量子物理基础1

合集下载

量子物理知识归纳总结高中

量子物理知识归纳总结高中

量子物理知识归纳总结高中量子物理是自然科学中一门基础且复杂的学科,它研究微观世界的行为和性质。

在高中物理学习过程中,学生通常会接触到一些基本的量子物理知识。

本文将对高中学习阶段中所学到的一些量子物理知识进行归纳总结。

一、光的粒子性与波动性1. 波粒二象性根据量子理论,光既可以表现出粒子性,也可以表现出波动性。

这一现象被称为波粒二象性。

在某些实验中,光会呈现出波动性,如干涉和衍射现象;而在其他实验中,光又会表现为光子,即粒子。

2. 光电效应光电效应是指当光照射到金属表面时,光子与金属表面的电子相互作用,使电子脱离金属表面并产生电流的现象。

根据经典物理的观点,预测的光电效应与实际观察到的现象不一致,而量子物理的波粒二象性解释了这一现象。

3. 康普顿散射康普顿散射是指光子与电子发生非弹性碰撞后散射的现象。

康普顿散射的结果表明,光子也具有粒子性,而电子的散射角度与入射光子的能量有关。

这一实验结果进一步验证了光的波粒二象性。

二、原子结构与波尔模型1. 波尔理论根据波尔的提议,原子是由带电粒子组成的。

这些带电粒子分别位于原子的核心和外层。

电子围绕着原子核做一个分立的、稳定的运动轨道,电子沿着这些轨道进行运动,并且只能在特定的轨道上存在。

2. 能级与光谱原子的电子在不同的能级上存在,而每个能级对应着不同的能量。

当电子从高能级跃迁至低能级时,会释放出能量。

这种电子跃迁所释放出的能量以光子的形式传播出去,形成光谱。

通过光谱的分析,可以了解到原子的能级结构和组成。

3. 不确定性原理不确定性原理是量子物理的基本原理之一,它指出了在某些实验条件下,无法同时确定一个粒子的位置和动量。

这表明在微观尺度下,我们不能精确地预测和测量粒子的行为,只能通过概率的方式来描述。

三、量子力学的基本概念与应用1. 波函数与概率密度在量子力学中,波函数是描述微观粒子所处状态的数学函数。

波函数的模的平方称为概率密度,它描述了在某一给定位置找到粒子的可能性。

第一章 量子力学基础知识

第一章  量子力学基础知识

《结构化学基础》讲稿第一章孟祥军第一章 量子力学基础知识 (第一讲)1.1 微观粒子的运动特征☆ 经典物理学遇到了难题:19世纪末,物理学理论(经典物理学)已相当完善: ◆ Newton 力学 ◆ Maxwell 电磁场理论 ◆ Gibbs 热力学 ◆ Boltzmann 统计物理学上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。

1.1.1 黑体辐射与能量量子化黑体:能全部吸收外来电磁波的物体。

黑色物体或开一小孔的空心金属球近似于黑体。

黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。

★经典理论与实验事实间的矛盾:经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。

按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。

按经典理论只能得出能量随波长单调变化的曲线:Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。

Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。

经典理论无论如何也得不出这种有极大值的曲线。

• 1900年,Planck (普朗克)假定:黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。

• h 称为Planck 常数,h =6.626×10-34J •S•按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合:●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。

能量波长黑体辐射能量分布曲线 ()1/8133--=kt h c h eE ννπν1.1.2 光电效应和光子学说光电效应:光照射在金属表面,使金属发射出电子的现象。

