奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(下册)-采样(圣才出品)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章采样

7.1复习笔记

一、用信号样本表示连续时间信号:采样定理

1.冲激串采样

(1)冲激串采样的定义

冲激串采样是指用一个周期冲激串p(t)去乘待采样的连续时间信号x(t)。

该周期冲激串p(t)称为采样函数,周期T称为采样周期,而p(t)的基波频率ω=2π/T 称为采样频率。

(2)采样过程(图7-1)

在时域中有

其中

由相乘性质

因为信号与一个单位冲激函数的卷积就是该信号的移位,于是有

即X p(jω)是频率ω的周期函数,它由一组移位的X(jω)的叠加组成,但在幅度上标以1/T 的变化。

图7-1冲激串采样

(3)采样定理

设x(t)是某一个带限信号,在|ω|>ωM时,X(jω)=0。如果ωs>2ωM,其中ωs=2π/T,那么x(t)唯一地由其样本x(nT),n=0,±1,±2,…所确定。

已知这些样本值,重建x(t)的办法:产生一个周期冲激串,其冲激幅度就是这些依次而

来的样本值;然后将该冲激串通过一个增益为T,截止频率大于ωM而小于的理想低通滤波器,该滤波器的输出就是x(t)。频率2ωM称为奈奎斯特率。

2.零阶保持采样

(1)零阶保持的含义(图7-2)

在一个给定的瞬时对x(t)采样并保持这一样本值,直到下一个样本被采到为止。

图7-2利用零阶保持采样

(2)零阶保持采样的过程

零阶保持的输出x0(t)在原理上可以用冲激串采样,再紧跟着一个线性时不变系统(该系统具有矩形的单位冲激响应)来得到。

①用一个单位冲激响应为h r(t),频率响应为H r(jω)的线性时不变系统来处理x0(t)。

②给出一个H r(jω),以使r(t)=x(t)。

这就要求

若H的截止频率等于ωs/2,则紧跟在一个零阶保持系统后面的重建滤波器的理想模和相位特性如图7-4所示。零阶保持输出本身就被认为是一种对原始信号的充分近似,用不着附加任何低通滤波。

图7-3作为冲激串采样,再紧跟一个具有矩形单位

冲激响应的线性时不变系统的零阶保持

图7-4为零阶保持采样重建信号的重建滤波器的模和相位特性

二、利用内插由样本重建信号

内插是指用一连续信号对一组样本值的拟合。

1.零阶保持

2.线性内插(一阶保持)

(1)线性内插是将相邻的样本点用直线直接连起来。

(2)利用理想低通滤波器的单位冲激响应的内插(即带限内插):

①输出x 0(t)为时

上式体现了在样本点x(nT)之间如何拟合成一条连续曲线,因此代表了一种内插公式。

②对于理想低通滤波器H(jω),h(t)为

所以有

按照上式在ωc=ωs/2时的重建过程如图7-5所示。

图7-5利用sinc函数的理想带限内插

(a)带限信号x(t);

(b)x(t)的样本冲激串;

(c)用x r的sinc函数的叠加取代冲激串的理想带限内插。

3.高阶保持

三、欠采样的效果:混叠现象

混叠是指采样后信号的频谱发生重叠导致失真的现象。即当ωs<2ωM时,x(t)的频谱X(jω)不在X0(jω)中重复,因此利用低通滤波不能把x(t)从采样信号中恢复出来,这时单项发生重叠,被重建的信号x r(t)不等于x(t)。

四、连续时间信号的离散时间处理

1.对连续时间信号的处理方法(图7-6)

图7-6连续时间信号的离散时间处理

(1)连续时间信号x c(t)可以完全用一串瞬时样本值x c(nT)来表示:

x d[n]=x c(nT)

(2)把从连续时间到离散时间的变换表示成一个周期采样的过程,再紧跟着一个把冲激串映射为一个序列的环节。

图7-7用一个周期冲激串采样,再跟着一个到离散时间序列的转换。

(a)整个系统;

(b)两种采样率的x p(t),虚线包络代表x c(t);

(c)两种不同采样率的输出序列。

①第一步代表一个采样过程,冲激串x p(t)是一个冲激序列,各冲激的幅度与x c(t)的样本值相对应,而在时间间隔上等于采样周期T。

②在从冲激串到离散时间序列的转换中,得到x d[n];这是以x c(t)的样本值为序列值的同一序列,但是其单位间隔采用新的自变量n。

实际上从样本的冲激串到样本的离散时间序列的转换可认为是一个时间的归一化过程。

相关文档
最新文档