中心为(0,)(0)M r b r >>.(1)写出椭圆的方程,求椭圆的焦点坐标及离心率;(2)直线1y k x =交椭圆于两点()()()11222,,,0C x y D x y y >;直线2y k x =交椭圆于两点()33,G x y ,()()444,0H x y y >.求证:1122341234k x x k x x x x x x =++;(3)对于(2)中的中的在C ,D ,G ,H ,设CH 交x 轴于P 点,GD 交x 轴于Q 点,求证:||||OP OQ =(证明过程不考虑CH 或GD 垂直于x轴的情形)。

2023届高考数学复习:精选好题专项(圆锥曲线)练习 (附答案)

2023届高考数学复习:精选好题专项(圆锥曲线)练习 (附答案)

2023届高考数学复习:精选好题专项(圆锥曲线)练习题组一、 圆锥曲线中的直线问题1‐1、(山东省“学情空间”区域教研共同体2023届高三入学检测)椭圆的左右焦点分别为,焦距为,点M 为椭圆上位于x 轴上方的一点,,且的面积为2.(1)求椭圆C 的方程;(2)过点的直线l 与椭圆交于A ,B 两点,且,求直线l 的方程.1‐2、(湖北省重点高中2023届高三上学期10月联考) 已知直线1l:22y x =+与椭圆E :22142x y +=相切于点M ,与直线2l:2y x t =+相交于点 N (异于点M ).(1)求点M 的坐标;(2)直线2l 交E 于点()11,A x y ,()22,B x y 两点,证明:ANM MNB ∽△△.2222:1(0)x y C a b a b+=>>12,FF 120MF MF ⋅=12MF F △2F 2AMB π∠=1-3、(南京六校联合体2023届高三8月联合调研)(本小题满分12分)已知椭圆C :22154x y +=的上下顶点分别为A,B ,过点P 0,3 且斜率为k (k <0)的直线与椭圆C 自上而下交于M,N 两点,直线BM 与AN 交于点G . (1)设AN,BN 的斜率分别为k ,k ,求k ∙k 的值; (2)求证:点G 在定直线上.1-4、(江苏如皋中学2022~2023学年度高三年级第一学期教学质量调研)已知双曲线22:12x C y -=上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ 的面积.题组二、 圆锥曲线中的最值问题2‐1、(湖南省三湘名校教育联盟2023届高三上学期第一次大联考)(12分)在直角坐标系xOy 中,已知抛物线,P 为直线y =-1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB . (1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.()2:20C x py p ->AB OP 22‐4、(湖南省三湘名校教育联盟2023届高三上学期第一次大联考)(12分)在直角坐标系xOy 中,已知抛物线,P 为直线y =-1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB . (1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.题组三、圆锥曲线中的定点、定值问题3‐1、(南京师大附中2022—2023学年度高三第一学期10月检测)(本小题满分12分)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,C 的右焦点F 与点M (0,2)的连线与C 的一条渐近线垂直.(1)求双曲线C 的标准方程:(2)经过点M 且斜率不为零的直线l 与C 的两支分别交于点A ,B ,①若O 为坐标原点,求OA OB ⋅的取值范围:②若点D 是点B 关于y 轴的对称点,证明:直线AD 过定点 【3‐2、(江苏省海安高级中学2023届高三期初学业质量监测)已知椭圆:的离心率为,短轴长为2.(1)求的方程;(2)过点且斜率不为0的直线与自左向右依次交于点,,点在线段上,且,为线段的中点,记直线,的斜率分别为,,求证:为定值.()2:20C x py p ->E ()222210x y a b a b +=>>2E ()4,0M -l E B C N BC MB NBMC NC=P BC OP ON 1k 2k 12k k3‐3、(江苏连云港2023届高三上学期期中考试) 已知椭圆C :()222210x y a b a b +=>>经过点2P ⎛⎫ ⎪ ⎪⎝⎭,31,2Q ⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)过椭圆C 右焦点的直线l 交椭圆于A ,B 两点,交直线x =4于点D .设直线QA ,QD ,QB 的斜率分别为1k ,2k ,3k ,若20k ≠,证明:132k k k +为定值.题组四、 圆锥曲线中的探索性问题4-1、(湖南师大附中2023届高三年级开学初试卷)(本小题满分12分)设21,F F 分别是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,M 是C 上一点,2MF与x 轴垂直,直线1MF 与C 的另一个交点为N ,且直线MN 的斜率为42. (1)求椭圆C 的离心率.(2)设)1,0(D 是椭圆C 的上顶点,过D 任作两条互相垂直的直线分别交椭圆C 于B A .