实用运筹学习题选详解

合集下载

运筹学5至12章习题参考答案

运筹学5至12章习题参考答案
6.11将3个天然气田A1、A2、A3的天然气输送到2个地区C1、C2,中途有2个加压站B1、B2,天然气管线如图6-48所示。输气管道单位时间的最大通过量cij及单位流量的费用dij标在弧上(cij,dij)。求(1)流量为22的最小费用流;(2)最小费用最大流。
图6-48
【解】虚拟一个发点和一个收点
v2
8.8
0
8
5
13
4
89.16
v3
8.6
8
0
3
4.8
12
82.16
v4
5.6
5
3
0
7.8
9
71.96
v5
8
13
4.8
7.8
0
9
81.92
v6
6
4
12
9
9
0
82.2
运价
1
1.2
1.6
2.6
3.2
3.4
选第4个工厂最好。
6.10如图6-47,(1)求v1到v10的最大流及最大流量;(2)求最小割集和最小割量。
运筹学5-12章参考答案
习题五
5.2用元素差额法直接给出表5-52及表5-53下列两个运输问题的近似最优解.
表5-52
B1
B2
B3
B4
B5
Ai
A1
19
16
10
21
9
18
A2
14
13
5
24
7
30
A3
25
30
20
11
23
10
A4
7
8
6
10
4
42

运筹学例题解析word精品

运筹学例题解析word精品

(一)线性规划建模与求解B.样题: 活力公司准备在 5小时内生产甲、乙两种产品。

甲、乙两种产品每生产1单位分别消耗2小时、1小时。

又根据市场需求信息,乙产品的产量应该至少是甲产品产量 的3倍。

已知甲、乙两种产品每销售1单位的利润分别为 3百元和1百元。

请问:在5小时内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大?要求:1、建立该问题的线性规划模型。

2、用图解法求出最优解和最大销售利润值, 并写出解的判断依据。

如果不存在最优解,也请说明理由。

解: 1、(1)设定决策变量:设甲、乙两种产品分别生产 X]、X 2单位 _____________max z=2 X 1+X 2 _________________________________12X 1 亠X 2 乞5 s.t X 2 _3X !X,X 2 _01所示,其中可行域用阴影部分 目标函数只须画出其中一条等值线,求解过程如下:1•各个约束条件的边界及其方向如图 1中直线和箭头所示,其中阴影部分为可 行域,由直线相交可得其顶点 A(5,0)、 B(1,3)和 0(0,0)。

2. 画出目标函数的一条等值线 CD :2x 什X 2=0,它沿法线向上平移,目标函数 值z 越来越大。

3. 当目标函数平移到线段 AB 时时,z ⑵目标函数:.(3)约束条件如下:2、该问题中约束条件、目标函数、可行域和顶点见图 标记,不等式约束条件及变量约束要标出成立的方向, 顶点用大写英文字母标记。

-2 -1X 2> 3 X 4 B(1,3)3图1X25;A(5,O)T Max z 。

1MaX 2结论:本题解的情形是:无穷多最优解,理由:目标函数等值线z=2 X1+X2与约束条件2 X]+x?w 5的边界平行。

甲、乙两种产品的最优产量分别为(5,0)或(1,3)单位;最大销售利润值等于_5_百元。

(二)图论问题的建模与求解样题A.正考样题(最短路问题的建模与求解,清华运筹学教材编写组第三版267-268页例13)某企业使用一台设备,每年年初,企业都要做出决定,如果继续使用旧的,要付维修费;若购买一台新设备,要付购买费。

实用运筹学习题选详解

实用运筹学习题选详解

运筹学判断题一、第1章 线性规划的基本理论及其应用 1、线性规划问题的可行解集不一定是凸集。

(×) 2、若线性规划无最优解则其可行域无界。

(×)3、线性规划具有惟一的最优解是指最优表中非基变量检验数全部非零。

(√)4、线性规划问题的每一个基本可行解对应可行域的一个顶点。

(√)5、若线性规划模型的可行域非空有界,则其顶点中必存在最优解。

(√)6、线性规划问题的大M 法中,M 是负无穷大。

(×)7、单纯形法计算中,若不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量为负。

(√)8、对于线性规划问题的基本可行解,若大于零的基变量数小于约束条件数,则解是退化的。

(√)。

9、一旦一个人工变量在迭代过程中变为非基变量后,则该变量及相应列的数字可以从单纯性表中删除,且这样做不影响计算结果。

(√)10、线性规划的目标函数中系数最大的变量在最优解中总是取正值。

(×) 11、对一个有n 个变量,m 个约束的标准型的线性规划问题,其可行域的顶点恰好为个mn C 。

(×)12、线性规划解的退化问题就是表明有多个最优解。

(×)13、如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。

(√) 14、单纯型法解线性规划问题时值为0的变量未必是非基变量。

(√) 15、任何线性规划问题度存在并具有唯一的对偶问题。

(√) 16、对偶问题的对偶问题一定是原问题。

(√)17、根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解;反之,当对偶问题无可行解时,其原问题为无界解。

(×)18、若原问题有可行解,则其对偶问题也一定有可行解。

(×) 19、若原问题无可行解,其对偶问题也一定无可行解。

(×) 20、若原问题有最优解,其对偶问题也一定有最优解。

(√)21、已知*i y 为线性规划的对偶问题的最优解,若*0i y >,说明在最优生产计划中,第i 种资源一定有剩余。

运筹学基础及应用课后习题答案(第一二章习题解答)

运筹学基础及应用课后习题答案(第一二章习题解答)

运筹学基础及应用课后习题答案(第一二章习题解答)第一章:线性规划一、选择题1. 线性规划问题中,目标函数可以是()A. 最大化B. 最小化C. A和B都对D. A和B都不对答案:C解析:线性规划问题中,目标函数可以是最大化也可以是最小化,关键在于问题的实际背景。

2. 在线性规划问题中,约束条件通常表示为()A. 等式B. 不等式C. A和B都对D. A和B都不对答案:C解析:线性规划问题中的约束条件通常包括等式和不等式两种形式。

二、填空题1. 线性规划问题的基本假设是______。

答案:线性性2. 线性规划问题中,若决策变量个数和约束条件个数相等,则该问题称为______。

答案:标准型线性规划问题三、计算题1. 求解以下线性规划问题:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 83x + 4y ≤ 12x, y ≥ 0答案:最优解为 x = 4, y = 2,最大值为 Z = 14。

