化学电源与新能源

合集下载

化学电池发展现状

化学电池发展现状

化学电源发展现状:化学电源通常称为电池,其中包括原锂电池、蓄电池、贮备电池和燃料电池。

当今,化学电源已广泛应用于国民经济 (如信息、能源、交通运输、办公和工业自动化等方面)、人民日常生活以及卫星、载人飞船、军事武器与装备等各个领域。

化学电源技术以新材料科技为基础,与环保科技相关联,与电子、电力、交通、信息产业相配套,与现代文明社会的生活相适应,特别是作为新能源和再生能源的重要组成部分,它直接关系到21世纪可持续发展战略的实现,因此,化学电源技术与产业已成为全球关注与致力发展的一个新热点。

近几年我国国民经济持续快速发展,人民生活水平不断提高,极大地推动了我国电池工业和电池市场的发展。

2000年1月20日,中央电视台广播了一条消息,我国年生产电池已达140亿只,国内年消费电池量也达到了60亿只,人均消费量为5只,由此奠定了中国电池生产和消费大国的地位。

进而随着电子信息产业,特别是移动通信、笔记本电脑、小型摄像设备等的巨大需求,我国电动车锂电池工业,特别是新型、小型二次电池生产迅速崛起。

随着现代社会生活质量的不断提高,对随身听、学习机、电子按摩器、助听器、美容器、电子温度计、电子血压计、电子玩具等的需求越来越多;随着环保意识的增强和石油价格的快速上涨,对电动助力车、电动摩托车、混合电动车及纯电池或燃料电动车辆的市场正在形成和逐步扩大,为其配套的新型电池将向小型、轻便、高能、无污染的方向发展。

根据资料显示,中国内地的电池制造商数量超过了3000家,2005年度各类电池出口数量总值为222亿只以上,同比增长4%,创汇额超过51亿美元,同比增长28%,中国已成为世界最大的电池生产和消费国。

中国电池制造商正在更新其生产技术并更新其生产技术与生产设备以满足20%~60%的预期出口增长,中国也正在成为世界最大的电池进出口大国。

化学电源产业在我国迅速崛起,势头必将在“十一五”持续下去。

从市场分布看,最大的电池市场在美国、日本、欧洲,约占全球电池市场的60%。

中考化学知识点复习 第二讲:化学与能源

中考化学知识点复习 第二讲:化学与能源

中考化学知识点复习 第二讲 化学与能源知识能力解读知能解读:(一)化学反应中的能量变化化学反应在生成新物质的同时,还伴随着能量的变化。

能量的变化通常表现为热量的变化,有些反应是放热的,如氧化钙与水反应,镁与盐酸反应,燃料燃烧等;有些反应则是吸收热量的,如化学反应2CO C 2CO +高温。

作为重要的能源,燃料对于人类社会非常重要。

如人们利用燃烧等化学反应产生的能量发电、做饭、取暖、烧制陶瓷、冶炼金属、发射火箭等。

知能解读:(二)化石燃料由古代生物的遗骸经过一系列的复杂变化形成的可以燃烧的物质,主要是煤、石油和天然气。

煤、石油和天然气是当今世界上最重要的三大化石燃料。

煤被称为“工业的粮食”“黑色的金子”,石油被称为“工业的血液”,它们对人类生产、生活和社会发展起到了重要作用。

煤、石油和天然气都是不可再生能源。

1.化石燃料的形成和主要成分(1)煤成分:煤主要含有碳元素,还含有氢元素和少量氮、硫、氧等元素及无机矿物质(主要含硅、铝、钙、铁等元素),是由有机物和无机物组成的复杂混合物。

性质:黑色固体,有光泽,没有固定的熔点和沸点,具有可燃性。

(2)石油成分:主要含碳、氢两种元素,另外含有少量的硫、氧、氮等元素,是由沸点不同的化合物组成的复杂混合物。

性质:是一种黑色或深褐色黏稠状的液体,有特殊气味,不溶于水,密度略小于水,没有固定的熔点和沸点,具有可燃性。

(3)天然气天然气的主要成分是甲烷,主要含碳、氢两种元素。

天然气里的甲烷是在隔绝空气的情况下,主要由植物残体分解而生成的。

有石油的地方,一般就有天然气。

天然气是一种重要的气体燃料,天然气的贮藏量也是有限的。

2.甲烷的组成、性质、用途及其在自然界中的存在(1)甲烷的组成甲烷是由碳、氢两种元素组成的化合物,其化学式为4CH ,是最简单的有机物,其中含氢元素的质量分数为25%,是氢元素含量最高的有机物。

(2)甲烷的性质甲烷是一种无色、无味的气体,极难溶于水,密度小于空气。

高中化学高考精品备课教案:新型电源

高中化学高考精品备课教案:新型电源

化学反应与能量变化新型电源(含答案)课标要求核心考点五年考情核心素养对接1.认识化学能与电能相互转化的实际意义及其重要应用。

2.能分析、解释原电池的工作原理,能设计简单的原电池。

3.能列举常见的化学电源,并能利用相关信息分析化学电源的工作原理。

4.学生必做实验:制作简单的燃料电池新型电源2023全国乙,T12;2022广东,T16;2022湖南,T8;2022全国甲,T10;2022全国乙,T12;2021河北,T9、T16;2021年6月浙江,T22;2021湖南,T10;2021辽宁,T10;2021福建,T9;2020天津,T11;2020上海,T2;2020全国Ⅰ,T12;2019天津,T6;2019全国Ⅰ,T12证据推理与模型认知:能分析识别复杂的实际电池;能利用电化学原理创造性地解决实际问题命题分析预测1.近年高考常结合电池科技前沿,如能量密度高的液流电池、安全性能高的石墨烯锂电池、燃料电池(微生物燃料电池、有机物燃料电池等)、金属-空气电池等考查原电池的工作原理及其应用、二次电池的充放电过程及相关计算等。

