晶体声光效应实验
实验3 声光效应实验报告
实验3 声光效应实验数据处理2.声光偏转①测量衍射光相对于入射光的偏转角φ与超声波频率f s的关系,即声光偏转关系频率sf(MHz)两波峰在示波器的距离l对应的偏转角φ(rad)75.52 2.00 0.0131383.09 2.20 0.0144490.82 2.30 0.0151095.32 2.50 0.01641102.28 2.70 0.01772109.02 2.80 0.01838118.14 3.20 0.02100根据公式CCDarctanCCD CCDφ⨯=⨯波峰在示波器的距离实际宽度在示波器上的距离介质与的距离可以算出偏转角φ角的大小sf——φ曲线如下:曲线拟合得:5482 5.332s f ϕ=+ 根据原理可得31.4910m/s s v =⨯②在实验中我们固定功率为1W ,测量出的中心频率约为87.169MHz ,表中的强度用示波器中Y 值的大小表示的s f /MHz 1±级强度0级强度 10±级强度级强度76.597 10.84 9.94 1.0905 84.234 10.14 7.52 1.3484 92.316 10.84 7.6 1.4263 100.23 9.28 9.74 0.9528 108.68 4.16 11.04 0.3768 116.1331.0411.040.0942由1级与0级衍射光的相对强度与超声波频率的关系曲线可确定中心频率为089.75f MHz =,带宽为2(99.2389.75)18.96s f MHz ∇=-=3.声光调制在实验过程中测量的中心频率为87.169MHz ,因此在实验中将超声波频率调至87.169MHz ,测量的1级衍射光的强度与超声波的功率的数据实用文档超声波的功率 1级衍射光的强度 0.2 0.12 0.4 1.24 0.6 3.04 0.8 5.8 18.24描点画图由曲线可知,1级衍射光的强度与超声波的功率也大致成线性关系关系曲线为10.4 2.5S d P I =-。
声光效应实验报告数据
声光效应实验报告数据今天咱们来聊聊声光效应实验,真的是个有趣又好玩的事情。
想象一下,光和声的结合就像是天空中闪烁的烟花,绚丽多彩又让人目不暇接。
这个实验其实挺简单的,就像你在厨房里做饭,只要按步骤来,绝对不会出错。
先说说实验的背景,声光效应就是当我们用声音刺激某种物质时,它们会发出光,这可不是魔法,而是科学的奇妙之处。
听起来是不是很神奇呢?就像小朋友们看到五彩斑斓的糖果一样,眼睛都要亮起来了。
实验准备也不复杂,大家只需要一些基本的设备,比如声源和光源。
别担心,这些东西在学校实验室里基本上都能找到,实在找不到,找你身边的小伙伴借一下也是可以的。
然后就需要找一个适合的场地,最好是安静点的地方,不然噪音太大,光都没法出来,那就尴尬了。
想象一下,在嘈杂的环境里,咱们的声光效应实验变成了“声光无效”,那就真是笑话了。
开始实验的时候,首先得把声源打开,声音一响,整个环境都活跃了起来。
像个热闹的集市,大家的注意力都集中在这个声音上。
然后,慢慢调整光源的亮度,哇,这时候你会发现,当声音达到一定强度的时候,光源也会随之变化。
就像是在和你打招呼一样,时而明亮,时而暗淡,真的是有趣极了。
小伙伴们在旁边看得目瞪口呆,纷纷掏出手机拍照,生怕错过这一精彩的瞬间。
大家开玩笑说,这光和声真是天生一对,配合得恰到好处。
这个实验也不是毫无挑战,有时候声音和光之间的反应不那么明显,得耐心一点。
就像你做一道难题,得仔细琢磨。
有时候大家的情绪也会影响实验的效果,紧张兮兮的状态可不能让声光效应发挥到极致。
就像你在表演时心里紧张,可能唱得不如平时好。
这个时候,不妨深呼吸,放松心情,试着和小伙伴们聊聊天,分享一下实验的乐趣。
毕竟,做实验就是为了开心嘛。
而且实验过程中,大家可以互相交流经验,分享自己的看法。
小明说:“我觉得这光就像是天空中的星星,特别闪耀。
”小华则调侃道:“哈哈,那我就是大海里的波浪,声音让光变得更美。
”这种轻松幽默的氛围,让实验变得不再枯燥,反而充满了乐趣。
近代物理实验之声光效应
声光效应年级专业 中山大学 08光信息科学与技术 实验者 曾令宇08323045 合作者 冯劼 08323034 日期 2010.10.26/2010.11.2【实验目的】1理解声光效应的原理,了解Raman-Nath 衍射和Bragg 衍射的分别。
2通过对声光器件衍射效率,中心频率和带宽等的测量,加深对其概念的理解。
3测量声光偏转和声光调制曲线。
4模拟激光通讯实验。
【实验原理】(一)声光效应的物理本质——光弹效应介质的光学性质通常用折射率椭球方程描述ηij x i x j =1Pockels 效应:介质中存在声场,介质内部就受到应力,发生声应变,从而引起介质光学性质发生变化,这种变化反映在介质光折射率的或者折射率椭球方程系数的变化上。
在一级近似下,有∆ηij =P ijkl S kl各向同性介质中声纵波的情况,折射率n 和光弹系数P 都可以看作常量,得21()PS n η∆=∆=, 应变 0sin()S S kx t =-Ω表示在x 方向传播的声应变波,S 0是应变的幅值,/s k v =Ω是介质中的声波数,2f πΩ=为角频率,v s 为介质中声速,/s v f Λ=为声波长。
P 表示单位应变所应起的2(1/)n 的变化,为光弹系数。
又得301sin()sin()2n n PS kx t kx t μ∆=-Ω=-Ω,()sin()n x n n n kx t μ=+∆=+-Ω其中3012n PS μ=是“声致折射率变化”的幅值。
考虑如图一的情况,压电换能器将驱动信号U (t )转换成声信号,入射平面波与声波在介质中(共面)相遇,当光通过线度为l 的声光互作用介质时,其相位改变为:0sin()k l kx t μ-Ω (二)声光光偏转和光平移把入射单色平面光波近似看作光子和声子。
声光相互作用可以归结为光子和声子的弹性碰撞,这种碰撞应当遵守动量守恒和能量守恒定律,前者导致光偏转,后者导致光频移。
晶体声光效应实验数据