两点,过点D 作线段AB 的垂线,垂足为Q ,判断在y 轴上是否存在定点R ,使得||RQ 的长度为定值?并证明你的结论.4‐2、(南京市2023届高三年级学情调研) 已知抛物线C :()220y px p =>的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点. (1)求p 的值;(2)是否存在定点T , 使得TA TB ⋅为常数? 若存在,求出点T 的坐标及该常数; 若不存在,说明理由.4‐3、(湖北省鄂东南省级示范高中教改联盟学校2023届高三上学期期中联考)(本题满分12分)设点P 为圆上的动点,过点P 作x 轴垂线,垂足为点Q ,动点M 满足(点P 、Q 不重合)(1)求动点M 的轨迹方程E ;(2)若过点的动直线与轨迹E 交于A 、B 两点,定点N 为,直线NA 的斜率为,直线NB 的斜率为,试判断是否为定值.若是,求出该定值;若不是,请说明理由.22:4C x y +=2MQ =(4,0)T 31,2⎛⎫⎪⎝⎭1k 2k 12k k +参考答案题组一、 圆锥曲线中的直线问题1‐1、(山东省“学情空间”区域教研共同体2023届高三入学检测)椭圆的左右焦点分别为,焦距为,点M 为椭圆上位于x 轴上方的一点,,且的面积为2.(1)求椭圆C 的方程;(2)过点的直线l 与椭圆交于A ,B 两点,且,求直线l 的方程.【答案解析】【要点分析】(1)依题意可得,根据椭圆的定义、三角形面积公式及勾股定理求出,即可求出,从而得解;(2)首先求出的坐标,分直线的斜率为与不为两种情况讨论,当直线的斜率不为时,设直线的方程为,,,,联立直线与椭圆的方程,结合韦达定理可得,,由,推出,解得,进而可得答案.【小问1详解】解:因为,所以,即,所以,所以又,,,所以,即,所以,所以,所以椭圆方程为.【小问2详解】解:由(1)知,,所以,即, 当直线的斜率为时,此时,不合题意,2222:1(0)x y C a b a b+=>>12,FF 120MF MF ⋅=12MF F △2F 2AMB π∠=122F MF π∠=2a 2b M l 00l 0l x my =+11(,)A x y 22(,)B x y l 12y y +12y y MA MB⊥1212(0x x y y +-=m 120MF MF ⋅= 12MF MF ⊥ 122F MF π∠=1212122MF F MF MF S ⋅==△124MF MF ⋅=122MF MF a +=122F F c ==2221212MF MF F F +=()2121228MF MF MF MF +-=⋅24248a -⨯=24a =2222b a c =-=22142x y +=124MF MF ⋅=124MF MF +=122MF MF ==(M l 090AMB ∠≠︒当直线的斜率不为时,设直线的方程为,,,联立,得,所以,, 因为, 所以,所以,所以,所以, 所以, 解得或,当时,直线过点,不符合题意, 所以直线的方程为.1‐2、(湖北省重点高中2023届高三上学期10月联考) 已知直线1l:22y x =+与椭圆E :22142x y +=相切于点M ,与直线2l:2y x t =+相交于点 N (异于点M ).(1)求点M 的坐标;(2)直线2l 交E 于点()11,A x y ,()22,B x y 两点,证明:ANM MNB ∽△△. 【答案解析】【要点分析】(1)通过解方程组进行求解即可;(2)将直线2l 方程与椭圆方程联立,结合椭圆弦长公式、相似三角形判定定理进行运算证明即可. 【小问1详解】l 0l x my =+11(,)A x y 22(,)B xy 22142x my x y ⎧=⎪⎨+=⎪⎩22(2)20m y ++-=1222y y m+=-+12222y y m -=+90AMB ∠=︒MA MB⊥1212(0x x y y +-=21212(1)1)()40m y y m y y ++-++=2222(1)4(1)4022m m m m m -+--+=++2230m m --=1m =-3m =1m =-l Ml 30x y --=解:222224y x x y ⎧=-+⎪⎨⎪+=⎩,消y得:220x -+=,解得:x =,故)M ;【小问2详解】联立222y x y x t⎧=-+⎪⎪⎨⎪=+⎪⎩,解之得:,122t N t ⎫-+⎪⎪⎝⎭联立22224y x t x y ⎧=+⎪⎨⎪+=⎩,消y得:2220x t +-=, 由题可得:2Δ820t =->,∴12x x +=,2122x x t =-.12NA t ⎫=-⎪⎪⎭,22NB t ⎫=--⎪⎪⎭,()()212122223222332,2224NA NB x x t x x t t t t t ⎫⎫=--++⎪⎪⎪⎪⎭⎭⎫⎫=--+=⎪⎪⎪⎪⎭⎭2NM t ⎫=--=⎪⎪⎭, 2NM NA NB =,∴AN MNNM NB =,又ANB MNB ∠=∠,∴ANM MNB ∽△△ 1-3、(南京六校联合体2023届高三8月联合调研)(本小题满分12分)已知椭圆C :22154x y +=的上下顶点分别为A,B ,过点P 0,3 且斜率为k (k <0)的直线与椭圆C 自上而下交于M,N 两点,直线BM 与AN 交于点G . (1)设AN,BN 的斜率分别为k ,k ,求k ∙k 的值; (2)求证:点G 在定直线上. .