2.2025年高考要关注:(1)新型有机物燃料电池。

有机物与电化学结合既体现模块知识的综合性,又考查考生灵活运用所学知识解决实际问题的能力。

(2)航空航天领域、电动车领域的新型电池考点新型电源1.Li 、Na 、K 、Mg 、Al 、Zn 电池 名称装置图工作原理锂电池负极反应:[1] Li -e-Li +①正极反应物为S 8,产物为Li 2S 4、Li 2S 2,正极反应:[2] S 8+4e -+4Li+2Li 2S 4、S 8+8e -+8Li+4Li 2S 2 ;②正极反应物为CO 2,产物为C +Li 2CO 3,正极反应:[3] 3CO 2+4e -+4Li+2Li 2CO 3+C ;③正极反应物为O 2,产物为Li 2O 、Li 2O 2,正极反应:[4] O 2+4e -+4Li+2Li 2O 、O 2+2e -+2Li+Li 2O 2钠电池负极反应:[5] Na -e-Na +正极反应物为S x ,产物为Na 2S x ,正极反应:[6] S x +2e -+2Na+Na 2S x钾电池负极反应:[7] K -e-K +正极反应物为O 2,产物为KO 2,正极反应:[8] O 2+e -+K+KO 2镁电池负极反应:[9] Mg -2e -+2OH -Mg (OH )2正极反应:[10] 2CO 2+2e-C 2O 42-铝电池负极反应:[11] Al -3e -+4OH -[Al (OH )4]-(或Al-3e-Al 3+)离子导体为盐溶液(中性),正极反应物为S ,产物为H 2S ,正极反应:[12] 3S +6e -+2Al 3++6H 2O3H 2S↑+2Al (OH )3锌电池 负极反应:[13] Zn -2e -+4OH-[Zn (OH )4]2-正极反应物为CO 2,产物为CH 3COOH ,正极反应:[14] 2CO 2+8e -+8H+CH 3COOH +2H 2O2.锂离子电池 名称装置图工作原理负极反应:[15] Li x C 6-x e -x Li ++6C、LiC6-e-Li++6C锂离子电池 正极反应:[16] Li 1-x CoO 2+x e -+x Li+LiCoO 2、Li 1-x NiO 2+x e-+x Li+LiNiO 2、Li 1-x MnO 2+x e -+x Li+LiMnO 2、Li 1-x FePO 4+x e -+x Li+LiFePO 4、Li 1-x Mn 2O 4+x e -+x Li +LiMn 2O 43.燃料电池 名称装置图工作原理燃料 电池负极反应:[17] CO -2e -+4OH -C O 32-+2H 2O 、CH 4-8e -+10OH-C O 32-+7H 2O 、CH 3OH -6e -+8OH-C O 32-+6H 2O 、CH 3OCH 3-12e -+16OH-2C O 32-+11H 2O 、C 6H 12O 6-24e -+36OH -6C O 32-+24H 2O 、NH 2NH 2-4e -+4OH-N 2↑+4H 2O正极反应:[18] O 2+4e -+2H 2O4OH -微生物电池负极反应:[19] CH 3COOH -8e -+2H 2O2CO 2↑+8H +、C 6H 12O 6-24e -+6H 2O6CO 2↑+24H +正极反应:[20] O 2+4e -+4H+2H 2O注意 燃料电池负极反应式书写的难点是有机物化合价的分析,可以用“化合物中元素化合价代数和为零”法,来分析碳元素的化合价,且只需要分析发生化合价变化的碳原子。

2025年高考化学一轮复习基础知识讲义—化学电源及工作原理(新高考通用)

2025年高考化学一轮复习基础知识讲义—化学电源及工作原理(新高考通用)

2025年高考化学一轮复习基础知识讲义—化学电源及工作原理(新高考通用)【必备知识】1.分类一次电池:一次电池就是放电之后不可再充电的电池。

常见的一次电池有锌锰干电池、锌银电池。

二次电池:二次电池又称可充电电池或蓄电池。

充电电池中能量的转化关系是:化学能电能,常见的二次电池有铅蓄电池、镉镍电池、锂离子电池等蓄电池等。

2.工作原理电池电极反应装置图碱性锌锰电池总反应:Zn +2MnO 2+2H 2O===2MnO(OH)+Zn(OH)2;负极:Zn +2OH --2e -===Zn(OH)2;正极:2MnO 2+2H 2O +2e -===2MnO(OH)+2OH -银锌电池总反应:Zn +Ag 2O +H 2O===Zn(OH)2+2Ag负极反应:Zn +2OH --2e -===Zn(OH)2正极反应:Ag 2O +H 2O +2e -===2Ag +2OH -锂电池Li -SOCl 2电池可用于心脏起搏器,该电池的电极材料分别为锂和碳,电解液是LiAlCl 4-SOCl 2总反应:4Li +2SOCl 2===4LiCl +SO 2↑+S负极反应:4Li -4e -===4Li +正极反应:2SOCl 2+4e -===SO 2↑+S +4Cl -铅酸蓄电池总反应:Pb +PbO 2+2H 2SO 42PbSO 4+2H 2O ;负极:Pb +SO 2-4-2e -===PbSO 4;正极:PbO 2+4H ++SO 2-4+2e -===PbSO 4+2H 2O【微点拨】①可逆电池的充、放电不是可逆反应。

②负接负后作阴极,正接正后作阳极。

【易错辨析】1.太阳能电池不属于原电池()2.可充电电池中的放电反应和充电反应互为可逆反应()3.铅酸蓄电池工作时,当电路中转移0.1mol电子时,负极增重4.8g()(SO42-:96)【答案】 1.√ 2.× 3.√【题型突破】1、(2019·浙江4月选考,12)化学电源在日常生活和高科技领域中都有广泛应用。

化学电源和燃料电池

化学电源和燃料电池

燃料电池依据其电解质的性质而分为不同的类型,每类 燃料电池需要特殊的材料和燃料,且使用于其特殊的应用。 按电解质划分,燃料电池大致上可分为六类:
质子交换膜燃料电池(proton exchange membrane fuel cell--PEMFC)
碱性燃料电池(alkaline fuel cБайду номын сангаасll--AFC)
氢的优越性
燃 料 电 池
①氢的来源十分广泛,水、化石燃料(如石油、煤、 天然气等)、植物和有机废物中都含有大量的氢; ②氢是极好的能量载体,发热值高,燃烧时副产品 只有水,无污染; ③氢可以以气态、液态或固态金属氢化物的形式出 现,能适应运输、存储和各种应用环境的不同要 求; ④氢能的利用形式多样,可通过内燃机、涡轮机、 燃料电池等装置将氢能转化成热能、机械能、电 能,用于交通运输、供暖、发电等各个方面。
燃 料 电 池
寻找新能源
燃 料 电 池
寻找新能源 迫在眉睫!!
现在生活、生产用能
固定能源
燃 料 电 池
水电、火电、核电、风能发 电、太阳能发电等 以石油为代表的液体燃料(汽车、飞 机等) 电池(手机、各种小型电动工具)
移动动力源 化学能源
后石油时代大型移动动力源如汽车动力源如何解决? 1)生物燃料如生物柴油、乙醇等 2)开发高比能量的二次电池,发展电动车 3)以氢为能量载体,用燃料电池发电即所谓氢能经济
ce
c
阴极:cathode
c
ae
阳极:anode
a
a
双极板
实现燃料电池内部连接的一个方法,是 采用双极板,同一块双极板的两个侧面,分 别与相邻燃料电池的阴极和阳极接触,同时 双极板还起到把氢送到阳极,和把氧或空气 送到阴极的作用