第一章 量子力学基础

第一章 量子力学基础

氧化锆晶体的X射线衍射图 (Debye-Scherrer图)
de Broglie还利用他的关系式为Bohr的轨道角动 量量子化条件
h mvr n 2
作了一个解释:由这一条件导出的
nh h S 2r n n mv p
表明圆轨道周长S是波长的整数倍,这正是在圆周上形 成稳定的驻波所需要的,如同琴弦上形成驻波的条件是 自由振动的弦长为半波长的整数倍一样. 尽管这种轨迹确定的轨道被不确定原理否定了, 但“定态与驻波相联系”的思想还是富有启发性的.
测物理量. 波函数应具有品优性 , 包括单值性、连续性 、平方可积性.
波函数的概率解释
例如, 坐标与相应的动量分量、方位角与动量矩等.
不确定原理可以用不同的方式来阐述, 最容易理解也 最常用的是电子的单缝衍射实验:
波是不确定性的表现
单 缝 衍 射
这个象征着科学 的标志, 迄今仍被有 些人认为是原子模型 的真实图像. 实际上, 它只是照耀过科学历 程的星光:
由于坐标与相应 的动量分量不可能同 时精确测定, 所以, 原子中的电子不可能 具有这种轨迹确切的 轨道.
(photoelectric effect), 后来导致了光的粒子学说. 1889年, 斯托列托夫提出获得光电流的电池方案(下图G为电 流表, V为电压表; C为阴极, A为阳极):
1898年,P.勒纳特确认放电粒子为电子, 并于1902年指出: 1.入射光线的频率低于一定值就不会放出光电子; 2.光电子的动能与光强度无关而与光的频率成正比; 3.光电流强度与光强成正比。
de Broglie波不仅对建立量子
力学和原子、分子结构理论有重要
意义,而且在技术上有重要应用.
使用de Broglie波的电子显微镜分辨率

大学物理15 量子物理基础1

大学物理15 量子物理基础1

m
o
0.1A
(2) 若使其质量为m=0.1g的小球以与粒子相同的 速率运动,求其波长
若 m=0.1g 的小球速率 vm v
vm
v
q BR m
则 :m
h m vm
h m
1 v
h m
m q BR
h q BR
m m
6.64 10 27 0.1 10 3
6.641034
m
px x h
考虑到在两个一级极小值之外还有电子出现,
运动,则其波长为多少? (粒子质量为ma =6.64ⅹ10-27kg)(05.08…)
解:
(1)
求粒子德布罗意波长 h h
p m v
先求:m v ?
而:q vB
m
v2 R
m v q BR
h m v
h q BR
6.63 10 34 1.601019 0.025 0.083102
1.001011
( x,t ) 0 区别于经典波动
(
x,
t)
e i 2
0
(t x
)
自由粒子沿x方向运动时对应的单色平面波波函数
设运动的实物粒子的能量为E、动量为 p,与之相 关联的频率为 、波长为,将德布罗意关系式代入:
考虑到自由粒子沿三维方向的传播
式中的 、E 和 p 体现了微观粒子的波粒二象性
2、概率密度——波函数的统计解释 根据玻恩对德布罗意波的统计解释,物质波波
p mv h
德布罗意公式(或假设)
与实物粒子相联系的波称为德布罗意波(或物质波)
h h h
p mv m0v
1
v2 c2
如果v c,则 h
m0v

大学物理 量子物理基础知识点总结

大学物理  量子物理基础知识点总结

大学物理 量子物理基础知识点1.黑体辐射(1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。

(2)斯特藩—玻尔兹曼定律:4o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设(1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=⨯⋅ (2)普朗克黑体辐射公式:2521M T ()1hckthc eλπλλ=-(,)3.光电效应和光的波粒二象性(1)遏止电压a U 和光电子最大初动能的关系为:212a mu eU = (2)光电效应方程: 212h mu A ν=+ (3)红限频率:恰能产生光电效应的入射光频率: 00V A K hν== (4)光的波粒二象性(爱因斯坦光子理论):2mc hεν==;hp mc λ==;00m =其中0m 为光子的静止质量,m 为光子的动质量。

4.康普顿效应: 00(1cos )hm cλλλθ∆=-=- 其中θ为散射角,0m 为光子的静止质量,1200 2.42610hm m cλ-==⨯,0λ为康普顿波长。

5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()22111T T HR m n n m m nνλ==-=->()()(), (2)频率条件: k nkn E E hν-=(3) 角动量量子化条件:,1,2,3...e L m vr n n ===其中2hπ=,称为约化普朗克常量,n 为主量子数。

(4)氢原子能量量子化公式: 12213.6n E eVE n n=-=- 6.实物粒子的波粒二象性和不确定关系(1)德布罗意关系式: h h p u λμ== (2)不确定关系: 2x p ∆∆≥; 2E t ∆∆≥7.波函数和薛定谔方程(1)波函数ψ应满足的标准化条件:单值、有限、连续。

