(高清版)2020届奉贤区中考数学二模

合集下载

上海市奉贤区2019-2020学年中考数学二月模拟试卷含解析

上海市奉贤区2019-2020学年中考数学二月模拟试卷含解析

上海市奉贤区2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知一组数据2、x 、8、1、1、2的众数是2,那么这组数据的中位数是( )A .3.1;B .4;C .2;D .6.1.2.若分式242x x -+的值为0,则x 的值为( ) A .-2 B .0 C .2 D .±2 3.如图,在△ABC 中,∠ACB=90°,点D 为AB 的中点,AC=3,cosA=13,将△DAC 沿着CD 折叠后,点A 落在点E 处,则BE 的长为( )A .5B .42C .7D .524.等腰三角形两边长分别是2 cm 和5 cm ,则这个三角形周长是( )A .9 cmB .12 cmC .9 cm 或12 cmD .14 cm5.已知抛物线2(2)2(0)y ax a x a =+-->的图像与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①当0a >的条件下,无论a 取何值,点A 是一个定点;②当0a >的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于2-;④若AB AC =,则152a +=.其中正确的结论有( )个. A .1个B .2个C .3个D .4个 6.下列图形中,可以看作中心对称图形的是( )A .B .C .D .7.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )A .B .C .D .8.在3,0,-2,-四个数中,最小的数是( ) A .3 B .0 C .-2 D .-9.如图,在圆O 中,直径AB 平分弦CD 于点E ,且CD=43,连接AC ,OD,若∠A 与∠DOB 互余,则EB 的长是( )A .23B .4C .3D .210.如图,在射线OA ,OB 上分别截取OA 1=OB 1,连接A 1B 1,在B 1A 1,B 1B 上分别截取B 1A 2=B 1B 2,连接A 2B 2,…按此规律作下去,若∠A 1B 1O=α,则∠A 10B 10O=( )A .102αB .92αC .20αD .18α 11.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若∠B=40°,∠C=36°,则∠DAC 的度数是( )A .70°B .44°C .34°D .24°12.如图,在△ABC 中,DE ∥BC ,若23AD DB =,则AE EC 等于( )A .13B .25C .23D .35二、填空题:(本大题共6个小题,每小题4分,共24分.)13.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:ABC.V 求作:ABC V 的内切圆.小明的作法如下:如图2,()1作ABC ∠,ACB ∠的平分线BE 和CF ,两线相交于点O ;()2过点O 作OD BC ⊥,垂足为点D ;()3点O 为圆心,OD 长为半径作O.e 所以,O e 即为所求作的圆.请回答:该尺规作图的依据是______.14.如图,某海监船以20km/h 的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为_____km .15.如图,矩形OABC 的边OA ,OC 分别在轴、轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,B′和B 分别对应),若AB=1,反比例函数(0)k y k x =≠的图象恰好经过点A′,B ,则的值为_________.16.某自然保护区为估计该地区一种珍稀鸟类的数量,先捕捉了20只,给它们做上标记后放回,过一段时间待它们完全混合于同类后又捕捉了20只,发现其中有4只带有标记,从而估计该地区此种鸟类的数量大约有______只.17.如图,线段AB 两端点坐标分别为A (﹣1,5)、B (3,3),线段CD 两端点坐标分别为C (5,3)、D (3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.18.对于二次函数y =x 2﹣4x+4,当自变量x 满足a≤x≤3时,函数值y 的取值范围为0≤y≤1,则a 的取值范围为__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线2y ax bx c =++()0a ≠与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x =–1,P 为抛物线上第二象限的一个动点.(1)求抛物线的解析式并写出其顶点坐标;(2)当点P 的纵坐标为2时,求点P 的横坐标;(3)当点P 在运动过程中,求四边形PABC 面积最大时的值及此时点P 的坐标.20.(6分)如图,AB 为⊙O 的直径,点E 在⊙O ,C 为弧BE 的中点,过点C 作直线CD ⊥AE 于D ,连接AC 、BC .试判断直线CD 与⊙O 的位置关系,并说明理由若AD=2,AC=6,求⊙O 的半径.21.(6分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).22.(8分)计算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣3|.23.(8分)先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.24.(10分)如图,在平面直角坐标系中,抛物线C1经过点A(﹣4,0)、B(﹣1,0),其顶点为532D⎛⎫--⎪⎝⎭,.(1)求抛物线C1的表达式;(2)将抛物线C1绕点B旋转180°,得到抛物线C2,求抛物线C2的表达式;(3)再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标.25.(10分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;抽查C厂家的合格零件为件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.26.(12分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.用树状图或列表等方法列出所有可能出现的结果;求两次摸到的球的颜色不同的概率.27.(12分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,12),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】∵数据组2、x、8、1、1、2的众数是2,∴x=2,∴这组数据按从小到大排列为:2、2、2、1、1、8,∴这组数据的中位数是:(2+1)÷2=3.1.故选A.2.C【解析】由题意可知:24020xx=⎧-⎨+≠⎩,解得:x=2,故选C. 3.C【解析】【分析】连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可.【详解】解:连接AE,∵AC=3,cos∠CAB=13,∴AB=3AC=9,由勾股定理得,22AB AC-2,∠ACB=90°,点D为AB的中点,∴CD=12AB=92,S△ABC=12×3×22,∵点D为AB的中点,∴S△ACD=12S△ABC92,由翻转变换的性质可知,S四边形ACED2,AE⊥CD,则12×CD×2,解得,2,∴2,由勾股定理得,22AD AF-=72,∵AF=FE,AD=DB,∴BE=2DF=7,故选C.【点睛】本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.B【解析】当腰长是2 cm 时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm 时,因为5+5>2,符合三角形三边关系,此时周长是12 cm .故选B .5.C【解析】【分析】①利用抛物线两点式方程进行判断;②根据根的判别式来确定a 的取值范围,然后根据对称轴方程进行计算;③利用顶点坐标公式进行解答;④利用两点间的距离公式进行解答.【详解】①y=ax 1+(1-a )x-1=(x-1)(ax+1).则该抛物线恒过点A (1,0).故①正确;②∵y=ax 1+(1-a )x-1(a >0)的图象与x 轴有1个交点,∴△=(1-a )1+8a=(a+1)1>0,∴a≠-1.∴该抛物线的对称轴为:x=21122a a a -=-,无法判定的正负. 故②不一定正确;③根据抛物线与y 轴交于(0,-1)可知,y 的最小值不大于-1,故③正确;④∵A (1,0),B (-2a,0),C (0,-1),∴当AB=AC =,解得:,故④正确. 综上所述,正确的结论有3个.故选C .【点睛】考查了二次函数与x 轴的交点及其性质.(1).抛物线是轴对称图形.对称轴为直线x = -2b a,对称轴与抛物线唯一的交点为抛物线的顶点P ;特别地,当b=0时,抛物线的对称轴是y 轴(即直线x=0);(1).抛物线有一个顶点P ,坐标为P ( -b/1a ,(4ac-b1)/4a ),当-2b a=0,〔即b=0〕时,P 在y 轴上;当Δ= b1-4ac=0时,P 在x 轴上;(3).二次项系数a 决定抛物线的开口方向和大小;当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;|a|越大,则抛物线的开口越小.(4).一次项系数b 和二次项系数a 共同决定对称轴的位置;当a 与b 同号时(即ab>0),对称轴在y 轴左;当a 与b 异号时(即ab<0),对称轴在y 轴右;(5).常数项c 决定抛物线与y 轴交点;抛物线与y 轴交于(0,c );(6).抛物线与x 轴交点个数Δ= b1-4ac>0时,抛物线与x轴有1个交点;Δ= b1-4ac=0时,抛物线与x轴有1个交点;Δ= b1-4ac<0时,抛物线与x轴没有交点.X的取值是虚数(x= -b±√b1-4ac 乘上虚数i,整个式子除以1a);当a>0时,函数在x= -b/1a处取得最小值f(-b/1a)=〔4ac-b1〕/4a;在{x|x<-b/1a}上是减函数,在{x|x>-b/1a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b1/4a}相反不变;当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax1+c(a≠0).6.B【解析】【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.B【解析】【分析】根据俯视图可确定主视图的列数和每列小正方体的个数.【详解】由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成.故答案选B.【点睛】由几何体的俯视图可确定该几何体的主视图和左视图.8.C【解析】【分析】根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以,所以最小的数是,故选C.【点睛】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.9.D【解析】【分析】连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可. 【详解】连接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=23∵∠A与∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,设OE=x,则CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(23)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理. 10.B 【解析】 【分析】根据等腰三角形两底角相等用α表示出∠A 2B 2O ,依此类推即可得到结论. 【详解】∵B 1A 2=B 1B 2,∠A 1B 1O =α,∴∠A 2B 2O =12α, 同理∠A 3B 3O =12×12α=212α,∠A 4B 4O =312α,∴∠A n B n O =n 112 α,∴∠A 10B 10O =9a2,故选B . 【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键. 11.C 【解析】 【分析】易得△ABD 为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC 【详解】∵AB=BD ,∠B=40°, ∴∠ADB=70°, ∵∠C=36°,∴∠DAC=∠ADB ﹣∠C=34°. 故选C. 【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键. 12.C 【解析】试题解析::∵DE ∥BC ,∴23 AE ADEC DB==,故选C.考点:平行线分线段成比例.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【解析】【分析】根据三角形的内切圆,三角形的内心的定义,角平分线的性质即可解答.