气动执行器结构及原理
气动执行器原理及结构
气动执行机构原理及结构检修岗位1.懂工作原理气动执行机构接受气动控制器或阀门定位器输出的气压信号,并将其转换成相应的推杆直线位移,以推动调节阀动作。
2.懂设备机构气动执行机构主要有两种类型:薄膜式与活塞式。
薄膜式执行机构简单、动作可靠、维修方便、价格低廉,是最常用的一种执行机构;活塞式执行机构允许操作压力可达500kpa,因此输出推力大,但价格较高。
气动执行机构又可分为有弹簧和无弹簧两种,有弹簧的气动执行机构较之无弹簧的气动执行机构输出推力小、价格低。
气动执行机构有正作用和反作用两种形式。
当信号压力增加时推杆向下动作的叫正作用式执行机构;信号压力增加时推杆向上动作的叫反作用式执行机构气动薄膜执行机构使用弹性膜片将输入气压转变为推杆的推力,通过推杆使阀芯产生相应的位移,改变阀的开度,气动活塞式执行机构以汽缸内的活塞输出推力,由于汽缸允许压力较高,可获得较大的推力,并容易制成长行程执行机构。
一个典型的气动薄膜型执行机构主要由弹性薄膜、压缩弹簧和推杆组成。
2.1图为薄膜气动阀结构示意图当信号压力P进入气室时,此时压力乘以膜片的有效面积得到推力,使推杆移动,弹簧受压,直到弹簧产生的反作用力与薄膜上的推力平衡为止。
信号压力越大,推力越大,推杆的位移计弹簧的压缩量也越大。
推杆的位移范围就是执行机构的行程。
推杆则从零走到全行程,阀门就从全开(或全关)到全关(或全开)。
一般控制气源的装置有电磁阀,全开或全关,定位器能实现调节作用。
气动活塞式执行机构气动活塞式执行机构,其基本部分为气缸,气缸内活塞随气缸两侧压差而移动。
两侧可以分别输入一个固定信号和一个变动信号,或两侧都输入变动信号。
它的输出特性有比例式及两位式两种。
两位式是根据输入执行机构活塞两侧的操作压力的大小,活塞从高压侧推向低压侧,使推杆从一个极端位置移到另一极端位置。
比例式是在两位式基础上加有阀门定位器后,使推杆位移与信号压力成比例关系。
此外,还有一种长行程执行机构,其结构原理与活塞式执行机构基本相同,它具有行程长、输出力矩大的特点,输出转角位移为90o,直线位移为40~200mm,适用于输出角位移和力矩的场合。
气动执行器结构及原理
气动执行器结构及原理 The final edition was revised on December 14th, 2020.气缸结构与原理学习气动执行机构气动执行机构俗称又称气动执行器(英文:Pneumatic actuator )按其能源形式分为气动,电动和液动三大类,它们各有特点,适用于不同的场合。
气动执行器是执行器中的一种类别。
气动执行器还可以分为单作用和双作用两种类型:执行器的开关动作都通过气源来驱动执行,叫做DOUBLE ACTING (双作用)。
SPRING RETURN (单作用)的开关动作只有开动作是气源驱动,而关动作是弹簧复位。
气动执行机构简介气动执行器的执行机构和调节机构是统一的整体,其执行机构有薄膜式、活塞式、拨叉式和齿轮齿条式。
活塞式行程长,适用于要求有较大推力的场合;而薄膜式行程较小,只能直接带动阀杆。
拨叉式气动执行器具有扭矩大、空间小、扭矩曲线更符合阀门的扭矩曲线等特点,但是不很美观;常用在大扭矩的阀门上。
齿轮齿条式气动执行机构有结构简单,动作平稳可靠,并且安全防爆等优点,在发电厂、化工,炼油等对安全要求较高的生产过程中有广泛的应用。
齿轮齿条式:齿轮齿条:活塞式:气动执行机构的缺点控制精度较低,双作用的气动执行器,断气源后不能回到预设位置。
单作用的气动执行器,断气源后可以依靠弹簧回到预设位置工作原理说明班当压缩空气从A管咀进入时,气体推动双活塞向两端(缸盖端)直线运动,活塞上的齿条带动旋转轴上的齿轮逆时针方向转动90度,阀门即被打开。
此时气动执行阀两端的气体随B管咀排出。
反之,当压缩空气从B官咀进入气动执行器的两端时,气体推动双塞向中间直线运动,活塞上的齿条带动旋转轴上的齿轮顺时针方向转动90度,阀门即被关闭。
此时气动执行器中间的气体随A管咀排出。
以上为标准型的传动原理。
根据用户需求,气动执行器可装置成与标准型相反的传动原理,即选准轴顺时针方向转动为开启阀门,逆时针方向转动为关闭阀门。
拨叉式气动执行器结构原理
拨叉式气动执行器结构原理拨叉式气动执行器是一种常用的气动执行元件,其结构原理是通过气压控制拨叉的运动来实现机械装置的动作。
下面将详细介绍拨叉式气动执行器的结构和工作原理。
一、结构组成拨叉式气动执行器由拨叉、气缸和控制阀组成。
拨叉是执行器的核心部件,通常采用金属材料制成,具有一定的刚性和耐磨性。
气缸则是拨叉的驱动装置,通过控制气缸内的气压来控制拨叉的运动。
控制阀则是调节气体流动的装置,用于控制气缸内气压的变化,从而实现拨叉的运动。
二、工作原理当气缸内无气压时,拨叉处于初始位置。
当控制阀打开时,气体从气源进入气缸,使气缸内部产生一定的气压。
这时,气压作用在拨叉上,使拨叉向前运动,从而改变机械装置的状态。
当控制阀关闭时,气缸内的气压迅速释放,拨叉受到机械弹簧的作用,回到初始位置。
通过控制阀的开关,可以反复控制拨叉的运动,实现机械装置的周期性动作。
三、特点与优势1. 拨叉式气动执行器具有结构简单、体积小、重量轻的特点,方便安装和维护。
2. 气动执行器的驱动力源来自气压,无需外接电源,能够适应恶劣的工作环境。
3. 气动执行器的响应速度快,可靠性高,能够实现快速准确的动作。
4. 气动执行器的控制方式灵活多样,可以通过手动控制、电气控制、自动化控制等方式进行控制。
5. 气动执行器的运行成本低,气源易得,能耗小,具有较高的经济性。
四、应用领域拨叉式气动执行器广泛应用于各个领域的自动化设备中,如机床、包装设备、输送设备、装配线等。
其主要作用是控制和驱动机械装置的运动,实现自动化生产过程中的工序转换、零部件装配、产品检测等功能。
拨叉式气动执行器的快速响应、稳定可靠的特点,使其成为自动化生产中不可或缺的重要元件。
总结:拨叉式气动执行器通过控制气压来实现拨叉的运动,从而改变机械装置的状态。
其结构简单、体积小、重量轻,并具有快速响应、稳定可靠的特点。
拨叉式气动执行器广泛应用于各个领域的自动化设备中,为实现自动化生产提供了重要的驱动装置。
气动执行器结构及原理
气缸结构与原理学习气动执行机构气动执行机构俗称气动头又称气动执行器(英文:Pneumatic actuator )执行器按其能源形式分为气动,电动和液动三大类,它们各有特点,适用于不同的场合。
气动执行器是执行器中的一种类别。
气动执行器还可以分为单作用和双作用两种类型:执行器的开关动作都通过气源来驱动执行,叫做DOUBLE ACTING (双作用)。
SPRING RETURN (单作用)的开关动作只有开动作是气源驱动,而关动作是弹簧复位。
气动执行机构简介气动执行器的执行机构和调节机构是统一的整体,其执行机构有薄膜式、活塞式、拨叉式和齿轮齿条式。
