《圆的认识》PPT
合集下载
圆的认识免费ppt课件
对于任意两个相交的圆, 它们的交点满足两圆的方 程,因此可以用两圆的方 程解出交点坐标。
交点的求法
将两个圆的方程联立,解 出交点坐标。
圆的组合图形
圆与直线的组合图形
当直线与圆相切或相交时,会形成一些特殊的组合图形,如扇形 、弓形等。
圆与圆之间的组合图形
两个或两个以上的圆可以形成一些特殊的组合图形,如椭圆、双曲 线等。
圆与其他图形的组合图形
圆与其他图形也可以组合成一些复杂的图形,如圆形花坛、圆形水 池等。
感谢您的观看
THANKS
05
圆的拓展知识
圆的切线
01
02
03
切线的定义
切线是指与圆只有一个公 共点的直线,这个公共点 叫做切点。
切线的判定
若直线与圆心的距离为零 ,则该直线为圆的切线。
切线的性质
切线垂直于过切点的半径 ,且切线长度等于半径长 度。
圆的交点
交点的定义
两个或两个以上的圆相交 于某一点,该点叫做交点 。
交点的性质
04
圆的定理
圆内角定理
总结词
圆内角定理描述了圆内角与其所对应 的弧之间的关系。
详细描述
圆内角定理指出,在同圆或等圆中, 相等的圆心角所对应的弧相等,相等 的圆周角所对应的弧也相等。这个定 理是圆的基本性质之一,是解决与圆 相关问题的重要依据。
圆外角定理
总结词
圆外角定理描述了圆外角与其所对应的弦之间的关系。
半径
从圆心到圆上任意一点的线段称为半径,半径的长度等于直 径的一半。点沿圆周移动一 圈的距离之和,计算公式为 C = 2πr ,其中 r 是圆的半径。
面积
圆的面积是圆所占平面的大小,计算 公式为 A = πr^2,其中 r 是圆的半径 。
交点的求法
将两个圆的方程联立,解 出交点坐标。
圆的组合图形
圆与直线的组合图形
当直线与圆相切或相交时,会形成一些特殊的组合图形,如扇形 、弓形等。
圆与圆之间的组合图形
两个或两个以上的圆可以形成一些特殊的组合图形,如椭圆、双曲 线等。
圆与其他图形的组合图形
圆与其他图形也可以组合成一些复杂的图形,如圆形花坛、圆形水 池等。
感谢您的观看
THANKS
05
圆的拓展知识
圆的切线
01
02
03
切线的定义
切线是指与圆只有一个公 共点的直线,这个公共点 叫做切点。
切线的判定
若直线与圆心的距离为零 ,则该直线为圆的切线。
切线的性质
切线垂直于过切点的半径 ,且切线长度等于半径长 度。
圆的交点
交点的定义
两个或两个以上的圆相交 于某一点,该点叫做交点 。
交点的性质
04
圆的定理
圆内角定理
总结词
圆内角定理描述了圆内角与其所对应 的弧之间的关系。
详细描述
圆内角定理指出,在同圆或等圆中, 相等的圆心角所对应的弧相等,相等 的圆周角所对应的弧也相等。这个定 理是圆的基本性质之一,是解决与圆 相关问题的重要依据。
圆外角定理
总结词
圆外角定理描述了圆外角与其所对应的弦之间的关系。
半径
从圆心到圆上任意一点的线段称为半径,半径的长度等于直 径的一半。点沿圆周移动一 圈的距离之和,计算公式为 C = 2πr ,其中 r 是圆的半径。
面积
圆的面积是圆所占平面的大小,计算 公式为 A = πr^2,其中 r 是圆的半径 。
圆的认识PPT课件
理解圆的基本概念和性质
通过学习,学生应能理解并掌握圆的基本概念和性质,如圆上各点到圆心的距 离相等、直径是半径的两倍等。
培养空间观念和推理能力
通过观察、操作和推理,培养学生的空间观念和推理能力,为后续学习奠定基 础。
02
圆的基本性质
圆的定义
总结词
圆的定义是平面内到定点距离等种非常有用的几何图形,它在日常生 活和工业生产中有着广泛的应用。例如,轮 胎的设计就是利用了圆的旋转不变性,使得 车辆能够平稳地行驶;钟表的设计也是利用 了圆的知识,才能够准确地计量时间;餐具 中的盘子、碗等也是利用了圆的知识来设计
,使得它们能够方便地使用和清洗。
05
圆的切线和半径的关系
生活品质。
圆在日常生活中的应用还体现在 艺术和装饰方面,如圆形图案的 运用,增添了物品的美感和时尚
感。
圆在科学实验中的应用
圆在科学实验中具有广泛的应用,如物理学中的圆周运动、化学中的分子结构、生 物学中的细胞结构等。
圆在科学实验中的应用能够简化实验设计和数据分析过程,提高实验的准确性和可 靠性。
圆在科学实验中的应用还体现在工程技术和科学研究方面,如航天器轨道的设计、 天体运行规律的探索等。
切线的定义和性质
切线的定义
切线是一条与圆只有一个公共点的直 线,这个公共点叫做切点。
切线的性质
切线与半径垂直,切线与半径相交于 切点。
切线和半径的关系
切线与半径垂直
切线与经过切点的半径垂直,这是切线的基本性质。
切线与半径相交于切点
切线与半径在切点处相交,这是切线的另一个重要性质。
切线定理的应用
圆的认识ppt课件
• 引言 • 圆的基本性质 • 圆的周长和面积 • 圆的对称性和旋转不变性 • 圆的切线和半径的关系 • 圆的综合应用