【详解】解:该尺规作图的依据是到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线;故答案为到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【点睛】此题主要考查了复杂作图,三角形的内切圆与内心,关键是掌握角平分线的性质.14.【解析】【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.【详解】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×=km),故答案为本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.15.43【解析】【详解】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=12m,A′E=3m,∴A′(12m,3m),∵反比例函数y=kx(k≠0)的图象恰好经过点A′,B,∴12m•3m=m,∴m=43,∴k=433.【点睛】本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.16.1【分析】求出样本中有标记的所占的百分比,再用样本容量除以百分比即可解答. 【详解】解:()20420÷÷2020%=÷ 100=只.故答案为:1. 【点睛】本题考查的是通过样本去估计总体,总体百分比约等于样本百分比. 17.()1,1或()4,4 【解析】 【分析】分点A 的对应点为C 或D 两种情况考虑:①当点A 的对应点为点C 时,连接AC 、BD ,分别作线段AC 、BD 的垂直平分线交于点E ,点E 即为旋转中心;②当点A 的对应点为点D 时,连接AD 、BC ,分别作线段AD 、BC 的垂直平分线交于点M ,点M 即为旋转中心.此题得解. 【详解】①当点A 的对应点为点C 时,连接AC 、BD ,分别作线段AC 、BD 的垂直平分线交于点E ,如图1所示:A Q 点的坐标为()1,5-,B 点的坐标为()3,3, E ∴点的坐标为()1,1;②当点A 的对应点为点D 时,连接AD 、BC ,分别作线段AD 、BC 的垂直平分线交于点M ,如图2所示:A Q 点的坐标为()1,5-,B 点的坐标为()3,3, M ∴点的坐标为()4,4.综上所述:这个旋转中心的坐标为()1,1或()4,4. 故答案为()1,1或()4,4. 【点睛】本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键. 18.1≤a≤1 【解析】 【分析】根据y 的取值范围可以求得相应的x 的取值范围. 【详解】解:∵二次函数y =x 1﹣4x+4=(x ﹣1)1, ∴该函数的顶点坐标为(1,0),对称轴为:x =﹣4222b a -=-=, 把y =0代入解析式可得:x =1, 把y =1代入解析式可得:x 1=3,x 1=1,所以函数值y 的取值范围为0≤y≤1时,自变量x 的范围为1≤x≤3, 故可得:1≤a≤1, 故答案为:1≤a≤1. 【点睛】此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)二次函数的解析式为223y x x =--+,顶点坐标为(–1,4);(2)点P 横坐标为2–1;(3)当3x 2=-时,四边形PABC 的面积有最大值758,点P (31524-,). 【解析】试题分析: (1)已知抛物线2y ax bx c =++ ()0a ≠与x 轴交于点A 和点B (1,0),与y 轴交于点C(0,3),其对称轴l 为x =﹣1,由此列出方程组,解方程组求得a 、b 、c 的值,即可得抛物线的解析式,把解析式化为顶点式,直接写出顶点坐标即可;(2)把y=2代入解析式,解方程求得x 的值,即可得点P 的横坐标,从而求得点P 的坐标;(3)设点P(x ,y ),则2--23y x x =+ ,根据OBC OAP OPC BCPA S S S S ∆∆∆=++四边形得出四边形PABC 与x 之间的函数关系式,利用二次函数的性质求得x 的值,即可求得点P 的坐标. 试题解析:(1)∵抛物线2y ax bx c =++ ()0a ≠与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x =﹣1,∴0312a b c c ba⎧⎪++=⎪=⎨⎪⎪-=-⎩ , 解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴二次函数的解析式为2--23y x x =+ =()214x -++, ∴顶点坐标为(﹣1,4) (2)设点P (x ,2), 即2--23y x x =+=2,解得1x1(舍去)或2x =﹣1, ∴点P1,2).(3)设点P(x ,y ),则2--23y x x =+ ,OBC OAP OPC BCPA S S S S ∆∆∆=++四边形,∴ 2339332222BCPA S x x x =--+-四边形=23375228x ⎛⎫-++ ⎪⎝⎭ ∴当32x =-时,四边形PABC 的面积有最大值758. 所以点P (315,24-).点睛:本题是二次函数综合题,主要考查学生对二次函数解决动点问题综合运用能力,动点问题为中考常考题型,注意培养数形结合思想,培养综合分析归纳能力,解决这类问题要会建立二次函数模型,利用二次函数的性质解决问题.20.(1)直线CD 与⊙O 相切;(2)⊙O 的半径为1.1. 【解析】 【详解】(1)相切,连接OC ,∵C 为»BE的中点,∴∠1=∠2,∵OA=OC ,∴∠1=∠ACO ,∴∠2=∠ACO ,∴AD ∥OC ,∵CD ⊥AD ,∴OC ⊥CD ,∴直线CD 与⊙O 相切;(2)连接CE ,∵AD=2,AC=6,∵∠ADC=90°,∴CD=22AC AD -=2,∵CD 是⊙O 的切线,∴2CD =AD•DE ,∴DE=1,∴CE=22CD DE +=3,∵C 为»BE的中点,∴BC=CE=3,∵AB 为⊙O 的直径,∴∠ACB=90°,∴AB=22AC BC +=2.∴半径为1.121.(1)34.(2)公平. 【解析】 【详解】试题分析:(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是34; (2)列表得: A BCDA(A ,B ) (A ,C )(A ,D )B (B ,A )(B ,C ) (B ,D )C(C ,A )(C ,B )(C ,D )共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种, ∴P (两张都是轴对称图形)=12,因此这个游戏公平.考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法. 22.【解析】 【分析】根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简各项后,再根据实数的运算法则计算即可求解. 【详解】 原式=22⨯1 =1 【点睛】本题主要考查了实数运算,根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质正确化简各数是解题关键. 23.12【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再由x 2-2x-2=0得x 2=2x+2=2(x+1),整体代入计算可得.详解:原式=()()()()2222112[]111x x x x xx x x x x ----÷+++ =()()()2121•121x x x x x x +-+- =21x x+, ∵x 2-2x-2=0, ∴x 2=2x+2=2(x+1), 则原式=()11212x x +=+.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 24.(1)y 242016333x x =++;(2)2448333y x x =-++;(3)E(12,0). 【解析】 【分析】(1)根据抛物线C 1的顶点坐标可设顶点式将点B 坐标代入求解即可;(2)由抛物线C 1绕点B 旋转180°得到抛物线C 2知抛物线C 2的顶点坐标,可设抛物线C 2的顶点式,根据旋转后抛物线C 2开口朝下,且形状不变即可确定其表达式;(3)作GK ⊥x 轴于G ,DH ⊥AB 于H ,由题意GK=DH=3,AH=HB=EK=KF 32=,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证△AGK ∽△GFK ,由其对应线段成比例的性质可知AK 长,结合A 、B 点坐标可知BK 、BE 、OE 长,可得点E 坐标. 【详解】解:(1)∵抛物线C 1的顶点为532D ⎛⎫-- ⎪⎝⎭,, ∴可设抛物线C 1的表达式为y 25()32a x =+-, 将B(﹣1,0)代入抛物线解析式得:250(1)32a =-+-,∴9304a -=, 解得:a 43=,∴抛物线C 1的表达式为y 245()332x =+-,即y 242016333x x =++. (2)设抛物线C 2的顶点坐标为(,)m n∵抛物线C 1绕点B 旋转180°,得到抛物线C 2,即点(,)m n 与点532D ⎛⎫-- ⎪⎝⎭,关于点B(﹣1,0)对称 5321,022m n --∴=-= 1,32m n ∴==∴抛物线C 2的顶点坐标为(132,) 可设抛物线C 2的表达式为y 21()32k x =-+ ∵抛物线C 2开口朝下,且形状不变43k ∴=-∴抛物线C 2的表达式为y 241()332x =--+,即2448333y x x =-++.(3)如图,作GK⊥x轴于G,DH⊥AB于H.由题意GK=DH=3,AH=HB=EK=KF32 =,∵四边形AGFD是矩形,∴∠AGF=∠GKF=90°,∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,∴∠AGK=∠GFK.∵∠AKG=∠FKG=90°,∴△AGK∽△GFK,∴AK GK GK KF=,∴3332 AK=,∴AK=6,633 BK AK AB=∴=--=,∴BE=BK﹣EK=333 22 -=,∴OE31122 BE OB=-=-=,∴E(12,0).【点睛】本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.25.(1)500,90°;(2)380;(3)合格率排在前两名的是C、D两个厂家;(4)P(选中C、D)=16.【解析】试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;(2)C厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:(1)D厂的零件比例=1-20%-20%-35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)=212=16.考点:1.条形统计图;2.扇形统计图;3. 树状图法.26.(1)详见解析;(2)23.【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.试题解析:(1)如图:,所有可能的结果为(白1,白2)、(白1,红)、(白2,白1)、(白2,红)、(红,白1)、(红,白2); (2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为4263=. 27.(1)y=﹣12x 2+32x+2;(2)m=﹣1或m=3时,四边形DMQF 是平行四边形;(3)点Q 的坐标为(3,2)或(﹣1,0)时,以点B 、Q 、M 为顶点的三角形与△BOD 相似.【解析】【分析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD 解析式为y=12x-2,则Q (m ,-12m 2+32m+2)、M (m ,12m-2),由QM ∥DF 且四边形DMQF 是平行四边形知QM=DF ,据此列出关于m 的方程,解之可得;(3)易知∠ODB=∠QMB ,故分①∠DOB=∠MBQ=90°,利用△DOB ∽△MBQ 得12DO MB OB BQ ==,再证△MBQ ∽△BPQ 得BM BP BQ PQ =,即214132222m m m -=-++,解之即可得此时m 的值;②∠BQM=90°,此时点Q 与点A 重合,△BOD ∽△BQM′,易得点Q 坐标.详解:(1)由抛物线过点A (-1,0)、B (4,0)可设解析式为y=a (x+1)(x-4),将点C (0,2)代入,得:-4a=2,解得:a=-12, 则抛物线解析式为y=-12(x+1)(x-4)=-12x 2+32x+2; (2)由题意知点D 坐标为(0,-2),设直线BD 解析式为y=kx+b ,将B (4,0)、D (0,-2)代入,得:402k b b +⎧⎨-⎩==,解得:122k b ⎧⎪⎨⎪-⎩==, ∴直线BD 解析式为y=12x-2, ∵QM ⊥x 轴,P (m ,0),∴Q (m ,-12m 2+32m+2)、M (m ,12m-2),则QM=-12m2+32m+2-(12m-2)=-12m2+m+4,∵F(0,12)、D(0,-2),∴DF=52,∵QM∥DF,∴当-12m2+m+4=52时,四边形DMQF是平行四边形,解得:m=-1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则21=42DO MBOB BQ==,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴BM BPBQ PQ=,即214132222mm m-=-++,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.【详解】请在此输入详解!。