活塞式行程长,适用于要求有较大推力的场合;而薄膜式行程较小,只能直接带动阀杆。
拨叉式气动执行器具有扭矩大、空间小、扭矩曲线更符合阀门的扭矩曲线等特点,但是不很美观;常用在大扭矩的阀门上。
齿轮齿条式气动执行机构有结构简单,动作平稳可靠,并且安全防爆等优点,在发电厂、化工,炼油等对安全要求较高的生产过程中有广泛的应用。
齿轮齿条式:齿轮齿条:活塞式:编辑本段气动执行机构的缺点控制精度较低,双作用的气动执行器,断气源后不能回到预设位置。
单作用的气动执行器,断气源后可以依靠弹簧回到预设位置编辑本段工作原理说明班当压缩空气从A管咀进入气动执行器时,气体推动双活塞向两端(缸盖端)直线运动,活塞上的齿条带动旋转轴上的齿轮逆时针方向转动90度,阀门即被打开。
此时气动执行阀两端的气体随B管咀排出。
反之,当压缩空气从B官咀进入气动执行器的两端时,气体推动双塞向中间直线运动,活塞上的齿条带动旋转轴上的齿轮顺时针方向转动90度,阀门即被关闭。
此时气动执行器中间的气体随A管咀排出。
以上为标准型的传动原理。
根据用户需求,气动执行器可装置成与标准型相反的传动原理,即选准轴顺时针方向转动为开启阀门,逆时针方向转动为关闭阀门。
单作用(弹簧复位型)气动执行器A管咀为进气口,B管咀为排气孔(B管咀应安装消声器)。
气动执行器结构及原理
气缸结构与原理学习气动执行机构气动执行机构俗称又称气动执行器英文:Pneumatic actuator按其能源形式分为气动,电动和液动三大类,它们各有特点,适用于不同的场合;气动执行器是执行器中的一种类别;气动执行器还可以分为单作用和双作用两种类型:执行器的开关动作都通过气源来驱动执行,叫做DOUBLE ACTING 双作用;SPRING RETURN 单作用的开关动作只有开动作是气源驱动,而关动作是弹簧复位;气动执行机构简介气动执行器的执行机构和调节机构是统一的整体,其执行机构有薄膜式、活塞式、拨叉式和齿轮齿条式;活塞式行程长,适用于要求有较大推力的场合;而薄膜式行程较小,只能直接带动阀杆;拨叉式气动执行器具有扭矩大、空间小、扭矩曲线更符合阀门的扭矩曲线等特点,但是不很美观;常用在大扭矩的阀门上;齿轮齿条式气动执行机构有结构简单,动作平稳可靠,并且安全防爆等优点,在发电厂、化工,炼油等对安全要求较高的生产过程中有广泛的应用;齿轮齿条式:齿轮齿条:活塞式:气动执行机构的缺点控制精度较低,双作用的气动执行器,断气源后不能回到预设位置;单作用的气动执行器,断气源后可以依靠弹簧回到预设位置工作原理说明班当压缩空气从A管咀进入时,气体推动双活塞向两端缸盖端直线运动,活塞上的齿条带动旋转轴上的齿轮逆时针方向转动90度,阀门即被打开;此时气动执行阀两端的气体随B管咀排出;反之,当压缩空气从B官咀进入气动执行器的两端时,气体推动双塞向中间直线运动,活塞上的齿条带动旋转轴上的齿轮顺时针方向转动90度,阀门即被关闭;此时气动执行器中间的气体随A管咀排出;以上为标准型的传动原理;根据用户需求,气动执行器可装置成与标准型相反的传动原理,即选准轴顺时针方向转动为开启阀门,逆时针方向转动为关闭阀门;单作用弹簧复位型气动执行器A管咀为进气口,B管咀为排气孔B管咀应安装消声器;A管咀进气为开启阀门,断气时靠弹簧力关闭阀门;特点紧凑的双活塞齿轮,齿条式结构,啮合精确,效率高,输出扭矩恒定;铝制缸体、活塞及端盖,与同规格结构的执行器相比重量最轻;缸体为挤压铝合金,并经硬质阳极氧化处理,内表面质地坚硬,强度,硬度高;采用低摩擦材料制成的滑动轴承,避免了金属间的相互直接接触,摩擦系数低,转动灵活,使用寿命长;气动执行器与安装、连接尺寸根据国际标准ISO5211、DIN3337和VDI/VDE3845进行设计,可与普通气动执行器互换;气源孔符合NAMUR 标准;气动执行器底部轴装配孔符合ISO5211标准成双四方形,便于带方杆的阀线性或45°转角安装;输出轴的顶部和顶部的孔符合NAMUR 标准;两端的调整螺钉可调整阀门的开启角度;相同规格的有双作用式、单作用式弹簧复位;可根据阀门需要选择方向,顺时针或逆时针旋转;根据用户需要安装、定位器开度指示、回信器、各种限位开关及手动操作装置;气动执行器分类执行器按其能源形式分为气动,电动和液动三大类,它们各有特点,适用于不同的场合;气动执行器是执行器中的一种类别;气动执行器还可以分为单作用和双作用两种类型:执行器的开关动作都通过气源来驱动执行,叫做DOUBLE ACTING 双作用;SPRING RETURN 单作用的开关动作只有开动作是气源驱动,而关动作时弹簧复位;1气动执行器的选型注:本文均以DA/SR系列气动执行机构为例,说明执行机构的选用这个参考资料的目的是帮助客户正确选择执行机构,在把气动/电动执行机构安装到阀门之前,必须考虑以下因素; 阀门的运行力矩加上生产厂家的推荐的安全系数/根据操作状况; 执行机构的气源压力或电源电压; 执行机构的类型双作用或者单作用弹簧复位以及一定气源下的输出力矩或额定电压下的输出力矩; 执行机构的转向以及故障模式故障开或故障关正确选择一个执行机构是非常重要的,如执行机构过大,阀杆可能受力过大;相反如执行机构过小,侧不能产生足够的力矩来充分操作阀门;一般地说,我们认为操作阀门所需的力矩来自阀门的金属部件如球芯,阀瓣和密封件阀座之间的磨擦;根据阀门使用场合,使用温度,操作频率,管道和压差,流动介质润滑、干燥、泥浆,许多因素均影响操作力矩球阀的结构原理基本上根据一个抛光球芯包括通道包夹在两个阀座这间上游和下游,球心的旋转对流体进行拦截或流过球芯,上游和下游的压差产生的力使球芯紧靠在下游阀座浮动球结构;这种情况下操作阀门的力矩是由球芯与阀座、阀杆与填料相互摩擦所决定的;如图1所示,力矩最大值发生在出现压差且球芯在关闭位置向打开方向旋转时蝶阀;蝶阀的结构原理基本上根据固定在轴心的蝶板;在关闭位置蝶板与阀座完全密封,当蝶板旋转绕着阀杆后与流体的流向平行时,阀门处于全开位置;相反当蝶板与流体的流向垂直时,阀门处于关闭位置;操作蝶阀的力矩是由蝶板与阀座、阀杆与填料之间的磨擦所决定的,同时压差作用在蝶板上的力也影响操作力矩如阀门在关闭时力矩最大,微小地旋转后,力矩将明显减小旋塞阀的结构原理是基本根据密封在锥形塞体里的塞子;在塞子的一个方向上有一个通道;随着塞子旋入阀座来实现阀门的开启和关闭;操作力矩通常不受流体的压力影响而是由开启和关闭过程中阀座和塞子之间的摩擦所决定的;阀门在关闭时力矩最大;由于有受压力的影响,在余下的操作中始终保持较高的力矩双作用执行机构的选用以DA系列气动执行机构为例齿轮条式执行机构的输出力矩是活塞压力气源压力所供乘上节圆半径力臂所得,如图4所示;且磨擦阻力小效率高;如图5所示,顺时针旋转和逆时针旋转时输出力矩都是线性的;在正常操作条件下,双作用执行机构的推荐安全系数为25-50% 