晶体声光效应实验数据晶体声光效应实验,这个话题听上去有点儿高大上对吧?简单来说,就是研究晶体在光和声音作用下,如何改变它们的物理性质。
别看这名字像是科学界的“黑话”,它背后其实有不少好玩的事儿。
你知道吗,晶体就像是个“小调皮”,光一照、声一响,它就开始跳舞,改变它自己的“身形”,这背后可是有很多“玄机”的呢。
今天我们就来聊聊这方面的实验数据,看看它是怎么搞的。
对了,别怕,这可不是枯燥的公式和数据,咱们就用个通俗的方式,把这些“深奥”的东西说透,保证你听了后有种豁然开朗的感觉!什么是晶体声光效应呢?嗯,简单来说,声音和光一旦作用在晶体上,晶体的性质就会发生微妙的变化。
举个例子,你看看晶体表面,平常它可能是个死板的硬东西,但一旦你给它加点光,或者让它“听见”了声音,它就像变魔术一样,开始发生微小的变形。
这个现象就是声光效应。
其实这种效应不是一开始就显现出来的,它得有一定的条件,就像我们去电影院看3D电影一样,要有合适的“工具”,比如说特殊的光源和声波。
光和声对晶体的影响就是通过这样的条件才展现出来的。
别小看这点儿微妙的变化,它在科技、工程、通讯等领域都有着重要的应用。
咱们讲到这里,大家可能心里都在嘀咕了:“这和我们有什么关系呢?”其实有!你看啊,光纤通信就是利用了声光效应,晶体里能精确地控制光的传播。
咱们现在的很多激光技术,也是依靠这种效应来实现的。
比如说,医疗领域的激光治疗,甚至一些高精度的测量工具,背后都有声光效应的“影子”。
想想看,是不是突然觉得这个话题变得有趣了?实验数据说实话一开始确实让人头疼,数字看着不懂,但其实通过对比和分析,它能帮助我们更清楚地理解光和声音如何影响晶体。
你想啊,晶体在这些实验里,不是单纯的接受光和声音,而是以某种“方式”回应它们。
比如,某种特定频率的声音会让晶体发生形变,改变它的折射率,光的传播速度也会变。
这些数据就像是晶体的小秘密,通过实验我们一点一点地揭开它。
我们聊聊实验过程中最有趣的一部分——数据分析。
实验四 晶体声光效应实验
实验四 晶体声光效应实验一、引言当光波通过受到超声波扰动的介质时会发生衍射现象,这种现象被称为声光效应,它是光波与介质中声波相互作用的结果。
声光效应可以用于控制激光束的频率、方向和强度,利用声光效应制成的各种声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信息处理和集成光通信技术等方面有着重要的应用。
二、实验目的1. 掌握声光效应的原理和实验规律;2. 观察喇曼-奈斯(Ranman —Nath )衍射的实验条件和特点;3. 利用声光效应测量声波在介质中的传播速度;4. 测量声光器件的衍射效率和带宽;5. 了解声光效应在新技术中的应用;三、实验原理当超声波在介质中传播时,将引起介质的弹性应变作时间上和空间上的周期性变化,并且导致介质的折射率也发生相应的变化。
当光束通过有超声波的介质后就会产生衍射现象,这就是声光效应。
有超声波传播的介质如同一个相位光栅。
根据超声波频率的高低或声光相互作用长度的长短,可以将光与弹性声波作用产生的衍射分为两种类型,即喇曼—奈斯型衍射和布拉格型衍射。
喇曼-奈斯衍射当超声波频率较低、声光相互作用距离较小时,即022λλsl ≤平面光波沿z 轴入射,就相当于通过一个相位光栅,将产生喇曼-奈斯衍射,如图2所示。
根据相关理论可以证明以下结论:(1)各级衍射角θ满足下列关系:0sin sm λθλ=⋅ (1) 其中,λ0为入射激光波长,λs 为超声波波长,m=0,±1,±2,±3,…。
(2)各级衍射光强与入射光强之比为:2()m m I J I ν=入(2) 其中,()m J ν为m 阶贝塞尔函数,02L πνμλ=。
因为22()()m m J J νν-=,所以零级极值两侧的光强是对称分布的。
(3)各级衍射光的频率由于产生了多普勒频移而各不相同,各级衍射光的频率为0s m ωω±。
2.布拉格衍射当超声波频率较高,声光相互作用距离较大,满足202s l λλ≥并且光束与声波波面间保持一定的角度入射时,将产生布拉格衍射。
声光效应实验实验报告
声光效应的研究班级:应物21班姓名:许达学号:2120903018光通过某一受到超声波扰动的介质时,会发生衍射现象,这种现象称为声光效应。
利用声光效应可以制成的声光器件,如声光调制器、声光偏转器和谐调滤光器等。
声光效应还可用于控制激光束的频率、方向和强度等方面。
在激光技术、光信号处理和集成光通讯技术等方面有着重要的应用。
一、实验目的1.了解声光效应的原理;2.测量声光器件的衍射效率和带宽及对光偏转的研究;3.利用声光效应测量声波在介质中的传播速度。
二、实验仪器He-Ne激光电源,声光器件,CCD光强分布测量仪,高频功率信号源,示波器,频率计。
三、实验原理当超声波在介质中传播时,将引起介质的弹性应变,这种应变在时间上和空间上是周期性的变化,并且导致介质的折射率也发生相应的变化。
当光束通过有超声波的介质后就会产生衍射现象,这就是声光效应。
有超声波传播的介质如同一个相位光栅。
光被弹性声波衍射有二种类型,当超声波频率较高时,产生布拉格(Bragg )型衍射;当超声波频率较低时,产生喇曼―奈斯(Raman-Nath )型衍射。
Bragg 衍射相当于体光栅情况,而Raman-Nath 衍射相当于薄光栅情况。
两种光栅情况如图1所示。
由于光波速度远大于声波速度约105倍,所以在光波通过介质的时间内,介质在空间上的周期变化可看成是固定的。
对于Bragg 衍射,当声光的距离满足λλ22s L >,而且入射光束相对于超声波波面以θ角斜入射时,入射光满足Bragg 条件)1(sin 2ns λθλ=式中λ为光波的波长,s λ为声波的波长,固体介质的折射率为n 。
Bragg 衍射只存在1级的衍射光。
当声波为声行波时,只有+1级或-1级衍射光,如图2所示。
当声波为声驻波时,±1级衍射光同时存在,而且衍射效率极高。
只要超声功率足够高,Bragg 衍射效率可达到100%。
所以实用的声光器件一般都采用Bragg 衍射。
声光效应实验
声光效应实验一、 实验目的1.理解声光效应的原理,了解Ramam -Nath 衍射和Bragg 衍射的分别。