解析:画出约束条件的图形,找到可行域,再求目标函数的最大值。

具体步骤如下:1) 将约束条件化为等式,画出直线;2) 找到可行域的顶点;3) 将顶点代入目标函数,求解最大值。

第二章:非线性规划一、选择题1. 以下哪个方法适用于求解非线性规划问题()A. 单纯形法B. 拉格朗日乘数法C. 柯西-拉格朗日乘数法D. A和B都对答案:B解析:非线性规划问题通常采用拉格朗日乘数法求解,单纯形法适用于线性规划问题。

2. 非线性规划问题中,以下哪个条件不是K-T条件的必要条件()A. 梯度条件B. 正则性条件C. 互补松弛条件D. 目标函数为凸函数答案:D解析:K-T条件包括梯度条件、正则性条件和互补松弛条件,与目标函数是否为凸函数无关。

二、填空题1. 非线性规划问题中,若目标函数和约束条件都是凸函数,则该问题称为______。

答案:凸非线性规划问题2. 非线性规划问题中,K-T条件是求解______的必要条件。

运筹学课后习题解答_1.(DOC)

运筹学课后习题解答_1.(DOC)

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题min z=2x1 3x2a4x1 6x2 6 )2x2 4 st.. 4x1x1, x2 0解:由图 1 可知,该问题的可行域为凸集 MABCN,且可知线段 BA上的点都为最优解,即该问题有无量多最优解,这时的最优值为3z min =23 0 3 2P47 1.3 用图解法和纯真形法求解线性规划问题max z=10x1 5x 2a )3x1 4x2 95x1 2x2 8st..x1, x2 0解:由图 1 可知,该问题的可行域为凸集OABCO,且可知 B 点为最优值点,3x1 4x2x1 1 T 9 3,即最优解为x*1,3即2x2 8x2 2 5x1 2这时的最优值为 z max =10 1 5 3 35 2 2纯真形法:原问题化成标准型为max z=10x15x23x1 4 x2x39st.. 5x12x2x48x1 , x2 , x3 ,x4 010 5 0 0c jC B X B b x1 x2 x3 x49 3 4 1 0x38 [5] 2 0 1x410 5 0 0C j Z j21/5 0 [14/5] 1 -3/5 x38/5 1 2/5 0 1/5 10x10 1 0 -2C j Z j53/2 0 1 5/14 -3/14 x21 1 0 -1/7 2/7 10x10 0 -5/14 -25/14C j Z j1,3 T1015335因此有 x*, zmax2 2 2P78 2.4 已知线性规划问题:max z 2 x1 4x2 x3 x4x1 3x2 x4 82x1 x2 6x2 x3 x4 6x1 x2 x3 9x1 , x2 , x3,x4 0求: (1) 写出其对偶问题;(2)已知原问题最优解为X* (2,2,4,0) ,试依据对偶理论,直接求出对偶问题的最优解。

解:( 1)该线性规划问题的对偶问题为:min w 8 y1 6 y2 6 y3 9 y4y1 2 y2 y4 23y1 y2 y3 y4 4y3 y4 1y1 y3 1y1, y2 , y3 ,y4 0(2)由原问题最优解为X* ( 2,2,4,0) ,依据互补废弛性得:y1 2 y2 y4 23y1 y2 y3 y4 4y3 y4 1把 X * (2,2,4,0) 代入原线性规划问题的拘束中得第四个拘束取严格不等号,即 2 2 4 8 9 y4 0y1 2 y2 2进而有3y1 y2 y3 4y3 1得 y 4 , y2 3, y31, y 01 5 5 4( 4,3,1,0)T,最优值为w min16因此对偶问题的最优解为y*5 5P79 2.7考虑以下线性规划问题:min z 60x140x280x33x12x2x3 24x1x23x3 42x12x22x3 3x1, x2 , x30( 1)写出其对偶问题;( 2)用对偶纯真形法求解原问题;解:( 1)该线性规划问题的对偶问题为:max w 2y1 4 y23y33y1 4 y2 2 y3602 y1 y22y340y13y22y380y1, y2 , y30(2)在原问题加入三个废弛变量x4 , x5 , x6把该线性规划问题化为标准型:max z 60x1 40x2 80x33x1 2x2 x3 x4 24x1 x2 3x3 x5 42 x1 2x2 2x3 x6 3x j 0, j 1, ,6c j-60 -40 -80 0 0 0 C B X B b x1 x2 x3 x4 x5 x6x4-2 -3 -2 -1 1 0 0x5-4 [-4] -1 -3 0 1 0x6-3 -2 -2 -2 0 0 1 C j Z j-60 -40 -80 0 0 0x41 0 -5/4 5/4 1 -1/12 080x11 1 1/4 3/4 0 -1/4 0x6-1 0 [-3/2] -1/2 0 -1/2 1C j Zj0 -25 -35 0 -15 0x411/6 0 0 5/3 1 1/3 -5/680x15/6 1 0 2/3 0 -1/3 1/640x22/3 0 1 1/3 0 1/3 -2/3C j Zj0 0 -80/3 0 -20/3 -50/3x* ( 5 , 2 ,0) T , z max 60 5 40 2 80 0 2306 3 6 3 3P81 2.12某厂生产A、B、C三种产品,其所需劳动力、资料等相关数据见下表。

运筹学例题及答案

运筹学例题及答案
4000 0.06 11 7000 0.11
4000 0.05 0.50 2.80
解:设第Ⅰ种产品中,分别在 ( A1, Bj ), ( A2 , Bj ), j 1,2,3 上加工的数量依次为 x1, x2 , x3; x4 , x5 , x6 ,第Ⅱ种 产品中分别在A1,B1和A2,B1 上加工的数量为 x7 , x8 生产Ⅲ种产品数量为 x9 。
y1

yy3 , y4 0
将原问题的最优解带入约束,发现第4个约束为严格
不等式,所以,得y4*=0
又因为,原问题最优解的前三个分量都大于0,所以, 有如下三个等式成立。
y1 2 y2 2