单作用执行机构的选用以SR系列气动执行机构为例在弹簧复位的应用中,输出力矩是在两个不同的操作过程中所得,根据行程位置,每一次操作产生两个不同的力矩值;弹簧复位执行机构的输出力矩由力空气压力或弹簧作用力乘上力臂所得第一种状况:输出力矩是由空气压力进入中腔压缩弹簧后所得,称为"空气行程输出力矩"在这种情况下,气源压力迫使活塞从0度转向90度位置,由于弹簧压缩产生反作用力,力矩从起点时最大值逐渐递减直至到第二种状况:输出力矩是当中腔失气时弹簧恢复力作用在活塞上所得,称为"弹簧行程输出力矩"在这种情况下,由于弹簧的伸长,输出力矩从90度逐渐递减直0度如以上所述,单作用执行机构是根据在两种状况下产生一个平衡力矩的基础上设计而成的;如图11所示;在每种情况下,通过改变每边弹簧数量和气源压力的关系如每边2根弹簧和巴气源或反之,有可能获得不平衡力矩在弹簧复位应用中可获得两种状况:失气开启或失气关闭;在正常工作条件下,弹簧复位执行机构的推荐安全系数为25-50% 弹簧复位执行机构的选用示例同时见技术数据表:弹簧关失气球阀的力矩=80NM安全系数25%=80NM+25%=100NM气源压力=被选用的SY-SR执行机构是SR125-05,因为可产生下列数值:弹簧行程0o=弹簧行程90o=空气行程0o=空气行程90o=CCW逆时针方向压缩空气有A口输入, 使左右活塞向相反方向运动,输出轴逆时针方向运转,两活塞侧面的空气由B口排出;CW顺时针方向压缩空气有B口输入,使左右活塞向中心移动,输出轴顺时针方向转动,两活塞中间的空气由A口排出;CCW逆时针方向压缩空气有A口输入,使左右活塞向相反方向运动,输出轴逆时针方向转动,两活塞侧面空气由B口排出;CW顺时针方向失气时,由于弹簧的作用使两活塞向中心移动,输出轴顺时针方向转动,空气由A口排出订货须知气动执行器:双作用式,单作用式常闭式或常开式;阀门工作压力,使用介质及工作的环境温度,硬或软密封;电磁阀:双电控电磁阀,单电控电磁阀,使用电压,是否防爆;信号反馈:机械式开关,接近式开关,使用电压,输出电流信号,防爆型;定位器:气动定位器,电气定位器,电流信号,气压信号,电气转换器,防爆型;气源处理三联件;手动装置;特殊定制;附件应说明是国产还是进口;优质产品每一个执行器出厂前均经过测试和检验;每一个执行器都带有质量检验合格标签;每一个执行器都有标准NUMAR接口规格,及底孔安装尺寸;每一个执行器都用特殊的纸箱包装,带上产品标签及说明书;常见故障及检查、排除方法。
气缸气动执行器逻辑
气缸气动执行器逻辑1. 气缸气动执行器的工作原理气缸气动执行器的工作原理可以简单概括为:当气体控制信号通过气动阀控制气源的通断,气体进入气缸内部的工作腔室时,气缸的活塞会受到气体的压力作用而产生推动力,从而使得气缸的输出轴进行线性运动或者旋转运动,从而驱动相应的工作装置完成工作任务。
2. 气缸气动执行器的结构组成气缸气动执行器一般由气缸本体、活塞、导向件、密封件、活塞杆、输出轴等组成。
其中,气缸本体作为气动执行器的主体部件,在实际应用中起着至关重要的作用。
活塞和活塞杆之间通过密封件相互连接,保证气体压力的传递和运动的顺畅。
导向件则负责引导活塞的运动轨迹,保证气缸的稳定性和精确性。
输出轴则通过活塞的运动实现机械装置的驱动。
3. 气缸气动执行器的分类气缸气动执行器根据其结构和工作方式的不同可以分为多种类型,常见的包括气缸气动执行器、旋转气缸气动执行器、双向气缸气动执行器等。
其中,气缸气动执行器主要用于线性运动,旋转气缸气动执行器则主要用于旋转运动,而双向气缸气动执行器则可以同时实现线性和旋转两种运动方式。
根据气源的不同,气缸气动执行器又可分为气压式、气液增压式和液压增压式等多种类型。
4. 气缸气动执行器的应用领域气缸气动执行器在工业自动化控制系统中得到了广泛的应用,主要包括机械制造、汽车制造、航空航天、化工、食品加工等领域。
在自动化生产线上,气缸气动执行器通常与传感器、PLC控制器等设备配合使用,实现工艺过程的自动化控制和监控。
此外,气缸气动执行器还可以应用于阀门控制、夹紧装置、输送系统等机械装置中,实现工件的定位、夹持和移动等功能。
5. 气缸气动执行器的优缺点气缸气动执行器具有许多优点,如结构简单、可靠性高、运行速度快、输出力大等。
此外,气缸气动执行器的成本较低,易于维护和维修,适用于各种环境和工况下的工业应用。
然而,气缸气动执行器也存在一些缺点,如噪音较大、能效较低、易受环境影响等。
总的来说,气缸气动执行器作为一种重要的工业自动化控制元件,在现代工业生产中发挥着重要的作用。
气动执行器结构原理全解析拨叉式薄膜式
气动执行器结构原理全解析拨叉式薄膜式拨叉式气动执行器结构如下:1.拨叉:拨叉是气动执行器的核心构件,它起到传输气动力和转换运动方向的作用。
拨叉有两个作用点,分别与气压驱动装置和工作部件相连。
当气压驱动装置产生气动力时,通过拨叉的传递,使得工作部件产生相应的运动。
2.气压驱动装置:气压驱动装置是拨叉式气动执行器中重要的部分,它产生气动力以实现工作部件的运动。
气压驱动装置通常由气缸、活塞、压力控制装置等组成。
当气缸内气体受到压力控制装置的控制,会产生剧烈的膨胀和收缩运动,从而驱动活塞和拨叉的运动。
3.工作部件:工作部件是气动执行器的出力部分,它负责实现机械工作。
常见的工作部件包括推拉杆、转动杆等。
当气动力传递到工作部件上时,工作部件会根据拨叉的转动方向和运动轨迹而发生相应的位移和转动。
薄膜式气动执行器结构如下:1.薄膜:薄膜是薄膜式气动执行器的关键部件,它以柔性的薄膜形式存在,起到传递气动力和实现运动的作用。
薄膜质地柔软,可以通过气动力的作用而产生膨胀和收缩,实现工作部件的运动。
2.气压驱动装置:薄膜式气动执行器的气压驱动装置通常由气压腔和压力控制装置组成。
气压腔用来存放气体,气体的膨胀和收缩会使薄膜产生相应的弯曲和挤压作用,从而实现工作部件的运动。
3.工作部件:薄膜式气动执行器中的工作部件通常与薄膜直接相连,通过薄膜的弯曲和挤压来实现位移和转动。
工作部件的形状和结构根据具体应用需求而设计,可以是推拉式、旋转式等。
总的来说,无论是拨叉式还是薄膜式气动执行器,其结构都是通过气压驱动装置产生气动力,再通过核心构件(拨叉或薄膜)传递气动力,最终使工作部件实现机械工作。
这种结构设计简单,体积小巧,适用于各种工业领域的自动化设备和机械装置。
气压传动中的气动执行器
气压传动中的气动执行器气体是一种理想的传动介质,具有体积小、弹性大、速度快、操作方便等优点,因此在许多机械传动中得到广泛应用。
气压传动系统中的气动执行器是其中重要的组成部分,它能将气体能量转化为机械能,实现各种工艺过程中的运动控制。
一、气动执行器的基本原理气动执行器主要由气缸和活塞组成。
气缸是一个密封的容器,内部分为两个连通的腔室:气源腔和工作腔。
活塞则是负责传递气体能量的组件,能够在气源腔中接受气体的作用力,然后将其转化为机械运动。
当气源腔中的气体压力发生变化时,活塞就会受到压力差的作用而产生相应的运动,从而实现工作腔内的工作物体的运动。
二、气动执行器的工作过程气动执行器的工作过程可分为四个阶段:进气、压力平衡、推力、回气。