2.测量声光器件的衍射效率和带宽等参数,加深对概念的理解。
3.测量声光偏转的声光调制曲线。
4.模拟激光通讯。
二、 实验原理(一) 声光效应的物理本质——光弹效应介质的光学性质通常用折射率椭球方程描述Pockels 效应:介质中存在声场,介质内部就受到应力,发生声应变,从而引起介质光学性质发生变化,这种变化反映在介质光折射率的或者折射率椭球方程系数的变化上。
在一级近似下,有各向同性介质中声纵波的情况,折射率n 和光弹系数P 都可以看作常量,得 其中应变表示在*方向传播的声应变波,S 0是应变的幅值,/s k v =Ω是介质中的声波数,2f πΩ=为角频率,v s 为介质中声速,/s v f Λ=为声波长。
P 表示单位应变所应起的2(1/)n 的变化,为光弹系数。
又得 其中3012n PS μ=是“声致折射率变化〞的幅值。
考虑如图1的情况,压电换能器将驱动信号U(t)转换成声信号,入射平面波与声波在介质中〔共面〕相遇,当光通过线度为l 的声光互作用介质时,其相位改变为:其中002/k πλ=为真空中光波数,0λ是真空中的光波长,00nk l ∆Φ=为光通过不存在超声波的介质后的位相滞后,项()0sin k l kx t μ-Ω为由于介质中存在超声波而引起的光的附加位相延迟。
它在*方向周期性的变化,犹如光栅一般,故称为位相光栅。
这就是得播送阵面由原先的平面变为周期性的位相绉折,这就改变了光的传播方向,也就产生了所谓的衍射。
与此同时,光强分布在时间和空间上又做重新分配,也就是衍射光强受到了声调制。
(二) 声光光偏转和光平移从量子力学的观点考虑光偏转和光频移问题十分方便。
把入射单色平面光波近似看作光子和声子。
声光相互作用可以归结为光子和声子的弹性碰撞,这种碰撞应当遵守动量守恒和能量守恒定律,前者导致光偏转,后者导致光频移。
声光效应实验实验报告
声光效应实验实验报告一、实验目的1、了解声光效应的基本原理。
2、测量声光偏转的特性曲线。
3、观察声光调制现象。
二、实验原理当超声波在介质中传播时,会引起介质的弹性应变,从而导致介质的折射率发生周期性变化,形成超声光栅。
当一束光通过超声光栅时,会发生衍射现象,这就是声光效应。
根据声光相互作用的长度 L 和超声波长λs 的大小关系,可以将声光效应分为喇曼纳斯衍射和布拉格衍射两种类型。
在喇曼纳斯衍射中,L 较小,光波通过超声场时,其位相受到周期性的调制,衍射光的强度分布类似于普通光栅的衍射。
在布拉格衍射中,L 较大,且声光相互作用较强,此时入射光只在特定的方向上发生衍射,具有较高的衍射效率。
三、实验仪器1、声光效应实验仪2、半导体激光器3、光电探测器4、示波器5、频率计四、实验步骤1、仪器连接将半导体激光器、声光器件、光电探测器等按照实验仪器的说明书进行连接。
确保各仪器之间的连接稳定可靠,避免接触不良。
2、光路调整打开激光器,调整光路,使激光束垂直入射到声光器件的表面。
通过微调装置,使衍射光能够准确地照射到光电探测器上。
3、观察衍射现象开启超声信号源,逐渐增加超声功率,观察衍射光斑的变化。
注意区分喇曼纳斯衍射和布拉格衍射的特征。
4、测量偏转特性固定入射光的波长和超声功率,改变超声频率,测量衍射光的偏转角。
记录不同频率下的偏转角数据。
5、观察调制现象将示波器接入光电探测器的输出端,观察调制信号的波形。
改变调制信号的频率和幅度,观察波形的变化。
五、实验数据与处理1、偏转特性测量记录了不同超声频率下衍射光的偏转角,如下表所示:|超声频率(MHz)|偏转角(度)||::|::|| 10 | 52 || 15 | 78 || 20 | 105 || 25 | 131 || 30 | 158 |根据数据绘制超声频率与偏转角的关系曲线,通过曲线可以看出,偏转角随着超声频率的增加而增大,呈现出一定的线性关系。
2、调制现象观察观察到调制信号的频率和幅度变化时,示波器上的波形相应地发生改变。
声光效应实验
声光效应实验一、 实验目的1.理解声光效应的原理,了解Ramam -Nath 衍射和Bragg 衍射的分别。
2.测量声光器件的衍射效率和带宽等参数,加深对概念的理解。
3.测量声光偏转的声光调制曲线。
4.模拟激光通讯。
二、 实验原理(一)声光效应的物理本质——光弹效应介质的光学性质通常用折射率椭球方程描述1ij j j x y η=Pockels 效应:介质中存在声场,介质内部就受到应力,发生声应变,从而引起介质光学性质发生变化,这种变化反映在介质光折射率的或者折射率椭球方程系数的变化上。
在一级近似下,有ij ijkl klP S η∆=各向同性介质中声纵波的情况,折射率n 和光弹系数P 都可以看作常量,得21()PS n η∆=∆= 其中应变0sin()S S kx t =-Ω表示在x 方向传播的声应变波,S 0是应变的幅值,/s k v =Ω是介质中的声波数,2f πΩ=为角频率,v s 为介质中声速,/s v f Λ=为声波长。
P 表示单位应变所应起的2(1/)n 的变化,为光弹系数。
又得301sin()sin()2n n PS kx t kx t μ∆=-Ω=-Ω ()sin()n x n n n kx t μ=+∆=+-Ω其中3012n PS μ=是“声致折射率变化”的幅值。
考虑如图1的情况,压电换能器将驱动信号U(t)转换成声信号,入射平面波与声波在介质中(共面)相遇,当光通过线度为l 的声光互作用介质时,其相位改变为:000()()sin()x n x k l k l kx t φφμ∆==∆+-Ω其中002/k πλ=为真空中光波数,0λ是真空中的光波长,00nk l ∆Φ=为光通过不存在超声波的介质后的位相滞后,项()0sin k l kx t μ-Ω为由于介质中存在超声波而引起的光的附加位相延迟。
它在x 方向周期性的变化,犹如光栅一般,故称为位相光栅。
这就是得广播阵面由原先的平面变为周期性的位相绉折,这就改变了光的传播方向,也就产生了所谓的衍射。
声光效应实验探究论文