(本小题满分12分) 解:设),(),,(2211y x N y x M2222222221422x y x y x y k k -=-⋅+=⋅....................2分 2222154x y +=又22224(15x y =⋅-所以所以54451(4222221-=--=⋅x x k k .....................4分(2)设3:+=kx y PM 224520x y +=联立 得到02530)54(22=+++kx x k1223045kx x k -+=+所以2215425k x x +=⋅ 0)1(400)54(100900222>-=+-=∆k k k .....................6分直线:MB 2211-+=x x y y 直线:NA 2222+-=x x y y联立得:1212)2()2(22x y y x y y -+=-+.....................8分2121(2)(2)2524y y y y x x +++=-⋅-法一:525)(5452121212-=+++⋅-=x x x x k x x k..............10分解得34=y所以点G 在定直线34=y 上 .....................12分法二:由韦达定理得k x x x x 562121-=+2112221121(5)5221x kx kx x x y y kx x kx x x +++==-++所以5)(655)(65121221-=++-++-x x x x x x .........10分解得34=y所以点G 在定直线34=y 上 .....................12分1-4、(江苏如皋中学2022~2023学年度高三年级第一学期教学质量调研)已知双曲线22:12x C y -=上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ 的面积.解:(1)由题显然直线l 的斜率存在,设:l y kx m =+,设11(,)P x y ,22(,)Q x y ,则联立直线与双曲线得:222(21)4220k x kmx m -+++=,0> ,故122421km x x k +=--,21222221m x x k +=-,12121212111102222AP AQ y y kx m kx m k k x x x x --+-+-+=+=+=----, 化简得:12122(12)()4(1)0kx x m k x x m +--+--=,故2222(22)4(12)()4(1)02121k m kmm k m k k ++-----=--, 即(1)(21)0k m k ++-=,而直线l 不过A 点, 故l 的斜率 1.k =-(2)设直线AP 的倾斜角为α,由tan PAQ ∠=tan 22PAQ ∠=,由2PAQ απ+∠=,得tan AP k α==,即1112y x -=-联立1112y x -=-221112x y -=得1103x -=,153y =,同理,2103x +=,253y --=, 故12203x x +=,12689x x =而1|||2|AP x =-,2|||2|AQ x =-,由tan PAQ ∠=sin 3PAQ ∠=,故12121||||sin |2()4|29PAQ S AP AQ PAQ x x x x =∠=-++= 题组二、 圆锥曲线中的最值问题2‐1、(湖南省三湘名校教育联盟2023届高三上学期第一次大联考)(12分)在直角坐标系xOy 中,已知抛物线,P 为直线y =-1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB . (1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值..答案解析:(1)当在轴上时,即,设过点的切线方程为,与联立得,由直线和抛物线相切可得,,,∴,,(3分)由,解得, ∴抛物线的方程为.(5分) (2),∴,设,,则, 即,同理可得,(8分) 又为直线上的动点,设, 则,,由两点确定一条直线可得的方程为,()2:20C x py p ->P y ()0,1P -P 1y kx =-22x py =2220x pkx p -+=22Δ480p k p =-=2A B x x p =A B y y =)A()B OA OB ⊥(110+⨯=12p =C 2x y =2x y =2y x '=()11,A x y ()22,B x y ()1112y y x x x -=-112x x y y =+222x x y y =+P 1y x =-(),1P t t -1121x t t y =-+2221x t t y =-+AB 21xt t y =-+2AB =OP1c =1EF 2212x y +=1OP =y kx m=+2212x y y kx m ⎧+=⎪⎨⎪=+⎩()222214220kx kmx m +++-=2216880k m ∆=-+>122421kmx x k -+=+21222221m x x k -=+∵,化简得.又设M 是弦AB 的中点,∴,, ∴,令, 则,∴(仅当时取等),又∵(仅当时取等号). 综上,.2‐3、(江苏如皋中学2022~2023学年度高三年级第一学期教学质量调研)已知椭圆2222:1(0)x y E a b a b +=>>的左,右焦点分别为1(1,0)F -,2(1,0)F ,点P 在椭圆E 上,212PF F F ⊥,且12||3||.PF PF =(1)求椭圆E 的标准方程;(2)设直线:1()l x my m R =+∈与椭圆E 相交于A ,B 两点,与圆222x y a +=相交于C ,D 两点,求2||||AB CD ⋅的取值范围.