(2)波函数的归一化条件: (,)(,)1Vr t r t d ψψτ*=⎰(3)波函数的态叠加原理: 1122(,)(,)(,)...(,)iiir t c r t c r t c r t ψψψψ=++=∑(4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ⎡⎤∂=-∇+⎢⎥∂⎣⎦8.电子自旋和原子的壳层结构(1)电子自旋: 11),2S s ==;1,2z s s S m m ==±注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构①原子核外电子可用四个量子数(,,,l s n l m m )描述:主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。

上海理工 大学物理 第十三章 量子力学基础1答案

上海理工 大学物理 第十三章 量子力学基础1答案

(黑体辐射、光电效应、康普顿效应、玻尔理论、波粒二象性、波函数、不确定关系)一. 选择题[ D]1. 当照射光的波长从4000 Å变到3000 Å时,对同一金属,在光电效应实验中测得的遏止电压将:(A) 减小0.56 V.(B) 减小0.34 V.(C) 增大0.165 V.(D) 增大1.035 V.[](普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C)解题要点:)()(1212λλccehvvehUa-=-=∆∴[ C]2. 下面四个图中,哪一个正确反映黑体单色辐出度M Bλ(T)随λ 和T的变化关系,已知T2 > T1.解题要点:斯特藩-玻耳兹曼定律:黑体的辐射出射度M0(T)与黑体温度T的四次方成正比,即.M0 (T)随温度的增高而迅速增加维恩位移律:随着黑体温度的升高,其单色辐出度最大值所对应的波长mλ向短波方向移动。