普通物理实验Ⅲ课程论文题目声光效应实验研究学院专业年级学号姓名指导教师论文成绩____________________ 答辩成绩____________________2015年月日声光效应实验研究摘要:由外力引起介质的弹性形变产生的光学效应,称为力学光学效应或弹光效应。
当光波和声波同时在介质中传播时,会出现两种波的相互作用,这种相互作用通过声光介质耦合,这称为“声光衍射”或“声光作用”。
声波引起的弹光效应加上声光作用合称为“声光效应”。
本论文旨在加深对声光效应原理的理解,通过实验验证声光效应理论。
并以布喇格衍射为研究主体,通过对声光器件0级和1级衍射光斑的距离和衍射光相对强度的测量,绘制出声光偏转曲线和声光调制曲线,进而对相关物理量进行定性或定量的分析。
关键词:声光衍射;偏转角;超声波功率;衍射效率引言声光效应是指光通过某个受到超声波扰动的介质时发生的衍射现象,这种现象是光波与介质中声波相互作用的结果。
声光互作用的研究早在20 世纪的30年代就已开始。
60年代激光器的问世为声光现象的研究提供了理想的光源,促进了声光效应理论和应用研究的迅速发展。
声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。
利用声光效应制成的声光器件、声光偏转器和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要的作用。
1 实验原理当晶体中有超声波通过时,会改变晶体的光学性质,使它的折射率随之发生相应的周期性变化,形成随超声波强度变化的分布,整个晶体相当于一个相位光栅。
该光栅间距(光栅常数)等于声波波长,会对入射激光产生衍射作用。
其衍射光的强度、频率、方向等都随超声场的变化而变化,这就是声光效应。
1.1 声光效应的分类①声光效应有正常声光效应和反常声光效应之分。
在各向同性介质中,声-光相互作用不导致入射光的偏振状态发生变化,产生正常声光效应。
在各向异性介质中,声-光相互作用,可能导致入射光的偏振状态发生变化,产生反常声光效应。
声光效应
图7:超声驻波衍射光强的测量
15
Im I0
(m 0,±1,±2,±3 ,...)
16
四、用一维光强分布系统测量衍射光强,计算光栅常数
实验步骤:
1)重复实验一的步骤,令观察屏上的衍射光点最多。 2)将光强分布测量系统置于导轨另一端。 3)选取最窄的缝光阑测量,注意测量要覆盖所有各级衍射条纹,将数据绘 成衍射光强分布曲线 4)利用光栅衍射原理,测量光栅常数。
2
实验目的:
1、测量声光效应的衍射光强分布;
2、测量声光晶体各级衍射条纹的衍射效率及其与超声波驱动功率之间的 关系;
3、研究声光效应超声驻波器的电输入特性与声光相互作用介质、压电换 能器、 匹配网络的关系。
3
实验原理:
1、超声波的产生 声频范围在几十千赫至上千兆赫的声波叫超声波。超声波的产生主要 是利用某些电介质的逆压电效应(电致伸缩效应)。 2、声光效应
17
操作要领
18
5
图2 是这种波在十个彼此相等的瞬时 间隔时的情况。沿正方向传播的发射波 用虚线表示;沿负方向传播的反射波用 实线表示;它们的叠加用点划线表示。 这种有两个彼此相对的行波组成的振动 称为驻波。 在驻波中,彼此相距 / 2 的各点完 全不振动,这些点称为波节。位于两波 节中间的点是波腹,这些点上的振动最 大。另外,显而易见的是每隔T/2秒,振 动即完全消失(图2中从上往下数3,5, 7,9行的瞬时),驻波的最大值也位于 这些瞬时间隔的中间(2,4,6,8, 10),而且每经过这个时间间隔,在波 腹处的振动的相位相反。
将(1)式对时间微分,即可得到驻波 情况下质点振动速度的表达式:
u 2 A cos Kx cos t
(2)
晶体的声光效应实验(设计与研究性实验)
物理与信息工程系实验(预习)报告实验课程: 物理设计与研究性实验实验项目: 晶体的声光效应实验专业 12 级 第 组 姓名 学号 实验日期: 年 月 日 气温 气压<一>、实验目的:1.了解声光效应的原理。
2.了解布喇格衍射的实验条件和特点。
3.测量声光声光器件衍射效率。
<二>、实验仪器F-SG1080型声光效应实验仪<三>、实验原理当超声波在介质中传播时,将引起介质的弹性应变作时间和空间上的周期性的变化,并且导致介质的折射率也发生相应变化。
当光束通过有超声波的介质后就会产生衍射现象,这就是声光效应。
有超声波传播的介质如同一个相位光栅。
超声波传播时,如前进波被一个平面反射,会反向传播。
在一定条件下前进波与反射波可以形成驻波。
由于驻波小振幅可以达到单一行波的两倍,加剧了波源和和反射面之间的的疏密程度,某时刻,驻波的任一波节两边的质点都涌向这一点,使该节点附近形成密集区,而相邻波节处为质点稀疏处;半个周期后,这个节点附近的质点向两边散开形成稀疏区,而相邻波节处变为密集区。
设声光介质中的超声行波是沿y 方向传播的平面纵波,其角频率为s w ,波长为s λ波矢为s k 。
入射光为沿x 方向传播的平面波,其角频率为w ,在介质中的波长为λ,波矢为k 。
介质内的弹性应变也以行波形式随声波一起传播。
由于光速大约是声速的510倍,在光波通过的时间内介质在空间上的周期变化可看成是固定的。
图1 声光衍射由于应变而引起的介质的折射率的变化由下式决定PS n)1(2∆ (1) 式中,n 为介质折射率,S 为应变,P 为光弹系数。
通常,P 和S 为二阶张量。
当声波在各项同性介质中传播时,P 和S 可作为标量处理,如前所述,应变也以行波形式传播,所以可写成)sin(0y k t w S S s s -= (2)当应变较小时,折射率作为y 和t 的函数可写作)sin(),(0y k t w n n t y n s s -∆+= (3)式中,0n 为无超声波时的介质的折射率,n ∆为声波折射率变化的幅值,由(1)式可求出0321PS n n -=∆设光束垂直入射(k ⊥s k )并通过厚度为L 的介质,则前后两点的相位差为 )sin(),(0000y k t w nL k L n k Lt y n k s s -∆+==∆Φ (4)0sin()s s w t k y δ=∆Φ+Φ- 式中,0k 为入射光在真空中的波矢的大小,右边第一项0∆Φ为不存在超声波时光波在介质前后两点的相位差,第二项为超声波引起的附加相位差(相位调制),0k nL δΦ=∆。