通过学习,学生应能理解并掌握圆的基本概念和性质,如圆上各点到圆心的距 离相等、直径是半径的两倍等。
培养空间观念和推理能力
通过观察、操作和推理,培养学生的空间观念和推理能力,为后续学习奠定基 础。
02
圆的基本性质
圆的定义
总结词
圆的定义是平面内到定点距离等种非常有用的几何图形,它在日常生 活和工业生产中有着广泛的应用。例如,轮 胎的设计就是利用了圆的旋转不变性,使得 车辆能够平稳地行驶;钟表的设计也是利用 了圆的知识,才能够准确地计量时间;餐具 中的盘子、碗等也是利用了圆的知识来设计
,使得它们能够方便地使用和清洗。
05
圆的切线和半径的关系
生活品质。
圆在日常生活中的应用还体现在 艺术和装饰方面,如圆形图案的 运用,增添了物品的美感和时尚
感。
圆在科学实验中的应用
圆在科学实验中具有广泛的应用,如物理学中的圆周运动、化学中的分子结构、生 物学中的细胞结构等。
圆在科学实验中的应用能够简化实验设计和数据分析过程,提高实验的准确性和可 靠性。
圆在科学实验中的应用还体现在工程技术和科学研究方面,如航天器轨道的设计、 天体运行规律的探索等。
切线的定义和性质
切线的定义
切线是一条与圆只有一个公共点的直 线,这个公共点叫做切点。
切线的性质
切线与半径垂直,切线与半径相交于 切点。
切线和半径的关系
切线与半径垂直
切线与经过切点的半径垂直,这是切线的基本性质。
切线与半径相交于切点
切线与半径在切点处相交,这是切线的另一个重要性质。
切线定理的应用
圆的认识ppt课件
• 引言 • 圆的基本性质 • 圆的周长和面积 • 圆的对称性和旋转不变性 • 圆的切线和半径的关系 • 圆的综合应用
圆的认识ppt课件
很多交通工具如轮胎、轮毂和车盖等都采用 圆形设计,因为这种形状可以减少摩擦和风 阻,提高行驶效率。
管道
在建筑和家庭装修中,圆形管道通常被用来 连接水管、电线和暖气管道等,因为这种形 状可以保证液体或气体流畅地流动,减少堵 塞和磨损。
艺术中的圆的应用
雕塑
许多雕塑作品如球体、花瓶和头 像等都采用圆形设计,因为这种 形状可以增强作品的美感和立体
对未来进一步学习和研究圆的展望
01
深入研究圆的性质
进一步学习和研究圆的性质, 包括圆与其他图形的联系和区 别,以及圆在各种不同情况下 的表现。
02
探讨圆的实际应用
通过研究和实践,进一步探索 圆在各个领域中的应用,如建 筑设计、机械设计、包装设计 等。
03
圆的拓展学习
学习与圆有关的其他知识,如 立体几何、解析几何等,以更 全面地了解圆的性质和应用。
平面图形。
圆的相关公式和定理
圆的中心位置由圆心决定,圆心到圆周上任 意一点的距离都相等。圆的面积和周长与半 径有关,半径越大,面积和周长也越大。
圆的性质
包括圆的周长公式(C=2πr)、圆的面积公 式(S=πr²)以及垂径定理、圆周角定理等
。
圆的应用
圆在现实生活中有着广泛的应用,如车轮、 方向盘、钟表等都采用了圆形的形状,因为 它具有旋转不变性和对称性。
04
发展圆的创新应用
通过研究和创新,发展更多具 有创新性和实用性的圆的应用 ,推动科学技术的发展。
感谢您的观看
THANKS
使用铅笔和尺子,从圆心 开始,以确定的半径为长 度,绘制出一条弧线。
完成绘制
在完成绘制后,检查是否 符合所需的形状和大小。
使用代码绘制圆
定义圆心和半径
管道
在建筑和家庭装修中,圆形管道通常被用来 连接水管、电线和暖气管道等,因为这种形 状可以保证液体或气体流畅地流动,减少堵 塞和磨损。
艺术中的圆的应用
雕塑
许多雕塑作品如球体、花瓶和头 像等都采用圆形设计,因为这种 形状可以增强作品的美感和立体
对未来进一步学习和研究圆的展望
01
深入研究圆的性质
进一步学习和研究圆的性质, 包括圆与其他图形的联系和区 别,以及圆在各种不同情况下 的表现。
02
探讨圆的实际应用
通过研究和实践,进一步探索 圆在各个领域中的应用,如建 筑设计、机械设计、包装设计 等。
03
圆的拓展学习
学习与圆有关的其他知识,如 立体几何、解析几何等,以更 全面地了解圆的性质和应用。
平面图形。
圆的相关公式和定理
圆的中心位置由圆心决定,圆心到圆周上任 意一点的距离都相等。圆的面积和周长与半 径有关,半径越大,面积和周长也越大。
圆的性质
包括圆的周长公式(C=2πr)、圆的面积公 式(S=πr²)以及垂径定理、圆周角定理等
。
圆的应用
圆在现实生活中有着广泛的应用,如车轮、 方向盘、钟表等都采用了圆形的形状,因为 它具有旋转不变性和对称性。
04
发展圆的创新应用
通过研究和创新,发展更多具 有创新性和实用性的圆的应用 ,推动科学技术的发展。
感谢您的观看
THANKS
使用铅笔和尺子,从圆心 开始,以确定的半径为长 度,绘制出一条弧线。
完成绘制
在完成绘制后,检查是否 符合所需的形状和大小。
使用代码绘制圆
定义圆心和半径
《圆的认识》-课件
2.请同学们用直尺量一量画出的半径有多少 厘米?你发现了什么?直径呢?