[ D]3. 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的(A) 2倍.(B) 1.5倍.(C) 0.5倍.(D) 0.25倍.解题要点:(B)因散射使电子获得的能量:202c m mc K -=ε 静止能量:20c m[ C ]4. 根据玻尔的理论,氢原子在n =5轨道上的动量矩与在第一激发态的轨道动量矩之比为(A) 5/4. (B) 5/3.(C) 5/2. (D) 5.解题要点:L = m e v r = n 第一激发态n =2[ B ]5. 氢原子光谱的巴耳末线系中谱线最小波长与最大波长之比为 (A) 7/9. (B) 5/9. (C) 4/9. (D) 2/9.解题要点:从较高能级回到n=2的能级的跃迁发出的光形成巴耳末系l h E E h -=νc =λν23max E E ch-=λ2min E E ch-=∞λ[ B ]6. 具有下列哪一能量的光子,能被处在n = 2的能级的氢原子吸收? (A) 1.51 eV . (B) 1.89 eV .(C) 2.16 eV . (D) 2.40 eV .解题要点:26.13n eV E n -=l h E E h -=ν=⎪⎭⎫⎝⎛---2226.136.13eV n eV[ D ]7. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将 (A) 增大D 2倍. (B) 增大2D 倍. (C) 增大D 倍. . (D) 不变.解题要点:注意与各点的概率密度区分开来.二. 填空题1. 康普顿散射中,当散射光子与入射光子方向成夹角φ =___π___时,散射光子的频率小得最多;当φ = ___0___ 时,散射光子的频率与入射光子相同.解题要点:频率小得最多即波长改变量最大2. 氢原子基态的电离能是 __13.6__eV .电离能为+0.544 eV 的激发态氢原子,其电子处在n =__5__ 的轨道上运动.解题要点:电离能是指电子从基态激发到自由状态所需的能量. ∴氢原子基态的电离能E =1E E -∞=⎪⎭⎫⎝⎛--∞-2216.136.13eV eV E =n E E -∞ 即 +0.544 eV=26.13neV3. 测量星球表面温度的方法之一,是把星球看作绝对黑体而测定其最大单色辐出度的波长λm ,现测得太阳的λm 1 = 0.55 μm ,北极星的λm 2 = 0.35 μm ,则太阳表面温度T 1与北极星表面温度T 2之比T 1:T 2 =___7:11___.解题要点:由维恩位移定律: T m λ=b∴m λ∝T1 即21T T =12m m λλ 4. 令)/(c m h e c =λ(称为电子的康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子的动能等于它的静止能量时,它的德布罗意波长是λλc .解题要点:电子的动能:22c m mc e K -=ε 静止能量:2c m e22c m mc e K -=ε=2c m e221cu m m e -=21⎪⎭⎫ ⎝⎛-===c u u m h m u h p h e λ 5. 若太阳(看成黑体)的半径由R 增为2 R ,温度由T 增为2 T ,则其总辐射功率为原来的__64__倍.解题要点:由斯特藩-玻耳兹曼定律:太阳的总辐射功率:024M R M ⋅=π424T R σπ⋅=6. 波长为0.400μm 的平面光波朝x 轴正向传播.若波长的相对不确定量∆λ / λ =10-6,则光子动量数值的不确定量 ∆p x =___s m kg /1066.133⋅⨯-_ _,而光子坐标的最小不确定量∆x =___0.03m___.解题要点:λh p =λλλλλ∆⋅=∆=∆h h p 2三. 计算题1. 图中所示为在一次光电效应实验中得出的曲线(1) 求证:对不同材料的金属,AB 线的斜率相同.(2) 由图上数据求出普朗克恒量h .解:(1)由得A h U e a -=ν e A e h U a /-=ν 常量==e h d U d a ν/ ∴对不同金属,曲线的斜率相同 (2)s J eetg h ⋅⨯=⨯--==-3414104.610)0.50.10(00.2θ |14Hz)2. 用波长λ0 =1 Å的光子做康普顿实验. (1) 散射角φ=90°的康普顿散射波长是多少? (2) 反冲电子获得的动能有多大?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)解:(1)λλλ∆+=0m 1010024.1-⨯=(2)根据能量守恒:∴反冲电子获得动能:202c m mc K -=εννh h -=0λλchch-=0)(00λλλλ∆+∆=hceV J 2911066.417=⨯=-3. 实验发现基态氢原子可吸收能量为 12.75 eV 的光子. (1) 试问氢原子吸收该光子后将被激发到哪个能级?(2) 受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?请画出能级图(定性),并将这些跃迁画在能级图上.解:(1)l h E E h -=ν=⎪⎭⎫⎝⎛---2216.136.13eV n eV =12.75 n=4(2)可以发出41λ、31λ、21λ、43λ、42λ、32λ六条谱线4. 质量为m e 的电子被电势差U 12 = 100 kV 的电场加速,如果考虑相对论效应,试计算其德布罗意波的波长.若不用相对论计算,则相对误差是多少?(电子静止质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C) n=1n=2n=3n=4解:考虑相对论效应:22c m mc e K -=ε=12eU221cu m m e -=21⎪⎭⎫ ⎝⎛-===c u u m h m u h p h e λ=)2(21212c m eU eU hc e +=3.71m 1210-⨯若不用相对论计算:221u m e =12eU u m h p h e =='λ=122eU m he =3.88m 1210-⨯ 相对误差:λλλ-'=4.6﹪5. 一电子处于原子某能态的时间为10-8 s ,计算该能态的能量的最小不确定量.设电子从上述能态跃迁到基态所对应的光子能量为3.39 eV ,试确定所辐射的光子的波长及此波长的最小不确定量.( h = 6.63×10-34 J ·s )解:根据不确定关系式≥∆E t∆2 =5.276J 2710-⨯=3.297eV 810-⨯ 根据光子能量与波长的关系==νh E λchEc h=λ=3.67m 710-⨯ 波长的最小不确定量为2EE hc∆=∆λ=7.13m 1510-⨯ [选做题]1. 动量为p的原子射线垂直通过一个缝宽可以调节的狭缝S ,与狭缝相距D 处有一接收屏C ,如图.试根据不确定关系式求狭缝宽度a 等于多大时接收屏上的痕迹宽度可达到最小.解:由不确定关系式 2≥∆∆y p y而 a y =∆,θsin p p y =∆ 则有 pa2sin ≥θ 由图可知,屏上痕迹宽带不小于 paD a D a y+=+=θsin 2 由0=da dy可得 pD a= 且这时 022>dayd 所以狭缝的宽度调到p D a =时屏上痕迹的宽度达到最小。