上海市2020届中考数学二模试题

上海市2020届中考数学二模试题

中考数学二模试题(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计 算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.下列实数中,有理数是ABC .π;D .0.2.如果关于x 的一元二次方程220x x k -+=有两个不相等的实数根,那么k 的取值范围是A .1k <;B .10k k <≠且;C .1k >;D .10k k >≠且.3.如果将抛物线2y x =向左平移1个单位,那么所得新抛物线的表达式是A .21y x =+;B .21y x =-;C .2(1)y x =+;D .2(1)y x =-.4.如图,是某中学九(3)班学生外出方式(乘车、步行、骑车)的不完整频数(人数)分布直方图.如果乘车的频率是0.4,那么步行的频率为A .0.4;B .0.36;C .0.3;D .0.24.5.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB (OA <OB )边OA 、OB 上分别截取OD 、OE ,使得OD=OE ;(2)分别以点D 、E 为圆心,以大于12DE 为半径作弧,两弧交于△AOB 内的一点C ;(3)作射线OC 交AB 边于点P . 那么小明所求作的线段OP 是△AOB 的第4题图AO BDEC P第5题图第6题图EA .一条中线;B .一条高;C .一条角平分线;D .不确定.6.如图,在矩形ABCD 中,点E 是CD 的中点,联结BE ,如果AB =6,BC =4,那么分别以AD 、BE 为直径的⊙M 与⊙N 的位置关系是 A .外离;B .外切;C .相交;D .内切.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:26a a ÷= .8. 某病毒的直径是0.000 068毫米,这个数据用科学记数法表示为 毫米.9.不等式组1,2 4.x x ->⎧⎨<⎩的解集是 .10x =的解为 . 11.已知反比例函数3ay x-=,如果当0x >时,y 随自变量x 的增大而增大,那么a 的取值范围为 .12.请写出一个图像的对称轴为y 轴,开口向下,且经过点(1,-2)的二次函数解析式,这个二次函数的解析式可以是 .13. 掷一枚材质均匀的骰子,掷得的点数为素数的概率是 .14. 在植树节当天,某校一个班的学生分成10个小组参加植树造林活动,如果10个小组植树的株数情况见下表,那么这10个小组植树株数的平均数是 株.16.如图,在中,对角线与相交于点,如果AC a =,BD b =,那么用向量a 、b 表示向量AB 是 .17.如图,在Rt △ABC 中,∠ACB =90°,AB=10,sin A =35,CD 为AB 边上的中线,以点B 为圆心,r 为半径作⊙B .如果⊙B 与中线CD 有且只有一个公共点,那么⊙B 的半径r 的取值范围为 .①②18.如图,在△ABC 中,AB =AC ,BC=8,tan B 32=,点D 是AB 的中点,如果把△BCD 沿直 线CD 翻折,使得点B 落在同一平面内的B ′处,联结A B ′,那么A B ′的长为 .三、解答题(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:2344(1)11a a a a a -+--÷++,其中a =20.(本题满分10分)解方程组:22444,2 6.x xy y x y ⎧-+=⎨+=⎩21.(本题满分10分)如图,在△ABC 中,4sin 5B =,点F 在BC 上,AB=AF=5,过点F 作EF ⊥CB 交AC 于点E ,且:3:5AE E C =,求BF 的长与sin C 的值.22.(本题满分10分,第(1)小题6分,第(2)小题4分)ACD第17题图B第21题图ABC第18题图D第16题图Dy (千米)第22题图EGCABDF甲、乙两车需运输一批货物到600公里外的某地,原计划甲车的速度比乙车每小时多10千米,这样甲车将比乙车早到2小时.实际甲车以原计划的速度行驶了4小时后,以较低速度继续行驶,结果甲、乙两车同时到达. (1)求甲车原计划的速度;(2)如图是甲车行驶的路程y (千米)与时间x (小时) 的不完整函数图像,那么点A 的坐标为 , 点B 的坐标为 ,4小时后的y 与x 的函数关 系式为 (不要求写定义域).23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,四边形ABCD 是矩形,E 是对角线AC 上的一点,EB =ED 且∠ABE =∠ADE . (1)求证:四边形ABCD 是正方形;(2)延长DE 交BC 于点F ,交AB 的延长线于点G ,求证:EF AG BC BE ⋅=⋅.24.(本题满分12分,第(1如图,在平面直角坐标系xOy y 轴上的B 、C (1)求抛物线的解析式以及点D (2)求tan ∠BCD ;(3)点P 在直线BC 上,若∠25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在梯形ABCD中,AD∥BC,∠C=90°,DC=5,以CD为半径的⊙C与以AB为半径的⊙B相交于点E、F,且点E在BD上,联结EF交BC于点G.(1)设BC与⊙C相交于点M,当BM=AD时,求⊙B的半径;(2)设BC= x,EF=y,求y关于x的函数关系式,并写出它的定义域;(3)当BC=10时,点P为平面内一点,若⊙P与⊙C相交于点D、E,且以A、E、P、D为顶点的四边形是梯形,请直接写出⊙P的面积.(结果保留 )初三数学评分参考建议说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5.评分时,给分或扣分均以1分为基本单位.一、选择题(本大题共6题,每题4分,满分24分)1.D 2.A 3.C 4.B 5.C 6.B二、填空题本大题共12题,每题4分,满分48分) 7.4a8.56.810-⨯9.1x <- 10.1x =11.3a > 12. 21y x =-- 等(答案不唯一) 13.1214.615.2 16.1122a b - 17. 56r <≤或245r =18三、解答题(本大题共7题,满分78分)19.解:原式=22131144a a a a a --+⋅+-+ ………………………………………………………(3分) 2(2)(2)11(2)a a a a a +-+=⋅+- ………………………………………………………(3分)22a a +=-…………………………………………………………………………… (2分)当a =, 原式7=--…………………………………………… (2分) .20.解:由①得, 22x y -=或22x y -=-……………………………………………(2分)将它们与方程②分别组成方程组,得:,262;2x x y y ⎧⎨+=-=⎩ 22,2 6.y y x x ⎧⎨+=-=-⎩……………………………………………………(4分) 分别解这两个方程组,得原方程组的解为114,1;x y =⎧⎨=⎩ 222,2.x y =⎧⎨=⎩. …………………………………………(4分)(代入消元法参照给分)21.解:过点A 作AD ⊥CB ,垂足为点D∵4sin 5B =∴3cos 5B = ……………………………………………………(1分) 在Rt△ABD 中,3cos 535BD AB B =⋅=⨯= …………………………………(2分)∵AB=AF AD ⊥CB ∴BF =2BD =6 ………………………………………(1分) ∵EF ⊥CB AD ⊥CB ∴EF ∥AD ∴DF AECF EC= …………………(2分) ∵:3:5AE EC = DF=BD=3 ∴CF=5 ∴CD=8………………………(1分) 在Rt△ABD 中,4sin 545AD AB B =⋅=⨯= ……………………………………(1分) 在Rt△ACD中,AC =……………………………………(1分)∴sin AD C AC ==………………………………………………………………(1分)22.解:(1)设甲车原计划的速度为x 千米/小时由题意得600600210x x-=-…………………………………………………………(3分) 解得150x =- 260x =经检验,150x =- 260x =都是原方程的解,但150x =-不符合题意,舍去∴60x = ……………………………………………………………………………(2分) 答:甲车原计划的速度为60千米/小时.………………………………………(1分) (2)(4,240) (12,600) …………………………………………………(1分,1分)4560y x =+…………………………………………………………………………(2分)23.(1)证明:联结BD …………………………………………………………………(1分)∵EB =ED ∴∠EBD =∠EDB …………………………………………………(2分) ∵∠ABE =∠ADE ∴∠ABD =∠ADB …………………………………………(1分)∴AB=AD …………………………………………………………………………(1分) ∵四边形ABCD 是矩形 ∴四边形ABCD 是正方形………………………(1分) (2)证明:∵四边形ABCD 是矩形 ∴AD ∥BC ∴EF ECDE EA=………………………………………………(2分) 同理DC ECAG EA= ……………………………………………………………(2分) ∵DE=BE∵四边形ABCD 是正方形 ∴BC=DC …………………………………………(1分) ∴EF BCBE AG= ∴EF AG BC BE ⋅=⋅ ……………………………………………………………(1分)24.解:(1)由题意得B (6,0) C (0,3) ………………………………………(1分)把B (6,0) C (0,3)代入22y ax x c =-+得03612,3.a c c =-+⎧⎨=⎩ 解得1,43.a c ⎧=⎪⎨⎪=⎩ ∴21234y x x =-+……………………………………………………………(2分) ∴D (4,-1) ………………………………………………………………(1分)(2)可得点E (3,0) ………………………………………………………………(1分)OE=OC=3,∠OEC =45°过点B 作BF ⊥CD ,垂足为点F 在Rt △OEC中,cos OEEC CEO==∠在Rt △BEF中,sin BF BE BEF =∠=……………………………………(1分)同理,EF =CF ==1分) 在Rt △CBF 中,1tan 3BF BCD CF ∠== …………………………………………(1分) (3)设点P (m ,132m -+)∵∠PEB=∠BCD ∴tan ∠PEB= tan ∠BCD 13= ①点P 在x 轴上方∴131233m m -+=- 解得245m = ………………………………………………(1分) ∴点P 243(,)55………………………………………………………………………(1分) ②点P 在x 轴下方∴131233m m -=- 解得12m = …………………………………………………(1分) ∴点P (12,3)- ………………………………………………………………………(1分) 综上所述,点P 243(,)55或(12,3)-25.(1)联结DM在Rt △DCM中,DM ==…………………………………(2分) ∵AD ∥BC BM =AD ∴四边形ABMD 为平行四边形……………………(1分) ∴AB= DM=即⊙B的半径为1分) (2)过点C 作CH ⊥BD ,垂足为点H在Rt △BCD中,BD =∴sin DBC ∠可得∠DCH =∠DBC∴sin DCH ∠=在Rt △DCH中,sin DH DC DCH =⋅∠=1分)∵CH ⊥BD∴2DE DH ==1分)∴2BE ==………………………………………(1分)∵⊙C 与⊙B 相交于点E 、F ∴EF=2EG BC ⊥EF在Rt △EBG 中,225125sin 25x EG BE DBC x -=⋅∠=+ …………………………(1分)∴221025025x y x -=+(x >1分,1分)(3)254π或(29π-或π ………………………………………(做对一个得2分,其余1分一。

2020届上海市奉贤区中考数学二模试卷(有答案)

2020届上海市奉贤区中考数学二模试卷(有答案)