3 y1 y3 1
y2

y3

4

解方程组得对偶问题的最优解为Y*=(4/5,3/5,1,0)
cj- zj 0 0 -1/3 -4/3 0 0
分析下列各种条件单独变化时,最优解将如何变化。
(a)第1,2个约束条件的后端项分别由6变7,8变4; (b)目标函数变为 max z 2x1 5x2 ; (c) 增加一个变量 x3 ,系数为 c3 4, p3 (1,2,3,2)T (d)问题中变量 x2 的系数变为 (4,3,2,1,2)T (e)增加一个新的约束 x1 4
cj- zj 0 0 -8/3 1/3 0 0
继续迭代,得表(5)
第25页
表5
cj 2 5 0 0 0 0 cB xB b x1 x2 x3 x4 x5 x6 5 x2 2 0 1 0 0 0 1 2 x1 2 1 0 1 0 0 -2 0 x5 1 0 0 1 0 1 -3 0 x4 2 0 0 -2 1 0 3
2。已知线性规划问题

运筹学课后习题答案

运筹学课后习题答案

6
5
6
3
σ34=15+50=1;至此;六个闭回路全部计算完 ;σ11=4;σ14=2;σ22=0;σ31=2;σ32=2;σ34=1;即全部检验数σ均 大于或等于0 即用上述三种方法计算中;用沃格尔法计算所
得结果z*=35为最优解
2024/1/10
16
表329
销地 B1
B2
B3
B4
产量
产地
A1
3
7
22
4
A3 销量
4
33
3
3
B3
6 3 28 2
B4 B5 产量
1 4 30
5

2
0
2②
15 0
6⑧
2
3





x11=1;x14=1;x15=3;x21=2;x32=3;x33=2;x34=1;总费用=1×3 +1×4+3×0+2×2+3×3+2×8+1×5=41
2024/1/10
18
②西北角法求解:
3 2 运输问题的基可行解应满足什么条件 试判断形表 326和表327中给出的调运方案是否作为表上作业法迭 代时的基可行解 为什么
2024/1/10
1
表326
销地 B1
B2
B3
B4
产量
产地
A1
0
A2
A3
5
销量
5
15
15
15
10
25
5
15
15
10
解:表326产地个数m=3;销地个数n=4;m+n1=3+41=6个;而 表326中非零个数的分量为5个≠6个;所以表326不可作为表上 作业法时的基可行解

最全运筹学习题及答案

最全运筹学习题及答案

最全运筹学习题及答案共1 页运筹学习题答案)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。

(1)max z?x1?x25x1+10x2?50x1+x2?1x2?4x1,x2?0(2)min z=x1+1.5x2x1+3x2?3x1+x2?2x1,x2?0(3)+2x2x1-x2?-0.5x1+x2x1,x2?0(4)max z=x1x2x1-x2?03x1-x2?-3x1,x2?0(1)(图略)有唯一可行解,max z=14(2)(图略)有唯一可行解,min z=9/4(3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

共2 页(1)min z=-3x1+4x2-2x3+5x4 4x1-x2+2x3-x4=-2x1+x2+3x3-x4?14 -2x1+3x2-x3+2x4?2x1,x2,x3?0,x4无约束(2zk?i??xk?1mxik?(1Max s. t .-4x1xx1,x2共3 页(2)解:加入人工变量x1,x2,x3,…xn,得:Max s=(1/pk)? i?1n?k?1m?ikxik-Mx1-Mx2-…..-Mxnm(1)max z=2x1+3x2+4x3+7x4 2x1+3x2-x3-4x4=8x1-2x2+6x3-7x4=-3x1,x2,x3,x4?0(2)max z=5x1-2x2+3x3-6x4共4 页x1+2x2+3x3+4x4=72x1+x2+x3+2x4=3x1x2x3x4?0(1)解:系数矩阵A是:?23?1?4??1?26?7? ??令A=(P1,P2,P3,P4)P1与P2线形无关,以(P1,P2有2x1+3x2=8+x3+4x4x1-2x2=-3-6x3+7x4令非基变量x3,x4解得:x1=1;x2=2基解0,0)T为可行解z1=8(2)同理,以(P=(45/13,0,-14/13,0)T是非可行解;3以(P1,P4X(3)=,,7/5)T是可行解,z3=117/5;(4)以(P2,P=(,45/16,7/16,0)T是可行解,z4=163/16;3以(P2,P4)为基,基解X(5)0,68/29,0,-7/29)T是非可行解;(6)TX以(P4,P)为基,基解=(0,0,-68/31,-45/31是非可行解;)3最大值为z3=117/5;最优解X(3)=(34/5,0,0,7/5)T。

运筹练习题及答案

运筹练习题及答案

运筹练习题及答案运筹学是应用数学的一个分支,它主要研究如何在有限资源下,通过合理规划和决策来达到最优效果。

以下是一些运筹练习题及答案,供学习者练习和参考。

练习题1:线性规划问题某工厂生产A和B两种产品,每种产品都需要使用机器和劳动力。

生产1单位A产品需要1小时机器时间和2小时劳动力,生产1单位B产品需要2小时机器时间和1小时劳动力。

工厂每天有10小时机器时间和15小时劳动力。

如果A产品的利润是3元,B产品的利润是5元,问如何安排生产计划以使总利润最大化?答案:设生产A产品的数量为x,B产品的数量为y。

目标函数:最大化利润 Z = 3x + 5y约束条件:1. 机器时间:x + 2y ≤ 102. 劳动力时间:2x + y ≤ 153. 非负性:x ≥ 0, y ≥ 0通过图解法或单纯形法,我们可以得到最优解为x = 4, y = 3,此时最大利润为34元。

练习题2:整数规划问题一家公司需要安排10名员工在5个不同的部门工作。

每个部门至少需要1名员工,且每个员工只能在一个部门工作。

部门A需要至少3名员工,部门B需要至少2名员工,部门C需要1名员工,部门D和E 各需要至少1名员工。

问如何分配员工以满足所有部门的需求?答案:设部门A、B、C、D、E分别分配的员工数为x1, x2, x3, x4, x5。

目标函数:满足所有部门需求,无直接利润最大化。

约束条件:1. x1 + x2 + x3 + x4 + x5 = 102. x1 ≥ 33. x2 ≥ 24. x3 = 15. x4 = 16. x5 = 1通过枚举法或整数规划算法,我们可以得到一种分配方案为:部门A 分配3人,B分配2人,C、D、E各分配1人。