晶体电光声光磁光效应实验实验讲义
2
n12
y
2
2 n2
z
2
2 n3
1
(1-2)
图 1-1 折射率球 式中 n 1 、 n 2 、 n 3 为椭球三个主轴方向上的折射率,称为主折射率。当晶体加
联系方式: 电话:010-67889536/67887073/67872350 传真:010-67889536/67887073/67872350 转 881 邮箱:Sales@ 1 网址:
3.6 思考题 ........................................................................................................................ 20 参考文献 .................................................................................................................................. 21
北京杏林睿光科技有限公司光电实验产品实验讲义 RLE-ME06 晶体电光、声光、磁光效应实验 上电场后,折射率椭球的形状、大小、方位都发生变化,椭球方程变成
x
2 2 n11
y
2
2 n22
z
2
2 n33
2 yz
2 n23
2 xz
2 n13
2 xy
2 n12
1
(1-3)
晶体的一次电光效应分为纵向电光效应和横向电 光效应两种。纵向电光效应 是加在晶体上的电场方向与光在晶体里传播的方向平行时产生的电光效应;横向 电光效应是加在晶体上的电场方向与光在晶体里传播方向垂直时产生的电光效 应。通常 KD*P(磷酸二氘钾)类型的晶体用它的纵向电光效应,LiNbO3(铌酸锂)类型的晶体 用它的横向电光效应。本实验研究铌酸锂晶体的一次电光效应,用铌酸锂晶体的 横向调制装置测量铌酸锂晶体的半波电压及电光系数,并用两种方法改变调制器 的工作点,观察相应的输出特性的变化。 表 1-1 点群 对称性 3m 晶体材料 电光晶体(electro-optic crystals)的特性参数 折射率 波长 ( m ) 0.633 非零电光系数 ( 1012 m / V )
实验三 晶体的声光调制实验
实验三晶体的声光调制实验一、实验目的(1) 了解声光效应的原理。
(2) 了解喇曼一纳斯衍射和布喇格衍射的实验条件和特点。
(3) 测量声光偏转和声光调制曲线。
(4) 完成声光通信实验光路的安装及调试。
二、实验原理当超声波在介质中传播时,将引起介质的弹性应变作时伺和空间上的周期性的变化,并且导致介质的折射率也发生相应变化。
当光束通过有超声波的介质后就会产生衍射现象,这就是声光效应。
有超声波传播的介质如同一个相位光栅。
声光效应有正常声光效应和反常声光效应之分。
在各向同性介质中,声一光相互作用不导致入射光偏振状态的变化,产生正常声光效应。
在各项异性介质中,声一光相互作用可能导致入射光偏振状态的变化,产生反常声光效应。
反常声光效应是制造高性能声光偏转器和可调滤波器的基础。
正常声光效应可用喇曼一纳斯的光栅假设作出解释,而反常声光效应不能用光栅假设作出说明。
在非线性光学中,利用参量相互作用理论,可建立起声一光相互作用的统一理论,并且运用动量匹配和失配等概念对正常和反常声光效应都可作出解释。
本实验只涉及到各向同性介质中的正常声光效应。
设声光介质中的超声行波是沿少方向传播的平面纵波,有超声波存在的介质起一平面相位光栅的作用。
当声光作用的距离满足L>2λs/λ,而且光束相对于超声波波面以某一角度入射时,在理想情况下除了0级之外,只出现1级或一1级衍射。
这种衍射与晶体对尤光的布喇格衍射很类似,故称为布喇格衍射。
能产生这种衍射的光束入射角称为布喇格角。
此时有超声波存在的介质起体积光栅的作用。
通过改变超声波的频率和功率,可分别实现对激光束方向的控制和强度的调制,这是声光偏转器和声光调制器的基础。
从(10)式可知,超声光栅衍射会产生频移,因此利用声光效应还可以制成频移器件。
超声频移器在计量方面有重要应用,如用于激光多普勒测速仪。
以上讨论的是超声行波对光波的衍射。
实际上,超声驻波对光波的衍射也产生喇曼一纳斯衍射和布喇格衍射,而且各衍射光的方位角和超声频率的关系与超声行波的相同。
大学物理实验之声光效应
声光效应电子教案一、实验目的①了解声光效应原理②了解布拉格衍射现象的实验条件和特点③通过对声光器件衍射效率、中心频率和带宽的测量加深对其概念的理解④测量声光偏转和声光调制曲线二、实验原理简述声光效应就是研究光通过声波扰动的介质时发生散射或衍射的现象。
由于弹光效应,当超声纵波以行波形式在介质中传播时会使介质折射率产生正弦或余弦规律变化,并随超声波一起传播,当激光通过此介质时,就会发生光的衍射,即声光衍射。
衍射光的强度、频率、方向等都随着超声波场而变化。
其中衍射光偏转角随超声波频率的变化现象称为声光偏转;衍射光强度随超声波功率而变化的现象称为声光调制。
主要用途有:制作声光调制器件,制作声光偏转器件,声光调Q开关,可调谐滤光器,在光信号处理和集成光通讯方面的应用。
声光衍射可以分为拉曼-拉斯(Ranman-Nath)衍射和布拉格(Bragg)衍射两种情况。
本实验室主要研究钼酸铅晶体介质中的布拉格衍射现象。
布拉格方程:θB=sinθB=λfs/2nvs ,其中θB 为布拉格角,λ为激光波长,n为介质折射率,vs 为超声波在介质中的速率。
由此知不同的频率对应不同的偏转角φ=2θB,所以可以通过改变超声波频率实现声光偏转。
布拉格一级衍射效率为:η1=I1/Ii=sin2((π/λ).(LM2Ps/2H)1/2) ,其中Ps为超声波功率,M2为声光材料的品质因素,L、H分别表示换能器的长和宽。
由此知当超声功率改变时,η1也随之改变,因而可实现声光调制。