3.请分四人小组讨论: 在同一个圆里,半径有什么特征?直径有什么 特征?它们之间有什么关系?
想一想
想一想
直径 d
新发现
直径 d
在d度同=与一2半个r径圆有里或什,么直关r径=系的?长d2
儿歌
半径r直径d, 圆心o是要牢记, 直径d=2r 半径r=d∕2,
你能用圆的知识解释下列现象吗?
人们在围观时,为什么 会自然地围成圆形呢?
井盖为什么是 圆的呢? 返 回
谢谢
d=6.4cm
r= 3.2cm
d=3.8dm r=1.9dm
d=2.5m r=1.25m
在边长为2厘米的正 方形里画出一个最大 的圆,可以怎样确定 它的圆心和半径?快 试一试吧!
返回
学校田径运动会即将举行,你有办法 帮学校在操场上画出一个半径为10米的 圆吗?
为什么车轮都要做成圆 的?车轴要装在哪里?
激趣引入 探究新知 实践应用
猜一猜:即将出来的会是什么图形?
猜一猜:即将出来的会是什么图形?
你有办法在纸上 画一个圆吗?
圆是一种由曲线围成的平面图形。
。
你能找出哪些圆?
返回
小知识
圆是一种简单实际却很神奇的图形。古代 人最早是从太阳、阴历十五的月亮得到圆 的概念。约一万八千年前的山顶洞人打的 孔是圆的,他们还发现圆圆的木头可以滚 动,搬动重物时可以省力,大约六千年前, 美索不达米亚人制成了第一个轮子,大约 四千年前,人们发明了车子。古埃及人认 为圆是神赐予的。我国古代伟大的思想家 墨子在描述圆时说到“一中同长也”。
直径d 半径r
填一填
1 2
3
3.请分四人小组讨论: 在同一个圆里,半径有什么特征?直径有什么 特征?它们之间有什么关系?
想一想
想一想
直径 d
新发现
直径 d
在d度同=与一2半个r径圆有里或什,么直关r径=系的?长d2
儿歌
半径r直径d, 圆心o是要牢记, 直径d=2r 半径r=d∕2,
你能用圆的知识解释下列现象吗?
人们在围观时,为什么 会自然地围成圆形呢?
井盖为什么是 圆的呢? 返 回
谢谢
d=6.4cm
r= 3.2cm
d=3.8dm r=1.9dm
d=2.5m r=1.25m
在边长为2厘米的正 方形里画出一个最大 的圆,可以怎样确定 它的圆心和半径?快 试一试吧!
返回
学校田径运动会即将举行,你有办法 帮学校在操场上画出一个半径为10米的 圆吗?
为什么车轮都要做成圆 的?车轴要装在哪里?
激趣引入 探究新知 实践应用
猜一猜:即将出来的会是什么图形?
猜一猜:即将出来的会是什么图形?
你有办法在纸上 画一个圆吗?
圆是一种由曲线围成的平面图形。
。
你能找出哪些圆?
返回
小知识
圆是一种简单实际却很神奇的图形。古代 人最早是从太阳、阴历十五的月亮得到圆 的概念。约一万八千年前的山顶洞人打的 孔是圆的,他们还发现圆圆的木头可以滚 动,搬动重物时可以省力,大约六千年前, 美索不达米亚人制成了第一个轮子,大约 四千年前,人们发明了车子。古埃及人认 为圆是神赐予的。我国古代伟大的思想家 墨子在描述圆时说到“一中同长也”。
直径d 半径r
填一填
1 2
3
圆的认识(全单元)PPT课件
题目中都告诉了 我们什么?
讨论:
·r=1m
(1)正方形与圆之间部分的面积 是哪一部分?
(2)怎样计算阴影部分的面积?
正方形的面积-圆的面积=正方形与圆之间
部分的面积 正方形与圆之间部分 的面积是阴影部分的 面积。
也就是正方形比 圆多的面积。
.
108
r=1m
观察图形,说说你的想法。
圆的面积-正方形的面积=正方形与圆之间
三角形
长方形
梯形
正方形
平行四边形
由线段围成的平面图形
圆是平面上的一种曲线图形。 圆
圆的 认识
连接圆心和圆上任意一点的线段叫做半径
圆心 O 半径r 直径d
经过圆心并且两端都在圆上的线段叫做直径
.
7
同. 圆. 内. ,半径有无数条,长度都相等。
.
8
直径 d
同. 圆. 内. ,直径有无数条,长度都相等。
圆环,内圆
半径是2cm,
6cm
外圆半径是
6cm。圆圆环环面积= 外圆面积-内圆面积 的面积是多
少?
.
91
方法一
方法二
3.14×62 3=.134.1×42×236 3=.1141×3.404 –
3.14×(62 – 22) = 3.14×(36 – 4) = 3.14×32
1=21.5060.48 (cm2)
长是多少呢? 高是1m 。
.