练习题3:网络流问题某公司有3个仓库和4个销售点,每个销售点每天对产品的需求量已知。

公司需要决定如何从仓库向销售点分配产品,以满足所有销售点的需求,同时使总运输成本最小。

答案:设仓库i向销售点j的运输量为x_ij,运输成本为c_ij。

运筹学教材习题答案详解

运筹学教材习题答案详解
(1)
【解】图解法
单纯形法:
C(j)
1
3
0
0
b
Ratio
C(i)
Basis
X1
X2
X3
X4
0
X3
-2
[1]
1
0
2
2
0
X4
2
3
0
1
12
4
C(j)-Z(j)
1
3
0
0
0
3
X2
-2
1
1
0
2
M
0
X4
[8]
0
-3
1
6
0.75
C(j)-Z(j)
7
0
-3
0
6
3
X2
0
1
0.25
0.25
7/2
1
X1
1
0
-0.375
0.125
【解】设x1、x2、x3分别为产品A、B、C的产量,则数学模型为
1.3建筑公司需要用6m长的塑钢材料制作A、B两种型号的窗架.两种窗架所需材料规格及数量如表1-23所示:
表1-23窗架所需材料规格及数量
型号A
型号B
每套窗架需要材料
长度(m)
数量(根)
长度(m)
数量(根)
A1:1.7
2பைடு நூலகம்
B1:2.7
2
A2:1.3
项目2
项目3
0
400
800
900
1
600
800
500
2
900
800
200
3
100
700
600

运筹学及答案

运筹学及答案

运筹学习题及参考答案这里选择了部分运筹学习题,供教学练习参考。

这些习题主要选自教材《物流决策分析技术》和《物流运筹学方法》(个别习题内容有所变动),其中习题的提示与答案未经仔细验算和检查, 仅供参考。

一、线性规划1.在用单纯形法解线性规划问题时,我们假定“目标函数求极小”和“等式约束”。

那么,遇到目标函数求极大怎么办?约束条件中包含不等式,将如何处理?提示:当目标函数是求极大时,可将目标函数的系数乘于负1,则变为目标函数求极小的线性规划问题。

当约束条件为不等式时,求解前在不等式的较小的一边加一个辅助变量,变为等式约束。

2.解如下线性规划问题:Max.F=2X1+X2+8X3Subject to:2X1-X2+3X3=46X1+X2-5X3=2X1+X2+X3≤5X1,X2,X3≥0参考答案:X=(1.11,2.47,1.42)3.解如下线性规划问题:Max.F=5X1+4X2+10X3+8X4Subject to:X1+X2+X3+X4≤120X1+2X2+4X3+4X4≤4202X1+4X2+2X3+4X4≤3804X1+5X2+5X3+2X4≤400X1,X2,X3,X4≥0参考答案:X=(20,0, 40,60)4.解如下线性规划问题:Max.F=5X1+7X2+6X3Subject to:10X1+2X2+X3≤1003X1+13X2+4X3≤1502X1+3X2+12X3≤120X1,X2,X3≥0参考答案:X=(7.79,7.65, 6.79)5.解如下线性规划问题:Min.F=5X1-7X2+6X3Subject to:10X1+2X2+X3=1003X1+13X2+X3≤1502X1-3X2+10X3≥100X1,X2,X3≥0参考答案:X=(7.06,9.04, 11.30)6.某流通加工中心按客户要求,要把长度为1800(毫米)的圆钢截取为长度为200和125的甲、乙两种单件,共加工600套, 每套含甲2件,乙1件。

【参考实用】运筹学课后习题答案.doc

【参考实用】运筹学课后习题答案.doc

第一章线性规划1、由图可得:最优解为2、用图解法求解线性规划:Min z=2R1+R2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-1058244212121xxxxxx解:由图可得:最优解R=1.6,R=6.43用图解法求解线性规划:MaR z=5R1+6R2⎪⎩⎪⎨⎧≥≤+-≥-,23222212121xxxxxx解:由图可得:最优解MaR z=5R1+6R2, MaR z= +4用图解法求解线性规划:MaRz = 2R1 +R2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤,5242261552121211xxxxxxx由图可得:最大值⎪⎩⎪⎨⎧==+35121xxx,所以⎪⎩⎪⎨⎧==2321xxmaR Z = 8.1212125.max23284164120,1,2maxZ.jZ x xx xxxx j=+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=R1-2R2+3R3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量R 4≥0,引入剩余变量R 5≥0,并令R 3=R 3’-R 3’’,其中R 3’≥0,R 3’’≥0MaR z ’=-R 1+2R 2-3R 3’+3R 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =R 1+2R 2+3R 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z’ = -z ,引进松弛变量R 4≥0,引进剩余变量R 5≥0,得到一下等价的标准形式。

运筹学课后习题及答案

运筹学课后习题及答案

运筹学课后习题及答案在运筹学这门课程中,课后习题是帮助学生巩固理论知识和提高解决实际问题能力的重要环节。

以下是一些典型的运筹学课后习题及答案,供学生参考和练习。

习题1:线性规划问题问题描述:一个工厂需要生产两种产品A和B,每种产品都需要使用机器1和机器2。

产品A每单位需要机器1工作3小时,机器2工作2小时;产品B每单位需要机器1工作2小时,机器2工作4小时。

机器1每天最多工作24小时,机器2每天最多工作20小时。

如果产品A每单位的利润是500元,产品B每单位的利润是600元。

假设工厂希望最大化利润,问应该生产多少单位的产品A和B?解答:首先,设产品A的产量为x,产品B的产量为y。

根据题目条件,我们可以得到以下两个约束条件:\[ 3x + 2y \leq 24 \]\[ 2x + 4y \leq 20 \]目标函数是利润最大化,即:\[ \text{Maximize} \ P = 500x + 600y \]通过图解法或单纯形法,我们可以得到最优解为x=4,y=3。