解:(1)因为P 在椭圆上,所以12||||2PF PF a +=, 又因为12||3||PF PF =,所以2||2a PF =,13||2aPF =, 因为212PF F F ⊥,所以2222121||||||PF F F PF +=,又12||2F F =,所以22a =,2221b a c =-=,所以椭圆的标准方程为:22 1.2x y +=(2)设11(,)A x y ,22(,)B x y ,2221AB k ==+2222122k m k +=+222,2121kmm M k k -⎛⎫ ⎪++⎝⎭()222224121k OM m k +=⋅+()()()22222222241214122212221k k k OM k k k k +++=⋅=++++2411k t +=≥()()24443134t OMt t t t==≤=-++++1OM ≤=-t=1OP OM MP OM ≤+=+≤214k -=max OP =联立直线l 与椭圆E 的方程:221220x my x y =+⎧⎨+-=⎩,整理可得22(2)210m y my ++-=, 12222m y y m -+=+,12212y y m-=+,所以弦长2122)||||2m AB y y m+=-=+, 设圆222x y +=的圆心O 到直线l的距离为d =,所以||CD ==,所以2222222212)2)3||||41222m m m AB CD m m m m+++⋅=⋅⋅==-++++ 因为233022m <+…,2132222m ∴-<+…,2||||AB CD ∴⋅<,所以2||||AB CD ⋅的取值范围2‐4、(湖南省三湘名校教育联盟2023届高三上学期第一次大联考)(12分)在直角坐标系xOy 中,已知抛物线,P 为直线y =-1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB . (1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.答案解析:(1)当在轴上时,即,设过点的切线方程为,与联立得,由直线和抛物线相切可得,,,∴,,(3分)由,解得, ∴抛物线的方程为.(5分)(2),∴,()2:20C x py p ->P y ()0,1P -P 1y kx =-22x py =2220x pkx p -+=22Δ480p k p =-=2A B x x p =A B y y =)A()B OA OB ⊥(110+⨯=12p =C 2x y =2x y =2y x '=设,,则, 即,同理可得,(8分) 又为直线上的动点,设, 则,,由两点确定一条直线可得的方程为, 即,(10分) ∴直线恒过定点, ∴点到直线距离的最大值为.(12分)题组三、圆锥曲线中的定点、定值问题3‐1、(南京师大附中2022—2023学年度高三第一学期10月检测)(本小题满分12分)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,C 的右焦点F 与点M (0,2)的连线与C 的一条渐近线垂直.(1)求双曲线C 的标准方程:(2)经过点M 且斜率不为零的直线l 与C 的两支分别交于点A ,B ,①若O 为坐标原点,求OA OB ⋅的取值范围:②若点D 是点B 关于y 轴的对称点,证明:直线AD 过定点【答案解析】(1)由已知得22222()1c e a ba c c a b⎧==⎪⎪⎪⋅-=-⎨⎪=+⎪⎪⎩,解得3a b c ⎧=⎪=⎨⎪=⎩,即22:139x y C -=;(2)由题意设()()1122:2,,,,AB l y kx A x y B x y =+()11,A x y ()22,B x y ()1112y y x x x -=-112x x y y =+222x x y y =+P 1y x =-(),1P t t -1121x t t y =-+2221x t t y =-+AB 21xt t y =-+()()2110t x y ---=AB 1,12M ⎛⎫⎪⎝⎭OAB 2OM ==则()12122222222121222124233341301312913933k y kx y y x x k k k x kx x y kx x y y k k ⎧⎧⎧=++=+=⎪⎪⎪⎪⎪⎪--⇒---=⇒⇒⎨⎨⎨---=⎪⎪⎪==⎪⎪⎪--⎩⎩⎩由题意得2120030k x x ∆>⎧⇒<<⎨<⎩①221212222131299128193333k k OA OB x x y y k k k -+-+⋅=+===+<---- ; ②由对称性得直线AD 过定点在y 轴上,设定点(0,)T t ,则有A ,T ,D 三点共线, 即1221122121211212AT DT y t y t x y x yk k x y x t x y x t t x x x x ---+=⇒=⇒+=+⇒=+()()21121212122222x kx x kx kx x t x x x x +++⇒==+++代入韦达定理得92t =-,即直线AD 过定点90,2⎛⎫- ⎪⎝⎭.3‐2、(江苏省海安高级中学2023届高三期初学业质量监测)已知椭圆:的离心率为,短轴长为2.(1)求的方程;(2)过点且斜率不为0的直线与自左向右依次交于点,,点在线段上,且,为线段的中点,记直线,的斜率分别为,,求证:为定值. 