三、实验仪器的结构或原理简图及仪器简介主要实验仪器如图1所示:有半导体激光器、声光器件及转角平台(图2)、超声波功率信号源、频率计、光强仪、示波器、光具座、支架、导线等附件。
各仪器原理、具体型号及参数见声光效应实验讲义。
图1 声光效应主要实验仪器图2 转角平台和声光器件四、实验测试要求(实验内容)①按照实验讲义完成实验仪器的连接。
②打开激光器、光强仪、示波器,调节光路,直至在示波器上显示一稳定完整的单峰波形。
实验四 晶体声光效应实验
实验四 晶体声光效应实验一、引言当光波通过受到超声波扰动的介质时会发生衍射现象, 这种现象被称为声光效应, 它是光波与介质中声波相互作用的结果。
声光效应可以用于控制激光束的频率、方向和强度, 利用声光效应制成的各种声光器件, 如声光调制器、声光偏转器和可调谐滤光器等, 在激光技术、光信息处理和集成光通信技术等方面有着重要的应用。
二、实验目的1.掌握声光效应的原理和实验规律;2.观察喇曼-奈斯(Ranman —Nath )衍射的实验条件和特点;3.利用声光效应测量声波在介质中的传播速度;4.测量声光器件的衍射效率和带宽;5.了解声光效应在新技术中的应用;三、实验原理当超声波在介质中传播时, 将引起介质的弹性应变作时间上和空间上的周期性变化, 并且导致介质的折射率也发生相应的变化。
当光束通过有超声波的介质后就会产生衍射现象, 这就是声光效应。
有超声波传播的介质如同一个相位光栅。
根据超声波频率的高低或声光相互作用长度的长短, 可以将光与弹性声波作用产生的衍射分为两种类型, 即喇曼—奈斯型衍射和布拉格型衍射。
喇曼-奈斯衍射当超声波频率较低、声光相互作用距离较小时, 即022λλsl ≤平面光波沿z 轴入射, 就相当于通过一个相位光栅, 将产生喇曼-奈斯衍射, 如图2所示。
根据相关理论可以证明以下结论:(1)各级衍射角θ满足下列关系:0sin s m λθλ=⋅(1) 其中, λ0为入射激光波长, λs 为超声波波长, m=0, ±1, ±2, ±3, …。
(2)各级衍射光强与入射光强之比为: 2()m m I J I ν=入(2) 其中, 为m 阶贝塞尔函数, 。
因为, 所以零级极值两侧的光强是对称分布的。
(3)各级衍射光的频率由于产生了多普勒频移而各不相同, 各级衍射光的频率为。
2. 布拉格衍射当超声波频率较高, 声光相互作用距离较大, 满足202s l λλ≥并且光束与声波波面间保持一定的角度入射时, 将产生布拉格衍射。
晶体电光声光磁光效应实验实验讲义
2.3 实验原理 .................................................................................................................... 11 2.4 实验仪器 .................................................................................................................... 14 2.5 2.6 实验 3 3.1 3.2 3.3 3.4 3.5 实验内容 .................................................................................................................... 17 思考题 ........................................................................................................................ 18 晶体的磁光效应实验 ............................................................................................... 19 引言 ............................................................................................................................ 19 实验目的 .................................................................................................................... 19 实验原理 .................................................................................................................... 19 实验仪器 .................................................................................................................... 19 实验内容 .................................................................................................................... 19
【精选】9、晶体的声光调制河南理工
晶体的声光调制一、实验目的1. 掌握晶体电光调制的原理和实验方法2. 观察晶体声光效应引起的晶体布拉格衍射现象3. 通过示波器比较声光调制实现对光信号的调制二、实验仪器晶体声光调制器, 声光调制电源,半导体激光器, 小孔光阑,光电转换器,双踪示波器三、实验原理早在本世纪30年代就开始了声光衍射的实验研究。
60年代激光器的问世为声光现象的研究提供了良好的光源,促进了声光效应理论和应用研究的迅速发展。
声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。