上一页 下一页 43主页
圆的面积推导(转化思想)
.
44
.
45
.
46
.
47
.
48
.
49
.
50
.
51
《圆的认识》公开课课件
与圆相关的数学问题挑战与探讨
复杂几何图形中的圆
探讨圆与其他几何图形(如三角形、矩形等)的组合问题,求解面 积、周长等。
圆的动态变化
研究圆的半径、位置等参数变化时,圆的性质如何变化。
圆的高级应用
介绍圆在高等数学、物理学等领域的应用,如圆周运动、复平面上的 圆等。
THANKS
谢谢
单位圆法
以坐标原点O为圆心,1为半径作单 位圆,利用三角函数在单位圆上的 性质表示任意角,从而画出对应的 图形。
03
CHAPTER
圆的性质定理与证明
切线长定理及其证明
切线长定理
从圆外一点引圆的两条切线,它们的切线长相等。
证明方法
通过连接圆心和切点,利用切线性质和相似三角形性质进行证明。
切线性质定理及其证明
弦切角推论
如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
与圆相关的线段性质
切线性质
圆的切线垂直于经过切点的半径 。
切线长定理
从圆外一点引圆的两条切线,它 们的切线长相等,圆心和这一点
的连线平分两条切线的夹角。
割线性质
从圆外一点引圆的两条割线,这 一点到每条割线与圆的交点的两
条线段长的积相等。
05
CHAPTER
与圆相关的图形变换与计算
圆的平移与旋转
平移定义
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形 运动称为平移。
旋转定义
在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形运 动称为旋转。
圆的平移与旋转特性
圆在平移和旋转过程中,其形状和大小均不发生改变,仅位置和方 向发生变化。
圆的参数方程
01
定义
圆的参数方程是{x=a+r*cosθ, y=b+r*sinθ},其中θ为参数,表示圆上
圆的认识ppt课件
叫做半径,一般用字母r表示。
半径的长度就是圆规两个脚之间的距离。
学习题卡:
1.在学习单上用圆规随意画1个圆,并标出圆心O、半径r。 2.将你们用圆规画出的圆放在一起,在小组内进行对比观察, 看看你有什么发现?
我发现:圆心决定圆的位置,半径决定圆的大小。
学习题卡:
1.在学习单上画一个半径是4cm的圆,并标出圆心O、半径r。
(1)在圆中用O 表示( 圆心 ),用r表示( 半径 ),用
d表示( 直径 )。
(2)画圆时圆规两脚分开的距离是( 半径 ),针尖 一脚固定的一点是( 圆心 )。
(3)直径和半径的关系是(
d=2r 或者
r= d 2
)。
火眼金睛
对的打“√” 错的打“×” Nhomakorabea(1)半径是射线,直径是直线。( × )
(2)圆的直径都相等。( × )
没有规矩, 不成方圆。
——孟子
作业套餐:
1.用圆规画半径是3cm的圆,并标出圆心,半径及直径。 数学书第60页练习十三第2题。
2.用圆规画半径是5cm的圆,并标出圆心,半径及直径。 数学书第60页练习十三第4题。
3.用圆规画半径是3.5cm的圆,并标出圆心,半径及直径。 数学书第61页第7题、第9题。
2.在这个圆中,随意画几条线段,并且尝试从中找到最长的线 段,想想他有什么特点?
1
5
直22径
4
3
在圆内的线段中,( 2 直)号径线段最长。
通过圆心并且两端都在圆上的线段 叫做直径,一般用字母d表示。
直径的长度是半径的2倍 d=2r r=—d2—
练习:
如果让你画一个直径是8厘米的圆,怎么画?
小试牛刀
(3)直径是圆内最长的线段。( √ )
半径的长度就是圆规两个脚之间的距离。
学习题卡:
1.在学习单上用圆规随意画1个圆,并标出圆心O、半径r。 2.将你们用圆规画出的圆放在一起,在小组内进行对比观察, 看看你有什么发现?
我发现:圆心决定圆的位置,半径决定圆的大小。
学习题卡:
1.在学习单上画一个半径是4cm的圆,并标出圆心O、半径r。
(1)在圆中用O 表示( 圆心 ),用r表示( 半径 ),用
d表示( 直径 )。
(2)画圆时圆规两脚分开的距离是( 半径 ),针尖 一脚固定的一点是( 圆心 )。
(3)直径和半径的关系是(
d=2r 或者
r= d 2
)。
火眼金睛
对的打“√” 错的打“×” Nhomakorabea(1)半径是射线,直径是直线。( × )
(2)圆的直径都相等。( × )
没有规矩, 不成方圆。
——孟子
作业套餐:
1.用圆规画半径是3cm的圆,并标出圆心,半径及直径。 数学书第60页练习十三第2题。
2.用圆规画半径是5cm的圆,并标出圆心,半径及直径。 数学书第60页练习十三第4题。
3.用圆规画半径是3.5cm的圆,并标出圆心,半径及直径。 数学书第61页第7题、第9题。
2.在这个圆中,随意画几条线段,并且尝试从中找到最长的线 段,想想他有什么特点?
1
5
直22径
4
3
在圆内的线段中,( 2 直)号径线段最长。
通过圆心并且两端都在圆上的线段 叫做直径,一般用字母d表示。
直径的长度是半径的2倍 d=2r r=—d2—
练习:
如果让你画一个直径是8厘米的圆,怎么画?