上海市奉贤区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.如果两个实数a、b满足a+b=0,那么a、b一定是()A.都等于0 B.一正一负 C.互为相反数D.互为倒数2.若x=2,y=﹣1,那么代数式x2+2xy+y2的值是()A.0 B.1 C.2 D.4.3.一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.一组数据3,3,2,5,8,8的中位数是()A.3 B.4 C.5 D.8.5.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线之间对称D.周长相等的两个三角形一定关于某条直线之间对称6.已知⊙O1与⊙O2外离,⊙O1的半径是5,圆心距O1O2=7,那么⊙O2的半径可以是()A.4 B.3 C.2 D.1二、填空题:(本大题共12题,每题4分,满分48分)7.化简:=.8.因式分解:a2﹣a=.9.函数y=的定义域是.10.一个不透明的袋子中装有若干个除颜色外形状大小完全相同的小球.如果其中有2个白球n个黄球,从中随机摸出白球的概率是,那么n=.11.不等式组的解集是.12.已知反比例函数,在其图象所在的每个象限内,y的值随x值的增大而(填“增大”或“减小”).13.直线y=kx+b(k≠0)平行于直线且经过点(0,2),那么这条直线的解析式是.14.小明在高为18米的楼上看到停在地面上的一辆汽车的俯角为60°,那么这辆汽车到楼底的距离是.(结果保留根号)15.如图,在△ABC中,点D在边BC上,且DC=2BD,点E是边AC的中点,设,那么=;(用不的线性组合表示)16.四边形ABCD中,AD∥BC,∠D=90°,如果再添加一个条件,可以得到四边形ABCD是矩形,那么可以添加的条件是.(不再添加线或字母,写出一种情况即可)17.如图,在Rt△ABC中,∠ACB=90°,AD是边BC边上的中线,如果AD=BC,那么cot∠CAB的值是.18.如图,在△ABC中,∠B=45°,∠C=30°,AC=2,点D在BC上,将△ACD沿直线AD翻折后,点C 落在点E处,边AE交边BC于点F,如果DE∥AB,那么的值是.三、解答题:(本大题共7题,满分78)19.计算:.20.解方程:.21.已知,如图,在Rt△ABC中,∠ACB=90°,AB=4,AD是∠BAC的平分线,过点D作DE⊥AD,垂足为点D,交AB于点E,且.(1)求线段BD的长;(2)求∠ADC的正切值.22.今年3月5日,某中学组织六、七年级200位学生参与了“走出校门,服务社会”的活动,该校某数学学习小组的同学对那天参与打扫街道、敬老院服务和社区文艺演出的三组人数进行分别统计,部分数据如图所示:(1)参与社区文艺演出的学生人数是人,参与敬老院服务的学生人数是人;(2)该数学学习小组的同学还发现,六、七年级参与打扫街道的学生人数分别比参与敬老院服务的学生人数多了40%和60%,求参与敬老院服务的六、七年级学生分别有多少人?23.已知:如图,梯形ABCD中,DC∥AB,AD=BC=DC,AC、BD是对角线,E是AB延长线上一点,且∠BCE=∠ACD,联结CE.(1)求证:四边形DBEC是平行四边形;(2)求证:AC2=AD•AE.24.已知在平面直角坐标系xOy(如图)中,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)与点C(3,0),与y轴交于点B,点P为OB上一点,过点B作射线AP的垂线,垂足为点D,射线BD交x轴于点E.(1)求该抛物线的解析式;(2)连结BC,当P点坐标为(0,)时,求△EBC的面积;(3)当点D落在抛物线的对称轴上时,求点P的坐标.25.如图,边长为5的菱形ABCD中,cosA=,点P为边AB上一点,以A为圆心,AP为半径的⊙A与边AD交于点E,射线CE与⊙A另一个交点为点F.(1)当点E与点D重合时,求EF的长;(2)设AP=x,CE=y,求y关于x的函数关系式及定义域;(3)是否存在一点P,使得=2?若存在,求AP的长;若不存在,请说明理由.上海市奉贤区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.如果两个实数a、b满足a+b=0,那么a、b一定是()A.都等于0 B.一正一负 C.互为相反数D.互为倒数【考点】实数的运算.【专题】计算题;实数.【分析】利用相反数的性质判断即可.【解答】解:由a+b=0,得到a,b互为相反数,故选C【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.若x=2,y=﹣1,那么代数式x2+2xy+y2的值是()A.0 B.1 C.2 D.4.【考点】代数式求值.【分析】首先利用完全平方公式的逆运算,然后代入即可.【解答】解:x2+2xy+y2=(x+y)2=(2﹣1)2=1,故选B.【点评】本题主要考查了代数式求值,利用完全平方公式的逆运算,然后代入是解答此题的关键.3.一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【分析】首先确定k,k>0,必过第二、四象限,再确定b,看与y轴交点,即可得到答案.【解答】解:∵y=﹣2x+3中,k=﹣2<0,∴必过第二、四象限,∵b=3,∴交y轴于正半轴.∴过第一、二、四象限,不过第三象限,故选:C.【点评】此题主要考查了一次函数的性质,直线所过象限,受k,b的影响.4.一组数据3,3,2,5,8,8的中位数是()A.3 B.4 C.5 D.8.【考点】中位数.【分析】根据中位数计算:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:把这组数据按照从小到大的顺序排列为:2,3,3,5,8,8,∴这组数据的中位数是=4,故选B.【点评】本题考查了中位数的定义,解题的关键是牢记定义,此题比较简单,易于掌握.5.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线之间对称D.周长相等的两个三角形一定关于某条直线之间对称【考点】轴对称的性质.【分析】认真阅读各选项提供的已知条件,根据轴对称的性质对个选项逐一验证,其中选项A是正确的.【解答】解:A、关于某条直线对称的两个图形能够完全重合,所以关于某条直线对称的两个三角形是全等三角形,正确;B、全等三角形不一定关于某直线对称,错误;C、面积相等的两个三角形不一定关于某条直线之间对称,错误;D、周长相等的两个三角形不一定关于某条直线之间对称,错误;故选A【点评】主要考查了轴对称的性质;找着每个选项正误的具体原因是正确解答本题的关键.6.已知⊙O1与⊙O2外离,⊙O1的半径是5,圆心距O1O2=7,那么⊙O2的半径可以是()A.4 B.3 C.2 D.1【考点】圆与圆的位置关系.【分析】由⊙O1与⊙O2外离,⊙O1的半径是5,圆心距O1O2=7,可求得⊙O2的半径<2,继而求得答案.【解答】解:∵⊙O1与⊙O2外离,圆心距O1O2=7,∴⊙O1与⊙O2的半径和<7,∵⊙O1的半径是5,∴⊙O2的半径<2,∴⊙O2的半径可以是:1.故选D.【点评】此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.化简:=4.【考点】二次根式的性质与化简.【分析】根据二次根式的性质,化简即可.【解答】解:,故答案为:4.【点评】本题考查了二次根式的性质,解决本题的关键是熟记二次根式的性质.8.因式分解:a2﹣a=a(a﹣1).【考点】因式分解-提公因式法.【分析】直接提取公因式a,进而分解因式得出即可.【解答】解:a2﹣a=a(a﹣1).故答案为:a(a﹣1).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.函数y=的定义域是x≠1.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.一个不透明的袋子中装有若干个除颜色外形状大小完全相同的小球.如果其中有2个白球n个黄球,从中随机摸出白球的概率是,那么n=1.【考点】概率公式.【分析】根据有2个白球n个黄球,从中随机摸出白球的概率是,列出等式解答即可.【解答】解:∵有2个白球n个黄球,从中随机摸出白球的概率是,∴=,解得n=1;故答案为:1.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.不等式组的解集是x>3.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x>3,解②得x>﹣4.则不等式组的解集是:x>3.故答案是:x>3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.12.已知反比例函数,在其图象所在的每个象限内,y的值随x值的增大而减小(填“增大”或“减小”).【考点】反比例函数的性质.【分析】根据反比例函数的性质,k=3>0,y随x的增大而减小.【解答】解:反比例函数y=中,k=3>0,故每个象限内,y随x增大而减小.故答案为:减小.【点评】本题考查了反比例函数的性质,应注意y=中k的取值.13.直线y=kx+b(k≠0)平行于直线且经过点(0,2),那么这条直线的解析式是y=x+2.【考点】反比例函数与一次函数的交点问题.【分析】根据两直线平行的问题得到k=,然后把(0,2)代入y=x+b,求出b的值即可.【解答】解:根据题意得k=,把(0,2)代入y=x+b得b=2,所以直线解析式为y=x+2.故答案为y=x+2.【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.14.小明在高为18米的楼上看到停在地面上的一辆汽车的俯角为60°,那么这辆汽车到楼底的距离是6米.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】由俯角的正切值和楼高可求得这辆汽车到楼底的距离.【解答】解:由于楼高18米,塔顶看停在地面上的一辆汽车的俯角为60°,则这辆汽车到楼底的距离为=6(米).故答案是:6米.【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.15.如图,在△ABC中,点D在边BC上,且DC=2BD,点E是边AC的中点,设,那么=﹣;(用不的线性组合表示)【考点】*平面向量.【分析】由在△ABC中,点D在边BC上,且DC=2BD,点E是边AC的中点,设,可表示出与,然后利用三角形法则求解即可求得答案.【解答】解:∵DC=2BD,点E是边AC的中点,设,∴==,==,∴=﹣=﹣.故答案为:﹣.【点评】此题考查了平面向量的知识.注意掌握三角形法则的应用是解此题的关键.16.四边形ABCD中,AD∥BC,∠D=90°,如果再添加一个条件,可以得到四边形ABCD是矩形,那么可以添加的条件是AD=BC.(不再添加线或字母,写出一种情况即可)【考点】矩形的判定.【分析】添加AD=BC,再有条件AD∥BC可得四边形ABCD是平行四边形,再加上条件∠D=90°可根据有一个角是直角的平行四边形是矩形判定四边形ABCD是矩形.