第1章 量子力学基础知识

第1章 量子力学基础知识

d 8 m E 2 2 dx h
2 2
8 m E 8 m E c1 cos( ) x c2 sin( ) x 2 2 h h
2 1 2 2 1 2
边界条件: x 0 , 0
2
x l , 2 0
8 m E 8 m E c1 cos( ) x c sin( ) x 2 h2 h2
1927年,美国, C. J. Davisson L. H. Germer 单晶 体电子衍射实验 G.P.Thomson 多晶金属箔电子衍射实验 质子、中子、氦原子、氢原子等粒子流也同样观 察到衍射现象,充分证实了实物微粒具有波动性, 而不限于电子。
22
氧化锆晶体的X射线衍射图
金晶体的电子衍射图
23
n h E 2 8m l
2
n 1,2,3,
nx ( x) c2 sin( ) l
nx ( x) c2 sin( ) l
nx c sin ( )dx 1 l 0
l 2 2 2
* d 1
nx 2 c sin ( ) 1 l 0
l 2 2 2
2 c2 l
25
波粒两相性是微观粒子运动 的本质特性,为微观世界的 普遍现象。
26
-1.1.4- 不确定关系(测不准原理)
x D A e O P
y
Q
A
O C
P psin
电子单缝衍射实验示意图
单 缝 衍 射
1.2 量子力学基本假设
量子力学是描述微观粒子运动规律 的科学。 电子和微观粒子不仅表现出粒性, 而且表现出波性,它不服从经典力 学的规律。
31
-1- 波函数和微观粒子的运动状态

量子力学习题课

量子力学习题课

1.已知粒子在无限深势阱中运动,其波函数为
( x) 2 / a sin(x / a)
求发现粒子的概率为最大的位置.
(0 ≤x ≤a)
理学院
黄玉
第一章 波粒二象性 发现粒子的概率
量子物理学基础
( x) 2 / a sin 2 (x / a )
概率最大的位置对应
d d 2 ( x) (2 / a sin 2 (x / a)) 0 dx dx
m=1,赖曼系
m=2,巴耳末系(可见光)
m=3,帕邢系 (1)定态假设 玻尔理论
En Em (2)跃迁假设: h
(3)角动量量子化假设
L n
n 1,2,3
理论计算
理学院 黄玉
4 o n 2 2 2 10 rn n r ( n 1 , 2 , 3 , ) r 0 . 529 10 m 1 1 2 me
理学院 黄玉
第一章 波粒二象性
量子物理学基础
20.设康普顿效应中入射X射线(伦琴射线)的波长 =0.700 Å,散射的X射线与入射的X射线垂直,求: (1) 反冲电子的动能EK. (2) 反冲电子运动的动量及动量方向与入射的X射线之间的 夹角.
理学院
黄玉
量子物理学基础 第一章 波粒二象性 解:令、p 和 p 、 分别为入射与散射光子的动量
理学院
黄玉
第一章 波粒二象性
量子物理学基础
(1) 定态假设:原子处于一系列不连续稳定态。电子只 能在一定轨道上作圆周运动,且不辐射 能量。 (2) 角动量量子化假设:电子绕核作圆周运动的轨道只 能取决于
PL n
n 1,2,3
(3)跃迁假设:原子从一稳定态过度到另一稳定态吸收 或发出单色电磁辐射。即由光子假说和 能量守恒定律有 En Em h