高中化学新教材同步 选择性必修第一册 第4章 第1节 第3课时 新型化学电源

高中化学新教材同步 选择性必修第一册 第4章 第1节 第3课时 新型化学电源

第3课时新型化学电源[核心素养发展目标] 1.建立原电池工作的思维模型,能解决新型化学电源在新情境下的放电问题。

2.感悟研制新型化学电源的重要性以及可能会引起的环境问题,形成较为客观且正确的能源观,提高开发洁净清洁燃料的意识。

1.常见考查方向①电极的判断,②电子或电流的流向,③溶液中离子的移向,④电极的反应类型,⑤pH的变化,⑥电子的转移数目,⑦电极反应式的书写。

2.新型电池中正、负极的判断方法特别提醒判断一个原电池中的正、负极,最根本的方法是失电子(发生氧化反应)的一极是负极,得电子(发生还原反应)的一极是正极。

如果给出一个化学方程式判断正、负极,可以直接根据化合价的升降来判断,化合价升高、发生氧化反应的一极为负极,化合价降低、发生还原反应的一极为正极。

一、浓差电池1.(2022·广州高二期末)溶质由高浓度向低浓度扩散而引发的一类电池称为浓差电池。

如图是由Ag电极和硝酸银溶液组成的电池(c1<c2),工作时,A电极的质量不断减轻,下列说法正确的是()A.此处应该用阳离子交换膜B.B极为正极,发生氧化反应C.若外电路通过0.1 mol电子,则右侧溶液质量减轻10.8 gD.原电池的总反应不一定是氧化还原反应答案 D解析由题意知,A电极质量不断减轻,故发生反应:Ag-e-===Ag+,则A极为负极,B 极为正极,负极区Ag+浓度增大,正极区Ag+得电子生成Ag,电极反应为Ag++e-===Ag,正极区Ag+浓度减小,浓差电池中溶质由高浓度向低浓度扩散,故正极区NO-3经过离子交换膜移向负极,此处离子交换膜为阴离子交换膜,A、B错误;正极发生反应:Ag++e-===Ag,当转移0.1 mol电子时,溶液中减少0.1 mol Ag+,同时正极有0.1 mol NO-3移向负极区,故右侧溶液减少质量为0.1 mol×108 g·mol-1+0.1 mol×62 g·mol-1=17 g,C错误;负极的电极反应式为Ag-e-===Ag+,正极的电极反应式为Ag++e-===Ag,总反应属于非氧化还原反应,D正确。

化学能与电能课件-高一化学人教版(2019)必修第二册

化学能与电能课件-高一化学人教版(2019)必修第二册
用导线连接两极与电解质溶液共同形成闭合回路, 也可以让两个电极直接接触 ④能自发进行氧化还原反应 一般负极与电解质溶液发生氧化还原反应
即原电池的总反应
下列各种情况是否形成了原电池?
G
G
Fe
Ag Mg
Al
Zn
Cu
盐酸
A
G
Zn
Cu
CuSO4溶液
B
Zn
Cu
蔗糖溶液
D
H2SO4
E
盐酸
C
生铁
盐酸
F
装置是否为原电池的判断方法
练习
[例] X、Y、Z都是金属, 把X浸入Z的硝酸盐溶液中,X的表面 有Z析出, X与Y组成原电池时,Y是电池的负极。 X、Y、Z三种金属的活动性顺序为 ( C) A.X>Y>Z B.X>Z>Y C.Y>X>Z D.Y>Z>X
原电池
4、原电池的应用
④金属因发生原电池反应而腐蚀 ——金属防护问题
如何避免轮船船身被腐蚀,延长 其寿命? 通常在轮船的尾部和在船壳的水线以下部 分,装有一定数量的锌块,请解释原因
外 电子流向:负极 沿导线 正极

路 电流方向:正极 沿导线 负极
内 阳离子 正极
电 路
阴离子
负极
锌铜原电池的工作原理
负极(Zn) Zn - 2e- === Zn2+
工作原理 (反应方程式)
正极(Cu)
2H+ + 2e- === H2↑
总反应离子方程式: Zn + 2H+ === Zn2+ + H2↑
原因:轮船的船身一般是用铁做的, 装上锌块后,铁跟锌形成原电池,此 时锌作为负极发生氧化反应溶掉,而 铁作为正极被保护起来不受腐蚀。

能源化学(一)

能源化学(一)

• 锂离子电池(Li-ion)是锂电池发展而来。 所以在介绍Li-ion之前,先介绍锂电池。 举例来讲,以前照相机里用的扣式电池就 属于锂电池。锂电池的正极材料是二氧化 锰,负极是锂。 • 电池组装完成后电池即有电压,不需充电. 这种电池也可能充电,但循环性能不好,在 充放电循环过程中,容易形成锂枝晶,造成 电池内部短路,所以一般情况下这种电池是 禁止充电的。
CuSO4 Cu + 2 e
2+
-+ . ...+..-...... .- .. --+ ...+ - . ... .. -
. .. ..
+ + . + .. .. . . +. . + .+ .. .. . ...ห้องสมุดไป่ตู้
ZnSO4 Zn
2+ + 2e
Cu
Zn
二、化学电源 1、干电池
铜帽 ... .. ..
碳棒 锌壳 糊状Z nCl2和N H4Cl
粉状M nO2
NH 干电池结构:(—) Zn ZnCl2, 4Cl MnO2 C( +) (—)Zn + ( + ) 2 NH4 + 2 e H2 + MnO2 Zn
2+ + 2e 2 NH3 +
H2 H2O + MnO
+ 2 NH4 + MnO 2+ 2 e 2NH3+ H2O + MnO
• 锂离子电池目前有液态锂离子电池(LIB) 和聚合物锂离子电池(PLIB)两类。其 中,液态锂离子电池是指以 Li+嵌入化合 物为正负极的二次电池。 • 正极采用锂离子化合物 LiCoO2,LiNiO2 或 LiMn2O4 ,负极采用锂-碳层间化合物 LixC6 电解质为溶解有锂盐LiPF6,LiAsF6 等有机溶剂。

化学电源技术的发展和应用前景

化学电源技术的发展和应用前景

化学电源技术的发展和应用前景随着科技的不断迭代,电池作为常用的能量储存装置也逐渐向着更加高效和可持续的方向发展。

化学电源技术作为电池技术的一个重要分支,在保持电池基本功能和性能的同时,不断拓展其使用范围,建立起更为广泛的应用前景。

一、化学电源技术的发展历程1、传统化学电源传统化学电源采用的是单个电池,由正极、负极和电解液组成,主要用于电话、电动玩具、遥控车、门铃及闪光灯等小功率、小容量电子产品上。

通过电极的反应,将化学能转化成电能,达到应用的目的。

然而,传统化学电源存在一些不可避免的缺陷,例如电池的寿命短、重量大、充电时间长、充电效率低等,限制了其在大容量储能设备领域的应用。

2、新型化学电源为了克服传统化学电源的缺陷,新型化学电源应运而生,具有快速充电、长寿命、轻量化和高效率等优势。

这些新型化学电源主要分为以下几种类型:锂离子电池:由于具有高能量密度、轻量化、长寿命和无污染等优点,锂离子电池已经广泛应用在手机、笔记本电脑、电动车、无人机、家庭能量储存系统等领域。

超级电容器:超级电容器由电化学双层电容器、亚电容器和面向特定应用设备的混合杂化电容器组成。

这种新型化学电源具有高能量、高功率密度、长寿命、快速充放电和封闭可靠性好等优点,成为车载系统、医疗器械和电子设备等领域的能源系统之一。

固态电池:固态电池采用了含有稳定电解质的材料,使电解液可以更加牢固地固定在粉末结构中,从而避免了电池发生泄漏甚至剧烈爆炸的危险。

同时,固态电池具有高能量密度、快速充放电和长寿命等优点,被广泛应用在电动车、智能手表、智能手机、头戴显示器等领域。

3、未来化学电源未来的化学电源将更加注重环保、能效和安全等方面的改进,以期在更广泛的应用领域中发挥更大的作用。

未来化学电源的发展方向如下:能量极化材料:在新型化学电源中,能量极化材料是关键中的关键。

未来,将会有更多的研究投入到这种新材料的研制和应用中,以实现更高的能量密度和更稳定的性能。

2024版化学课件《化学电源》优秀ppt1说课

2024版化学课件《化学电源》优秀ppt1说课
实验技能提升
通过实验操作,学生掌握了化学电源的组装、使用和测试方法,提高 了实验技能和动手能力。
问题解决能力
学生能够独立思考和解决问题,如分析化学电源性能差异的原因,提 出改进方案等。
团队协作与沟通能力
学生在小组实验中积极参与讨论和合作,提高了团队协作和沟通能力。