【解答】解:添加AD=BC,∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵∠D=90°,∴四边形ABCD是矩形,故答案为:AD=BC.【点评】此题主要考查了矩形的判定,关键是掌握有一个角是直角的平行四边形是矩形.17.如图,在Rt△ABC中,∠ACB=90°,AD是边BC边上的中线,如果AD=BC,那么cot∠CAB的值是.【考点】解直角三角形;含30度角的直角三角形.【专题】计算题.【分析】设AD=BC=2x,利用中线定义得到CD=BD=x,则可根据勾股定理表示出AC,然后利用余切的定义求解.【解答】解:设AD=BC=2x,则CD=BD=x,在Rt△ACD中,AC===x,在Rt△ABC中,cot∠CAB===.故答案为.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.解决本题的关键是灵活运用勾股定理和锐角三角函数的定义.18.如图,在△ABC中,∠B=45°,∠C=30°,AC=2,点D在BC上,将△ACD沿直线AD翻折后,点C 落在点E处,边AE交边BC于点F,如果DE∥AB,那么的值是+1.【考点】翻折变换(折叠问题).【分析】作AM⊥BC垂足为M,先求出AM、BM、MC,再证明CA=CF,由此即可解决问题.【解答】解:如图作AM⊥BC垂足为M,∵△ADE是由△ADC翻折,∴∠C=∠E=30°,∵AB∥DE,∴∠E=∠BAF=30°,∴∠AFC=∠B+∠BAF=75°,∴∠CAF=180°﹣∠AFC﹣∠C=75°,∴∠CAF=∠CFA=75°,∴CA=CF=2,在RT△AMC中,∵∠C=30°,AC=2,∴AM=1,MC=,∵∠B=∠BAM=45°,∴MB=AM=1,∴BC=1+,BF=1+﹣2=﹣1∴==+1.故答案为+1.【点评】本题考查翻折变换、等腰三角形的判定和性质、勾股定理等知识,添加辅助线构造直角三角形是解决问题的关键,解题时要善于发现特殊三角形,属于中考常考题型.三、解答题:(本大题共7题,满分78)19.计算:.【考点】实数的运算;分数指数幂;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用立方根定义计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1﹣﹣2+2﹣=1﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解方程:.【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是(x2﹣4),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x2﹣4),得(x+2)2﹣(x﹣2)=16,解得x1=2,x2=﹣5.检验:把x=2代入(x2﹣4)=0,所以x=2是原方程的增根.把x=﹣5代入(x2﹣4)=21≠0,∴原方程的解为x=﹣5.【点评】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.已知,如图,在Rt△ABC中,∠ACB=90°,AB=4,AD是∠BAC的平分线,过点D作DE⊥AD,垂足为点D,交AB于点E,且.(1)求线段BD的长;(2)求∠ADC的正切值.【考点】相似三角形的判定与性质;解直角三角形.【分析】(1)根据余角的性质得到∠CAD=∠DAB,推出∠BAD=∠BDE,得到△BED∽△BDA,由相似三角形的性质得到BD2=BE•BA,即可得到结论;(2)由余角的性质得到∠ADE=∠AED,根据余角的性质得到,根据三角形函数的定义即可得到结论.【解答】解:(1)∵DE⊥AD,∴∠BDE=∠CAD=90°﹣∠CDA,∵∠CAD=∠DAB,∴∠BAD=∠BDE,∵∠B=∠B,∴△BED∽△BDA,∴BD2=BE•BA,∵AB=4,,∴BE=1,∴BD2=1×4=4,∴BD=2;(2),∵DE⊥AD,∴∠AED=90°﹣∠DAE,∵∠ADE=90°﹣∠CAD,∵∠CAD=∠DAB,∴∠ADE=∠AED,∵△BED∽△BDA,∴,∴tan∠ADE=tan∠AED===2.【点评】本题考查了相似三角形的判定和性质,三角函数的定义,熟练掌握相似三角形的判定和性质是解题的关键.22.今年3月5日,某中学组织六、七年级200位学生参与了“走出校门,服务社会”的活动,该校某数学学习小组的同学对那天参与打扫街道、敬老院服务和社区文艺演出的三组人数进行分别统计,部分数据如图所示:(1)参与社区文艺演出的学生人数是50人,参与敬老院服务的学生人数是60人;(2)该数学学习小组的同学还发现,六、七年级参与打扫街道的学生人数分别比参与敬老院服务的学生人数多了40%和60%,求参与敬老院服务的六、七年级学生分别有多少人?【考点】扇形统计图.【分析】(1)用学生总数乘以参与社区文艺演出的学生所占百分比得到参与社区文艺演出的学生人数;用学生总数分别减去打扫街道、社区文艺演出的人数得到参与敬老院服务的学生人数;(2)设六年级参与敬老院服务的学生有x人,则七年级参与敬老院服务的学生有(60﹣x)人,根据六、七年级参与打扫街道总人数为90人列出方程求解可得.【解答】解:(1)参与社区文艺演出的学生人数是:200×25%=50人,参与敬老院服务的学生人数是:200﹣90﹣50=60人;(2)设六年级参与敬老院服务的学生有x人,则七年级参与敬老院服务的学生有(60﹣x)人,根据题意,得:(1+40%)x+(1+60%)(60﹣x)=90,解得:x=30,答:六年级参与敬老院服务的学生有30人,则七年级参与敬老院服务的学生有30人.【点评】本题主要考查读扇形统计图和列方程解决实际问题的能力,根据扇形统计图读出有用信息依据计算公式计算是基础,抓住相等关系列方程解决实际问题是关键.23.已知:如图,梯形ABCD中,DC∥AB,AD=BC=DC,AC、BD是对角线,E是AB延长线上一点,且∠BCE=∠ACD,联结CE.(1)求证:四边形DBEC是平行四边形;(2)求证:AC2=AD•AE.【考点】相似三角形的判定与性质;平行四边形的判定.【专题】证明题.【分析】(1)由等腰梯形的性质得出∠ADC=∠BCD,由SAS证明△ADC≌△BCD,得出∠ACD=∠BDC,由等腰三角形的性质和已知条件得出∠BCE=∠CBD,证出BD∥CE,即可得出结论;(2)证出CE=AC,证明△EAC∽△EBC,得出对应边成比例,即可得出结论.【解答】证明:(1)∵梯形ABCD中,DC∥AB,AD=BC=DC,∴∠ADC=∠BCD,在△ADC和△BCD中,,∴△ADC≌△BCD(SAS),∴∠ACD=∠BDC,∵BC=DC,∴∠CBD=∠BDC,∴∠CBD=∠ACD,∵∠BCE=∠ACD,∴∠BCE=∠CBD,∴BD∥CE,又∵DC∥AB,∴四边形DBEC是平行四边形;(2)由(1)得:四边形DBEC是平行四边形,∴∠E=∠BDC,∵DC∥AB,∴∠BAC=∠ACD,∵∠BCE=∠ACD,∴∠BAC=∠BCE=∠E,∴CE=AC,又∵∠B=∠B,∴△EAC∽△EBC,∴,即,∴AC2=AD•AE.【点评】本题考查了平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、等腰梯形的性质、等腰三角形的性质等知识;熟练掌握平行四边形的判定与性质,证明三角形相似得出比例式是解决问题(2)的关键.24.已知在平面直角坐标系xOy(如图)中,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)与点C(3,0),与y轴交于点B,点P为OB上一点,过点B作射线AP的垂线,垂足为点D,射线BD交x轴于点E.(1)求该抛物线的解析式;(2)连结BC,当P点坐标为(0,)时,求△EBC的面积;(3)当点D落在抛物线的对称轴上时,求点P的坐标.【考点】二次函数综合题.【分析】(1)将A、C点的坐标代入抛物线解析式,得到关于b、c的二元一次方程,解方程即可得出结论;(2)由∠APO、∠AED均匀∠PAO互余得出∠APO=∠AED,再结合∠AOP=∠BOE=90°可得出△AOP∽△BOE,由相似三角形的性质得出,代入数据可得出OE的长度,结合C点坐标可得出CE 长度,将CE、OB的长度代入三角形的面积公式,即可得出结论;(3)令对称轴与x轴的交点为H,过点B作BF⊥直线x=1于点F,先证△ADH∽△DBF,再由相似三角形的性质找出,设DH=a,由此可得出关于a的一元二次方程,解方程可求出a的值,再根据可得出OP的长度,从而得出P点的坐标.【解答】解:(1)将点A(﹣1,0),点C(3,0)的坐标代入抛物线解析式,得:,解得:.故该抛物线的解析式为y=﹣x2+2x+3.(2)∵BD⊥AD,∴∠ADE=90°,∴∠PAO+∠APO=∠PAO+∠AED=90°,∴∠APO=∠AED=∠BEO,又∵∠AOP=∠BOE=90°,∴△AOP∽△BOE,∴.令x=0,y=3,即点B的坐标为(0,3),∵点A(﹣1,0),点C(3,0),点P(0,),∴OE=2,∴CE=OC﹣OE=3﹣2=1.S△EBC=CE•OB=.(3)抛物线对称轴直线x=﹣=1,令对称轴与x轴的交点为H,过点B作BF⊥直线x=1于点F,如图所示.∵DH⊥x轴,BF⊥FD,∴∠AHD=∠DFB=90°,∵∠BDF+∠BDA+∠ADH=180°,∠BDA=90°,∠BDF+∠DBF=90°,∴∠ADH=∠DBF,∴△ADH∽△DBF,∴.设DH=a.∵AH=2,DF=BO﹣DH=3﹣a,FB=1,∴有,解得:a1=1,a2=2.又∵,∴OP=或1.故点P的坐标为(0,1)或(0,).【点评】本题考查了待定系数法求函数解析式、相似三角形的判定及性质、解一元二次方程,解题的关键:(1)待定系数法求解析式的系数;(2)找出线段CE的长度;(3)由相似三角形的性质找出关于a的一元二次方程.本题属于中档题,(1)难度不大;(2)(3)有点难度.解决该类问题,利用相似三角形的性质找出比例关系,解方程即可得出结论.25.如图,边长为5的菱形ABCD中,cosA=,点P为边AB上一点,以A为圆心,AP为半径的⊙A与边AD交于点E,射线CE与⊙A另一个交点为点F.(1)当点E与点D重合时,求EF的长;(2)设AP=x,CE=y,求y关于x的函数关系式及定义域;(3)是否存在一点P,使得=2?若存在,求AP的长;若不存在,请说明理由.【考点】圆的综合题.【分析】(1)由平行四边形的性质得到∠AEF=DAB,再利用cos∠DAB=cos∠AEF==即可求解;(2)由平行四边形的性质得到∠CGD=∠BAD,再利用勾股定理即可求解;(3)由平行四边形的性质得到∠GCE=∠HAE=∠DAB,利用cosA=计算即可.【解答】解:(1)过点A作AH⊥EF于点H,∴EF=2EH,∵点E与点D重合,∴EF∥AB,∴∠AEF=DAB,∴cos∠DAB=cos∠AEF==,∵AE=5,∴EH=3,∴EF=6;(2)如图,过点C作CG⊥AD,在Rt△CGD中,cos∠CGD=cos∠BAD=,∴DG=3,CG=4,在Rt△CGE中,GE=8﹣x,∴y2=16+(8﹣x)2,y=(0<x≤5),(3)∵cos∠DAB=,∴tan∠DAB=,∵∠GCE=∠HAE=∠DAB,∴tan∠DAB==,∴x=,即:AP的长为.【点评】此题是圆的综合题,主要考查了圆的性质,平行四边形的性质,勾股定理以及锐角三角函数,锐角三角函数的运用是解本题的关键.。