此时,利润最大化为\( P = 500 \times 4 + 600 \times 3 = 3800 \)元。

习题2:网络流问题问题描述:一个供水系统由多个泵站和水库组成,需要确保每个水库都有足够的水量供应。

已知每个泵站的供水能力以及每个水库的需求量。

如何分配泵站的供水量,以满足所有水库的需求?解答:首先,需要构建一个网络流图,其中节点代表泵站和水库,边代表供水路径。

每条边的容量表示泵站的供水能力,每条边的流量表示实际供水量。

目标是找到满足以下条件的网络流:- 每个泵站的总流出量等于其供水能力。

- 每个水库的总流入量等于其需求量。

- 网络中没有负流量。

使用最大流算法,如Ford-Fulkerson算法或Edmonds-Karp算法,可以找到满足上述条件的最大网络流。

习题3:整数规划问题问题描述:一个公司需要决定是否投资于三个不同的项目,每个项目都需要一定的资金和人力资源。

实用运筹学叶向版习题4.1答案

实用运筹学叶向版习题4.1答案

1.某农民承包了五块土地共206亩,打算种小麦、玉米和蔬菜三种农作物,各种农作物的计划播种面积(亩)以及每块土地种植各种不同农作物的亩产数量(公斤)见表。

问如何安排种植计划,可使总产量达到最高?每块土地种植各种不同农作物的亩产数量(1)决策变量设ij x 作物种类i 为小麦、玉米、蔬菜种在土地块别j 为1、2、3、4、5上的播种面积(2)目标函数本问题的目标函数是使得总产量达到最高,即:Min z=500+600+650+1050+800+850+800+700+900+950+1000+950+850+550+700 (3)约束条件 ①满足土地亩数土地块别1:36312111=++x x x 土地块别2:48322212=++x x x 土地块别3:44332313=++x x x 土地块别4:32342414=++x x x 土地块别5:46352515=++x x x ②满足计划播种面积小麦:861514131211=++++x x x x x玉米:702524232221=++++x x x x x 蔬菜:503534333231=++++x x x x x ③非负:)5,4,3,2,1;3,2,1(0==≥j i x ij 所以该问题的线性规划模型如下:s.t. ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧==≥=++++=++++=++++=++=++=++=++=++)5,4,3,2,1;3,2,1(05070864632444836353433323125242322211514131211352515342414332313322212312111j i x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ij电子表格模型如下。

Excel的求解结果为:由土地3、土地4、土地5种小麦各44、32、10亩,由土地1、土地5种玉米各34、36亩,由土地1、土地2种蔬菜各2、48亩,此时总产量达到最高180900公斤。

最全的运筹学复习题及答案-图文

最全的运筹学复习题及答案-图文

最全的运筹学复习题及答案-图文5、线性规划数学模型具备哪几个要素?答:(1).求一组决策变量某i或某ij的值(i=1,2,…mj=1,2…n)使目标函数达到极大或极小;(2).表示约束条件的数学式都是线性等式或不等式;(3).表示问题最优化指标的目标函数都是决策变量的线性函数第二章线性规划的基本概念一、填空题1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

2.图解法适用于含有两个变量的线性规划问题。

3.线性规划问题的可行解是指满足所有约束条件的解。

4.在线性规划问题的基本解中,所有的非基变量等于零。

5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

7.线性规划问题有可行解,则必有基可行解。

8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。

9.满足非负条件的基本解称为基本可行解。

10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。

12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。

13.线性规划问题可分为目标函数求极大值和极小_值两类。

14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15.线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。

17.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

18.如果某个约束条件是“≤”情形,若化为标准形式,需要引入一松弛变量。

19.如果某个变量某j为自由变量,则应引进两个非负变量某j,某j,同时令某j=某j-某j。

运筹学题库及详解答案

运筹学题库及详解答案

运筹学题库及详解答案1. 简述线性规划的基本假设条件。

答案:线性规划的基本假设条件包括目标函数和约束条件都是线性的,所有变量的取值范围都是连续的,并且目标函数和约束条件都是确定的。

2. 解释单纯形法的基本原理。

答案:单纯形法是一种求解线性规划问题的算法。

它从一个初始可行解开始,通过迭代的方式,每次选择一个非基变量,通过行操作将其变为基变量,同时保持解的可行性,直到达到最优解。

3. 什么是对偶问题?请给出一个例子。

答案:对偶问题是指一个线性规划问题与其对应的另一个线性规划问题之间的关系。

它们共享相同的技术系数矩阵,但目标函数和约束条件互换。

例如,如果原问题是最大化目标函数 \( c^T x \) 受约束\( Ax \leq b \),对偶问题则是最小化 \( b^T y \) 受约束 \( A^T y \geq c \)。

4. 如何确定一个线性规划问题的最优解?答案:确定线性规划问题的最优解通常需要满足以下条件:(1) 所有约束条件都得到满足;(2) 目标函数的值达到可能的最大值(最大化问题)或最小值(最小化问题);(3) 存在至少一个基解,使得所有非基变量的值都为零。

5. 解释灵敏度分析在运筹学中的作用。

答案:灵敏度分析用于评估当线性规划问题中的参数发生变化时,对最优解的影响。

它可以帮助决策者了解哪些参数的变化对结果影响最大,从而在实际应用中做出更灵活的决策。

6. 什么是运输问题,它与一般线性规划问题有何不同?答案:运输问题是线性规划的一个特例,它涉及将一种或多种商品从一个地点运输到另一个地点,以满足不同地点的需求,同时最小化运输成本。

与一般线性规划问题不同,运输问题通常具有特定的结构,可以通过特定的算法(如西北角法或最小元素法)来求解。

7. 描述网络流问题的基本特征。

答案:网络流问题涉及在网络中流动的资源或商品,目标是最大化或最小化流的总价值或成本。

网络由节点和边组成,节点代表资源的供应点或需求点,边代表资源流动的路径。

2-9章运筹学课后题及答案

2-9章运筹学课后题及答案

第二章决策分析2.1 某公司面对五种自然状态、四种行动方案的收益情况如下表:假定不知道各种自然状态出现的概率,分别用以下五种方法选择最优行动方案:1、最大最小准则2、最大最大准则3、等可能性准则4、乐观系数准则(分别取α=0.6、0.7、0.8、0.9)5、后悔值准则解:1、用最大最小准则决策S4为最优方案;2、用最大最大准则决策S2为最优方案;3、用等可能性准则决策S4为最优方案;4、乐观系数准则决策(1) α=0.6,S1为最优方案;(2) α=0.7,S1为最优方案;(3) α=0.8,S1为最优方案;(4) α=0.9,S2为最优方案;可见,随着乐观系数的改变,其决策的最优方案也会随时改变。