小试牛刀
(3)直径是圆内最长的线段。( √ )
(完整版)圆的认识 课件PPT
圆心决定圆的位置。 半径决定圆的大小。
考考你:
判断: ((12) )在 圆同 有圆 无中 数, 条对半称径轴是。2厘(米,)直径是4厘米。(√) (3)画圆时,圆心决定圆的位√置。( ) (4)要画直径是4厘米的圆,圆规两脚√间的距离是4
厘米。( )
×
同学们再见!
(1)在同一个圆里可以画多少条半径,它们的长度 都相等吗?
(2)在同一个圆里可以画多少条直径,它们的长度 都相等吗?
(3)同一个圆里的直径和半径有什么关系? (4)圆是轴对称图形吗?它有几条对称轴?
r
• o
同圆内,半径有无数条,长度都相等。
• o
d
同圆内,直径有无数条,长度都相等。
r
r •d o r
圆的认识
认识圆心
圆心 •o
用圆规画圆时,针尖所在的点叫做圆心。
认识圆内、圆上、圆外
圆内•o
圆• 上
圆外
认识半径
半径
•
•
r
连接圆心和圆上任意一点的线段叫半径。
认识直径
•
d
• 直径
• 通过圆心并且两端都在圆上的线不是, 为什么?
o
动手折一折,画一画,量一量,比一 比,探索圆的奥秘。
r
r
d=r+r
• do
d=2
r
r
rd= 2
在同一个圆里,直径长度是半径长度的2 倍,半径长度是直径长度的一半。
在同圆或等圆中,直径长度是半径长度的 2倍,半径长度是直径长度的一半。
(4)圆是轴对称图形吗?它有几条对称轴?
圆是轴对称图形,它有无 数条对称轴,对称轴是每条
直径所在的直线。
圆的中心位置是由什么决定的?圆的大小与 什么有关?
考考你:
判断: ((12) )在 圆同 有圆 无中 数, 条对半称径轴是。2厘(米,)直径是4厘米。(√) (3)画圆时,圆心决定圆的位√置。( ) (4)要画直径是4厘米的圆,圆规两脚√间的距离是4
厘米。( )
×
同学们再见!
(1)在同一个圆里可以画多少条半径,它们的长度 都相等吗?
(2)在同一个圆里可以画多少条直径,它们的长度 都相等吗?
(3)同一个圆里的直径和半径有什么关系? (4)圆是轴对称图形吗?它有几条对称轴?
r
• o
同圆内,半径有无数条,长度都相等。
• o
d
同圆内,直径有无数条,长度都相等。
r
r •d o r
圆的认识
认识圆心
圆心 •o
用圆规画圆时,针尖所在的点叫做圆心。
认识圆内、圆上、圆外
圆内•o
圆• 上
圆外
认识半径
半径
•
•
r
连接圆心和圆上任意一点的线段叫半径。
认识直径
•
d
• 直径
• 通过圆心并且两端都在圆上的线不是, 为什么?
o
动手折一折,画一画,量一量,比一 比,探索圆的奥秘。
r
r
d=r+r
• do
d=2
r
r
rd= 2
在同一个圆里,直径长度是半径长度的2 倍,半径长度是直径长度的一半。
在同圆或等圆中,直径长度是半径长度的 2倍,半径长度是直径长度的一半。
(4)圆是轴对称图形吗?它有几条对称轴?
圆是轴对称图形,它有无 数条对称轴,对称轴是每条
直径所在的直线。
圆的中心位置是由什么决定的?圆的大小与 什么有关?
《圆的认识》课件
请找出下面各图的对称轴,与同伴进行交流。
4条
4条
6条
6条
1 下面的图形是轴对称图形吗?画出轴对称图形的2 条对称轴。
画法 不唯一
画法 不唯一
画法 不唯一
2 小组合作,量一量,填一填。
⑴1元硬币的直径是 25 mm。 ⑵1角硬币的直径是 19 mm。 ⑶5角硬币的直径是 20.5 mm。
3 图中圆的位置发生了什么变化?
这节课你们都学会了哪些知识?
1.圆是轴对称图形,有无数条对称轴。 2.通过对折可以找到圆的圆心。
这节课你们都学会了哪些知识?
3. 圆和正多边形组成的组合图形,如果 圆心和正多边形的中心重合,那么正多边 形的所有对称轴都是组合图形的对称轴。
1 判断。
1.通过一个圆的圆心的直线是这个圆的对称轴。
(√ )
《圆的认识》
折一折
圆是轴对称图形。
沿任意一条直径 对折,都能完全 重合。
画一画,圆的对称轴是什么?圆有多少 条对称轴?
圆有无数条对称轴。
我们学过的图形中哪些是轴对称图形?分别 有几条对称轴?
图形 名称
有几 条对 称轴
我们学过的图形中哪些是轴对称图形?分别 有几条对称轴?
图形 名称
正方形
长方形
⑴从位置A向 右 平移 4 个方格到位置B,再 向 右 平移 6 个方格到位置C。
3 图中圆的位置发生了什么变化?
⑵从位置C向 下 平移 3 个方格到位置D,再 向 左平移 2个方格到位置E。
3 图中圆的位置发生了什么变化?
⑶从位置A到位置F,可以怎样平移?