拓展延伸:相关前沿科技动态介绍
固态电池技术
01
铅蓄电池
由两组平行排列的栅状铅合金极板组成,正极板上的活性物质是二氧化
铅,负极板上的活性物质是海绵状纯铅。放电时,两极板上的活性物质
都转变为硫酸铅。
02
锂离子电池
以含锂的化合物作正极,如钴酸锂、锰酸锂等,负极采用石墨等碳素材
料。锂离子电池具有工作电压高、比能量大、自放电小、无记忆效应等
优点。
03
工作原理。
教学策略
采用讲解、示范、讨论、实验等 多种教学方法,引导学生积极参 与课堂活动,激发学生的学习兴
趣和主动性。
学生活动
设计实验探究原电池的工作原理, 分组讨论化学电源的应用和发展 趋势,培养学生的实践能力和创
新精神。
03
化学电源基本原理
原电池工作原理
01
02
03
氧化还原反应
原电池中的化学反应本质 上是氧化还原反应,其中 负极发生氧化反应,正极 发生还原反应。
结果分析
02
根据实验数据计算化学电源的性能参数,如电动势、内阻等。
分析实验结果与理论预测的差异及可能原因。
03
数据记录、结果分析及实验报告要求
1
讨论不同类型化学电源的性能特点和适用范围。
实验报告要求
2
3
实验报告应包括实验目的、原理、步骤、数据记 录、结果分析和结论等部分。

