运筹学例题及解答
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学例题及解答
一、市场对I、II两种产品的需求量为:产品I在1-4月每月需10000件,5-9月每月需30000件,10-12月每月需100000件;产品II在3-9月每月需15000件,其它月份每月需50000件。某厂生产这两种产品成本为:产品I在1-5月内生产每件5元,6-12月内生产每件4.50元;产品II在1-5月内生产每件8元,6-12月内生产每件7元。该厂每月生产两种产品能力总和应不超过120000件。产品I容积每件0.2立方米,产品II容积每件0.4立方米,而该厂仓库容积为15000立方米,要求:(a)说明上述问题无可行解;(b)若该厂仓库不足时,可从外厂借。若占用本厂每月每平方米库容需1元,而租用外厂仓库时上述费用增加为1.5元,试问在满足市场需求情况下,该厂应如何安排生产,使总的生产加库存费用为最少。
解: (a) 10-12月份需求总计:100000X3+50000X3=450000件,这三个月最多生产120000X3=360000件,所以10月初需要(450000-360000=90000件)的库存,超过该厂最大库存容量,所以无解。
•
•(b)考虑到生产成本,库存费用和生产费用和生产能力,该厂10-12月份需求的不足只需在7-9月份生产出来库存就行,
则设xi第i个月生产的产品1的数量,yi第i个月生产的产
品2的数量,zi,wi分别为第i个月末1,2的库存数s1i,s2i
分别为用于第i+1个月库存的原有及租借的仓库容量m3,可建立模型:
Lingo 程序为 MODEL: sets: row/1..16/:;
!这里n 为控制参数; col/1..7/:; AZ(row,col):b,x; endsets
data:
1211
127777778
7887898998910910109101110111110111211min (4.57)( 1.5)
30000150003000015000300001500030000150003000015000.i i i i i i z x y s s x z y w x z z y w w x z z y w w x z z y w w x z z y w w st x z ===+++-=→-=+-=→+-=+-=→+-=+-=→+-=+-=→+-=+∑∑1211121100005000
120000(712)0.20.415000(712)0i i i i i i i
y w x z i z w s s s i ⎧⎪⎪⎪⎪⎪⎪⎪⎨=→+=⎪⎪+≤≤≤⎪+=+⎪⎪≤≤≤⎪⎪⎩变量都大于等于
b=1.754167,1.737500,1.737500,1.770833,1.770833,1.762500,1.7 62500,1.667500,1.609167,1.609167,1.650833,1.650833,1.659167 ,1.659167,1.396667,1.380000,1.380000,1.438333,1.438333,1.41 3333,1.413333,1.658333,1.633333,1.633333,1.658333,1.658333, 1.658333,1.658333,1.546667,1.513333,1.513333,1.555000,1.555 000,1.546667,1.546667,1.538333,1.496667,1.496667,1.480000,1 .480000,1.505000,1.505000,1.562500,1.545833,1.545833,1.5791 67,1.579167,1.570833,1.570833,1.645833,1.604167,1.604167,1. 637500,1.637500,1.637500,1.637500,1.670833,1.645833,1.64583 3,1.645833,1.645833,1.654167,1.654167,1.454167,1.420833,1.4 20833,1.412500,1.412500,1.420833,1.420833,1.463333,1.480000 ,1.480000,1.421667,1.421667,1.430000,1.430000,1.682500,1.69 0833,1.690833,1.699167,1.699167,1.690833,1.690833,1.466667, 1.483333,1.483333,1.475000,1.475000,1.466667,1.466667,1.508 333,1.500000,1.500000,1.466667,1.466667,1.475000,1.475000,1 .552500,1.535833,1.535833,1.569167,1.569167,1.560833,1.5608 33,1.542500,1.509167,1.509167,1.550833,1.550833,1.542500, 1.542500;
enddata
max=@sum(AZ(i,j): b(i,j)*x(i,j));
@for(col(j): @sum(row(i):x(i,j))<=2);
@for(col(j): @sum(row(i):x(i,j))>=1);
@sum(AZ(i,j):x(i,j))=8;
@for(row(i): @sum(col(j):x(i,j))=1);
@for(AZ(i,j): @bin(x(i,j)));
运行结果:
Rows= 32 Vars= 112 No. integer vars= 112 ( all are linear)
Nonzeros= 591 Constraint nonz= 448( 448 are +- 1) Density=0.163
Smallest and largest elements in abs value= 1.00000 8.00000
No. < : 7 No. =: 17 No. > : 7, Obj=MAX, GUBs <= 16
Single cols= 0