从位置A向右平移8格,再向下平移 2格到位置F。(答案不唯一)
2.圆是轴对称图形,每一条直径都是它的对称轴。 (X )
5.1《圆的认识》课件(21张PPT)
有了轮子, 运输胡萝卜 真省力呀!
课堂总结
这节课我们学习了什么?通过这节课的学习,你有什么收获?
填一填。
(1)在一圆中,半径有(无数)条,直径有(无数 )条,直径的长度是
半径的( 2倍 ),半径的长度是直径的( 一半)。 (2)圆的位置由( 圆心)决定,圆的( 大小)由半径决定。 (3)填表。(单位:cm)
(1)小圆的直径是多少厘米? 15÷(2+1)=5(cm) 答:小圆的直径是5 cm。
(2)长方形的面积是多少平方厘米? 5×2=10(cm) 15×10=150(cm2) 答:长方形的面积是150 cm2。
布置作业
(1)教材58页“做一做”1、2题。 (2)教材60页1、2题。
5.1《圆的认识》
圆在生活中随处可见,让我们一起来欣赏一下吧!
定半径
定圆心
旋转一周
圆心 O
圆心到圆上任意一点的距离都相等。
连接圆心和圆上任意一点的线段叫做半径, 半径一般用字母r表示。
圆心 半径r O
在同一圆里有无数条半径,所有半径的长度相等。 `
圆心 O 直径d
通过圆心,两端点在圆上,长度相等。
r
6
2.8
5.6
12.5
d
12
0.39
0.78
25
判一判。(对的画“√”,错的画“×”)
(1) 圆 的 半 径 和 直 径 分 别 相 等 。
(2)两端都在圆上的线段就是直径。
× (× ) ()
看图填空。 (1)圆的直径是(3 cm ),圆的半径是1(.5 cm )。
(2)半圆的半径是(5 cm ),半圆的直径是(10 cm )。 (3)长方形的长是(8 cm ),长方形的宽是(4 cm )。
课堂总结
这节课我们学习了什么?通过这节课的学习,你有什么收获?
填一填。
(1)在一圆中,半径有(无数)条,直径有(无数 )条,直径的长度是
半径的( 2倍 ),半径的长度是直径的( 一半)。 (2)圆的位置由( 圆心)决定,圆的( 大小)由半径决定。 (3)填表。(单位:cm)
(1)小圆的直径是多少厘米? 15÷(2+1)=5(cm) 答:小圆的直径是5 cm。
(2)长方形的面积是多少平方厘米? 5×2=10(cm) 15×10=150(cm2) 答:长方形的面积是150 cm2。
布置作业
(1)教材58页“做一做”1、2题。 (2)教材60页1、2题。
5.1《圆的认识》
圆在生活中随处可见,让我们一起来欣赏一下吧!
定半径
定圆心
旋转一周
圆心 O
圆心到圆上任意一点的距离都相等。
连接圆心和圆上任意一点的线段叫做半径, 半径一般用字母r表示。
圆心 半径r O
在同一圆里有无数条半径,所有半径的长度相等。 `
圆心 O 直径d
通过圆心,两端点在圆上,长度相等。
r
6
2.8
5.6
12.5
d
12
0.39
0.78
25
判一判。(对的画“√”,错的画“×”)
(1) 圆 的 半 径 和 直 径 分 别 相 等 。
(2)两端都在圆上的线段就是直径。
× (× ) ()
看图填空。 (1)圆的直径是(3 cm ),圆的半径是1(.5 cm )。
(2)半圆的半径是(5 cm ),半圆的直径是(10 cm )。 (3)长方形的长是(8 cm ),长方形的宽是(4 cm )。
圆的认识数学PPT课件
结论总结
O
所有的折痕会相交与一个点,这个点叫圆心。
结论总结
O r
连接圆心和圆上任意一点的线段叫做半径。
结论总结
d O r
通过圆心并且两端都在圆上的线段叫做直径。
讨论分析
我们该怎样来画一个半径是2厘米的圆呢?
结论总结
一、定长(半径) 二、定点(圆心) 三、一只脚旋转一周
2厘米
0 1 2 3 4 5 67 8
讨论分析
在同一个圆里,有( 无数 )条半径,它们的长度(都相等 )。
讨论分析
在同一个圆里,有 ( 无数 )条直径,它们的长度( 都相等 )。
讨论分析
d r
o•
r
看图分析直径与半径的关系。
d=r+r
d=2r
在同一个圆里,直径是半径的2倍,半径是直径的一半。
Hale Waihona Puke 问题引入怎样用圆规和直尺画出这个漂亮 的图形呢?
部编版六年级上册数学课件
第5单元 圆
5.1 圆的认识
温故知新
说出你认识的图形
正方形
长方形
三角形
平行四边形
梯形
情景引入
从图中你能找出什么图形?
圆
过程探索
你能在纸上画一个圆吗?
我想画一个比三角尺上的 圆大的或小的圆,该怎么 办?