高一化学人教版必修二第二章第2节《化学能与电能》知识点总结

高一化学人教版必修二第二章第2节《化学能与电能》知识点总结

第2节 化学能与电能一、能源的分类1.化学能间接转化为电能(在能量的转化过程中存在能量的损失)—比如火力发电 ①转化过程火力发电是通过化石燃料的燃烧,使化学能转化为热能,加热水使之汽化为蒸汽以推动蒸汽轮机,然后带动发电机发电.燃煤发电是从煤中的化学能开始的一系列能量转化过程.化学能−−→−燃烧热能−−→−蒸汽机械能−−→−发电机电能 ①转化原理燃烧(氧化还原反应)是使化学能转化为电能的关键.因此燃烧一定发生氧化还原反应,氧化还原反应必定有电子的转移,电子的转移引起化学键的重新组合,同时伴随着体系能量的变化. 拓展点1:火力发电的优缺点优点:①我国煤炭资源丰富①投资少,技术成熟,安全性能高缺点:①排出大量的能导致温室效应的气体CO 2以及导致酸雨的含硫氧化物,比如SO 2①消耗大量的不可再生的化石燃料资源①能量转化率低①产生大量的废渣、废水.2.化学能直接转化为电能(在能量的转化过程中不存在能量的损失)—原电池(将氧化还原反应所释放的化学能直接转化为电能)(1)原电池的工作原理实验现象产生的原因分析2+会逐渐溶解,而由Zn失去的电子则由Zn片通过导线流向Cu片,因此Zn片上会带有大量的正电荷,Cu片上会带有大量的负电荷,而电解质溶液中含有阳离子(H+、Zn2+)以及阴离子(OH-、SO42-),由于正负电荷相互吸引,所以电解质溶液中的阳离子会移向Cu片去中和Cu片上带负电荷的电子,阴离子则移向Zn片去中和Zn片上的正电荷,但是由于溶液中的H+得电子能力比Zn2+强,所以H+就移向Cu片去获得Cu片上由Zn片失去的电子而被还原为H原子,H 原子再结合成H分子即H2从Cu片上逸出,因此Cu片上有无色气泡产生.通过电流表指针发生偏转并且指针偏向于Cu片这一边,可以得出该装置产生了电流(而电流的形成是因为电子发生了定向移动),并且电流移动的方向与电子移动的方向相反,所以电流是从Cu片流出,Zn片流进,即Cu片作为正极;Zn片作为负极.原电池工作原理的总结归纳:①原电池中电流的流向:正极→负极①原电池中电子的流向:负极→导线→正极(注意:在该过程中,电子是永远都不会进入到电解质溶液中,因为电子只在金属内部运动并且电解质溶液中的自由移动的阴阳离子也不能在导线中通过)①原电池中电解质溶液中阴、阳离子的移动方向:阳离子→正极阴离子→负极①原电池工作原理的本质:发生自发的氧化还原反应即将氧化还原反应的电子转移变成电子的定向移动,将化学能转化为电能的形式释放.(所谓自发就是指该氧化还原反应不需要借助外在的力量即本身就能够自己发生)①原电池中的负极发生氧化反应,通常是电极材料或还原性气体失去电子被氧化,电子从负极流出;原电池的正极发生还原反应,通常是溶液中的阳离子或O2等氧化剂得到电子被还原,电子流入正极.(2)原电池的构成条件(两极一液一回路,反应要自发)①两极:正极和负极是两种活泼性不同的电极材料,包括由两种活泼性不同的金属材料构成的电极或者是由一种金属与一种非金属导体(如石墨)构成的电极,一般活泼性较强的金属作为负极.①一液(电解质溶液):包括酸、碱、盐溶液.①一回路(构成闭合的电路):即两电极由导线相连或直接接触以及两电极必须插入到同一种电解质溶液中或者分别插入到一般与电极材料相同的阳离子的两种盐溶液中,两盐溶液之间用盐桥相连形成闭合回路.比如以下装置:①氧化还原反应要自发:指电解质溶液至少要与作为负极的金属电极材料发生自发的氧化反应.(3)电极反应式①定义:原电池中的正极和负极所发生的反应①电极反应式的书写方法:补充:复杂电极反应式的书写如CH4碱性燃料电池负极反应式的书写:CH4+2O2+2OH-===CO2-3+3H2O……总反应式2O2+4H2O+8e-===8OH-……正极反应式CH4+10OH--8e-===7H2O+CO2-3……负极反应式注意:①电极反应式的书写必须遵守离子方程式的书写要求,比如难溶物、弱电解质、气体等均应写成化学式形式.①注意电解质溶液对正、负极反应产物的影响.如果负极反应生成的阳离子能与电解质溶液中的阴离子反应,则电解质溶液中的阴离子应写入电极反应式中,例如Fe与Cu在NaOH溶液中形成原电池,负极反应式为:Fe+2e-+2OH-=Fe(OH)2.三、原电池的应用(1)比较金属的活动性强弱①原理:一般原电池中活动性较强的金属作负极,活动性较弱的金属作正极.①应用:比如A、B两种金属用导线连接或直接接触后插入到稀H2SO4电解质溶液中,若A极溶解,B极有气泡产生,由此可判断A是负极,B是正极,活动性:A>B.(2)加快氧化还原反应的速率①原理:在原电池中,氧化反应与还原反应分别在两极进行,溶液中的粒子运动时相互间的干扰小,从而使化学反应速率加快.①应用:比如实验室中用Zn和稀H2SO4制取H2时,通常滴入几滴CuSO4溶液,能够加快产生H2的速率.原因在于Zn 与置换出的Cu构成了原电池,加快了反应的进行.(3)防止金属被腐蚀(比如要保护一个铁闸,可用导线将其与一Zn块相连,使Zn作原电池的负极,铁闸作正极)补充:金属腐蚀①定义:指金属或合金与周围接触到的气体或液体发生化学反应,使金属失去电子变为阳离子而消耗的过程.②金属腐蚀的分类:化学腐蚀和电化学腐蚀在金属腐蚀中,我们把直接发生氧化还原反应且不构成原电池的腐蚀称为化学腐蚀;而由不纯的金属与电解质溶液接触时形成的原电池反应而引起的腐蚀称为电化学腐蚀,电化学腐蚀又分为吸氧腐蚀和析氢腐蚀:在潮湿的空气中,钢铁表面吸附一层薄薄的水膜,里面溶解了少量的O2、CO2等气体,含有少量的H+和OH-从而形成电解质溶液.A.当电解质溶液呈中性、弱碱性或弱酸性时,它跟钢铁里的Fe和少量的C形成了无数个微小的原电池,Fe作负极,C 作正极,因此钢铁发生吸氧腐蚀.电极反应式为:负极(Fe):2Fe-4e-=2Fe2+ 正极(C):O2+2H2O+4e-=4OH-总反应式为:2Fe+O2+2H2O=Fe(OH)2B.当电解质溶液的酸性较强时,钢铁则发生析氢腐蚀.电极反应式为:负极(Fe):Fe-2e-=Fe2+ 正极(C):2H++2e-=H2↑总反应式为:Fe+2H+=Fe2+ +H2↑(4)制作各种化学电源(比如制作干电池、铅蓄电池、新型高能电池等)(5)设计制作原电池①设计电路原电池的设计要满足构成原电池的四个条件:(a)由两种活动性不同的金属或由一种金属与其他导电的材料(非金属或某些氧化物)作为电极材料;(b)两个电极必须浸在电解质溶液中;(c)两个电极之间要用导线连接形成闭合回路;(d)有自发进行的氧化还原反应.②电极材料的选择电池的电极必须导电.电池中的负极必须能够与电解质溶液反应,容易失去电子,因此负极一般是活泼的金属材料.正极和负极之间只有产生电势差,电子才能定向移动,所以正极和负极一般不用同一种材料.③电解质溶液的选择电解质是使负极材料放电的物质.因此电解质溶液一般要能够与负极发生反应,或电解质溶液中溶解的其他物质与负极发生反应(如空气中的O2).但是如果两个半反应分别在两个容器中进行(中间连接盐桥),则左、右两个容器中的电解质溶液一般选择与电极材料相同的阳离子的盐溶液.比如Cu-Zn-硫酸盐原电池中,负极金属Zn浸泡在含有Zn2+的电解质溶液中.④设计示例拓展点2:原电池的正、负极的判断方法(1)根据组成原电池两电极的材料判断:一般是活泼性较强的金属作为负极,活泼性较弱的金属或能导电的非金属作为正极.(2)根据电流方向或电子流动的方向判断:电流方向(在外电路)是由正极流向负极,电子的流动方向是由负极流向正极.(3)根据原电池中电解质溶液内阴、阳离子的定向移动方向判断:在原电池的电解质溶液中,阳离子移向正极,阴离子移向负极.(4)根据原电池两电极发生的反应类型判断:原电池的负极总是失电子发生氧化反应,其正极总是得电子发生还原反应.(5)根据电极质量的变化判断:原电池工作后,X极质量增加,说明溶液中的阳离子在X极(正极)放电,X极活动性弱;反之,X极质量减少,说明X极金属溶解,X极为负极,活动性强.(6)根据电池中的现象判断:若某电极上有气泡冒出,则是因为析出了H2,说明该电极为正极,活动性弱.上述判断方法可简记为:特别提醒:①在判断原电池正、负极时,不能只根据金属活泼性的相对强弱判断,有时还要考虑电解质溶液,比如Mg、Al和NaOH溶液构成的原电池中,由于Mg不与NaOH溶液反应,虽然金属性Mg>Al,但是在该条件下却是Al作负极.因此要根据具体情况来判断正、负极.又比如说Fe、Cu在稀H2SO4溶液中,Fe作负极,Cu作正极;而Fe、Cu在浓HNO3溶液中,Fe作正极,Cu作负极.①原电池的负极材料可以参加反应,表现为电极溶解,但有的原电池(比如燃料电池)负极材料不参加反应;原电池的正极材料通常不参加反应.四、发展中的化学电源1.化学电源的分类2PbSOSO4放电充电锌银蓄电池的负极是锌,正极是Ag电极反应:O+H O+2e- =2Ag+2OH2Ag+Zn(OH)2Zn+Ag2O+H2O放电充电五、燃料电池燃料电池是一种能连续地将燃料和氧化剂的化学能直接转换成电能的化学电池.燃料电池的最大优点在于能量转化率高,可以持续使用,无噪音,不污染环境.燃料电池的电极本身不参与氧化还原反应,只是一个催化转化元件.它工作时,燃料和氧化剂连续地由外部供给,在电极上不断地进行反应,生成物不断地被排出,于是电池就连续不断地提供电能.(1)氢氧燃料电池2H+O=2H O1)燃料电池正极反应式的书写因为燃料电池正极反应物一般是O2,即正极都是氧化剂—O2得到电子的还原反应,故正极反应的基础都是O2+4e-=2O2-,O2-的存在形式与燃料电池的电解质的状态以及电解质溶液的酸碱性有着密切的联系.①电解质为酸性电解质溶液(如稀硫酸)在酸性环境中,O2-离子不能单独存在,可供O2-离子结合的微粒有H+离子和H2O,O2-离子优先结合H+离子生成H2O.这样在酸性电解质溶液中,正极反应式为O2+4H++4e-=2H2O.①电解质为中性或碱性电解质溶液(如氯化钠溶液或氢氧化钠溶液)在中性或碱性环境中,O 2-离子也不能单独存在,O 2-离子只能结合H 2O 生成OH -离子,故在中性或碱性电解质溶液中,正极反应式为O 2+2H 2O +4e -=4OH -.①电解质为熔融的碳酸盐(如Li 2CO 3和Na 2CO 3熔融盐混和物)在熔融的碳酸盐环境中,O 2-离子也不能单独存在,O 2-离子可结合CO 2生成CO 32-离子,则其正极反应式为O 2+2CO 2 +4e -=2CO 32-.①电解质为固体电解质(如固体氧化锆—氧化钇)该固体电解质在高温下可允许O 2-在其间通过,故其正极反应为O 2+4e -=2O 2-.2)燃料电池负极反应式的书写燃料电池负极反应物种类比较繁多,可为氢气、水煤气、甲烷、丁烷、甲醇、乙醇等可燃性物质.不同的可燃物有不同的书写方式,要想先写出负极反应式相当困难.一般燃料电池的负极反应式都是采用间接方法书写,即按上述要求先正确写出燃料电池的总反应式和正极反应式,然后在电子守恒的基础上用总反应式减去正极反应式即得负极反应式.比如以H 2、C 3H 8为燃料的碱性电池为例说明如下: H 2-2e - =2H +或H 2-2e -+2OH -=2H 2O;C 3H 8−−→−--e 203CO 2−−→−-OH 63CO 32-(3个C 整体从-8价升高到+12价,失去20e -),则有:C 3H 8-20e -+aOH -=3CO 32-+bH 2O,由电荷守恒知a=26;由H 原子守恒知b=17,所以电极反应式为C 3H 8-20e -+26OH -=3CO 32-+17H 2O(3)燃料电池与一次电池、二次电池的主要区别①氧化剂与燃料在工作时不断地由外部供给.①生成物不断地被排出.(4)废弃电池的处理废弃电池中含有重金属和酸碱等有害物质,随意丢弃,对生态环境和人体健康有很大的危害.若把它当作一种资源,加以回收利用,既可以减少对环境的污染,又可以节约资源.因此,应当重视废弃电池的回收.。