5、用后悔值准则决策S4为最优方案。

2.2 在习题1中,若各种自然状态发生的概率分别为P(N1)=0.1、P(N2)=0.3、P(N3)=0.4、P(N4)=0.2、P(N5)=0.1。

请用期望值准则进行决策。

解:期望值准则决策S1为最优方案。

3.3 市场上销售一种打印有生产日期的保鲜鸡蛋,由于确保鸡蛋是新鲜的,所以要比一般鸡蛋贵些。

商场以35元一箱买进,以50元一箱卖出,按规定要求印有日期的鸡蛋在一周内必须售出,若一周内没有售出就按每箱10元处理给指定的奶牛场。

商场与养鸡场的协议是只要商场能售出多少,养鸡场就供应多少,但只有11箱、12箱、15箱、18箱和20箱五种可执行的计划,每周一进货。

1、编制商场保鲜鸡蛋进货问题的收益表。

2、分别用最大最小准则、最大最大准则、等可能性准则、乐观系数准则(α=0.8)和后悔值准则进行决策。

3、根据商场多年销售这种鸡蛋的报表统计,得到平均每周销售完11箱、12箱、15箱、18箱和20箱这种鸡蛋的概率分别为:0.1、0.2、0.3、0.3、0.1。

请用期望值准则进行决策。

1、收益表2、用各准则模型求解(1)最大最小准则得S5为最优方案;(2)最大最大准则得S1为最优方案;(3)等可能性准则得S4为最优方案;(4)乐观系数( =0.8)准则得S1为最优方案;(5)后悔值准则得S3为最优方案。

运筹学课后习题解答_1.(DOC)

运筹学课后习题解答_1.(DOC)

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯=P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →105B CB X b 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。

运筹学教材习题答案详解

运筹学教材习题答案详解
X(2)=( 0 ,450 ,0 ,0,0 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料650根
显然用料最少的方案最优。
1.4A、B两种产品,都需要经过前后两道工序加工,每一个单位产品A需要前道工序1小时和后道工序2小时,每一个单位产品B需要前道工序2小时和后道工序3小时.可供利用的前道工序有11小时,后道工序有17小时.
3
B1:2.0
3
需要量(套)
200
150
问怎样下料使得(1)用料最少;(2)余料最少.
【解】第一步:求下料方案,见下表。
方案










十一
十二
十三
十四
需要量
B1:2.7m
2
1
1
1
0
0
0
0
0
0
0
0
0
0
300
B2:2m
0
1
0
0
3
2
2
1
1
1
0
0
0
0
450
A1:1.7m
0
0
1
0
0
1
0
2
1
0
3
2
1
0
《运筹学》
第1章线性规划
第2章线性规划的对偶理论
第3章整数规划
第4章目标规划
第5章运输与指派问题
第6章网络模型
第7章网络计划
第8章动态规划
第9章排队论
第10章存储论
第11章决策论
第12章对策论
习题一
1.1讨论下列问题:

运筹学习题讲解(答案见另外word)

运筹学习题讲解(答案见另外word)

运筹学习题讲解
7. 求下图所示的网络最小费用最大流问题,每条弧旁边的 数字为(bij,cij)。
v2 (1,4) (2,2) x (3,5) (1,1) v1 (4,2) (1,3) v3 (4,3) (3,3) v4 (2,5) y
运筹学习题讲解
4. 用匈牙利法求解下述指派问题,已知效率矩阵为:
15 18 21 24 19 23 22 18 26 17 16 19 19 21 23 17
运筹学习题讲解
5. 某工厂生产三种产品,各种产品重量与利润的关系如下 表所示。现将此三种产品运往市场销售,运输能力总重量 不超过8吨,要求利润最大,采用动态规划方法求解,试 写出动态规划模型。
运筹学习题讲解
1. 写出如下线性规划问题的对偶问题:
maxz x1 2 x 2 x 3 x1 x 2 x 3 2 x x x 1 1 2 3 s.t . 2 x1 x 2 x 3 2 x1 0, x 2 0, x 3无 限 制
种类 重量(吨/件) 利润(元/件)
1 2 3
3 5 4
80 180 130
运筹学习题讲解
6. 某物流公司新购进4辆车,准备配发给甲、乙、丙3个 货栈,这3个货栈将得到的车辆数与收益的关系如下表所 示,试做出使总收益最大的分配方案。
0 甲 乙 丙 30 50 60 1 42 60 71 2 57 70 82 3 67 81 94 4 76 92 94
并利用弱对偶性说明z的最大值不大于1。
运筹学习题讲解
2. 已知线性规划问题
m axz 2 x1 x2 5 x3 6 x4 2 x1 x3 x4 8 s.t . 2 x1 2 x 2 x3 2 x4 12 x 0, i 1,2,3,4 i
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实用运筹学习题选详解 Revised as of 23 November 2020运筹学判断题一、第1章线性规划的基本理论及其应用1、线性规划问题的可行解集不一定是凸集。

(×)2、若线性规划无最优解则其可行域无界。

(×)3、线性规划具有惟一的最优解是指最优表中非基变量检验数全部非零。

(√)4、线性规划问题的每一个基本可行解对应可行域的一个顶点。

(√)5、若线性规划模型的可行域非空有界,则其顶点中必存在最优解。

(√)6、线性规划问题的大M法中,M是负无穷大。

(×)7、单纯形法计算中,若不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量为负。

(√)8、对于线性规划问题的基本可行解,若大于零的基变量数小于约束条件数,则解是退化的。

(√)。

9、一旦一个人工变量在迭代过程中变为非基变量后,则该变量及相应列的数字可以从单纯性表中删除,且这样做不影响计算结果。

(√)10、线性规划的目标函数中系数最大的变量在最优解中总是取正值。

(×)11、对一个有n个变量,m个约束的标准型的线性规划问题,其可行域的顶点C。

(×)恰好为个mn12、线性规划解的退化问题就是表明有多个最优解。

(×)13、如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。

(√)14、单纯型法解线性规划问题时值为0的变量未必是非基变量。

(√)15、任何线性规划问题度存在并具有唯一的对偶问题。

(√)16、对偶问题的对偶问题一定是原问题。

(√)17、根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解;反之,当对偶问题无可行解时,其原问题为无界解。