过程探索
过程探索
用剪刀沿线 剪下画出的 圆,折一折。
请同学们说一说什么叫 圆心,半径,直径
经典例题
正确解答:
找一根6m长的绳子,先固定一端为圆心,将绳子拉直绕一周,就可形成 一个直径是12m的圆。
课堂回顾
1.连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。通过圆心,并且 两端都在圆上的线段叫做直径,一般用字母d表示。
《认识圆》课件
算。
圆在计算机图形学中也有重要应 用,例如绘制圆形、圆形渐变等
都需要用到圆的性质。
圆在经济学、统计学等其他学科 中也有一定的应用,例如在分析 数据时可以用圆来表示数据的集
中趋势和离散程度。
THANKS
感谢观看
03
圆的面积与周长
圆的面积计算公式
总结词
圆的面积计算公式是圆的半径的平方与π 的乘积。
VS
详细描述
圆的面积计算公式为A=πr^2,其中A表 示圆的面积,r表示圆的半径,π是一个常 数,约等于3.14159。这个公式是圆的面 积计算的基础,通过它可以将圆的半径或 直径与面积联系起来。
圆的周长计算公式
圆上所有点到定点距离等于定长
在一个平面内,有一个固定的距离(半径),到 这个平面内所有点的距离都等于这个定长,这个 图形就是圆。
圆的性质
圆心与半径唯一确定一个圆
一个圆的圆心和半径是唯一的,不同的圆有不同的圆心和半径。
直径是半径的两倍
在一个圆中,直径的长度是半径的两倍。
圆心角与弧的关系
在同一个圆或等圆中,相等的圆心角所对的弧相等。
圆的分类
01
02
03
按照半径长度分类
按照半径的长度,可以将 圆分为大圆和小圆。
按照圆心位置分类
按照圆心的位置,可以将 圆分为同心圆、同轴圆和 同径圆。
按照形状分类
按照形状,可以将圆分为 正圆、椭圆和不规则圆等 。
02
圆的性质与定理
圆周角定理
总结词
圆周角定理是圆的基本性质之一,它描述了圆周角与其所夹弧之间的关系。
圆在数学中的运用
总结词
圆是数学中一个非常重要的概念,它 在几何学、解析几何和微积分等领域 都有广泛的应用。
圆在计算机图形学中也有重要应 用,例如绘制圆形、圆形渐变等
都需要用到圆的性质。
圆在经济学、统计学等其他学科 中也有一定的应用,例如在分析 数据时可以用圆来表示数据的集
中趋势和离散程度。
THANKS
感谢观看
03
圆的面积与周长
圆的面积计算公式
总结词
圆的面积计算公式是圆的半径的平方与π 的乘积。
VS
详细描述
圆的面积计算公式为A=πr^2,其中A表 示圆的面积,r表示圆的半径,π是一个常 数,约等于3.14159。这个公式是圆的面 积计算的基础,通过它可以将圆的半径或 直径与面积联系起来。
圆的周长计算公式
圆上所有点到定点距离等于定长
在一个平面内,有一个固定的距离(半径),到 这个平面内所有点的距离都等于这个定长,这个 图形就是圆。
圆的性质
圆心与半径唯一确定一个圆
一个圆的圆心和半径是唯一的,不同的圆有不同的圆心和半径。
直径是半径的两倍
在一个圆中,直径的长度是半径的两倍。
圆心角与弧的关系
在同一个圆或等圆中,相等的圆心角所对的弧相等。
圆的分类
01
02
03
按照半径长度分类
按照半径的长度,可以将 圆分为大圆和小圆。
按照圆心位置分类
按照圆心的位置,可以将 圆分为同心圆、同轴圆和 同径圆。
按照形状分类
按照形状,可以将圆分为 正圆、椭圆和不规则圆等 。
02
圆的性质与定理
圆周角定理
总结词
圆周角定理是圆的基本性质之一,它描述了圆周角与其所夹弧之间的关系。
圆在数学中的运用
总结词
圆是数学中一个非常重要的概念,它 在几何学、解析几何和微积分等领域 都有广泛的应用。
《圆的认识》圆PPT优秀教学课件
04
圆的综合应用举例
求解切线方程问题
切线定义及性质
典型例题解析
回顾切线定义,阐述切线与半径垂直 的性质。
选取具有代表性的切线方程问题,详 细解析求解过程。
切线方程求解方法
通过圆心坐标和切线斜率,利用点斜 式或斜截式求解切线方程。
求解切线长问题
切线长定义及性质
回顾切线长定义,阐述切线与半 径、切线长与弦长的关系。
圆心、半径和直径
01
02
03
圆心
圆的中心,用字母O表示。
半径
连接圆心和圆上任意一点 的线段,用字母r表示。
直径
通过圆心且两端点都在圆 上的线段,用字母d表示, 且d=2r。
圆的周长与面积
圆的周长
围绕圆形绘制的线的长度,计算公 式为C=2πr或C=πd。
圆的面积
圆形所占平面的大小,计算公式为 S=πr²。
半径
03
一般方程中,半径$r=frac{sqrt{D^{2}+E^{2}-4F}}{2}$。
圆的参数方程
01 02
定义
以点$O(a,b)$为圆心,$r$为半径的圆的参数方程为 $left{ begin{array}{l} x=a+rcostheta y=b+rsintheta end{array} right.$,其中$theta$为参数。
求解割线性质问题
割线性质概述
总结割线的性质,如割 线与半径的关系、割线 定理等。
割线性质应用
利用割线性质解决与圆 相关的角度、长度等问 题。
典型例题解析
选取具有代表性的割线 性质问题,详细解析求 解过程。
05
与圆相关的数学问题拓展
点到直线距离公式推导及应用
人教版六年级上册数学5.1《圆的认识》 课件(共24张PPT)(2024年)
都相等 都相等
d=2r
r=½ d
小组合作探究
2024/年111/12月2日10时2分
折一折,你有什么发现
直径 d
新发现
2024年11月2日10时2分
直径 d
在d度同=与一2半个r径圆有里或什,么直关r径=系的?长d2
(1)圆的位置与 什么有关系?