量子物理学入门知识

量子物理学入门知识

量子物理学入门知识
量子物理学是现代物理学的重要分支,它主要研究微观粒子的行为和性质。

以下是一些关于量子物理学的入门知识:
1. 原子结构:原子由核和电子组成。

电子在原子中的位置和运动状态由量子力学描述。

2. 波粒二象性:量子力学认为微观粒子既可以表现出波动性质,也可以表现出粒子性质。

这是个非常奇妙的现象。

3. 不确定性原理:根据不确定性原理,我们无法同时精确地知道一个微观粒子的位置和动量。

这种不确定性是量子物理学的核心概念。

4. 超导:超导是一种让电流在物质中无阻力地流动的现象。

量子物理学可以解释这一现象。

5. 量子纠缠:量子纠缠是一种神秘的现象,它描述了两个微观粒子之间的非常强的联系。

当一个粒子发生改变时,另一个粒子会立即发生相应的变化。

6. 量子计算:量子计算是利用量子力学的一些特殊性质来进行计算的方法。

它有潜力解决当前计算机无法解决的一些问题。

以上是量子物理学的一些入门知识,希望能够帮助读者进一步了解这个神奇的领域。

- 1 -。

第一章 量子力学基础

第一章 量子力学基础

1.1.3 氢原子光谱与轨道角动量量子化
1913年, Bohr提出一个新模型: 原子中的电子在确定的分 立轨道上运行时并不辐射能量; 只有在分立轨道之间跃迁时才有 不连续的能量辐射; 分立轨道由“轨道角动量量子化”条件确定:
m、v、r分别是电子的质量、线速度和轨道半径,n是一系列正 整数. 由此解释了氢原子的不连续线状光谱. 1922年, Bohr获诺 贝尔物理学奖.
假设 1
微观体系的状态可用一个状态函数或波函数Ψ(x, y, z, t) 描述, Ψ(x, y, z, t)决定了体系的全部可测物理量. 波函数应具有品优性, 包括单值性、连续性、平方可积性.
z 定态波函数 不含时间的波函数ψ(x,y,z)称为定态波函数。 (定态:概率密 度与能量不随时间改变的状态) z 波函数的具体表示形式 用量子力学处理微观体系时,要设法求出波函数的具体表示形 式。而波函数的具体表达式是由解Schrödinger方程得到的。 例如氢原子的1s态的波函数为: ψ 1s =
n=5 n=4 n=3 n=2
n=1
1.1.3 氢原子光谱与轨道角动量量子化
Bohr模型对于单电子原子在多方面应用得很有成效,也 能解释原子的稳定性. 但它竟不能解释 He 原子的光谱,更不 必说较复杂的原子;也不能计算谱线强度。 量子化条件是对的,半径有问题,角动量是错的; 仍属于经典力学,只是认为附加了一些量子化条件——称 为旧量子论
E = hv
λ= h / p
1.1.4 实物微粒的波粒二象性
1927年,戴维逊、革末用电子束单晶衍射法,G.P.汤姆逊用 多晶透射法证实了物质波的存在. 1929年, de Broglie获诺贝尔物 理学奖;1937年,戴维逊、革末、G.P.汤姆逊也获得诺贝尔奖.

量子物理基础

量子物理基础

归纳1
归纳2



8
氢原子光谱
6 5 4 3 2
1
(eV)

8

(eV)
6 5 4 3 2
1



轨道概念的困扰
早期量子论
第一节
光的波粒二象性
1. 波动性: 光的干涉和衍射
2. 粒子性: E h (光电效应和康普顿效应 等)
描述光的 粒子性
E h
p h

描述光的 波动性
光控继电器示意图 光
放大器 接控件机构
光电倍增管

第三节
康普顿的发现
假想
康普顿效应概述

偏移—散射角实验



不同物质实验
现象归纳
经典理论的困难
按照经典波动理论,由于受迫振动, 散射光具有和入射光一样的频率 . 经典 理论无法解释波长变化 .
康普顿的解释
康普顿散射公式
物理模型
外 ultraviolet 灾 catastrophe
克线 难
瑞利--金斯线
维恩线
o 1 23 4 5
6 78
/mm
理论曲线
设有一音叉尖端的质量为0.050kg ,将其频
率调到 480 Hz,振幅 A 1.0mm. 求
(1)尖端振动的量子数;
(2)当量子数由 n增加到 n 1时,振幅的变化是多
微观粒子也遵守能量守恒和动量守恒定律.
康普顿效应
康普顿、光电效应比较










光的波粒二象性
二象性统计解释

大学物理知识总结习题答案(第十章)量子物理基础

大学物理知识总结习题答案(第十章)量子物理基础

第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。

· 在任何温度下都能全部吸收照射到它表面上的各种波长的光(电磁波),则这种物体称为绝对黑体,简称黑体。

· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率,称为辐射出射度。

2. 维恩位移定律· 在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm ,维恩从热力学理论导出T 和λm 满足如下关系λm T b =其中b 是维恩常量。

3. 斯忒藩—玻尔兹曼定律· 斯忒藩—玻尔兹曼定律表明黑体的辐射出射度M 与温T 的关系4T M σ=其中s 为斯忒藩—玻尔兹曼常量。

对于一般的物体4T M εσ=e 称发射率。

4. 黑体辐射· 黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,这种能量分立的现象被称为能量的量子化,每一份最小能量E hv =被称为一个量子。

黑体辐射的能量为E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。

· 普朗克黑体辐射公式简称普朗克公式25/λ2πhc 1()λ1hc kT M T e l =-· 光是以光速运动的粒子流,这些粒子称为光量子,简称光子。

· 一个光子具有的能量为νh E =。

5. 粒子的波动性· 德布罗意认为实物粒子也具有波粒二象性,它的能量E 、动量p 跟和它相联系的波的频率ν、波长λ满足以下关系2E mc h ν==λh p m u == 这两个公式称为德布罗意公式或德布罗意假设。