利用声光效应制成的声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要应用。
声光效应已广泛用于声学、光学和光电子学。
近年来,随着声光技术的不断发展,人们已广泛地开始采用声光器件在激光腔内进行锁膜或作为连续器件的Q开关。
由于声光器件具有输入电压低、驱动功率小、温度稳定性好、能承受较大光功率、光学系统简单、响应时间快、控制方便等优点,加之新一代的优质声光材料的发现,使声光器件具有良好的发展前景,它将不断地满足工业、科学、军事等方面的要求。
若有一超声波通过某种均匀介质,介质材料在外力作用下发生形变,分子间因互相作用力发生改变而产生相对位移,将引起介质内部密度的起伏或周期性变化,密度大的地方折射率大,密度小的地方折射率小,即介质折射率发生周期性改变。
这种由于外力作用而引起折射率变化的现象称为弹光效应。
弹光效应存在于一切物态。
如上所述,当声波通过介质传播时,介质就会产生和声波信号相应的、随时间和空间周期性变化的密度变化。
这部分受扰动的介质等效为一个“相,这种光栅称为超声光栅。
声波在介质中位光栅”。
其光栅常数就是声波波长s传播时,有行波和驻波两种形式。
特点是行波形成的超声光栅的栅面在空间是移动的,而驻波场形成的超声光栅栅面是驻立不动的。
当超声波传播到声光晶体时,它由一端传向另一端。
到达另一端时,如果遇到吸声物质,超声波将被吸声物质吸收,而在声光晶体中形成行波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验25晶体声光效应实验当光波通过受到超声波扰动的介质时会发生衍射现象,这种现象被称为声光效应,它是光波与介质中声波相互作用的结果。
声光效应可以用于控制激光束的频率、方向和强度,利用声光效应制成的各种声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信息处理和集成光通信技术等方面有着重要的应用。
一、实验目的1.掌握声光效应的原理和实验规律;2.观察拉曼-奈斯衍射和布拉格衍射现象;3.利用声光效应测量声波在介质中的传播速度;4.测量声光器件的衍射效率和带宽;5.了解声光效应的通信技术中的应用。
二、实验仪器[LOSG-Ⅱ型晶体声光效应实验系统]LOSG-Ⅱ型晶体声光效应实验系统的组成如图1所示,主要包括光路部分和声光效应实验仪两部分。
光路部分包括半导体激光器,激光器电源,声光器件,精密旋转台,导轨,白屏等;实验仪包括超声波信号源,脉冲方波产生器,光电池、光功率计,脉冲信号解调器,频率计等。
实验时,需另配双踪示波器。
主要部件的技术指标:1.半导体激光器:波长635 nm,功率5 mw。
2.声光器件:工作波长633 nm,中心频率100MHz±0.5 MHz,衍射效率≥80%,脉冲重复频率≥1 MHz。
3.高频超声信号源:工作频率80.0—120.0 MHz,步进1.0 MHz可调。
输出功率≤700 mw可调;4.脉冲方波产生器:工作频率581~4460 Hz 分40挡可调。
三、 实验原理当超声波在介质中传播时,将引起介质的弹性应变作时间上和空间上的周期性变化,并且导致介质的折射率也发生相应的变化。
当光束通过有超声波的介质后就会产生衍射现象,这就是声光效应。
有超声波传播的介质如同一个相位光栅。
根据超声波频率的高低或声光相互作用长度的长短,可以将光与弹性声波作用产生的衍射分为两种类型,即喇曼—奈斯型衍射和布拉格型衍射。
1.喇曼-奈斯衍射 当超声波频率较低、声光相互作用距离较小时,即022λλs l ≤,平面光波沿z 轴入射,就相当于通过一个相位光栅,将产生喇曼-奈斯衍射,如图2所示。
根据相关理论可以证明以下结论:(1)各级衍射角θ满足下列关系:sm λλθ0sin ⋅±= (1) 其中,λ0为入射激光波长,λs 为超声波波长,m=0,±1,±2,±3,…。
(2)各级衍射光强与入射光强之比为:)(2νm m J I I =入(2) 其中,)(νm J 为m 阶贝塞尔函数,L μλπν02=。
因为)()(22ννm m J J -=,所以零级极值两侧的光强是对称分布的。
(3)各级衍射光的频率由于产生了多普勒频移而各不相同,各级衍射光的频率为s m ωω±0。
2.布拉格衍射当超声波频率较高,声光相互作用距离较大,满足λλ22s l ≥,并且光束与声波波面间保持一定的角度入射时,将产生布拉格衍射。
这种衍射与晶体对X 光的布喇格衍射很类似,故称为布喇格衍射。
能产生这种衍射的光束入射角称为布喇格角。
此时有超声波存在的介质起体积光栅的作用。
布拉格衍射的特点是:(1)理想情况下,只出现零级和+1级衍射或-1级衍射。
(2)若参数合适、超声功率足够大,入射光功率几乎可以全部转换到+1级或-1级上。
(3)产生布拉格衍射的入射角θB 满足关系:ss B n λλλλθ22sin 0== (4) λ0为入射光的波长。
λ为光波在介质中的波长。
λs 为超声波在介质中的波长。
n 为声光介质的折射率。
由于布拉格角一般很小,所以,sinθB ≈θB =s n λλ2,衍射光相对于入射光的偏转角δ为 δ =ss s f v 002λλλθ= (4) νs 为超声波在介质中的传播速度,ƒs 为超声波信号的频率。
(4)1级衍射光强与入射光强之比为:)]2(21[sin 21nL I I ∆=λπλ (5) △n 为声致声光晶体介质折射率的变化量。
3.声光调制:无论是喇曼-奈斯衍射还是布拉格衍射,都可以通过改变超声波的强度而改变衍射光的强度。
所以可以把调制信号加在超声波功率放大级,以达到光强调制的目的。
4.声光偏转:无论是喇曼-奈斯衍射还是布拉格衍射,都可以通过改变超声波的频率而改变衍射光的偏转方向。
若对超声频率固定的超声发生器实现“开关”功能,在“开”时由于产生衍射,+1级或-1级衍射光存在,在“关”时,衍射光不存在,就可实现“声光开关”功能。
一般“声光开关”运用的是布拉格衍射。
四、实验内容及步骤仪器面板功能介绍:a. 面板上面两个表头,左边为频率表头,显示调制信号频率和超声波频率。