【答案解析】【要点分析】(1)根据条件列出关于a,b 的方程,求得a,b 的值,即得答案; (2)设直线方程,,联立椭圆方程,可得根与系数的关系式,表示P点坐标,结合,可得N 点坐标,从而可证明结论. 【小问1详解】E ()222210x y a b a b +=>>2E ()4,0M -l E B C N BC MB NBMC NC=P BC OP ON 1k 2k 12k k (4)y k x =+11223300(,),(,),(,),(,)B x y C x y N x y P x y MB NBMC NC=由椭圆:的离心率为,短轴长为2,可知 ,则 ,故的方程为;【小问2详解】证明:由题意可知直线的斜率一定存在,故设直线的方程为,设,联立,可得,, 则, 所以,又,所以, 解得, 从而 , 故,即为定值.3‐3、(江苏连云港2023届高三上学期期中考试) 已知椭圆C :()222210x y a b a b +=>>经过点2P ⎛⎫ ⎪ ⎪⎝⎭,E ()222210x y a b a b +=>>2,222c b a==22231,44b a a -=∴=E 2214x y +=l l (4)y k x =+11223300(,),(,),(,),(,)B x y C x y N x y P x y 2214(4)x y y k x ⎧+=⎪⎨⎪=+⎩2222(41)326440k x k x k +++-=22116(112)0,012k k ∆=->∴<<2212122232644,4141k k x x x x k k --+==++220002222164164,,(,414114)4(41k k k kx y x P k k k k k --==∴++++=+MB NB MC NC=31122344x x x x x x -+=+-2222121233212264432424()41411,3328841k k x x x x k k x y k k x x k --⨯+⨯++++===-=-++++(1,3)N k -03120313(3)44y y k k k x x k ⋅=⋅=-⨯-=12k k31,2Q ⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程;(2)过椭圆C 右焦点的直线l 交椭圆于A ,B 两点,交直线x =4于点D .设直线QA ,QD ,QB 的斜率分别为1k ,2k ,3k ,若20k ≠,证明:132k k k +为定值. 【答案解析】【要点分析】(1)将椭圆上两点代入方程,得到方程组,求解,可得到a 、b ;(2)设出直线AB 方程y =k (x -1),得到D 点坐标()4,3k ,联立直线AB 与椭圆方程,得到A ,B 两点坐标之间的关系,根据坐标,分别表示出1k ,2k ,3k ,化简代入即可得到定值. 【小问1详解】将点2P ⎛⎫ ⎪ ⎪⎝⎭,点31,2Q ⎛⎫ ⎪⎝⎭代入椭圆方程()222210x y a b a b +=>>, 得222233141914a b ab ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2243a b ⎧=⎨=⎩,所以椭圆方程为22143x y +=.【小问2详解】由题意直线AB 的斜率一定存在,由(1)知,c =1,则椭圆的右焦点坐标为()1,0, 设直线AB 方程为:y =k (x -1),D 坐标为()4,3k .所以23312412k k k -==--, 设()11,A x y ,()22,B x y ,将直线AB 方程与椭圆方程联立得()22223484120kxk x k +-+-=.()()()()22222844341214410k k k k ∆=--+-=+>恒成立,由韦达定理知2122212283441234k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,且()111y k x =-,()221y k x =-, 则()()121213121233331122221111y y k x k x k k x x x x ------+=+=+----()12121223221x x k x x x x +-=-⋅-++2222228233424128213434k k k k k k k-+=-⋅--+++21k =-.故13221212k k k k k +-==-(定值). 题组四、 圆锥曲线中的探索性问题4-1、(湖南师大附中2023届高三年级开学初试卷)(本小题满分12分)设21,F F 分别是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,M 是C 上一点,2MF与x 轴垂直,直线1MF 与C 的另一个交点为N ,且直线MN 的斜率为42. (1)求椭圆C 的离心率.(2)设)1,0(D 是椭圆C 的上顶点,过D 任作两条互相垂直的直线分别交椭圆C 于B A .两点,过点D 作线段AB 的垂线,垂足为Q ,判断在y 轴上是否存在定点R ,使得||RQ 的长度为定值?并证明你的结论.