(2)圆的大小与 什么有关系?
2厘米
2024年11月2日10时2分
d=6.4cm r=3.2cm
d=3.8dm r=1.9dm
d=5m r=2.5m
填一填
1 2
3
2024年11月2日10时2分
(1)( 2 )号线段表示直径。 (2)( 3 )号线段表示半径。 (3)两端都在圆上的线段中,
(直径)最长。
2、 选择题:
(1)画圆时,圆规两脚间的距离是( A )。
A.半径长度 B.直径长度
我们从周围的事物中发现了圆,了解、掌 握了圆的特点,知道在日常生活中如何利 用圆。在宇宙中圆无处不在,圆的许多秘 密人们还没有发现。同学们要努力探索圆,日10时2分
你有什么收获?本节课的学习目标 你实现了吗?
直径 d
2024年11月2日10时2分
2024/年111/12月2日10时2分
学习目标:
1、通过观察实物图,认识圆的各部分名 称,体会半径、直径的特征以及他们之 间的关系。
2、学会用圆规画圆,初步直观感知圆 的曲线特征。
3、体会数学与生活密切联系,能用圆的 知识解决生活中的简单现象。
2024年11月2日10时2分
2024年11月2日10时2分
认一认
2024年11月2日10时2分
我们把圆中心的这一点叫做圆心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校田径运动会即将举行,你有办法 帮学校在操场上画出一个半径为10米的 圆吗?
1 、判断:
(1)在同一个圆内只可以画100条直径。 ( × ) (2)所有的圆的直径都相等。 (
× )
(3)两端都在圆上的线段叫做直径。 ( × ) (4)等圆的半径都相等。 (
√
)
·
O
·
O
等圆的半径(相等),直径( 相等).
0.8
6
圆的画法:
定半径
定圆心
旋转一周
1、把圆规的两脚分开,定好两脚间的距离
(即半径)。 2、把有针尖的一只脚固定在一点(即圆心)上 3、把装有铅笔尖的一只脚旋转一周,
就画出一个圆。
1、用圆规画出半径是2厘米的一个圆,并用字母 O、r、d分别标出它的圆心、半径、和直径。 2、画出直径是4厘米的一个圆。
执教人:余庆县天湖小学 李 彩 霞
讨论: 1、车轮为什么做成圆形的,车轴应安装 在哪里? 2、如果车轮做成正方形的、三角形的, 我们坐上去会是什么感觉呢?
一切平面图形中最美的是圆。
——毕达哥拉斯
(1) (2) (3)
图中哪些是半径?哪些是直径?哪些不 是,为什么?
G
2、 选择题:
(1)画圆时,圆规两脚间的距离是( A )。
A.半径长度
(2)从圆心到( A.圆心
B.直径长度
C )任意一点的线段,叫半径。 B.圆外 C.圆上
(3)通过圆心并且两端都在圆上的( B )叫直径。 A.直径 B.线段 C.射线
画出各种大小、不同颜色的
圆,组合出一幅美丽的图画。
看图回答:
E C M o F B D N H
小组合作探究要求:
以四人为单位,动手折一折、量一 量、比一比、画一画,你一定会有新的发 现!
长方形
正方形
平行四边形
梯形
三角形
直线图形 圆是曲线围成的封闭图形。
圆
圆,一中同长也。
— —墨子
圆心
O
圆中心的这一点叫做圆心。
圆心
连接圆心和圆上任意一点的线段叫做半径。
•
o
在同一个圆里,有( 无数 )条半径,它们的长度都( 相等 )
•
oHale Waihona Puke 在同一个圆里,有( 无数 )条直径,它们的长度都( 相等 )
r
d o
•
r
r
d
r
•
r o
r d o
•
r
r
r
d•
o
r
d=r+r
d=2r
d r= 2
在同一个圆里,直径是半径的2倍,半径是直径的一半.
r
(米)
2
1.4
5
d
(米)
等圆的半径和直径有什么关系?
o
o
等圆里
所有半径都相等。
所有直径都相等。
5厘米
h a
4厘米
正方形边长=
30厘米
3厘米
圆的直径=
小圆直径=
长方形的宽=
小圆半径=
圆的认识
直径 d
O 圆心
·
半径 r
·
同圆内,半径有无数条,长度都相等。 同圆内,直径有无数条,长度都相等。
同圆内,半径的长度是直径的一半,或者说直径是半径的2倍。
我们从周围的事物中发现了圆,了解、掌 握了圆的特点,知道在日常生活中如何利 用圆。在宇宙中圆无处不在,圆的许多秘 密人们还没有发现。同学们要努力探索圆, 为科技进步作出你们的贡献!
直径 d
通过圆心并且两端都在圆上的线段叫做直径。
(1) (2) (3)
图中哪些是半径?哪些是直径?哪些不是,为什么?
G
E C M o F B D N H
一起动手:
1.请同学们在圆纸片上画出半径,10秒钟,看 能画出多少条?直径呢? 2.请同学们用直尺量一量画出的半径有多少 厘米?你发现了什么?直径呢? 3.请分四人小组讨论: 在同一个圆里,半径有什么特征?直径有什么 特征?它们之间有什么关系?