应用电化学---第三章 化学电源

应用电化学---第三章  化学电源

3.电流和反应速率 反应速率等于电流强度,可以直接从电流表 读出。电流的大小,就是充电或者放电速率 的大小。 由于电池存在内阻,当有电流流过时,电池 的放电电压下降,电极上的活性物质来不及 反应,使电池容量的下降。对于电池反应, 能承受的充、放电电流的大小反映了电池反 应的可逆性。为降低电极反映的极化、提高 电池所能承受的电流,电极一般做成多孔扩 散电极。
放电深度:电池放电量占其额定容量的百分 数。 理想的电池在整个放电过程中应该保持一个 恒定的工作电压,但大多数电池只有在较低 的放电深度时才保持平稳的工作电压。 放电深度大时电池能放出较多的容量,但考 虑到电池的工作性能,一般情况下电池放电 深度只为额定容量的20%一40%。
电池放电一段时间后搁臵时,开路电压会 上升。图3.2为电池连续放电和间隙放电时 的放电曲线。依图可见,间隙放电时的容 量要较连续放电时为大。特别当以大电流 放电时,间隙放电会使电池容量有较大的 提高。
给电池外加一负载并接通外电路时,外线 路中有电流通过,电池对外做电功,其工 作电压为:
Rp,RΩ分别是极化内阻和欧姆内阻,E,V 分别使电池电动势和电池工作电压
电池内阻R =Rp + RΩ ,
极化内阻是由于电化学极化和浓差极化而 引起的,所以极化内阻的大小与电极材料 的本质、电池的结构、制造工艺和工作电 流的大小等有关。为降低极化内阻,电极 一般做成多孔电极以提高电极的表面积, 并选择具有高交换电流密度的活性物质。
电池的负极一般选用较活泼的金属,而正 极一般选用金属氧化物,电极材料的选择 和评价原则前面已经介绍,后面还要针对 电池来具体讲授。表3.1列出了电池常用的 一些负极材料的性能。
添加剂:包括能提高电极导电性能的导电剂 (如金属粉和碳粉)、增加活性物质粘结力的 粘结剂(如聚四氟乙烯和聚乙烯)、延缓金属 电极腐蚀的缓蚀剂等。 集电器:由于活性物质通常是构成一种糊状 电极,需要用集电器来作为支持体,集电器 通常是一个金属栅板或导电的非金属棒(如碳 棒),以提供电子传导的路线,集电器重量应 轻,化学稳定性应好。

新能源名词解释

新能源名词解释

电池:又称化学电源,是一种将物质的化学能通过电化学氧化还原反应直接转化成电能,通过放电对外做功的装置或系统。

容量:电池在一定的放电条件下所能释放出的电量称为电池的容量理论容量(C0):假设电极活性物质全部参加电池的成流反应所能提供的电量。

实际容量:指电池在一定的放电条件下实际放出的电量。

它等于放电电流与放电时间的乘积,实际容量的计算方法如下:C=It额定容量:指设计和制造电池时,按照国家或相关部门颁布的标准,保证电池在一定的放电条件下能够放出的最低限度的电量。

标称容量:用来鉴别电池适当的近似容量,一般指0.2C放电时的放电容量比容量:单位质量或单位体积的电池所能够给出的电量。

相应称为质量比容量和体积比容量。

电池的能量:指在一定放电制度下,电池所能输出的电能,通常用瓦时(W·h)表示。

理论能量:假设电池在放电过程中始终处于平衡状态,其放电电压保持电动势(E)的数值,活性物质的利用率为100%,此条件下电池所输出的能量为理论能量W0。

实际容量:在电池放电时实际输出的能量。

在数值上等于电池实际容量(C)与电池平均工作电压(V平)的乘积W=C·V平比能量:单位质量或单位体积电池所能输出的能量。

功率:电池在一定放电制度下,单位时间内输出的能量,单位为瓦(W)或千瓦(kW)比功率:单位质量或单位体积电池输出的功率。

比功率的大小表征电池所能承受的工作电流的大小,一个电池的比功率大,表示它可以承受大电流放电。

电动势:电池的两个电极的平衡电势之差。

开路电压:指在开路状态下(几乎没有电流通过时),电池两极之间的电势差。

工作电压:指电池在接通负荷后的放电过程中,两极显示的电压。

额定电压:指某电池开路电压的最低值。

或者说是在规定条件下电池工作的标准电压。

放电终止电压:也称放电截止电压。

充电电压:指二次电池在充电式,外电源加在电池两端的电压。

放电电流:通常用放电率表示,放电率是指放电时的速率,通常有“时率”和“倍率”两种表示方法。

化学电源知识点汇总总结

化学电源知识点汇总总结

化学电源知识点汇总总结一、化学电源的基本概念和原理化学电源是利用化学反应产生的电能的装置,也称为化学电池。

化学电源的原理是通过化学反应将化学能转化为电能,从而产生电流。

化学电源主要包括化学电池和燃料电池两种类型。

1. 化学电池化学电池是一种将化学能转化为电能的装置,它由正极、负极和电解质组成。

正极和负极之间通过电解质隔膜隔开,当正极和负极连通时,化学反应发生,产生电流。

化学电池的工作原理是在正负极之间发生氧化还原反应,从而产生电流。

2. 燃料电池燃料电池是一种利用氢气或其他可燃气体与氧气进行氧化还原反应产生电能的装置。

燃料电池的工作原理是通过将氢气与氧气在催化剂的作用下进行反应,产生电流。

二、化学电源的分类化学电源主要包括化学电池和燃料电池两种类型,根据不同的工作原理和应用领域可以进一步进行分类。

1. 原电池和二次电池原电池是一次性使用的化学电池,其化学反应发生后无法逆转。

二次电池则是可以重复充放电的化学电池,例如铅酸蓄电池和锂离子电池等。

2. 燃料电池的类型燃料电池可以根据使用的燃料和氧化剂的不同进行分类,常见的燃料电池包括氢氧燃料电池、甲醇燃料电池、固体氧化物燃料电池等。

三、化学电源的应用化学电源作为一种高效的能源转化装置,广泛应用于各个领域。

1. 电动汽车随着环保意识的提高,电动汽车逐渐成为替代传统燃油车的首选。

电动汽车采用电池组作为动力来源,其中包括锂离子电池、镍氢电池等。

2. 便携式电子设备化学电源被广泛应用于便携式电子设备,例如手机、笔记本电脑、数码相机等。

这些设备通常采用锂离子电池或锂聚合物电池。

3. 家用电器化学电源也被应用于一些家用电器,例如手提吸尘器、电动工具、无线电话等。

这些设备通常采用镍镉电池、镍氢电池等。

4. 航空航天领域燃料电池在航空航天领域有着广泛的应用前景,可以用于飞机、无人机和宇宙飞船等。

5. 新能源领域燃料电池也被广泛应用于新能源领域,例如太阳能和风能的储能系统,通过燃料电池将太阳能和风能转化为电能。

能源与化学汇总课件

能源与化学汇总课件

能 一次 能源

再生 能源
非再生 能源
风、流水、海流、草木、太阳辐射、 地热
化石燃料(煤 石油 天然气油页岩) 核燃料(U Th Pu D)
二 次 电能、氢能、汽油、柴油、火药 能 源 、甲醇、丙烷、苯胺、硝化棉、硝化甘油
生活与化学
3
第二节 燃料能源
• 一、燃料的分类和组成