进气阶段:气源通过控制阀进入气缸的气源腔中,气压使活塞向工作腔移动,推动工作物体产生相应的运动。
压力平衡阶段:当活塞靠近工作腔壁时,进气口会被封闭,气源腔的压力暂时保持不变,活塞停止运动。
推力阶段:气源腔的气体继续进入工作腔,活塞受到压力差的作用,继续向工作腔推动,推动工作物体进行相应的工作。
回气阶段:气源经过控制阀排入大气中,活塞回到初始位置,为下一次工作做准备。
三、气动执行器的分类气动执行器主要分为气动缸和气压马达两种类型。
气动缸根据结构形式可分为活塞式气缸和薄膜式气缸。
活塞式气缸适用于较大推力和较高工作压力的场合,活塞能够承受较大的力矩。
薄膜式气缸则适用于较小推力和较低工作压力的场合,薄膜的柔韧性能保证了较好的密封性和灵活性。
气压马达则根据转动方式可分为气动涡轮马达和气动齿轮马达。
气动涡轮马达适用于较大功率和较高转速的场合,能够提供较大的输出扭矩。
气动齿轮马达则适用于较小功率和较低转速的场合,结构简单、紧凑。
四、气动执行器的应用领域气动执行器广泛应用于工业自动化控制、机械加工、装配线、输送系统、液压机械、航空航天等领域。
在工业自动化控制中,气动执行器可以实现工件的夹紧、顶推、拉伸等动作,提高生产效率和产品质量。
气动执行器工作原理
气动执行器工作原理气动执行器是一种利用气体力量来驱动成某种可控运动的机械设备。
其主要作用是将压缩空气的动力转化为机械运动,实现控制、调节、开关、切断等功能。
在自动化控制领域,气动执行器是最常见的动力传动元件之一,被广泛应用于各种领域。
那么,气动执行器的工作原理是什么呢?一、气动执行器的组成结构通常情况下,一个气动执行器包括以下主要组成部分:1、气压控制阀组件:气体由气压控制阀组件驱动,实现正反向转动或线性运动。
2、驱动薄膜:驱动薄膜是气动执行器的核心部件,通常由高分子聚合物等材料制成。
其作用是将气压控制阀组件的气压信号转化为膜片的运动,引起输出轴的线性或者转动运动。
3、输出轴:输出轴是执行器的机械动力输出部分,提供与被控制器件间的机械连接。
二、气动执行器工作原理气动执行器的工作原理是利用气体的动力,通过极简单的维护和管理。
当气源将压缩空气通过气控阀组件输出时,气控阀组件可以控制气体的进入和排出,从而控制执行器的工作状态。
作用在驱动薄膜上的气体压力可以塑造和控制薄膜的挠度,实现输出轴的正反向运动。
因此,只需要在气源提供压缩空气的情况下,气压控制阀组件就可以根据管道中到来的信号量调整阀门的定位,最终产生合适的压力,挠度等。
驱动薄膜可以将这些信号转换成输出轴的运动状态。
在工程应用中,输出轴可以连接到阀门、传感器、钩爪、机械臂等控制器件上,实现自动控制等功能。
三、气动执行器技术特点1、智能化:气动执行器可以内装传感器、控制电路等,实现信号的采集、分析以及智能控制等功能。
这赋予了气动执行器更加严谨、稳定的控制精度和快速反应的能力。
2、低能耗:相较于液压与电动执行器,气动执行器不需要大量的电力或液压能,其驱动源是压缩空气,所需能量不同也是较少的,成本更低。
3、维护简单:气动执行器具有可靠的性能和较长的寿命,但其修理和保养也更为简单方便。
因为气动执行器本身没有运动部件,也没有液压油等流体,所以其故障率更少。
4、安全性高:由于气动执行器是纯气体驱动的,不像液压或者电动传动那样有液体和电流的存在,因此其在工业和机械里应用得到的保障是更加全面的。
气动执行器工作原理
气动执行器工作原理气动执行器作为控制系统中的重要元件,用于驱动阀门、门窗、传送带等设备的开闭,其工作原理主要基于气动力学原理。
本文将详细介绍气动执行器的工作原理及其应用。
一、气动执行器的组成气动执行器主要由气缸、活塞和密封件组成。
其中,气缸是执行器的主体部件,通常由金属材料制成,具有耐压、耐磨等特性。
活塞则通过密封件与气缸壁之间形成密封空间,气缸的内部压力变化将驱动活塞的运动。
二、气动执行器的工作原理1. 压缩空气供给气动执行器的工作依赖于压缩空气的供给,通常通过气源供应系统提供。
气源通过管道输送至气缸中,形成一定的压力。
2. 汽缸内压力变化当气源供给到气缸中时,气缸内部压力会增加,导致活塞受到压力差的作用而产生运动。
当气源停止供给时,气缸内部的压力将逐渐降低。
3. 活塞运动气动执行器的关键部位是活塞,它是气缸内部压力变化的直接受力部件。
当气源供给到气缸中时,活塞会受到压力差的作用而被推动。
根据气源的供给和停止,活塞可以实现不同方向、不同速度的运动。
4. 密封件的作用为了确保气缸内部的气压变化能够驱动活塞的运动,气缸与活塞之间需要设置密封件。
密封件具有较好的弹性和密封性,能够防止气缸与活塞之间的气体泄漏,保证气动执行器的正常工作。
三、气动执行器的应用气动执行器广泛应用于工业自动化控制领域,常见的应用有:1. 控制阀门气动执行器可以通过与阀门连接,实现阀门的开启和关闭。
在工业生产过程中,阀门的开闭控制通常需要大量的力量,通过气动执行器可以方便地实现对阀门的控制。
2. 操作门窗气动执行器还可以用于操作门窗等设备。
在大型建筑物、公共场所或生产车间中,通过气动执行器控制门窗的开闭可以提高操作的便捷性和效率。
3. 传送带控制气动执行器也可用于控制传送带的启动和停止。
在物流、包装等领域,通过气动执行器控制传送带的运行,可以实现物品的自动输送,提高生产效率。
总结:气动执行器作为一种重要的自动控制元件,其工作原理基于气动力学原理。
气动执行器结构原理
气缸结构与原理学习气动执行机构气动执行机构俗称又称气动执行器(英文:Pneumatic actuator )按其能源形式分为气动,电动和液动三大类,它们各有特点,适用于不同的场合。
气动执行器是执行器中的一种类别。
气动执行器还可以分为单作用和双作用两种类型:执行器的开关动作都通过气源来驱动执行,叫做DOUBLE ACTING (双作用)。
SPRING RETURN (单作用)的开关动作只有开动作是气源驱动,而关动作是弹簧复位。
气动执行机构简介气动执行器的执行机构和调节机构是统一的整体,其执行机构有薄膜式、活塞式、拨叉式和齿轮齿条式。
活塞式行程长,适用于要求有较大推力的场合;而薄膜式行程较小,只能直接带动阀杆。
拨叉式气动执行器具有扭矩大、空间小、扭矩曲线更符合阀门的扭矩曲线等特点,但是不很美观;常用在大扭矩的阀门上。
齿轮齿条式气动执行机构有结构简单,动作平稳可靠,并且安全防爆等优点,在发电厂、化工,炼油等对安全要求较高的生产过程中有广泛的应用。
齿轮齿条式:齿轮齿条:活塞式:气动执行机构的缺点控制精度较低,双作用的气动执行器,断气源后不能回到预设位置。
单作用的气动执行器,断气源后可以依靠弹簧回到预设位置工作原理说明班当压缩空气从A管咀进入时,气体推动双活塞向两端(缸盖端)直线运动,活塞上的齿条带动旋转轴上的齿轮逆时针方向转动90度,阀门即被打开。
此时气动执行阀两端的气体随B管咀排出。