【答案解析】(1)由题意知,点M 在第一象限.M 是C 上一点且2MF 与x 轴垂直,M ∴的横坐标为c ,当c x =时,a b y 2=,即.,2⎪⎪⎭⎫ ⎝⎛a b c M …………………(2分) 又直线MN 的斜率为42,所以4222tan 2221===∠acb c a b F MF , 即22222c a ac b -==,即02222=-+a ac c ,………………………………(4分)则01222=-+e e ,解得22=e 或2-=e (舍去), 即.22=e …………………………………(5分)(2)已知)1,0(D 是椭圆的上顶点,则1=b ,椭圆的方程为1222=+y x ,………(6分)设直线AB 的方程为m kx y +=,),(),,(2211y x B y x A ,由⎩⎨⎧=++=2222y x m kx y 可得)*(0)1(24)21(222=-+++m kmx x k , 所以221214kkm x x +-=+,222121)1(2k m x x +-=, 又)1,(11-=y x DA )1,(.22-=y x DB , ………………………………(8分))1)(1()1)(1(21212121-+-++=--+=⋅m kx m kx x x y y x x DB DA221212)1())(1()1(-++-++=m x x m k x x k021)1)(21()(4)1)(1(2)1(214).1(21)1(2).1(222222222222=+-++--+-=-++--++-+=k m k m m k k m m k km m k k m k , 化简整理有01232=--m m ,得31-=m 或.1=m 当1=m 时,直线AB 经过点D ,不满足题意; ………………………………(10分) 当31-=m 时满足方程(*)中0>∆,故直线AB 经过y 轴上定点.31,0⎪⎭⎫ ⎝⎛-G 又Q 为过点D 作线段AB 的垂线的垂足,故Q 在以DG 为直径的圆上,取DG 的中点为⎪⎭⎫ ⎝⎛31,0R ,则||RQ 为定值,且=||RQ .32||21=DG …………………………(12分)4‐2、(南京市2023届高三年级学情调研) 已知抛物线C :()220y px p =>的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点. (1)求p 的值;(2)是否存在定点T , 使得TA TB ⋅为常数? 若存在,求出点T 的坐标及该常数; 若不存在,说明理由.【答案解析】【要点分析】(1)结合中点坐标公式表示出点A 的坐标带入抛物线的方程即可求出结果; (2)设出直线的方程与抛物线联立,进而结合根与系数的关系得到TA TB ⋅的表达式,从而可得4040m ⎧+-=⎪⎨-=⎪⎩,因此解方程组即可求出结果.【小问1详解】 因为(),0,0,22p F P ⎛⎫⎪⎝⎭,且点A 恰好为线段PF 中点,所以,14p A ⎛⎫ ⎪⎝⎭,又因为A 在抛物线上,所以2124p p =⋅,即22p =,解得P =【小问2详解】设(),T m n ,可知直线l 斜率存在;设l :2y kx =+,()()1122,,,A x y B x y联立方程得:22y y kx ⎧=⎪⎨=+⎪⎩,所以220y k -+=,所以1212,y y y y k k+==, 又:()()()1212)(TA TB x m x m y n y n ⋅=--+--()()22121244y m y m y n y n ⎛⎫⎛⎫--+-- ⎪⎪ ⎪⎪⎭⎝⎭= ⎝()()222222*********y y m y y m n y y n -++-++=2222484m m n k k k k k ⎛⎫=--++-+ ⎪ ⎪⎝⎭22244m m n k k+-+++=-,令4040m ⎧+=⎪⎨-=⎪⎩,解之得:4m n ⎧=⎪⎨=⎪⎩,即)4T ,此时2218TA TB m n ⋅=+=4‐3、(湖北省鄂东南省级示范高中教改联盟学校2023届高三上学期期中联考)(本题满分12分)设点P 为圆上的动点,过点P 作x 轴垂线,垂足为点Q ,动点M 满足(点P 、Q 不重合)(1)求动点M 的轨迹方程E ;(2)若过点的动直线与轨迹E 交于A 、B 两点,定点N 为,直线NA 的斜率为,直线NB 的斜率为,试判断是否为定值.若是,求出该定值;若不是,请说明理由.22:4C x y +=2MQ =(4,0)T 31,2⎛⎫⎪⎝⎭1k 2k 12k k +答案解析:(1)设点P 为,动点M 为,则Q 点为求得:又即点M 的轨迹方程为:4分(2)设直线AB 方程为:则消x 得 或设A 点,B 点则求得: 8分()00,x y (,)x y ()0,0x ()()00,,0,MQ x x y PQ y =--=-())0022,0,MQ x x y y =∴--=-002x x y =⎧⎪⎨-=⎪⎩2222004443x y x y +=∴+= 221(0)43x y y +=≠4x my =+224143x my x y=+⎧⎪⎨+=⎪⎩()223424360m y my +++=()22(24)436340m m =-⨯+> △2m ∴>2m <-()11,x y ()22,x y 1212222436,3434m y y y y m m +=-⋅=++()121232my y y y =-+()()1212121221212123332392223339my y m y y y y k k my my m y y m y y ⎛⎫+-+--- ⎪⎝⎭∴+=+=+++++()()()1212123923392m y y m y y m y y -+-=-++++()()1212392392m y y m y y -+-=++1=-。