(×)18、若原问题有可行解,则其对偶问题也一定有可行解。

(×)19、若原问题无可行解,其对偶问题也一定无可行解。

(×)20、若原问题有最优解,其对偶问题也一定有最优解。

(√)21、已知*i y 为线性规划的对偶问题的最优解,若*0i y >,说明在最优生产计划中,第i 种资源一定有剩余。

(×)22、原问题具有无界解,则对偶问题不可行。

(√)23、互为对偶问题,或者同时都有最优解,或者同时都无最优解。

(√)24、某公司根据产品最优生产计划,若原材料的影子价格大于它的市场价格,则可购进原材料扩大生产。

(√)25、对于线性规划问题,已知原问题基本解不可行,对偶问题基本解可行,可采用对偶单纯形法求解。

(√)26、原问题(极小值)第i 个约束是“≥”约束,则对偶变量0i y ≥。

(√)27、线性规划问题的原单纯形解法,可以看作是保持原问题基本解可行,通过迭代计算,逐步将对偶问题的基本解从不可行转化为可行的过程。

(√) *28、运输问题不能化为最小费用流问题来解决。

(×)29、运输问题一定有最优解。

(√)30、若运输问题的可行解退化,则存在等于零的数字格。

(√)31、运输问题是特殊的线性规划问题,表上作业法也是特殊形式的单纯形法。

(√)32、按最小元素法(或伏格尔法)给出的初始基可行解,从每一空格出发可以找出,而且仅能找出唯一闭合回路。

(√)33、如果运输问题单位运价表的某一行(或某一列)元素分别乘上一个常数k,调运方案将不会发生变化。

(×)34、如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k,调运方案将不会发生变化。

(√)k k>,调运方35、如果运输问题单位运价表的全部元素分别乘上一个常数()0案将不会发生变化。

(√)36、运输问题独立约束条件数1+-个,变量数是mn个,于是基变量数为m n--个。

(×)mn m n37、整数规划解的目标函数值一般优于其相应的线性规划问题的解的目标函数值。

(×)38、一个整数规划问题如果存在两个以上的最优解,则该问题一定有无穷多最优解。

(×)39、分支定界法在需要分支时必须满足:一是分支后的各子问题必须容易求解;二是各子问题解的集合必须覆盖原问题的解。

(√)40、整数规划的最优解是先求相应的线性规划的最优解然后取整得到。

(×)41、用分支定界法求解一个极大化的整数规划问题时,任何一个可行解的目标函数值是该问题的下界。

(√)42、用分支定界法求解一个极大化的整数规划问题,当得到多于一个可行解时。

通常可任取其中一个作为下界值,再进行比较剪枝。

(×)43、求最大值的整数规划问题中,其松弛问题的最优解是整数规划问题最优解的上界。

(√)44、匈牙利算法是对指派问题求最小值的一种求解方法。

(√)45、指派问题效率矩阵的每个元素分别乘上一个常数k,将不影响最优指派方案。

(×)46、指派问题数学模型的形式同运输问题十分相似,故也可以用表上作业法求解。

(√)47、匈牙利算法是对指派问题求最小值的一种求解方法。

(√)48、应用匈牙利算法求解工作指派问题时,对不打勾的行和打钩的列画横线。

(√)49、求解效率最大的指派问题,可以用指派矩阵的最小元素减去该矩阵的各元素,得到新的指派矩阵,再用匈牙利算法求解。

(×)二、第4章1、图论中的图不仅反映了研究对象之间的关系,而且是真实图形的写照,因而对图中点与点的相对位置、点与点的连线的长短曲直等都要严格注意。

(×)2、连通图G的部分树是取图G的点和G的所有边组成的树。

(×)3、在有向图中,链和路是一回事。

(×)4、连通图一定有支撑树。

(√)5、避圈法(加边法)是:去掉图中所有边,从最短边开始添加,加边的过程中不能形成圈,直到有n条边(n为图中的点数)。

(×)6、应用矩阵法计算网络最小支撑树问题,应当在所有记有T的行里没有划去的元素中寻找最小元素。

(√)7、用避圈法得到的最小树是惟一的,但破圈法得到的则不是。

(×)8、最小生成树的Kruskal算法,每次迭代是将剩下边集中的最小权边加入树中。

(×)9、Dijkstra算法和Ford算法均要求边的权重非负。

(√)。

(×)10、Dijkstra算法可用于正权网络也可用于负权网络。

(×)11、Dijkstra算法可用于求解有负权的网络最短路问题。

(×)12、Dijkstra算法可用于求解最短路中的所有情形。

(×)13、Dijkstra算法是求最大流的一种标号算法。

(×)14、在最短路问题中,发点到收点的最短路长是惟一的。

(√)15、求图的最小支撑树以及求图中一点到另一点的最短路问题,都可以归结为求解整数规划问题。

(√)16、只有一个奇点的连通图是欧拉图。

(×)17、在任何网络流中,零流总是一个可行流。

(√)18、在最大流问题中,最大流是惟一的。

(×)19、最大流问题是找一条从发点到收点的路,使得通过这条路的流量最大。

(×)C是弧(),i j的实际通过量。

(×)20、容量ij21、可行流是最大流的充要条件是不存在发点到收点的增广链。

(√)22、一个具有多个发点和多个收点地求网络最大流的问题一定可以转化为具有单个发点和单个收点地求网络最大流问题。

(√)f>。

(×)23、形成增广链的条件是对于正向弧必须满足0ij24、可行流的流量等于每条弧上的流量之和。

(×)25、最大流量等于最大流。

(×)26、求网络最大流的问题可归结为求解一个线性规划模型。

(√)27、若已求得网络最大流,已标号节点的集合和未标号节点的集合给出了网络的最小割集。

(√)28、网络最大流等于该网络最大割容量。

(×)29、割集中弧的流量之和称为割量。

(×)30、最小割集等于最大流量。

(×)31、任意可行流得流量不超过任意割量。

(√)32、若已给网络的一个最小费用可行流,它的最小费用增广链对应于长度网络(赋权图)的最短路。

(√)33、总时差为零的各项作业所组成的路线即为关键路线。

(√)34、工程网络图中关键路线是最长路线。

(√)35、网络规划中,工作的机动时间或富余时间叫做时差,分为总时差和单时差。

(√)36、以同一节点为开始事件的各项作业的最早开始时间相同。