反之,当压缩空气从B官咀进入气动执行器的两端时,气体推动双塞向中间直线运动,活塞上的齿条带动旋转轴上的齿轮顺时针方向转动90度,阀门即被关闭。
此时气动执行器中间的气体随A管咀排出。
以上为标准型的传动原理。
根据用户需求,气动执行器可装置成与标准型相反的传动原理,即选准轴顺时针方向转动为开启阀门,逆时针方向转动为关闭阀门。
单作用(弹簧复位型)气动执行器A管咀为进气口,B管咀为排气孔(B管咀应安装消声器)。
A管咀进气为开启阀门,断气时靠弹簧力关闭阀门。
气动执行器结构及原理
气缸结构与原理学习气动执行机构气动执行机构俗称气动头又称气动执行器(英文:Pneumatic actuator )执行器按其能源形式分为气动,电动与液动三大类,它们各有特点,适用于不同得场合。
气动执行器就是执行器中得一种类别。
气动执行器还可以分为单作用与双作用两种类型:执行器得开关动作都通过气源来驱动执行,叫做DOUBLE ACTING (双作用)。
SPRING RETURN (单作用)得开关动作只有开动作就是气源驱动,而关动作就是弹簧复位。
气动执行机构简介气动执行器得执行机构与调节机构就是统一得整体,其执行机构有薄膜式、活塞式、拨叉式与齿轮齿条式。
活塞式行程长,适用于要求有较大推力得场合;而薄膜式行程较小,只能直接带动阀杆。
拨叉式气动执行器具有扭矩大、空间小、扭矩曲线更符合阀门得扭矩曲线等特点,但就是不很美观;常用在大扭矩得阀门上。
齿轮齿条式气动执行机构有结构简单,动作平稳可靠,并且安全防爆等优点,在发电厂、化工,炼油等对安全要求较高得生产过程中有广泛得应用。
齿轮齿条式:齿轮齿条:活塞式:编辑本段气动执行机构得缺点控制精度较低,双作用得气动执行器,断气源后不能回到预设位置。
单作用得气动执行器,断气源后可以依靠弹簧回到预设位置编辑本段工作原理说明班当压缩空气从A管咀进入气动执行器时,气体推动双活塞向两端(缸盖端)直线运动,活塞上得齿条带动旋转轴上得齿轮逆时针方向转动90度,阀门即被打开。
此时气动执行阀两端得气体随B管咀排出。
反之,当压缩空气从B官咀进入气动执行器得两端时,气体推动双塞向中间直线运动,活塞上得齿条带动旋转轴上得齿轮顺时针方向转动90度,阀门即被关闭。
此时气动执行器中间得气体随A管咀排出。
以上为标准型得传动原理。
根据用户需求,气动执行器可装置成与标准型相反得传动原理,即选准轴顺时针方向转动为开启阀门,逆时针方向转动为关闭阀门。
单作用(弹簧复位型)气动执行器A管咀为进气口,B管咀为排气孔(B管咀应安装消声器)。
铝合金气动执行器
铝合金气动执行器铝合金气动执行器是一种基于气压能力的执行元件。
它主要由气缸、活塞、导向元件、密封元件、活塞杆、机械杠杆、触发元件等组成。
在工业生产中,气动执行器广泛应用于控制、调节、自动化和精密机械等领域。
本文将介绍铝合金气动执行器的结构、工作原理及其应用场景。
结构铝合金气动执行器由铝合金制成。
它具有较高的强度和轻质化的特点,因此在工业生产中广泛使用。
气动执行器的主要结构如下:•气缸:气缸是气动执行器的主体部件,通常由铝合金制成。
气缸内有空气,通过气阀调节气缸内空气的压力,从而实现气动执行器的运动。
•活塞:活塞是气缸内的活动部件,负责气缸的压力转换。
当气缸内的空气压力增加时,活塞会受到压力作用而向外移动。
•导向元件:导向元件主要用于气缸内活塞杆的导向和固定,以确保气动执行器的稳定运动。
•密封元件:密封元件主要用于保护气缸内部的油封和防止气体的泄漏。
•活塞杆:活塞杆连接活塞和机械杠杆,负责将气缸内部的压力转换成运动能量。
•机械杠杆:机械杠杆是气动执行器的输出部件,负责根据活塞的运动转化为负载的动态输出。
•触发元件:触发元件是气动执行器的控制部件,负责控制气压或信号的输入,以实现对气动执行器的远程控制。
工作原理铝合金气动执行器的工作原理是通过人工或自动控制气源压力来实现气缸内气体的膨胀和收缩,从而实现机械杠杆的运动输出。
气动执行器的工作具有以下特点:•运动快速:气动执行器的运动速度快,响应时间短,适合于需要高速响应的场景。
•压力稳定:气动执行器的压力稳定,输出力度大,适合于需要大力输出的场景。
•操作简单:气动执行器的操作简单,控制信号输入即可实现远程控制。
应用场景铝合金气动执行器广泛应用于工业自动化生产线、机械手、包装线、输送线、阀门控制系统等领域。
下面是气动执行器常见的应用场景:•包装行业:气动执行器被广泛应用于各类包装设备,如灌装机、封口机、喷码机、标签机等。
•自动化流水线:气动执行器被广泛应用于自动化流水线,如夹具、输送机、装配机等。
气动执行器结构原理全解析-拨叉式-薄膜式.....
气动执行器是什么?结构和工作原理全在这里!可能在刚接触阀门行业的人对执行器不是很了解,执行器分为气动、电动等多种方式,那么常见的气动执行器又是怎样的工作原理,本文将从多个方位解析各位行业人士的疑问。
(OMAL气动执行器——拨叉式结构)一、气动执行器概述气动执行器是用气压力驱动启闭或调节阀门的执行装置,又被称气动执行机构或气动装置,不过一般通俗的称之为气动头。
气动执行器的执行机构和调节机构是统一的整体,其执行机构有拨叉式、薄膜式、活塞式、拨叉式和齿轮齿条式。
活塞式行程长,适用于要求有较大推力的场合;而薄膜式行程较小,只能直接带动阀杆。
拨叉式气动执行器具有扭矩大、空间小、扭矩曲线更符合阀门的扭矩曲线等特点,但是不很美观;常用在大扭矩的阀门上。
齿轮齿条式气动执行机构有结构简单,动作平稳可靠,并且安全防爆等优点,在发电厂、化工,炼油等对安全要求较高的生产过程中有广泛的应用。
二、气动执行器的工作原理1.双作用气动执行器工作原理图当气源压力从气口(2)进入气缸两活塞之间中腔时,使两活塞分离向气缸两端方向移动,两端气腔的空气通过气口(4)排出,同时使两活塞齿条同步带动输出轴(齿轮)逆时针方向旋转。
反之气源压力从气口(4)进入气缸两端气腔时,使两活塞向气缸中间方向移动,中间气腔的空气通过气口(2)排出,同时使两活塞齿条同步带动输出轴(齿轮)顺时针方向旋转。
(如果把活塞相对反方向安装,输出轴即变为反向旋转)2.单作用气动执行器工作原理图当气源压力从气口(2)进入气缸两活塞之间中腔时,使两活塞分离向气缸两端方向移动,迫使两端的弹簧压缩,两端气腔的空气通过气口(4)排出,同时使两活塞齿条同步带动输出轴(齿轮)逆时针方向旋转。
在气源压力经过电磁阀换向后,气缸的两活塞在弹簧的弹力下向中间方向移动,中间气腔的空气从气口(2)排出,同时使两活塞齿条同步带动输出轴(齿轮)顺时针方向旋转。
(如果把活塞相对反方向安装,弹簧复位时输出轴即变为反向旋转)。
气动执行器工作原理
气动执行器工作原理气动执行器是一种广泛应用于众多工业领域的控制装置,它能将空气能转化为机械能,实现各种运动。
本文将详细介绍气动执行器的工作原理。
一、气动执行器的基本结构气动执行器由气动缸、气动活塞及密封件等组成。
气动缸一般由气缸壳体、气缸盖、活塞、内膜及导向装置等部分组成。