2020年上海市奉贤区中考数学二模试卷(附答案详解)

2020年上海市奉贤区中考数学二模试卷(附答案详解)

2020年上海市奉贤区中考数学二模试卷一、选择题(本大题共6小题,共24.0分)1.下列计算中,结果等于a2m的是()A. a m+a mB. a m⋅a2C. (a m)mD. (a m)22.下列等式正确的是()A. (√3)2=3B. √(−3)2=−3C. √33=3D. (−√3)2=−33.如果关于x的一元二次方程x2−2x+m=0有两个不相等的实数根,那么实数m的值可以是()A. 0B. 1C. 2D. 34.甲、乙、丙、丁四位同学本学期5次50米短跑成绩的平均数x−(秒)及方差S2(秒 2)如表所示.如果从这四位同学中选出一位成绩较好且状态稳定的同学参加学校比赛,那么应该选的同学是()A. 甲B. 乙C. 丙D. 丁5.四边形ABCD的两条对角线AC、BD互相平分.添加下列条件,一定能判定四边形ABCD为菱形的是()A. ∠ABD=∠BDCB. ∠ABD=∠BACC. ∠ABD=∠CBDD. ∠ABD=∠BCA6.如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A. AM>ANB. AM≥ANC. AM<AND. AM≤AN二、填空题(本大题共12小题,共48.0分)7.计算:9a3b÷3a2=______.8.如果代数式2在实数范围内有意义,那么实数x的取值范围是______.3−x9.方程√x+1=4的解是______.10.二元一次方程x+2y=3的正整数解是______.11.从分别写有数字1,2,4的三张相同卡片中任取两张,如果把所抽取卡片上的两个上的概率是______.数字分别作为点M的横坐标和纵坐标,那么点M在双曲线y=4x12. 如果函数y =kx(k ≠0)的图象经过第二、四象限,那么y 的值随x 的值增大而______.(填“增大”或“减小”)13. 据国家统计局数据,2019年全年国内生产总值接近100万亿,比2018年增长6.1%.假设2020年全年国内生产总值的年增长率保持不变,那么2020年的全年国内生产总值将达到______万亿.14. 已知平行四边形ABCD ,E 是边AB 的中点.设AB ⃗⃗⃗⃗⃗ =a ⃗ ,BC⃗⃗⃗⃗⃗ =b ⃗ ,那么DE ⃗⃗⃗⃗⃗⃗ =______.(结果用a ⃗ 、b ⃗ 表示).15. 某校计划为全体1200名学生提供以下五种在线学习的方式:在线听课、在线答题、在线讨论、在线答疑和在线阅读.为了解学生需求,该校随机对部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成扇形统计图(如图).由这个统计图可知,全校学生中最喜欢“在线答疑”的学生人数约为______人.16. 如图,一艘轮船由西向东航行,在A 处测得灯塔P在北偏东60°的方向,继续向东航行40海里后到B 处,测得灯塔P 在北偏东30°的方向,此时轮船与灯塔之间的距离是______海里.17. 在矩形ABCD 中,AB =5,BC =12.如果分别以A 、C 为圆心的两圆外切,且圆A与直线BC 相交,点D 在圆A 外,那么圆C 的半径长r 的取值范围是______. 18. 如图,在Rt △ABC 中,∠ACB =90°,∠B =35°,CD 是斜边AB 上的中线,如果将△BCD 沿CD 所在直线翻折,点B 落在点E 处,联结AE ,那么∠CAE 的度数是______度.三、解答题(本大题共7小题,共78.0分) 19. 计算:812×2−2−|√2−2|+20200.20.先化简,再求值:x−3x2+6x+9÷(1−6x+3),其中x=√3.21.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(−2,0),与y轴的正半轴交于点B,与反比例函数y=mx(x>0)的图象交于点C,且AB=BC,点C 的纵坐标为4.(1)求直线AB的表达式;(2)过点B作BD//x轴,交反比例函数y=mx的图象于点D,求线段CD的长度.22.如图1,由于四边形具有不稳定性,因此在同一平面推矩形的边可以改变它的形状(推移过程中边的长度保持不变).已知矩形ABCD,AB=4cm,AD=3cm,固定边AB,推边AD,使得点D落在点E处,点C落在点F处.(1)如图2,如果∠DAE=30°,求点E到边AB的距离;(2)如图3,如果点A、E、C三点在同一直线上,求四边形ABFE的面积.23.已知:如图,在梯形ABCD中,CD//AB,∠DAB=90°,对角线AC、BD相交于点E,AC⊥BC,垂足为点C,且BC2=CE⋅CA.(1)求证:AD=DE;(2)过点D作AC的垂线,交AC于点F,求证:CE2=AE⋅AF.x−2 24.如图,在平面直角坐标系xOy中,抛物线y=x2+bx经过点A(2,0).直线y=12与x轴交于点B,与y轴交于点C.(1)求这条抛物线的表达式和顶点的坐标;(2)将抛物线y=x2+bx向右平移,使平移后的抛物线经过点B,求平移后抛物线的表达式;(3)将抛物线y=x2+bx向下平移,使平移后的抛物线交y轴于点D,交线段BC于点P、Q,(点P在点Q右侧),平移后抛物线的顶点为M,如果DP//x轴,求∠MCP 的正弦值.25.如图,已知半圆⊙O的直径AB=10,弦CD//AB,且CD=8,E为弧CD的中点,点P在弦CD上,联结PE,过点E作PE的垂线交弦CD于点G,交射线OB于点F.(1)当点F与点B重合时,求CP的长;(2)设CP=x,OF=y,求y与x的函数关系式及定义域;(3)如果GP=GF,求△EPF的面积.答案和解析1.【答案】D【解析】解:A、a m+a m=2a m,故此选项不合题意;B、a m⋅a2=a m+2,故此选项不合题意;C、(a m)m=a m2,故此选项不合题意;D、(a m)2=a2m,故此选项符合题意.故选:D.直接利用合并同类项法则、同底数幂的乘法运算法则、幂的乘方运算法则分别计算得出答案.此题主要考查了合并同类项、同底数幂的乘法运算、幂的乘方运算,正确掌握相关运算法则是解题关键.2.【答案】A【解析】解:(√3)2=3,A正确;√(−3)2=3,B错误;√33=√27=3√3,C错误;(−√3)2=3,D错误;故选:A.根据二次根式的性质把各个二次根式化简,判断即可.本题考查的是二次根式的化简,掌握二次根式的性质:√a2=|a|是解题的关键.3.【答案】A【解析】解:根据题意得△=(−2)2−4m>0,解得m<1,所以m可以取0.故选:A.利用判别式的意义得到△=(−2)2−4m>0,解不等式得到m的范围,然后对各选项进行判断.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.【解析】解:∵乙的平均分最好,方差最小,最稳定,∴应选乙.故选:B.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.本题考查了方差,正确理解方差的意义是解题的关键.5.【答案】C【解析】解:如图所示,设四边形ABCD的两条对角线AC、BD交于点O,∵AC、BD互相平分,∴四边形ABCD是平行四边形.选项A,由平行四边形的性质可知AB//DC,则∠ABD=∠BDC,从而A不符合题意;选项B,∠ABD=∠BAC,则AO=BO,再结合对角线AC、BD互相平分,可知AC=BD,从而平行四边形ABCD是矩形,故B不符合题意;选项C,由平行四边形的性质可知AD//BC,从而∠ADB=∠CBD,当∠ABD=∠CBD时,∠ADB=∠ABD,故AB=AD,由一组邻边相等的平行四边形的菱形可知,C符合题意;选项D,∠ABD=∠BCA,得不出可以判定四边形ABCD为菱形的条件,故D不符合题意.综上,只有选项C一定能判定四边形ABCD为菱形.故选:C.先由对角线AC、BD互相平分得出四边形ABCD是平行四边形,再按照平行四边形基础上菱形的判定方法:①一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形,逐个选项分析即可.本题考查了菱形的判定、平行四边形的判定等知识点,熟练掌握菱形的判定方法是解题的关键.【解析】解:∵线段AN 是△ABC 边BC 上的高, ∴AD ⊥BC ,由垂线段最短可知,AM ≥AN , 故选:B .根据三角形的高的概念得到AD ⊥BC ,根据垂线段最短判断.本题考查的是三角形的角平分线、中线和高的概念,掌握垂线段最短是解题的关键.7.【答案】3ab【解析】解:原式=3ab . 故答案为:3ab .直接利用整式的除法运算法则计算得出答案.此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.8.【答案】x ≠3【解析】解:根据题意知3−x ≠0, 解得x ≠3, 故答案为:x ≠3.根据分式有意义的条件是分母不为0求解可得.本题主要考查分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于零.9.【答案】x =15【解析】解:原方程变形为:x +1=16, ∴x =15,x =15时,被开方数x +1=16>0‘ ∴方程的解为x =15. 故答案为x =15.’将无理方程化为一元一次方程,然后求解即可.本题考查了无理方程,将无理方程化为一元一次方程是解题的关键.10.【答案】{x =1y =1【解析】解:方程x +2y =3, 变形得:x =−2y +3, 当y =1时,x =1, 则方程的正整数解为{x =1y =1,故答案为:{x =1y =1把y 看做已知数求出x ,即可确定出正整数解.此题考查了解二元一次方程,解题的关键是将y 看做已知数求出x .11.【答案】13【解析】解:列表如下:所有可能的情况有6种;落在双曲线y =4x 上的点有:(1,4),(4,1)共2个, 则P =26=13.列表得出所有等可能的情况,然后判断落在双曲线上点的情况数,即可求出点M 在双曲线y =4x 上的概率.此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.12.【答案】减小【解析】解:函数y =kx(k ≠0)的图象经过第二、四象限,那么y 的值随x 的值增大而减小,故答案为:减小.根据正比例函数的性质进行解答即可.此题主要考查了正比例函数的性质,关键是掌握正比例函数的性质:正比例函数y =kx(k ≠0)的图象是一条经过原点的直线,当k >0时,该直线经过第一、三象限,且y 的值随x 的值增大而增大;当k <0时,该直线经过第二、四象限,且y 的值随x 的值增大而减小.13.【答案】106.1【解析】解:根据题意得:100×(1+6.1%)=106.1(万亿),答:2020年的全年国内生产总值将达到106.1万亿;故答案为:106.1.利用增长率的意义得到2020年全年国内生产总值100×(1+6.1%),然后进行计算即可. 本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.14.