右边表头为光功率显示表头。
b. 调制/超声波转换开关:置于调制位置时,按压+,-调节按钮,可改变调制信号的频率;置于超声波位置时,按压+,-调节按钮,可改变超声波信号的频率。
并由频率表头显示(调制/等幅转换开关置于调制位置)。
c. 调制/等幅转换开关:功能是选择超声波的输出方式。
当置于调制位置时,超声波输出受到控制,同时调制监测端有信号输出;低电平时没有超声波输出,高电平时有超声波输出。
频率表头显示的是调制信号或超声波的频率(此显示值跟调制/超声波转换开关的位置相关联)。
当置于等幅位置时,输出端输出的是连续的超声波信号。
同时频率表头显示CXXX,XXX为超声波的频率。
在此状态下,可按压+、-键改变超声波的频率;调制监测端:是调制信号的监测端,用于和示波器连接监测调制信号波形。
d. 功率调节旋钮:用于调节输出超声波信号的功率大小。
输出端:是超声波的信号输出端。
用于同声光晶体连接(只有在输出端和晶体可靠连接的状态下才可开启电源)。
e. 光电池端:用于同光电池探头连接。
f. 光功率/解调转换开关:置于光功率位置时,光功率表头可显示光电探头接收到的光功率数值。
当转换开关置于解调位置时,音量旋钮可以控制内置扬声器声音大小;解调监测端用于同示波器连接,输出解调后的调制信号。
g.调零:在光电探头未接收光的状态下,通过调节此旋钮,可使光功率显示表头数值为零。
1.观察喇曼—奈斯衍射现象按照图1所示安置好有关部件:把激光器、精密旋转台、白屏等一字排列在轨道上,声光器件固定在精密旋转台上;将激光器电源连接到激光器;把声光效应实验仪的超声功率输出端用电缆连接到声光器件;“调制/等幅”开关放在等幅位置,“光功率/解调”开关置于光功率。
打开激光器电源,调整声光器件在光路中的位置和光的入射角度,使光束穿过声光器件,照射在白屏上。
打开声光效应实验仪的电源(注意在未连接声光调制器之前,不能开启电源)仔细调整声光器件在光路中的位置和光的入射角度,调整信号源输出功率旋钮,同时调节信号源输出频率,使光屏上显示的光点最多。
出现喇曼-奈斯型衍射,使之达到最佳状态。
分别改变信号发生器的功率和频率,观察衍射现象的变化,记录实验现象。
2. 测量超声波长λS 和声速υS在喇曼-奈斯衍射的状态下,如图4所示,测量光屏上0级和一级衍射光点之间的距离a ,声光器件与光屏之距离L ,计算一级衍射角θ,La =≈θθsin ,依据(1)式有:θλλsin 0=s θλ0=L a 0λ= (6) 其中,半导体激光器波长nm 6500=λ,1=m ,代入上式即可求得λs 。
又因为:s s s f λν= (7)式中s f 为超声信号源的频率,可直接从频率显示表头读出。
这样就可求得声速νS 。
在布拉格衍射状态下如图5所示:图5.布拉格衍射角测量示意图测量白屏上0级和1级衍射光点之间的距离а,声光器件和白屏之间的距离L ,计算衍射光相对于入射光的偏转角δ,依据(4)式计算λs ,νs 。
3.测量声光器件的衍射效率在布拉格衍射条件下,一级衍射光的效率为:ληI I 1=(8)其中,1I 为±1级衍射光强,λI 为入射光强。
将光电池插入实验仪的“光电池”插座,将功率计调零;再把光电池置于声光器件前面,让光束对准光电池的入射孔,此时光功率计的读数即为入射光强λI 。
然后再将光电池置于白屏前面,光电池入射孔对准一级衍射光点。
由光功率计读出一级衍射光强1I 。
按(8)式计算衍射效率η。
4.测量声光器件的带宽和中心频率声光器件有一个衍射效率最大的工作频率,此频率称为声光器件的中心频率,对于其它频率的超声波,其衍射效率将降低,一般认为衍射效率(或衍射光的相对光强)下降3dB(即衍射效率降到最大值的21时)两频率的间隔为声光器件的带宽。
在转换开关‘调制/等幅’置于等幅位置的状态下,调节超声波的频率,用功率计测量各频点对应的一级衍射光强和入射光强。
由于一级衍射光点的位置随频率的改变而改变,所以在测试过程中必须相应调整光电池的位置,使其入射孔始终对准一级衍射光。
求得衍射效率与超声波频率的关系曲线,定出声光器件的带宽和中心频率。
5.观测利用声光效应的信息传输实验将实验仪的“调制/等幅”开关置于调制,“光功率/解调”开关置于解调,“调制监测”和“解调监测”分别连接双踪示波器的两输入端,开启实验仪的电源,这样加到声光器件上的信号变成经脉冲方波调制的超声波,经过声光相互作用,传输到接收端。
调节“调制频率”并控制“音量”,可由双踪示波器上观测调制频率和解调频率及其变化,并且由仪器内置的扬声器收听变化的音调。
注意:信息传输是利用衍射光,所以必须使光电池的入射孔对准一级衍射光。
五、 注意事项1. 由于本实验采用的超声波信号源在80-120MHz 带宽内各频点的输出功率大小不等、加之声光器件的性能不够完善,在各频点的等效阻抗不同,以及阻抗不匹配等原因从而导致布拉格衍射不是理想的。
因此,在调节布拉格衍射时,使1级衍射光强最强即可。
当解调出的信号发生失真时,可适当的调节超声波的输出功率使其不失真即可。
2.高频超声信号源不得空载,即在开启实验仪电源前,应先将“输出”端与声光器件相连,否则,容易损坏超声信号源。
3.声光器件应小心轻放,不得冲击碰撞,否则将可能损坏内部晶体而报废,这种损坏属于人为损坏,不予保修或更换。
4.声光器件的通光面不得接触、擦拭、清洗,不做实验时,通光孔可用不干胶纸封住,否则易损坏光学增透膜,如有灰尘可用洗耳球吹去。
六、实验结果记录、数据分析处理七、 思考题1、为什么声光器件看做是一个相位型衍射光栅?2、声光衍射系统为什么有一个衍射效率最高的中心频率,中心频率由哪些因素决定?3、试述声光衍射器件的应用。
M2:声光媒质的品质因数;L: 声波波面宽度;h: 换能器高度;I a:声强;P s:声波功率对一定的声功率,为了尽可能地提高声波功率,要求选用M2大的材料,在结构上要求压电换能器的长宽比L/h 尽可能大。
当宗量为时,,一般可达60 %以上,所以声光器件以工作在Bragg 区为佳。
对于给定的声光器件,可通过改变Ps使η达到极大值,这就是器件的最佳调制声功率。