气动活塞是气动执行器的重要组成部分,其能够在气动压力的作用下产生前后往复运动。
密封件主要用于气动缸的密封工作,以确保气压能够得到有效控制。
二、气动执行器的工作原理1. 气源供给气动执行器的工作离不开气源供给。
通常,气源通过压缩空气系统提供,经由管道输送至气动执行器。
气源经过调压阀和过滤器进行初步处理,使其压力和纯度符合气动执行器的要求。
2. 动力转换当气压经过调压阀调整后,会进入气缸的腔体之一。
气动执行器的工作原理可以简单理解为:当气压作用在活塞上时,活塞将受到力的作用而产生往复运动,这种运动可由气源提供的气压实现。
3. 作用力输出气动执行器的活塞运动将驱动机械装置产生运动。
通过与机械装置的连接,气动执行器将转化为力,并通过活塞杆实现对装置的推拉。
该推拉作用力可以实现各种运动,如打开或关闭阀门、控制阀门的位置、推动线性传动装置等。
4. 压力调节为了满足不同工况下的需要,气源的压力往往需要进行调节。
压力调节装置通常通过调节调压阀的开度来实现,从而改变气源的压力。
通过控制气源供应的压力,可以灵活地控制气动执行器的工作状态和作用力输出。
三、气动执行器的优势1. 高效可靠气动执行器的工作原理简单,结构紧凑,运动速度快,响应时间短。
相较于电动装置,气动执行器具有更高的效率和可靠性。
此外,气动执行器在一些特殊环境中仍能正常工作,如高温、强电磁干扰等环境。
2. 大输出力气动执行器能够输出较大的推力和拉力,适用于一些需要大功率输出的场合。
通过调整气源的压力,可以实现不同力度的输出。
3. 安全可靠气动执行器在工作时无需电源供应,不存在因电气故障导致的火灾隐患。
气动执行器结构及原理
气缸结构与原理学习气动执行机构气动执行机构俗称气动头又称气动执行器(英文:Pneumatic actuator )执行器按其能源形式分为气动,电动与液动三大类,它们各有特点,适用于不同的场合。
气动执行器就是执行器中的一种类别。
气动执行器还可以分为单作用与双作用两种类型:执行器的开关动作都通过气源来驱动执行,叫做DOUBLE ACTING (双作用)。
SPRING RETURN (单作用)的开关动作只有开动作就是气源驱动,而关动作就是弹簧复位。
气动执行机构简介气动执行器的执行机构与调节机构就是统一的整体,其执行机构有薄膜式、活塞式、拨叉式与齿轮齿条式。
活塞式行程长,适用于要求有较大推力的场合;而薄膜式行程较小,只能直接带动阀杆。
拨叉式气动执行器具有扭矩大、空间小、扭矩曲线更符合阀门的扭矩曲线等特点,但就是不很美观;常用在大扭矩的阀门上。
齿轮齿条式气动执行机构有结构简单,动作平稳可靠,并且安全防爆等优点,在发电厂、化工,炼油等对安全要求较高的生产过程中有广泛的应用。
齿轮齿条式:齿轮齿条:活塞式:编辑本段气动执行机构的缺点控制精度较低,双作用的气动执行器,断气源后不能回到预设位置。
单作用的气动执行器,断气源后可以依靠弹簧回到预设位置编辑本段工作原理说明班当压缩空气从A管咀进入气动执行器时,气体推动双活塞向两端(缸盖端)直线运动,活塞上的齿条带动旋转轴上的齿轮逆时针方向转动90度,阀门即被打开。
此时气动执行阀两端的气体随B管咀排出。
反之,当压缩空气从B官咀进入气动执行器的两端时,气体推动双塞向中间直线运动,活塞上的齿条带动旋转轴上的齿轮顺时针方向转动90度,阀门即被关闭。
此时气动执行器中间的气体随A管咀排出。
以上为标准型的传动原理。
根据用户需求,气动执行器可装置成与标准型相反的传动原理,即选准轴顺时针方向转动为开启阀门,逆时针方向转动为关闭阀门。
单作用(弹簧复位型)气动执行器A管咀为进气口,B管咀为排气孔(B管咀应安装消声器)。
气动执行器结构及原理
气缸结构与原理学习气动执行机构气动执行机构俗称气动头又称气动执行器(英文:Pneumatic actuator )执行器按其能源形式分为气动,电动和液动三大类,它们各有特点,适用于不同的场合。
气动执行器是执行器中的一种类别。
气动执行器还可以分为单作用和双作用两种类型:执行器的开关动作都通过气源来驱动执行,叫做DOUBLE ACTING (双作用)。
SPRING RETURN (单作用)的开关动作只有开动作是气源驱动,而关动作是弹簧复位。
气动执行机构简介气动执行器的执行机构和调节机构是统一的整体,其执行机构有薄膜式、活塞式、拨叉式和齿轮齿条式。
活塞式行程长,适用于要求有较大推力的场合;而薄膜式行程较小,只能直接带动阀杆。
拨叉式气动执行器具有扭矩大、空间小、扭矩曲线更符合阀门的扭矩曲线等特点,但是不很美观;常用在大扭矩的阀门上。
齿轮齿条式气动执行机构有结构简单,动作平稳可靠,并且安全防爆等优点,在发电厂、化工,炼油等对安全要求较高的生产过程中有广泛的应用。
齿轮齿条式:齿轮齿条:活塞式:编辑本段气动执行机构的缺点控制精度较低,双作用的气动执行器,断气源后不能回到预设位置。
单作用的气动执行器,断气源后可以依靠弹簧回到预设位置编辑本段工作原理说明班当压缩空气从A管咀进入气动执行器时,气体推动双活塞向两端(缸盖端)直线运动,活塞上的齿条带动旋转轴上的齿轮逆时针方向转动90度,阀门即被打开。
此时气动执行阀两端的气体随B管咀排出。
反之,当压缩空气从B官咀进入气动执行器的两端时,气体推动双塞向中间直线运动,活塞上的齿条带动旋转轴上的齿轮顺时针方向转动90度,阀门即被关闭。
此时气动执行器中间的气体随A管咀排出。
以上为标准型的传动原理。
根据用户需求,气动执行器可装置成与标准型相反的传动原理,即选准轴顺时针方向转动为开启阀门,逆时针方向转动为关闭阀门。
单作用(弹簧复位型)气动执行器A管咀为进气口,B管咀为排气孔(B管咀应安装消声器)。
气动执行器结构及原理
气缸结构与原理学习气动执行机构气动执行机构俗称气动头又称气动执行器(英文:Pn eumatic actuator )执行器按其能源形式分为气动,电动和液动三大类,它们各有特点,适用于不同的场合。
气动执行器是执行器中的一种类别。
气动执行器还可以分为单作用和双作用两种类型:执行器的开关动作都通过气源来驱动执行,叫做DOUBLE ACTING (双作用)。
SPRING RETURN (单作用)的开关动作只有开动作是气源驱动,而关动作是弹簧复位。
气动执行机构简介气动执行器的执行机构和调节机构是统一的整体,其执行机构有薄膜式、活塞式、拨叉式和齿轮齿条式。
活塞式行程长,适用于要求有较大推力的场合;而薄膜式行程较小,只能直接带动阀杆。
拨叉式气动执行器具有扭矩大、空间小、扭矩曲线更符合阀门的扭矩曲线等特点,但是不很美观;常用在大扭矩的阀门上。
齿轮齿条式气动执行机构有结构简单,动作平稳可靠,并且安全防爆等优点,在发电厂、化工,炼油等对安全要求较高的生产过程中有广泛的应用。
齿轮齿条式:齿轮齿条:活塞式:编辑本段气动执行机构的缺点控制精度较低,双作用的气动执行器,断气源后不能回到预设位置。