【答案】−b ⃗ +12a ⃗【解析】解:如图,∵四边形ABCD 是平行四边形,∴AD =BC ,AD//BC∴AD⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ =b ⃗ , ∵E 是AB 的中点,∴AE =12AB =12a ⃗ ,∵DE⃗⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ +AE −, ∴DE ⃗⃗⃗⃗⃗⃗ =−b ⃗ +12a ⃗ , 故答案为:−b ⃗+12a ⃗ . 由三角形法则可知:DE ⃗⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ +AE −,只要求出DA ⃗⃗⃗⃗⃗,AE ⃗⃗⃗⃗⃗ 即可解决问题. 本题考查平面向量,三角形法则,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 15.【答案】360【解析】解:∵最喜欢“在线答疑”的学生人数占被调查人数的百分比为1−(20%+ 25%+15%+10%)=30%,∴全校学生中最喜欢“在线答疑”的学生人数约为1200×30%=360(人),故答案为:360.先根据各部分所占百分比之和为1求出D类型人数所占百分比,再乘以总人数即可得.本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.16.【答案】40【解析】解:如图所示:由题意可得,∠PAB=30°,∠DBP=30°,故∠PBE=60°,则∠P=∠PAB=30°,可得:AB=BP=40海里.故答案为:40.根据已知方向角得出∠P=∠PAB=30°,进而得出对应边关系即可得出答案.此题主要考查了方向角,正确得出∠P=∠PAB=30°是解题关键.17.【答案】1<r<8【解析】解:如图,∵四边形ABCD是矩形,∴∠B=90°,AD=BC=12,AB=5,根据勾股定理,得AC=√AB2+BC2=13,∵分别以A、C为圆心的两圆外切,且圆A与直线BC相交,∴13−5=8,∵点D在圆A外,∴13−12=1,∴1<r<8,所以圆C的半径长r的取值范围是1<r<8.故答案为:1<r<8.四边形ABCD是矩形,可得∠B=90°,AD=BC=12,AB=5,根据勾股定理,得AC= 13,分别以A、C为圆心的两圆外切,且圆A与直线BC相交,点D在圆A外,根据圆与圆相切的性质即可求出r的取值范围.本题考查了相切两圆的性质、切线的性质、点与圆的位置关系、直线与圆的位置关系,解决本题的关键是综合运用以上知识.18.【答案】125【解析】解:如图所示,∵CD是斜边AB上的中线,∴CD=BD=AD,∴∠BCD=∠B=35°,∴∠BDC=110°,由折叠可得,∠CDE=∠CDB=110°,DE=DB=AD,∴∠BDE=360°−110°×2=140°,∴∠DAE=12∠BDE=70°,又∵Rt△ABC中,∠BAC=90°−35°=55°,∴∠CAE=55°+70°=125°,故答案为:125.依据折叠的性质即可得到∠DAE的度数,再根据三角形内角和定理即可得到∠BAC的度数,进而得出∠CAE的度数.本题主要考查了折叠问题以及直角三角形斜边上中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.19.【答案】解:原式=2√2×14−(2−√2)+1=√22−2+√2+1=3√22−1.【解析】直接利用二次根式的性质和零指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:原式=x−3(x+3)2÷x+3−6x+3 =x−3(x+3)2⋅x+3x−3=1x+3,当x =√3时,原式=√3+3=3−√36.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 21.【答案】解:(1)过点C 作CH ⊥x 轴,垂足为H ,如图,∴AOOH =ABBC =1,∵A(−2,0),∴AO =2,∴OH =OA =2,∵点C 的纵坐标为4,∴点C 的坐标为(2,4),设直线AB 的表达式y =kx +b(k ≠0),把A(−2,0),C(2,4)代入得{−2k +b =02k +b =4,解得{k =1b =2, ∴直线AB 的表达式y =x +2;(2)∵反比例函数y =m x 的图象过点C(2,4),∴m =2×4=8,∵直线y =x +2与y 轴的正半轴交于点B ,∴点B 的坐标为(0,2),∵BD//x 轴,∴点D 纵坐标为2,当y =2时,8x =2,解得x =4,∴点D 坐标为(4,2),∴CD =√(2−4)2+(4−2)2=2√2.【解析】(1)过点C 作CH ⊥x 轴,垂足为H ,如图,利用平行线分线段成比例得到AO OH =ABBC =1,则OH =OA =2,则点C 的坐标为(2,4),然后利用待定系数法求直线AB 的解析式;(2)把C点坐标代入y=mx中求出m=8,再利用直线解析式确定点B的坐标为(0,2),接着利用BD//x轴得到点D纵坐标为2,根据反比例解析式确定点D坐标,然后根据两点间的距离公式计算CD的长.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.22.【答案】解:(1)如图2,过点E作EH⊥AB轴,垂足为H,∵四边形ABCD是矩形,∴∠DAB=90°,∴AD//EH,∴∠DAE=∠AEH,∵∠DAE=30°,∴∠AEH=30°.在直角△AEH中,∠AHE=90°,∴EH=AE⋅cos∠AEH,∵AD=AE=3cm,∴EH=3×√32=3√32cm,即点E到边AB的距离是3√32cm;(2)如图3,过点E作EH⊥AB,垂足为H.∵四边形ABCD是矩形,∴AD=BC,∵AD=3cm,∴BC=3cm,在直角△ABC中,∠ABC=90°,AB=4cm,∴AC=√AB2+BC2=5cm,∵EH//BC,∴AEAC =EHBC,∵AE=AD=3cm,∴35=EH4,∵推移过程中边的长度保持不变,∴AD=AE=BF,AB=DC=EF,∴四边形ABCD是平行四边形,∴S平行四边形ABFE =AB⋅EH=4×95=365cm2.【解析】(1)过点E作EH⊥AB轴,垂足为H,根据矩形的性质得到∠DAB=90°,AD//EH,根据平行线的性质得到∠DAE=∠AEH,求得∠AEH=30°,解直角三角形即可得到结论;(2)过点E作EH⊥AB,垂足为H.根据矩形的性质得到AD=BC.得到BC=3cm.根据勾股定理得到AC=√AB2+BC2=5cm,根据平行线分线段成比例定理得到EH=95cm,根据四边形的性质得到AD=AE=BF,AB=DC=EF.求得四边形ABCD是平行四边形,于是得到结论.本题考查了平行四边形的判定和性质,解直角三角形,矩形的性质,正确的理解题意是解题的关键.23.【答案】证明:(1)∵BC2=CE⋅CA,∴BCCE =CABC,又∠ECB=∠BCA,∴△BCE∽△ACB,∴∠CBE=∠CAB,∵AC⊥BC,∠DAB=90°,∴∠BEC+∠CBE=90°,∠DAE+∠CAB=90°,∴∠BEC=∠DAE,∵∠BEC=∠DEA,∴∠DAE=∠DEA,∴AD=DE;(2)∵DF⊥AC,AC⊥BC,∴∠DFE=∠BCA=90°,∴DF//BC,∴CEEF =BEDE,∵DC//AB,∴BEDE =AECE,∴CE2=AE⋅EF,∵AD=DE,DF⊥AC,∴AF=EF,∴CE2=AE⋅AF.【解析】(1)根据相似三角形的判定定理得到△BCE∽△ACB,根据相似三角形的性质得到∠CBE=∠CAB,根据等角的余角相等得到∠BEC=∠DAE,根据等腰三角形的判定定理证明;(2)根据平行线分线段成比例定理得到CEEF =BEDE,BEDE=AECE,得到CEEF=AECE,整理得到CE2=AE⋅EF,根据等腰三角形的三线合一得到AF=EF,证明结论.本题考查的是相似三角形的判定和性质、直角梯形的概念,掌握相似三角形的判定定理和性质定理是解题的关键.24.【答案】解:(1)由题意,抛物线y=x2+bx经过点A(2,0),得0=4+2b,解得b=−2,∴抛物线的表达式是y=x2−2x.∵y=x2−2x=(x−1)2−1,∴它的顶点C的坐标是(1,−1).(2)∵直线y=12x−2与x轴交于点B,∴点B的坐标是(4,0).①将抛物线y=x2−2x向右平移2个单位,使得点A与点B重合,此时平移后的抛物线表达式是y=(x−3)2−1.②将抛物线y=x2−2x向右平移4个单位,使得点O与点B重合,此时平移后的抛物线表达式是y=(x−5)2−1.(3)设向下平移后的抛物线表达式是:y=x2−2x+n,得点D(0,n).∵DP//x轴,∴点D、P关于抛物线的对称轴直线x=1对称,∴P(2,n).∵点P在直线BC上,∴n=12×2−2=−1.∴平移后的抛物线表达式是:y=x2−2x−2.∴新抛物线的顶点M的坐标是(1,−2).∴MC//OB,∴∠MCP=∠OBC.在Rt△OBC中,sin∠OBC=OCBC,由题意得:OC=2,BC=2√5,∴sin∠MCP=sin∠OBC=2√5=√55.即∠MCP的正弦值是√55.【解析】(1)根据待定系数法即可求得抛物线的解析式,化成顶点式即可求得顶点坐标;(2)根据图象上点的坐标特征求得B(4,0),然后分两种情况讨论求得即可;(3)设向下平移后的抛物线表达式是:y=x2−2x+n,得点D(0,n),即可求得P(2,n),代入y=12x−2求得n=−1,即可求得平移后的解析式为y=x2−2x−2.求得顶点坐标,然后解直角三角形即可求得结论.本题考查了一次函数图象上点的坐标特征,二次函数的图象与几何变换,待定系数法求二次函数的解析式以及二次函数的性质,解直角三角形等,正确求得平移后的解析式是解题的关键.25.【答案】解:(1)连接EO,交弦CD于点H,∵E为弧CD的中点,∴EO⊥AB,∵CD//AB,∴OH⊥CD,∴CH=12CD,连接CO,∵AB=10,CD=8,∴CO=5,CH=4,∴OH=√CO2−CH2=3,∴EH=EO−OH=2,∵点F与点B重合,∴∠OBE=∠HGE=45°,∵PE⊥BE,∴∠HPE=∠HGE=45°,∴PE=GE,∴PH=HG=2,∴CP=CH−PH=4−2=2;(2)如图2,连接OE,交CD于H,∵∠PEH+∠OEF=90°,∠OFE+∠OEF=90°,∴∠PEH=∠OFE,∵∠PHE=∠EOF=90°,∴△PEH∽△EFO,∴EHFO =PHEO,∵EH=2,FO=y,PH=4−x,EO=5,∴2y =4−x5,∴y=104−x (0≤x<3).(3)如图3,过点P作PQ⊥AB,垂足为Q,∵GP=GF,∴∠GPF=∠GFP,∵CD//AB,∴∠GPF=∠PFQ,∵PE⊥EF,∴PQ=PE,由(2)可知,△PEH∽△EFO,∴PEEF =PHEO,∵PQ=OH=3,∴PE=3,∵EH=2,∴PH=√PE2−EH2=√5,∴3EF =√55,∴EF=3√5,∴S△EPF=12⋅PE⋅EF=12×3×3√5=9√52.【解析】(1)如图1,连接EO,交弦CD于点H,根据垂径定理得EO⊥AB,由勾股定理计算OH=√CO2−CH2=3,可得EH的长,证明∠HPE=∠HGE=45°,则PE=GE.从而可得结论;(2)如图2,连接OE,证明△PEH∽△EFO,列比例式可得结论;(3)如图3,作PQ⊥AB,分别计算PE和EF的长,利用三角形面积公式可得结论.本题属于圆综合题,考查了垂径定理,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形列比例式解决问题,属于中考压轴题.。