燃料—产生热能或动力的可燃性物质。
思考:从节约能源、保护环境上来考虑应 提倡使用哪种燃料?
生活与化学
29
化石燃料燃烧与环境污染
1、全球气候变化 温室效应
2、热污染 局部区域的水温上升
3、大气污染 粉尘、酸雨、一氧化碳污染
生活与化学
30
生活与化学
31
酸雨的危害
生活与化学
32
思考:
地球上的矿物资源是有限的,总有一天 会被完全消耗掉.
能源与化学
• 能源是一种物质资源,是人类生存和发 展的物质基础;能量是人类社会各种经 济活动的原动力。能源的开发和利用是 社会经济发展水平的重要标志。但是, 随着社会的发展,能源的供需矛盾日趋 尖锐。因此,如何合理地利用现有能源, 开发新的能源是人类必须关注的一个重 大社会问题。
生活与化学
1
第一节 概 述
40
2. 碱性蓄电池
• ⑴ 铁-镍蓄电池
• 电池符号: (-)Fe∣KOH(30%)∣Ni(OH)3 (+) • 充放电反应: Fe + 2Ni(OH)3 Fe(OH)3 + Ni • 特点是:重量轻、体积小、抗震好
• ⑵ 银-锌蓄电池
• 电池符号: (-)Zn∣KOH(40%)∣Ag2O∣Ag(+) • 充放电反应:Zn + Ag2O + H2O Zn(OH)2 + 2Ag • 特点是:电压平稳

化学电源说课稿

化学电源说课稿

化学电源说课稿一、引言化学电源或电池是化学反应产生电能的装置,是现代社会不可缺少的电力供应来源。

化学电源的种类繁多,每种化学电源都有其特定的构造和工作原理,其应用范围也有所不同。

在本次课堂上,我们将讨论化学电源的原理、分类、应用及未来发展方向。

二、化学电源的分类1. 原电池原电池是指将化学能直接转化为电能的电池,常见的有干电池、铅酸蓄电池和锌银电池等。

2. 次电池次电池是指将化学能转化为电能,然后将电能储存起来,以后需要时通过二次充电将化学能转化为电能再次供电,常见的有镍镉电池、镍氢电池、锂离子电池等。

3. 燃料电池燃料电池是指利用化学反应产生电能的一种电池,常见的有质子交换膜燃料电池、固体氧化物燃料电池和碱性燃料电池等。

三、化学电源的原理化学电源的原理是利用化学反应的电化学性质产生电流。

在化学电源中,有两个极:正极和负极。

这两个极在化学反应中各自发生氧化和还原反应,产生电子流和离子流,从而产生电能。

其中,正极的氧化反应常表示为:M(s) → Mⁿ⁺(a q) + ne^-负极的还原反应常表示为:M’(aq) + ne^- → M’(s)化学电池的简图如下所示:┌──────────┐ ┌──────────┐ ▲│ │ │ ││化学反应反应堆(正极)│ │ 电路│ │(负极)化学反应反应堆│└─────↑────┘ └─────↑────┘ ││ │ │电子离子││ ▼ │┌──────────┐ ┌──────────┐ ││ │ │ │ ││ 正极│ │ 负极│ ││ │<-----电流----->│ ││└──────────┘ └──────────┘ │四、化学电源的应用化学电源广泛应用于生活、工业、军事等各个领域。

其中干电池广泛用于家庭、办公等场合,可以为手电筒、遥控器、门铃等电子产品供电。

铅酸蓄电池被广泛应用于汽车等交通工具的起动和供电系统。

锂离子电池则被广泛应用于移动通讯设备等高科技产品中。

第06讲 化学电源(教师版)

第06讲 化学电源(教师版)

一、化学电源的分类与优劣判断1. 分类:化学电源可以分为一次电池、二次电池和燃料电池等。

2. 优劣判断(1)比能量:单位质量或单位体积所能输出电能的多少,单位是(W·h)/kg 或(W·h)/L 。

(2)比功率:单位质量或单位体积所能输出功率的大小,单位是W/kg 或W/L 。

(3)电池可储存时间的长短。

二、一次电池(干电池)一次电池,也叫做干电池,放电后不可再充电。

常见的一次电池有普通锌锰干电池、碱性锌锰干电池、纽扣式银锌电池等。

1. 普通锌锰干电池常见的锌锰干电池的构造如图所示。

其中,石墨棒作正极,氯化铵糊作电解质溶液,锌筒作负极。

这种电池放电之后不能充电(内部的氧化还原反应无法逆向进行),属于一次电池。

总反应Zn + 2MnO 2 + 2NH 4+ === Zn 2+ + 2MnO(OH) + 2NH 3↑第06讲 化学电源知识导航知识精讲2. 碱性锌锰干电池用KOH电解质溶液代替NH4Cl做电解质时,电池的比能量和放电电流都能得到显著的提高。

Zn + 2OH-﹣2e-==Zn(OH)23. 纽扣式锌银电池锌银扣式电池,以锌为负极,银的氧化物为正极,氢氧化钾(或钠)溶液为电解液的纽扣状微型原电池Zn+Ag2O+ H2O === Zn(OH)2+2Ag三、二次电池有些电池放电时所进行的氧化还原反应,在充电时可以逆向进行,使活性物质获得再生,从而实现放电(化学能转化为电能)与充电(电能转化为化学能)的循环。

这种充电电池属于二次电池,也叫充电电池或蓄电池。

常见的充电电池有铅酸蓄电池、镍氢电池、锂离子电池等,目前汽车上使用的大多是铅蓄电池。

1. 铅蓄电池Pb+PbO2+2H2SO42PbSO4+2H2O正极充电总反应2PbSO4 + 2H2O === Pb + PbO2 +4H+ + 2SO42- 阴极PbSO4+2e-===Pb+ SO42-阳极PbSO4+2H2O-2e-===PbO2+4H++ SO42-2. 锂离子电池工作原理Li1-x CoO2 + Li x C6 LiCoO2 + 6C放电总反应Li1-x CoO2 + Li x C6 === LiCoO2 + 6C 负极正极充电总反应LiCoO2 + 6C === Li1-x CoO2 + Li x C6阴极阳极三、燃料电池燃料电池是一种连续地将燃料(如氢气、甲烷、乙醇)和氧化剂(如氧气)的化学能直接转化为电能的电化学反应装置,具有清洁、安全、高效等特点。

化学电源专业介绍

化学电源专业介绍

本文由【中文word文档库】搜集整理。

中文word文档库免费提供海量教学资料、行业资料、范文模板、应用文书、考试学习和社会经济等word文档应用化工技术专业介绍--------化学电源技术与制造方向通讯、新能源、新材料是21世纪人类发展的重大战略性领域,各国都对相关技术及产品的开发与生产不遗余力地予以扶持。