单作用的气动执行器,断气源后可以依靠弹簧回到预设位置编辑本段工作原理说明班当压缩空气从A管咀进入气动执行器时,气体推动双活塞向两端(缸盖端)直线运动,活塞上的齿条带动旋转轴上的齿轮逆时针方向转动90度,阀门即被打开。
此时气动执行阀两端的气体随B管咀排出。
反之,当压缩空气从B官咀进入气动执行器的两端时,气体推动双塞向中间直线运动,活塞上的齿条带动旋转轴上的齿轮顺时针方向转动90度,阀门即被关闭。
此时气动执行器中间的气体随A管咀排出。
以上为标准型的传动原理。
根据用户需求,气动执行器可装置成与标准型相反的传动原理,即选准轴顺时针方向转动为开启阀门,逆时针方向转动为关闭阀门。
单作用(弹簧复位型)气动执行器A管咀为进气口,B管咀为排气孔(B管咀应安装消声器)。
气动执行器工作原理
气动执行器工作原理气动执行器是一种常见的工业自动化设备,被广泛应用于各种机械和工程领域。
它通过利用气动力来实现运动控制和工作执行。
本文将介绍气动执行器的工作原理及其应用。
一、气动执行器的基本组成气动执行器由气动装置和执行机构两部分组成。
气动装置包括压缩空气源、处理元件和控制元件,用于提供可靠的气源和控制信号。
执行机构包括气缸和执行阀,用于转换气源能量为线性或旋转运动。
二、气动执行器的工作原理当气动执行器需要执行某项工作时,气源经过处理元件得到一定压力的干净气体,然后经过控制元件的控制,流入执行机构内部。
执行机构中的气缸将气源能量转化为机械能,从而实现工作的执行。
1. 气动执行器的线性运动原理当气缸内的压缩空气流向执行机构的一个端口时,气缸的活塞会受到气压的作用而产生线性运动。
例如,单作用气缸在一个端口上的气压推动下,活塞会朝着另一个端口的方向运动。
而双作用气缸在两个端口上交替施加气压,使活塞来回运动。
2. 气动执行器的旋转运动原理除了线性运动,气动执行器还可以通过执行机构中的执行阀实现旋转运动。
执行阀通过控制气源进入不同的腔室,使得执行机构中的转子或齿轮驱动旋转。
这种机制广泛应用于阀门、门窗等需要旋转操作的场景。
三、气动执行器的应用领域气动执行器的工作原理使其在众多工业自动化领域中得到广泛应用。
以下是一些常见的应用领域:1. 汽车工业:气动执行器被广泛应用于汽车制造和装配线上,用于控制汽车零部件的组装、定位和运输等操作。
2. 石油化工:气动执行器用于石油化工领域中的管道输送系统和阀门控制,实现流体的调节和控制。
3. 机械加工:气动执行器用于机械加工设备上,如数控机床、冲压机和焊接机器人等,实现精确运动和工件的定位。
4. 电力工业:气动执行器被应用于电力发电设备和输电线路等场景,用于控制阀门的开关和调节。
5. 医疗领域:气动执行器用于医疗设备,如手术台、牙科设备和呼吸机等,实现精确的运动控制和操作。
at气动执行器
at气动执行器AT气动执行器是一种常用于工业机械设备中的执行元件。
它能够通过气压控制进行线性或旋转运动,广泛应用于自动化控制系统中。
本文将对AT气动执行器的工作原理、结构特点以及应用领域进行介绍。
一、工作原理AT气动执行器是通过空气压力驱动的装置,它的工作原理基于气动力学。
当空气通过气源供应系统输送至AT气动执行器内部时,产生的压力将推动执行器的活塞(或齿轮、齿条等构件),从而实现机械设备的运动。
二、结构特点1. 活塞式执行器:该型号的AT气动执行器内部设有活塞,空气的进出控制将直接影响活塞的运动。
当气源处于供气状态时,气流进入气缸腔,推动活塞运动;当气源处于排气状态时,气流从气缸腔中排出,活塞回到初始位置。
2. 齿轮式执行器:该型号的AT气动执行器内部设有齿轮传动机构,通过气源的控制来实现齿轮的运动。
当气源供气时,产生的气压会推动齿轮运动,从而实现机械设备的旋转。
3. 齿条式执行器:该型号的AT气动执行器内部设有齿条传动机构,通过气源的控制来实现齿条的运动。
当气源供气时,产生的气压会推动齿条运动,从而实现机械设备的直线运动。
三、应用领域AT气动执行器广泛应用于工业机械设备中,主要被用于以下领域:1. 自动化生产线:在自动化生产线中,AT气动执行器可以用于传送带的驱动、机械手臂的运动等。
它的快速响应、可靠性高以及适应各种工作环境的特点,使其成为自动化生产线中不可或缺的元件。
2. 机械加工:在机械加工领域,AT气动执行器常被应用于数控机床的工作台、刀架、进给机构等部位。
它能够实现精确控制,提高加工效率和质量。
3. 装配线:在装配线上,AT气动执行器可以用于工件的夹紧、定位、推动等操作。
它的运动平稳且噪音低,能够确保装配过程的准确性和效率。
4. 液压系统:在一些特殊场合,AT气动执行器还可与液压系统配合使用。
通过气压控制液压阀等元件,实现更高的控制精度和灵活性。
总结:AT气动执行器作为一种常用的工业自动化控制元件,具有快速响应、可靠性高、适应性强等优点,在各个领域都有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气缸结构与原理学习气动执行机构气动执行机构俗称气动头又称气动执行器(英文:Pneumatic actuator )执行器按其能源形式分为气动,电动和液动三大类,它们各有特点,适用于不同的场合。
气动执行器是执行器中的一种类别。
气动执行器还可以分为单作用和双作用两种类型:执行器的开关动作都通过气源来驱动执行,叫做DOUBLE ACTING (双作用)。
SPRING RETURN (单作用)的开关动作只有开动作是气源驱动,而关动作是弹簧复位。
气动执行机构简介气动执行器的执行机构和调节机构是统一的整体,其执行机构有薄膜式、活塞式、拨叉式和齿轮齿条式。
活塞式行程长,适用于要求有较大推力的场合;而薄膜式行程较小,只能直接带动阀杆。
拨叉式气动执行器具有扭矩大、空间小、扭矩曲线更符合阀门的扭矩曲线等特点,但是不很美观;常用在大扭矩的阀门上。
齿轮齿条式气动执行机构有结构简单,动作平稳可靠,并且安全防爆等优点,在发电厂、化工,炼油等对安全要求较高的生产过程中有广泛的应用。
齿轮齿条式:齿轮齿条:活塞式:编辑本段气动执行机构的缺点控制精度较低,双作用的气动执行器,断气源后不能回到预设位置。
单作用的气动执行器,断气源后可以依靠弹簧回到预设位置编辑本段工作原理说明班当压缩空气从A管咀进入气动执行器时,气体推动双活塞向两端(缸盖端)直线运动,活塞上的齿条带动旋转轴上的齿轮逆时针方向转动90度,阀门即被打开。
此时气动执行阀两端的气体随B管咀排出。
反之,当压缩空气从B官咀进入气动执行器的两端时,气体推动双塞向中间直线运动,活塞上的齿条带动旋转轴上的齿轮顺时针方向转动90度,阀门即被关闭。
此时气动执行器中间的气体随A管咀排出。
以上为标准型的传动原理。
根据用户需求,气动执行器可装置成与标准型相反的传动原理,即选准轴顺时针方向转动为开启阀门,逆时针方向转动为关闭阀门。
单作用(弹簧复位型)气动执行器A管咀为进气口,B管咀为排气孔(B管咀应安装消声器)。
A管咀进气为开启阀门,断气时靠弹簧力关闭阀门。