(√)37、以同一节点为结束事件的各项作业的最迟结束时间相同。

(√)38、节点的最早开始时间与最迟完成时间两两相同所组成的路线是关键路线。

(×)39、优化网络图计划,保证资源的最优配置和工期的按时完成,通常根据工作的时差,采用非关键路线上的工作开始时间来实现。

(√)40、采取应急措施,往往不但缩短了工期环可以减少工程总费用。

(×)41、工程网络图中,只能有一个开始节点,但可以有多个结束节点。

(×)42、工程网络图中,事项只表示某项工作结束的状态。

(×)43、工程网络图可以有几个初始事项,但不可以有几个最终事项。

(×)44、虚活动的作业时间等于零。

(√)45、在网络图得关键路线上,总时差等于零。

(√)三、第6章1、矩阵对策中,如果最优解要求一个局中人采取纯策略,则另一个局中人也必须采取纯策略。

(×)2、任何矩阵对策一定存在混合策路意义下的解,并可以通过求解两个互为对偶的线性规划问题得到。

(√)3、对策模型的三要素:局中人、策略、赢得函数。

(√)4、在两人零和对策支付矩阵的某一行(或某一列)上加上一个常数k ,将不影响对策双方各自的最优策略。

(×)5、二人零和对策支付矩阵的所有元素乘上一个常数k ,将不影响对策双方各自的最优策略。

(√)6、应对灾害天气制定预案的策略,同制订对一场可能发生的军事冲突的策略,具有相同的性质和过程。

(×)7、如果在任一“局势”中,全体局中人的“得失”相加总是等于零,这个对策就叫做“零和对策”。

(√)8、任何一个给定的矩阵对策G 一定有解(在混合扩充中的解)。

(√)9、一个矩阵对策问题的赢得矩阵()ij A a =,一定有不等式max min min max ij ij j j i ia a ≥。

(×)10、已知某对策问题的赢得函数矩阵为132523243⎛⎫ ⎪ ⎪ ⎪⎝⎭,所以它是纯策略对策问题。

(×)11、二人零和有限对策问题中,对局双方的赢得函数值互为相反数。

(√)12、最优纯策略中,max min min max ,ij ij ij j j i ia a a =为局中人赢得函数中的元素。

(√)运筹学实用教程解答题一、第1章 线性规划的基本理论及其应用1(1.3.1)、用图解法解线性规划问题121212121212max 322422410..24731,0z x x x x x x s t x x x x x x =++≤⎧⎪-+≤⎪⎪-≤⎨⎪-≤⎪⎪≥⎩(答案:12max 21;5,3z x x ===)x=(0::12)';y1=(22-2*x)/4;y2=2*x-7;y3=(x+10)/4;y4=(x-1)/3;z1=(1-3*x)/2;z2=(4-3*x)/2;z3=(8-3*x)/2;z4=(12-3*x)/2;plot(x,y1,'g:',x,y2,'g:',x,y3,'g:',x,y4,'g:',x,z1,'b-',x,z2,'b-',x,z3,'b-',x,z4,'b-');title('D1ía·¨');2(1.3.2)、用图解法解线性规划问题12212121212max 2102560..18344,0z x x x x x s t x x x x x x =+≤⎧⎪+≤⎪⎪+≤⎨⎪+≤⎪⎪≥⎩(答案:12max 31;13,5z x x ===)x=(0::15)'; y1=10;y2=(60-2*x)/5; y3=18-x; y4=44-3*x; z1=1-2*x; z2=4-2*x; z3=8-2*x; z4=12-2*x;plot(x,y1,'g:',x,y2,'g:',x,y3,'g:',x,y4,'g:',x,z1,'b-',x,z2,'b-',x,z3,'b-',x,z4,'b-'); title('D1ía·¨');3(1.3.3)、用图解法解线性规划问题1211212max323..0,0z x xxs t x xx x=-+≤⎧⎪-≤⎨⎪≥⎩(答案:可行域无界,无最优解)-3x1+2x2=4-3x1+2x2=11=3x1-x2=0(图形是matlab结合几何画板绘制出来的)4(1.3.4)、用图解法解线性规划问题12121212max321..224,0z x xx xs t x xx x=-+≤⎧⎪+≥⎨⎪≥⎩(答案:无可行域,无最优解)x 1+x 2=12x 1+2x 2=4(图形是matlab 结合几何画板绘制出来的)5(1.3.5)、用图解法解线性规划问题12121212max 43326..318,0z x x x x s t x x x x =+-+≤⎧⎪-+≥⎨⎪≥⎩(答案:可行域无界,无最优解)x=(0::3)'; y1=(6+3*x)/2; y2=(18+x)/3; z1=(12-4*x)/3; z2=(20-4*x)/3;plot(x,y1,'g:',x,y2,'g:',x,z1,'b-',x,z2,'b-'); title('D1ía·¨');(图形是matlab 结合几何画板绘制出来的)6(1.3.6)、用图解法解线性规划问题1211212max 23416..28,0z x x x s t x x x x =+≤⎧⎪+≤⎨⎪≥⎩(答案:12max 14;4,2z x x ===)x=(0::9)'; y1=(8-x)/2; z1=(12-2*x)/3; z2=(20-2*x)/3;plot(x,y1,'g:',x,z1,'b-',x,z2,'b-'); title('D1ía·¨');(图形是matlab 结合几何画板绘制出来的)7(1.4.1)、用单纯形法计算12212121212max 2102560..18344,0z x x x x x s t x x x x x x =+≤⎧⎪+≤⎪⎪+≤⎨⎪+≤⎪⎪≥⎩ (答案:12max 31;13,5z x x ===,松弛变量34565,9,0x x x x ====)详解:引进 松弛变量3456,,,x x x x ,标准化模型为1223124125126123456max 2102560..18344,,,,,0z x x x x x x x s t x x x x x x x x x x x x =++=⎧⎪++=⎪⎪++=⎨⎪++=⎪⎪≥⎩。

相关文档
最新文档