(完整版)历年圆锥曲线高考题(带答案)

(完整版)历年圆锥曲线高考题(带答案)

历年高考圆锥曲线2000年:(10)过原点的直线与圆相切,若切点在第三象限,则该直03422=+++x y x 线的方程是( )(A ) (B ) (C )(D )x y 3=x y 3-=x 33x 33-(11)过抛物线的焦点F 作一条直线交抛物线于P 、Q 两点,若线()02>=a ax y段PF 与FQ 的长分别是、,则等于( )p q qp 11+(A )(B )(C ) (D )a 2a21a 4a4(14)椭圆的焦点为、,点P 为其上的动点,当为钝角14922=+y x 1F 2F 21PF F ∠ 时,点P 横坐标的取值范围是________。

(22)(本小题满分14分)如图,已知梯形ABCD 中,点E 分有向线段所成的比为,CD AB 2=AC λ双曲线过C 、D 、E 三点,且以A 、B 为焦点。

当时,求双曲线离心率4332≤≤λ的取值范围。

e 2004年3.过点(-1,3)且垂直于直线的直线方程为( )032=+-y x A .B .C .D .12=-+y x 052=-+y x 052=-+y x 072=+-y x 8.已知圆C 的半径为2,圆心在轴的正半轴上,直线与圆C 相切,则圆x 0443=++y x C 的方程为( )A .B .03222=--+x y x 0422=++x y x C .D .3222=-++x y x 0422=-+x y x 8.(理工类)已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线21=e 的焦点重合,x y 42-= 则此椭圆方程为( )A .B .13422=+y x 16822=+y x C .D .1222=+y x 1422=+y x 22.(本小题满分14分)双曲线的焦距为2c ,直线过点(a ,0)和(0,b ),且点)0,1(12222>>=-b a by a x l (1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e l l .54c s ≥的取值范围.2005年:9.已知双曲线的焦点为,点在双曲线上且则点1222=-y x 12,F F M 120,MF MF ⋅= 到M 轴的距离为(x )A .B .CD435310.设椭圆的两个焦点分别为过作椭圆长轴的垂线交椭圆于点P ,若△为12,,F F 2F 12F PF等腰直角三角形,则椭圆的离心率是()A B C .D 2121、(理工类)(本小题满分12分)设,两点在抛物线上,是的垂直平分线。

全国名校2024届高三年级专项(圆锥曲线小题)练习卷(附答案)

全国名校2024届高三年级专项(圆锥曲线小题)练习卷(附答案)

全国名校2024届高三年级专项(圆锥曲线小题)练习卷 一、单选题4条二、多选题PF上的切点为的内切圆在边1)的左右焦点,O为坐标原点,以FO 在第二象限),射线1F A与双曲线的另一条渐近,则双曲线的离心率为.参考答案离心率为5的双曲线2C以A,∵,C D 分别是线段AB 的两个三等分点,∴()1,0C x -,10,2y D ⎛⎫⎪⎝⎭y易知△PEH ≅△2PEF ,即112OE F H a ==, 故可得cos cos F OE FOE ∠=-∠【名师点评】关键点名师点评:解决本题关键是利用双曲线的定义以及三角形内切圆的相关性质,结合图形详细分析得出相应关系,运算整理17.BCD【详细分析】由C在准线上,OC=点纵坐标,由此得直线AB方程,从而求得由双曲线方程和圆D 方程可知,3,4,5a b c ===, 所以左焦点为0()5,D -,右焦点2(5,0)F ;对于A ,由于P 在双曲线左支上,根据焦半径公式可知对于B ,由过点M 的直线与双曲线有一个公共点可知,直线的斜率一定存在,设直线斜率为k ,则直线l 的方程为2(1)y k x -=-,所以||3PF PF PF ''+==由余弦定理可得2(2)|c PF =11.23.AC【详细分析】对于A ,利用椭圆与=y kx 得到8AF BF +=;对于B ,利用A 中的结论及基本不等式.对于B ,()1418AF BF AF BF ⎛+=+ ⎝419BF AF ⎛⎫25.32【详细分析】由抛物线与圆的对称性可得由抛物线的定义求得2 d=26.4【详细分析】先由AB AD ⊥,CB CD ⊥判断出表示出圆的方程,将()0,b 代入椭圆及圆的方程,可求出【答案详解】由题意得()0,A b ,(0,C -【名师点评】关键点名师点评:由此得到A,B,C,27.328.2【详细分析】由题干条件得到1F 1OB OF c ==,由焦点到渐近线距离及勾股定理得到故答案为:2。

圆锥曲线历年高考题(整理)附答案

圆锥曲线历年高考题(整理)附答案

圆锥曲线历年高考题(整理)附答案数学圆锥曲线测试高考题一、选择题:1.(2006全国II)已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一条渐近线方程为$y=x$,则双曲线的离心率为()。

A。

$\frac{\sqrt{2}}{2}$ B。

$\frac{\sqrt{3}}{2}$ C。

$\frac{\sqrt{5}}{2}$ D。

$\frac{\sqrt{7}}{2}$2.(2006全国II)已知$\triangle ABC$的顶点B、C在椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则$\triangle ABC$的周长是()。

A。

2.B。

3.C。

4.D。

63.(2006全国卷I)抛物线$y=-x^2$上的点到直线$4x+3y-8=0$的距离的最小值是()。

A。

2.B。

$\frac{4}{3}$。

C。

$\sqrt{2}$。

D。

$\sqrt{3}$4.(2006广东高考卷)已知双曲线$3x^2-y^2=9$,则双曲线右支上的点P到右焦点的距离与点P到右准线的距离之比等于()。

A。

2.B。

$\frac{1}{2}$。

C。

$\sqrt{2}$。

D。

45.(2006辽宁卷)方程$2x^2-5x+2=0$的两个根可分别作为()。

A。

一椭圆和一双曲线的离心率B。

两抛物线的离心率C。

一椭圆和一抛物线的离心率 D。

两椭圆的离心率6.(2006辽宁卷)曲线$\frac{x^2}{m}+\frac{y^2}{6-m}=1(m<6)$与曲线$\frac{x^2}{5}+\frac{y^2}{m-4}=1(5<m<9)$的()。