编辑本段特点紧凑的双活塞齿轮,齿条式结构,啮合精确,效率高,输出扭矩恒定。
铝制缸体、活塞及端盖,与同规格结构的执行器相比重量最轻。
缸体为挤压铝合金,并经硬质阳极氧化处理,内表面质地坚硬,强度,硬度高。
采用低摩擦材料制成的滑动轴承,避免了金属间的相互直接接触,摩擦系数低,转动灵活,使用寿命长。
气动执行器与阀门安装、连接尺寸根据国际标准ISO5211、DIN3337和VDI/VDE3845进行设计,可与普通气动执行器互换。
气源孔符合NAMUR 标准。
气动执行器底部轴装配孔(符合ISO5211标准)成双四方形,便于带方杆的阀线性或45°转角安装。
输出轴的顶部和顶部的孔符合NAMUR 标准。
两端的调整螺钉可调整阀门的开启角度。
相同规格的有双作用式、单作用式(弹簧复位)。
可根据阀门需要选择方向,顺时针或逆时针旋转。
根据用户需要安装电磁阀、定位器(开度指示)、回信器、各种限位开关及手动操作装置。
气动执行器分类执行器按其能源形式分为气动,电动和液动三大类,它们各有特点,适用于不同的场合。
气动执行器是执行器中的一种类别。
气动执行器还可以分为单作用和双作用两种类型:执行器的开关动作都通过气源来驱动执行,叫做DOUBLE ACTING (双作用)。
SPRING RETURN (单作用)的开关动作只有开动作是气源驱动,而关动作时弹簧复位。
[1]气动执行器的选型注:本文均以DA/SR系列气动执行机构为例,说明执行机构的选用这个参考资料的目的是帮助客户正确选择执行机构,在把气动/电动执行机构安装到阀门之前,必须考虑以下因素。
* 阀门的运行力矩加上生产厂家的推荐的安全系数/根据操作状况。
* 执行机构的气源压力或电源电压。
* 执行机构的类型双作用或者单作用(弹簧复位)以及一定气源下的输出力矩或额定电压下的输出力矩。
* 执行机构的转向以及故障模式(故障开或故障关)正确选择一个执行机构是非常重要的,如执行机构过大,阀杆可能受力过大。
相反如执行机构过小,侧不能产生足够的力矩来充分操作阀门。
一般地说,我们认为操作阀门所需的力矩来自阀门的金属部件(如球芯,阀瓣)和密封件(阀座)之间的磨擦。
根据阀门使用场合,使用温度,操作频率,管道和压差,流动介质(润滑、干燥、泥浆),许多因素均影响操作力矩球阀的结构原理基本上根据一个抛光球芯(包括通道)包夹在两个阀座这间(上游和下游),球心的旋转对流体进行拦截或流过球芯,上游和下游的压差产生的力使球芯紧靠在下游阀座(浮动球结构)。
这种情况下操作阀门的力矩是由球芯与阀座、阀杆与填料相互摩擦所决定的。
如图1所示,力矩最大值发生在出现压差且球芯在关闭位置向打开方向旋转时蝶阀。
蝶阀的结构原理基本上根据固定在轴心的蝶板。
在关闭位置蝶板与阀座完全密封,当蝶板旋转(绕着阀杆)后与流体的流向平行时,阀门处于全开位置。
相反当蝶板与流体的流向垂直时,阀门处于关闭位置。
操作蝶阀的力矩是由蝶板与阀座、阀杆与填料之间的磨擦所决定的,同时压差作用在蝶板上的力也影响操作力矩如阀门在关闭时力矩最大,微小地旋转后,力矩将明显减小旋塞阀的结构原理是基本根据密封在锥形塞体里的塞子。
在塞子的一个方向上有一个通道。
随着塞子旋入阀座来实现阀门的开启和关闭。
操作力矩通常不受流体的压力影响而是由开启和关闭过程中阀座和塞子之间的摩擦所决定的。
阀门在关闭时力矩最大。
由于有受压力的影响,在余下的操作中始终保持较高的力矩双作用执行机构的选用以DA系列气动执行机构为例齿轮条式执行机构的输出力矩是活塞压力(气源压力所供)乘上节圆半径(力臂)所得,如图4所示。
且磨擦阻力小效率高。
如图5所示,顺时针旋转和逆时针旋转时输出力矩都是线性的。
在正常操作条件下,双作用执行机构的推荐安全系数为25-50% 单作用执行机构的选用以SR系列气动执行机构为例在弹簧复位的应用中,输出力矩是在两个不同的操作过程中所得,根据行程位置,每一次操作产生两个不同的力矩值。
弹簧复位执行机构的输出力矩由力(空气压力或弹簧作用力)乘上力臂所得第一种状况:输出力矩是由空气压力进入中腔压缩弹簧后所得,称为"空气行程输出力矩"在这种情况下,气源压力迫使活塞从0度转向90度位置,由于弹簧压缩产生反作用力,力矩从起点时最大值逐渐递减直至到第二种状况:输出力矩是当中腔失气时弹簧恢复力作用在活塞上所得,称为"弹簧行程输出力矩"在这种情况下,由于弹簧的伸长,输出力矩从90度逐渐递减直0度如以上所述,单作用执行机构是根据在两种状况下产生一个平衡力矩的基础上设计而成的。
如图11所示。
在每种情况下,通过改变每边弹簧数量和气源压力的关系(如每边2根弹簧和5.5巴气源或反之),有可能获得不平衡力矩在弹簧复位应用中可获得两种状况:失气开启或失气关闭。
在正常工作条件下,弹簧复位执行机构的推荐安全系数为25-50%弹簧复位执行机构的选用示例(同时见技术数据表):弹簧关(失气)*球阀的力矩=80NM*安全系数(25%)=80NM+25%=100NM*气源压力=0.6MPa被选用的SY-SR执行机构是SR125-05,因为可产生下列数值:*弹簧行程0o=119.2NM*弹簧行程90o=216.2NM*空气行程0o=228.7NM*空气行程90o=118.8NMCCW(逆时针方向)压缩空气有A口输入,使左右活塞向相反方向运动,输出轴逆时针方向运转,两活塞侧面的空气由B口排出。
CW(顺时针方向)压缩空气有B口输入,使左右活塞向中心移动,输出轴顺时针方向转动,两活塞中间的空气由A口排出。
CCW(逆时针方向)压缩空气有A口输入,使左右活塞向相反方向运动,输出轴逆时针方向转动,两活塞侧面空气由B口排出。
CW(顺时针方向)失气时,由于弹簧的作用使两活塞向中心移动,输出轴顺时针方向转动,空气由A口排出订货须知气动执行器:双作用式,单作用式(常闭式或常开式);阀门工作压力,使用介质及工作的环境温度,硬或软密封;电磁阀:双电控电磁阀,单电控电磁阀,使用电压,是否防爆;信号反馈:机械式开关,接近式开关,使用电压,输出电流信号,防爆型;定位器:气动定位器,电气定位器,电流信号,气压信号,电气转换器,防爆型;气源处理三联件;手动装置;特殊定制;附件应说明是国产还是进口。
优质产品每一个执行器出厂前均经过测试和检验。
每一个执行器都带有质量检验合格标签。
每一个执行器都有标准NUMAR接口规格,及底孔安装尺寸。
每一个执行器都用特殊的纸箱包装,带上产品标签及说明书。
常见故障及检查、排除方法故障现象检查项目解决方法气动阀门不能动作1、电磁阀是否正常,线圈是否烧坏,电磁阀芯是否被脏物卡死。
更换电磁阀、更换线圈、清除脏物。
2、对气动执行器单独供气试验,检查密封圈及气缸是否是损坏。
更换已坏密封圈及气缸。
3、阀内有杂质将阀芯卡住。
清除杂质,更换已损件。
4、手动机构的手柄处在手动位置。
将手柄转到气动位置。
动作迟缓、爬行1、气源压力不够。
增加气源压力(0.4~0.7Mpa)2、气动执行器输出扭矩过小。
增大气动执行器的型号规格。
3、阀门阀芯或其他阀件装配太重新装配调整。