随着煤炭、石油等化石能源勘探量及产量的日益萎缩,一场新能源危机的阴影已经日益明显的笼罩在人类社会的上空,各国之间因能源而起的争端此起彼伏。

为了持续发展,开发新型可替代能源、扩大各种新能源的应用已成人类社会发展的燃眉之急。

1、专业特色化学电源是新能源的重要形式之一,目前应用广泛的主要是二次化学电源,例如锂离子电池、镍氢电池、铅酸蓄电池和燃料电池等,主要应用于手机、数码相机、电动车、大型燃料电池供电机组等。

在当今能源危机和能源革命的时代,化学电源这种新型可替代能源具有广阔的应用及发展前景,在各地电源企业大力发展的同时,高素质、高技能型人才供不应求,目前德州职业技术学院是全国高职高专类院校唯一开设化学电源专业的学校,专业发展前景广阔。

2、培养对象::专科,修业年限3年。

3、办学条件师资:本专业师资力量强大,已形成一支学历、年龄、结构合理的教学及学术梯队。

其中具有副教授以上职称的教师5人,中级职称教师6人,其中硕士3人,本科12人,且都具有双师型教学资格。

实习实训:本专业拥有完备的、现代化教学资源和实验设施。

实验及实训场地面积600平方米,各类实验、实训仪器及设备总值达80余万元,拥有包括LK2006电化学工作站、LK98BⅡ电化学综合系统、CCD金相分析系统、紫外分光光度计、马弗炉、超纯水仪等在内的多种先进实验仪器,由具有丰富实际生产实践经验的工程师进行教学,有利于培养学生的实际操作能力及实践能力。

4、课程特色主要课程有《无机化学》、《物理化学》、《电化学基础》、《电源工艺学》、《铅酸蓄电池》、《锂离子电池制造技术》、《燃料电池基础》、《化学电源概论》等,注重学生基础知识的学习和基本技能的训练,力求其知识结构和技能培训与岗位要求相适应,并加强对学生创新能力的培养,培养学生改革创新,开发设计新产品的能力,同时注重对学生职业道德的教育,培养学生爱岗敬业的精神。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新型化学电源与新能源的开发
动力工程学院能源动力类01班
刘浪学号:20133695
摘要
随着传统化石能源的不断消耗,能源枯竭成为当今世界所秒面对的最大问题之一。

在这种情况下,新能源势必成为未来的能源主力,而新型化学电源在这方面有着得天独厚的优势。

本文就新型化学能源开发应用新能源方面的技术与前景进行论述。

绪论
化学电源是把物质释放出的化学能直接转换成电能的装置,它和其他能源相比有许多优点如能量转换率高,无噪声,少污染,电流、电压、容量可在相当范围内变动,能做成任意大小和形状,可在各种条件下工作,等等。

随着科技的进步和满足现代生活的需要,化学电源无论从构型、种类和应用广度方面发生了很大的变化。

新型化学电源是指近年来兴起的突破传统电池结构和设计理念的化学电源,在新能源的发电,储能,回收等方面有独特的优势,未来新能源的发展必将结合新型化学电源的技术发展进行。

1新型化学电源的含义
新型化学电源是指为适应工业以及航天等新技术的发展以及“绿色电源”的环保需要,先后研制成了多种新型化学电池。

这些化学电源一般具有向自重小、体积小、容量大、温度适应范围宽、使用安全、储存期长、维护方便等方面发展的特点。

具有代表性的化学电源有:燃料电池,铁电池,锂离子电池,以及最新的生物电池等。

2几种重要的新型化学电源
通过以上表格,可以知道燃料电池的电化学效率比较高均在60%左右。

这是燃料电池的一大优势,除此之外,燃料电池还有以下有点:无污染,噪音低,环保;无论输出功率如何,都能保持在较高的能量转化效率;灵活性强,可实现分散式发电。

2.2高铁电池
高铁电池是以合成稳定的高铁酸盐(K2FeO4、BaFeO4等),可作为高铁电池的正极材料来制作能量密度大、体积小、重量轻、寿命长、无污染的新型化学电池铁电池。

高铁电池是一种能量密度很高的电池,市场上的民用电池比功率只有60- 135w,而高铁电池可以达到1000w以上,放电电流是普通电池的3-10倍。

高铁电池目前还处在实验阶段,还未有那个厂商宣布能将高铁电池大规模应用。

但高铁电池比起普通化学电源有着很大的优势:高铁电池放电,如Zn-K2FeO4 , 70%以上的放电时间在1.2-1.5V,具有良好的抗衰减性;原料来源丰富,铁是地壳中含量最多的两种金属元素之一;绿色无污染。

高铁酸盐放电后的产物为FeOOH或Fe2O3-H2O,无毒无污染,对环境友好。

不需要回收。

高铁电池是未来电动汽车车用储能电池的最佳选择之一,因为比起现行的钴酸锂电池(特斯拉电动汽车)与磷酸铁锂电池(比亚迪电动汽车),高铁电池安全性和使用寿命都有较大的优势。

2.3酶电池
酶电池又称酶生物燃料电池,严格来说是燃料电池的一种,但由于其燃料的特殊性和酶的参与,又有别于其他燃料电池。

酶电池是以有机物为燃料,直接或间接利用酶作为催化剂的一类特殊的燃料电池。

一般酶电池的燃料是糖类。

酶电池的阳极由嗜糖酶和介质组成,阴极由释氧酶和介质组成,两极都有一层玻璃纸隔离膜。

阳极通过酶氧化反应从糖中分解出电子和氢离子,氢离子通过隔离膜流到阴极,氢离子和电子与空气中的氧结合,生成水,通过这一电化学反应过程,电子经过外围电路,产生了电。

由于酶具有极高的催化效率,所以大大的加快了反应速率,使酶电池具有很高的效率。

除此之外,酶电池还有生物相容性好、原料来源广泛、可以用多种天然有机物作为燃料的优点,是一种真正意义上的绿色电池。

它在医疗、航天、环境治理等领域均有重要的使用价值,如糖尿病、帕金森氏病的检测、辅助治疗以及生活垃圾、农作物废物、工业废液的处理等。

3新型化学电源在开发新能源方面的作用
3.1发电方面
传统的发电方式有着发电效率不高,无法适应新型燃料的缺点。

新型化学电源通过直接将化学能转化为电能可以大幅提高能量转化效率,而且以燃料电池为代表的新型电池能更好地利用天然气等传统能源和氢气等新型能源来发电,随着传统化石能源的日益枯竭,新型能源如氢能、生物质能等必将广泛地应用在发电上,而燃料电池和酶电池则是发电技术的不二选择。

3.2储能方面
以高铁电池为代表的高容量电池将会对未来新能源的应用产生深远的影响。

一些重要新能源例如太阳能、风能、潮汐能,它们的利用往往具有时效性和间隔性,而传统的储能方式如抽水储能,保温储能对能源的储存效率和储能时间上都无法满足人们的要求,而新型化学电源凭着优秀的容量,较小的损耗和极长的使用寿命正好可以解决这些问题。

随着石油的日益枯竭,未来电动汽车必将得到广泛引用,而现在电动汽车发展的主要障碍就是电池容量不够所导致的续航里程过短,虽然一些公司在电动汽车的性能和续航里程上取得一些突破,但还未从根本上实现电池技术的革命性突破,而新型化学电源技术的发展融入仍是应对上述问题的唯一途径。

相关文档
最新文档