A。

焦距相等。

B。

离心率相等。

C。

焦点相同。

D。

准线相同7.(2006安徽高考卷)若抛物线$y=2px$的焦点与椭圆$\frac{x^2}{4}+\frac{y^2}{9}=1$的右焦点重合,则p的值为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年数学全国1卷设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为或(1,.所以AM 的方程为y x =+y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠.综上,OMA OMB ∠=∠.已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 解:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P1,所以点P2在C 上. 因此222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩. 故C 的方程为2214x y +=.(2)设直线P2A 与直线P2B 的斜率分别为k1,k2,如果l 与x 轴垂直,设l :x=t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t,),(t,).则121k k +-=-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>. 设A (x1,y1),B (x2,y2),则x1+x2=2841kmk -+,x1x2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-)2016年数学全国1卷设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(I )13422=+y x (0≠y );(II ))38,12[ 【解析】试题分析:(I )利用椭圆定义求方程;(II )把面积表示为关于斜率k 的函数,再求最值。

试题解析:(I )因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (II )当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k . 则3482221+=+k k x x ,341242221+-=k k x x . 所以34)1(12||1||22212++=-+=k k x x k MN .过点)0,1(B 且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k ,所以1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积 341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为)38,12[. 2013年数学全国1卷已知圆:,圆:,动圆与圆外切并且与圆内切,圆心的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)是与圆,圆都相切的一条直线,与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.【解析】由已知得圆的圆心为(-1,0),半径=1,圆的圆心为(1,0),半径=3.设动圆的圆心为(,),半径为R.(Ⅰ)∵圆与圆外切且与圆内切,∴|PM|+|PN|===4,由椭圆的定义可知,曲线C是以M,N为左右焦点,场半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为.(Ⅱ)对于曲线C上任意一点(,),由于|PM|-|PN|=≤2,∴R≤2,当且仅当圆P的圆心为(2,0)时,R=2.∴当圆P的半径最长时,其方程为,当的倾斜角为时,则与轴重合,可得|AB|=.当的倾斜角不为时,由≠R知不平行轴,设与轴的交点为Q,则=,可求得Q(-4,0),∴设:,由于圆M相切得,解得.当=时,将代入并整理得,解得=,∴|AB|==.当=-时,由图形的对称性可知|AB|=,综上,|AB|=或|AB|=.2012年数学全国1卷设抛物线22(0)C x py p =>:的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点.(1) 若90BFD ∠=,ABD ∆的面积为2,求p 的值及圆F 的方程;(2) 若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 之有一个公共点,求坐标原点到,m n 距离的比值.【解析】(1)由对称性知:BFD ∆是等腰直角∆,斜边2BD p =点A 到准线l 的距离2d FA FB === 1424222ABD S BD d p ∆=⇔⨯⨯=⇔= 圆F 的方程为22(1)8x y +-=(2)由对称性设2000(,)(0)2x A x x p >,则(0,)2pF点,A B 关于点F 对称得:22220000(,)3222x x p B x p p x p p p --⇒-=-⇔= 得:33,)2p A ,直线322:3023p p m y x p-=+⇔+= 223322x x x py y y x p p p '=⇔=⇒==⇒=⇒切点3()6p pP直线333:)306p p n y x x p -=-⇔-= 坐标原点到,m n 333p p=。

已知O 为坐标原点,F 为椭圆C :2212y x +=在y 轴正半轴上的焦点,过F 且斜率为2-的直线l 与C 交与A 、B两点,点P 满足0OA OB OP ++=. (I)证明:点P 在C 上;(II)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上. 【命题意图】本题考查直线方程、平面向量的坐标运算、点与曲线的位置关系、曲线交点坐标求法及四点共圆的条件。

【解析】(I)(0,1)F ,l 的方程为1y =+,代入2212y x +=并化简得2410x --=. …………………………2分 设112233(,),(,),(,)A x y B x y P x y ,则12,44x x ==121212)21,2x x y y x x +=+=++=由题意得312312()()1,x x x y y y =-+==-+=-所以点P 的坐标为(1)-.经验证点P 的坐标(1)2--满足方程2212y x +=,故点P 在椭圆C 上 …6分(II)由P (1)2--和题设知,Q 2,PQ 的垂直平分线1l 的方程为2y x =-. ①设AB 的中点为M ,则1)2M ,AB 的垂直平分线2l 的方程为14y x =+. ②由①、②得1l 、2l 的交点为21()8N . …………………………9分 22221311||()(1)2888NP =-++--=, 22132||1(2)||2AB x x =+--=, 32||4AM =, 22221133||()()4828MN =++-=, 22311||||||NA AM MN =+=, 故 ||||NP NA =,又 ||||NP NQ =, ||||NA NB =, 所以 ||||||||NA NP NB NQ ===,由此知A 、P 、B 、Q 四点在以N 为圆心,NA 为半径的圆上. ……………12分如图,已知抛物线2:E y x =与圆222:(4)(0)M x y r r -+=>相交于A 、B 、C 、D 四个点。

(I )求r 得取值范围;(II )当四边形ABCD 的面积最大时,求对角线AC 、BD 的交点P 坐标分析:(I )这一问学生易下手。

相关文档
最新文档