与实物粒子相联系的波称为物质波或德布罗意波。

· x x p D D ?h 或者E t D D ?h 这一关系叫做不确定关系。

其中为位置不确定量、动量不确定量、能量不确定量、时间不确定量。

量子物理中的基本概念和量子力学

量子物理中的基本概念和量子力学

量子物理中的基本概念和量子力学量子物理是现代物理学中一门重要而复杂的学科,涉及到微观粒子的行为和性质。

本文将介绍量子物理中的一些基本概念和量子力学的原理。

一、基本概念1. 波粒二象性:根据量子物理理论,微观粒子既可以表现出波动性,也可以表现出粒子性。

这就是波粒二象性,这个概念是量子物理的基础。

2. 薛定谔方程:薛定谔方程是描述量子系统演化的基本方程。

它是一个偏微分方程,描述了波函数随时间和空间的变化情况。

根据薛定谔方程,可以计算出粒子的能量和位置态。

3. 超位置原理:超位置原理指的是在一定条件下,微观粒子可以同时处于多个位置态。

这与我们在日常生活中所观察到的经典物体的位置态不同。

二、量子力学的原理1. 不确定性原理:量子力学的基本原理之一是不确定性原理,由海森堡提出。

不确定性原理指出,对于某些物理量,如位置和动量,无法同时精确地确定其值。

精确测量一个物理量的值会导致另一个物理量的测量结果变得不确定。

2. 量子态与干涉:量子系统可以处于多种可能的状态,称为量子态。

在某些情况下,不同的量子态会发生干涉现象,即波函数会相互叠加和干涉。

3. 量子纠缠:量子纠缠是指两个或多个粒子之间存在一种特殊的关联状态,纠缠状态是不能通过单个粒子的波函数描述的。

纠缠状态的特点是,一个粒子的测量结果会立即影响到其他纠缠粒子的状态,无论它们之间的距离有多远。

4. 测量与塌缩:在量子力学中,测量会导致波函数的塌缩,即量子态坍缩为某个确定的状态。

不同的测量结果的概率由波函数的模的平方给出。

三、应用与发展1. 量子计算机:量子计算机是利用量子力学中的量子纠缠和叠加原理进行计算的一种新型计算机。

与经典计算机相比,量子计算机具有更强大的计算能力和更高的效率。

2. 量子通信:量子通信是利用量子纠缠和量子态传递信息的一种安全通信方式。

通过量子纠缠,信息传输可以实现无法被窃听或破解的安全性。

3. 量子力学的发展:量子力学在过去的一个世纪里得到了蓬勃的发展。

第一章量子力学基础

第一章量子力学基础

(3)粒子的动量平方px2值
假设三:本征方程
2 2 2 nx h d 2 ˆ x n 2 2 p sin 4 dx l l h 2 d n 2 nx 2 cos 4 dx l l l
h n 2 nx 2 sin 4 l l l
l
2 l nx ih d nx sin sin dx l 0 l 2 dx l
ih l
nx nx d sin 0 sin l l
l
2 xl
ih sin (nx / l) 0 l 2 x 0
2 ˆ ˆ H - 2 +V 8 m h2
:拉普拉斯算符
2 2 2 2 = 2 + 2 + 2 x y z
19
假设三:本征方程
Schrö dinger方程算法解析
一个质量为m的 粒子,在一维 势井中的运动。
0 , 0 ﹤x ﹤ l V= ∞ , x ≤0 和 x≥ l
一维势箱中粒子的波函数、能级和几率密度
假设三:本征方程
总结: 势箱中粒子的量子效应:
1.存在多种运动状态,可由Ψ1 ,Ψ2 ,…,Ψn 等描述;
2.能量量子化;
3.存在零点能;
4.没有经典运动轨道,只有几率分布;
5.存在节点,节点多,能量高。
假设三:本征方程 箱中粒子的各种物理量
(1)粒子在箱中的平均位置
力学量 算符 力学量 算符
位置
x
ˆx x
ˆ p
ih = - x 2 π x
x y y x
势能 V
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档