2020年上海市奉贤区中考数学二模试卷 (含答案解析)

2020年上海市奉贤区中考数学二模试卷 (含答案解析)

2020年上海市奉贤区中考数学二模试卷一、选择题(本大题共6小题,共24.0分)1.下列计算错误的是()A. 2a2+3a2=5a4B. (3ab3)2=9a2b6C. (x2)3=x6D. a⋅a2=a32.下列四个等式:①√(−4)2=4;②(−√4)2=16;③(√4)2=4;④√(−4)2=−4,正确的是()A. ①②B. ③④C. ②④D. ①③3.已知关于x的一元二次方程x2−2kx+6=0有两个相等的实数根,则k的值为()A. ±2√6B. ±√6C. 2或3D. √6或√34.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x−(单位:分)及方差s2如表所示:甲乙丙丁x−7887s21 1.21 1.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A. 甲B. 乙C. 丙D. 丁5.如图,在给定的一张平行四边形纸片上作一个菱形,甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形;乙:分别作∠BAD,∠ABC的平分线AE,BF,交BC,AD于E,F,连接EF,则四边形ABEF 是菱形.根据两人的作法可判断()A. 甲正确,乙错误B. 乙正确,甲错误C. 甲、乙均正确D. 甲、乙均错误6. 如图,线段AD 、AE 、AF 分别是△ABC 的高线,角平分线,中线,比较线段AC 、AD 、AE 、AF 的长短,其中最短的是( )A. AFB. AEC. ADD. AC 二、填空题(本大题共12小题,共48.0分)7. 计算:16a 2b 3÷(−2ab 2)=______.8. 要使代数式2x−1有意义,则实数x 的取值范围是________.9. 方程√2x −3=1的解是______.10. 二元一次方程3x +2y =15的正整数解为______.11. 一枚质地均匀的正六面体骰子,六个面分别标有1、2、3、4、5、6,连续投掷两次.记两次朝上的面上的数字分别为m 、n ,若把m 、n 分别作为点P 的横坐标和纵坐标,则P(m,n)在双曲线y =12x 上的概率为______.12. 已知正比例函数y =kx(k ≠0),点(2,−3)在这个函数的图象上,则y 随x 的增大而________(填“增大”或“减小”).13. 为了节能减排,近期纯电动出租车正式上路运行.某地纯电动出租车的收费标准如下表:行驶公里范围收费标准 3公里以内(含3公里) 10元超过3公里且不超过15公里的部分 2元/公里超过15公里的部分 3元/公里小周要到离家10公里的博物馆参观,如果他乘坐纯电动出租车,那么需付车费______元.14. 如图,AC 、BD 是平行四边形ABCD 的对角线,设BC ⃗⃗⃗⃗⃗ =a ⃗ ,CA ⃗⃗⃗⃗⃗ =b ⃗ ,那么向量BD ⃗⃗⃗⃗⃗⃗ 用向量a ⃗ 、b ⃗ 表示为______.15.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1000人,则根据此估计步行上学的有______人.16.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时B处与灯塔P的距离约为______海里.(结果取整数,参考数据:√3≈1.7,√2≈1.4)17.如图,在矩形ABCD中,AB=4,AD=3,以D为圆心的圆,与线段AB有公共点,则圆的半径r的取值范围是______.18.如图,四边形ABCD中,AB=10,BD⊥AD,若将ΔBCD沿BD折叠,点C与边AB的中点E恰好重合,则四边形BCDE的周长是__________.三、解答题(本大题共7小题,共78.0分))−219.计算:√81−20180−|−5|+(1220.先化简,再求值:(x+1x−2−1)÷x2−2xx2−4x+4,其中x=√3.21.已知平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=kx的图象上,过点A的直线y=x+b交x轴于点B.(1)求反比例函数解析式;(2)求△OAB的面积.22.如图,在四边形ABCD中,∠ADC=90°,∠A=45°,AB=√2,BD=3.(1)求sin∠ADB的值;(2)若DC=3,求BC的长.23.已知:如图,在△ABC中,∠ACB的平分线CD交AB于D,过B作BE//CD交AC的延长线于点E.(1)求证:BC=CE;(2)求证:ADBD =ACBC.24.已知抛物线y=−12x2+bx+c经过点(1,0),(0,32).(1)求该抛物线的函数表达式;(2)将抛物线y=−12x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.25.已知:AB是⊙O直径,点E、F是弦AD、CD延长线上的点,∠F=∠BAD;(1)求EF与AC的位置关系.(2)连接CE交⊙O于G,连接BD,若2∠CAE+∠DAG=∠ABD,求证:AC=CE.(3)在(2)的条件下,延长AB、EF交于K,EK=2AC,AK=10,△AEK的面积=18,求线段EK的长度.【答案与解析】1.答案:A解析:解:A、2a2+3a2=5a2,符合题意;B、(3ab3)2=9a2b6,正确,不合题意;C、(x2)3=x6,正确,不合题意;D、a⋅a2=a3,正确,不合题意;故选:A.直接利用积的乘方运算法则以及同底数幂的乘法运算、合并同类项,正确掌握相关运算法则分别化简得出答案.此题主要考查了积的乘方运算以及同底数幂的乘法运算、合并同类项,正确掌握相关运算法则是解题关键.2.答案:D解析:解:①√(−4)2=√16=4,正确;②(−√4)2=(−1)2(√4)2=1×4=4≠16,不正确;③(√4)2=4符合二次根式的意义,正确;④√(−4)2=√16=4≠−4,不正确.①③正确.故选:D.本题考查的是二次根式的意义:①√a2=a(a≥0),②( √a)2=a(a≥0),逐一判断.运用二次根式的意义,判断等式是否成立.3.答案:B解析:解:根据题意得△=(−2k)2−4×6=0,解得k=±√6.故选:B.利用判别式的意义得到△=(−2k)2−4×6=0,然后解关于k的方程即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.答案:C解析:本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.解:因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选:C.5.答案:C解析:本题主要考查全等三角形的判定和性质,平行四边形的性质,菱形的判定和性质.先证明△AOM≌△CON(ASA),可得MO=NO,再根据对角线互相平分的四边形是平行四边形可判定判定四边形ANCM是平行四边形,再由AC⊥MN,可根据对角线互相垂直的四边形是菱形判定出ANCM是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD//BC,∴∠DAC=∠ACN,∵MN 是AC 的垂直平分线,∴AO =CO ,在△AOM 和△CON 中{∠MAO =∠NCO AO =CO ∠AOM =∠CON,∴△AOM≌△CON(ASA),∴MO =NO ,∴四边形ANCM 是平行四边形,∵AC ⊥MN ,∴四边形ANCM 是菱形;乙的作法正确;如图:∵AD//BC ,∴∠1=∠2,∠6=∠7,∵BF 平分∠ABC ,AE 平分∠BAD ,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF//BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选C.6.答案:C解析:本题考查了垂线段的性质,关键是掌握垂线段最短.根据垂线段的性质:垂线段最短可得答案.解:根据垂线段最短可得AD最短,故选C.7.答案:−8ab解析:此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.直接利用整式的除法运算法则计算得出答案.解:16a2b3÷(−2ab2)=−8ab.故答案为−8ab .8.答案:x ≠1解析:本题主要考查了分式有意义的条件,利用分母不为0得出不等式是解题的关键,根据分母不为0分式有意义,可得答案.解:由题意得:x −1≠0,解得x ≠1.故答案为x ≠1.9.答案:x =2解析:解:√2x −3=1,两边平方得,2x −3=1,解得,x =2;经检验,x =2是方程的根;故答案为x =2.根据无理方程的解法,首先,两边平方,解出x 的值,然后,验根解答出即可.本题考查了无理方程的解法,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法,解无理方程,往往会产生增根,应注意验根. 10.答案:{x =1y =6、{x =3y =3解析:解:方程3x +2y =15变形,得:y =15−3x 2,当x =1时,y =6;当x =3时,y =3;∴方程3x +2y =15的正整数解为:{x =1y =6、{x =3y =3, 故答案为:{x =1y =6、{x =3y =3. 将x 看做已知数求出y ,即可确定出正整数解.此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .11.答案:19 解析:解:列表如下: 共有36种等可能的结果,其中有(2,6)、(6,2)、(3,4),(4,3)在y =12x 图象上,所以P(m,n)在双曲线y =12x 上的概率=436=19. 故答案为19.先列表展示所有36种等可能的结果,利用反比例函数图象上点的坐标特点得到(2,6)、(6,2)、(3,4),(4,3)在y =12x 图象上,然后根据概率的定义即可得到P(m,n)在双曲线y =12x 上的概率=436. 本题考查了利用列表法或树状图法求概率:先列表或画树状图展示所有等可能的结果数m ,再找出某事件所占有的可能数n ,然后根据概率的概念即可得到这个事件的概率=nm .也考查了反比例函数图象上点的坐标特点. 12.答案:减小解析:此题主要考查了正比例函数的性质,以及待定系数法确定正比例函数解析式,关键是掌握正比例函数的性质.首先利用待定系数法确定正比例函数解析式,再根据正比例函数的性质:k >0时,y 随x 的增大而增大,k <0时,y 随x 的增大而减小确定答案.解:∵点(2,−3)在正比例函数y =kx(k ≠0)上,∴2k =−3,解得k =−32,∴正比例函数解析式是y =−32x ,∵k =−32<0,∴y 随x 的增大而减小,故答案为减小.13.答案:24解析:解:根据题意,知他乘坐纯电动出租车需付车费10+(10−3)×2=24(元),故答案为:24.先根据表格中分段计费方法列出算式,再根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是理解题意,列出算式,并熟练掌握有理数的混合运算顺序和运算法则.14.答案:2a ⃗ +b ⃗解析:解:∵四边形ABCD 是平行四边形,∴AD =BC ,AD//BC ,AB =CD ,AB//CD ,∴AD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ =a ⃗ ,∵CD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ =b ⃗ +a ⃗ ,∴BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ =b ⃗ +a ⃗ ,∵BD ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AD⃗⃗⃗⃗⃗⃗ , ∴BD ⃗⃗⃗⃗⃗⃗ =b ⃗ +a ⃗ +a ⃗ =2a ⃗ +b ⃗ ,故答案为:2a ⃗ +b ⃗ .利用平行四边形的性质,三角形法则求解即可.本题考查平行四边形的性质,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.答案:400解析:解:∵骑车的学生所占的百分比是126360×100%=35%,∴步行的学生所占的百分比是1−10%−15%−35%=40%,∴若该校共有学生1000人,则据此估计步行的有1000×40%=400(人).故答案为:400.先求出步行的学生所占的百分比,再用学生总数乘以步行学生所占的百分比即可估计全校步行上学的学生人数.本题考查了扇形统计图及用样本估计总数的知识,解题的关键是从统计图中得出步行上学学生所占的百分比.16.答案:95解析:解:过P作PD⊥AB,垂足为D,∵一艘海轮位于灯塔P的北偏东60°方向,距离灯塔80海里的A处,∴∠MPA=∠PAD=60°,∴PD=AP⋅sin∠PAD=80×√32=40√3(海里),∵∠BPD=45°,∴∠B=45°.在Rt△BDP中,由勾股定理,得BP=PDsinB =√3√22=40√3×√2≈95(海里),故答案为:95.根据题意得出∠MPA=∠PAD=60°,从而知PD=AP⋅sin∠PAD=40√3,由∠BPD=∠PBD=45°根据BP=PDsinB,即可求出即可.此题主要考查了方向角含义、勾股定理的运用,正确记忆三角函数的定义得出相关角度是解决本题的关键.17.答案:3≤r≤5解析:解:在直角△ABD中,CD=AB=4,AD=3,则BD=√32+42=5.由图可知3≤r≤5.故答案为:3≤r≤5要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.此题主要考查了点与圆的位置关系,解决本题要注意点与圆的位置关系,要熟悉勾股定理,及点与圆的位置关系.18.答案:20.解析:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.根据直角三角形斜边上中线的性质,即可得到DE=BE=12AB=5,再根据折叠的性质,即可得到四边形BCDE的周长为5×4=20.解:∵BD⊥AD,点E是AB的中点,∴DE=BE=12AB=5,由折叠可得,CB=BE,CD=ED,∴四边形BCDE的周长为5×4=20,故答案为20.19.答案:解:原式=9−1−5+22=7.解析:直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.答案:解:原式=(x+1x−2−x−2x−2)÷x(x−2)(x−2)2=3x−2⋅x−2x=3x,当x=√3时,原式=3=√3.解析:先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.21.答案:解:(1)∵点A(2,5)在反比例函数y=kx的图象上,∴k=2×5=10∴反比例函数解析式:y=10x,(2)∵点A在直线y=x+b上,∴5=2+b∴b=3∴一次函数解析式y=x+3,∵直线y=x+b交x轴于点B,∴点B(−3,0),∴S△AOB=12×3×5=152.解析:(1)将点A坐标代入解析式可求解;(2)将点A坐标代入解析式可求一次函数解析式,可求点B坐标,即可求△OAB的面积.本题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象上点的坐标满足函数解析式是本题的关键.22.答案:解:(1)如图,过点B作BE⊥AD于点E,在Rt△ABE中,∵∠A=45°,AB=√2,∴AE=BE=1,在Rt△BDE中,sin∠ADB=BEBD=1;(2)过点B作BF⊥DC于点F,则∠BFD=∠BED=∠ADC=90°,∴四边形BEDF是矩形,∴DF=BE=1,BF=DE=√BD2−BE2=√32−12=2√2,∵DC=3,∴FC=2,则BC=√BF2+FC2=√(2√2)2+22=2√3.解析:本题主要考查解直角三角形,解题的关键是结合题意构建合适的直角三角形及直角三角形的有关性质与三角函数的定义.(1)作BE⊥AD,Rt△ABE中由∠A=45°,AB=√2知AE=BE=1,在Rt△BDE中,根据sin∠ADB= BE可得答案;(2)作BF⊥DC,证四边形BEDF是矩形得DF=BE=1,BF=DE=√BD2−BE2=2√2,结合DC= 3知FC=2,根据BC=√BF2+FC2可得答案.23.答案:证明:(1)∵CD平分∠ACB,∴∠ACD=∠BCD.又∵BE//CD,∴∠CBE=∠BCD,∠CEB=∠ACD.∵∠ACD=∠BCD,∴∠CBE=∠CEB.∴BC=CE.(2)∵BE//CD,∴ADBD =ACCE,又∵BC =CE , ∴AD BD =AC BC . 解析:本题主要考查了等腰三角形的判定及性质和角平分线定理、平行线分线段成比例定理,关键是熟练掌握平行线分线段成比例定理和平行线的性质.(1)根据CD 平分∠ACB ,可知∠ACD =∠BCD ;由BE//CD ,可求出△BCE 是等腰三角形,故BC =CE ;(2)根据平行线的性质,及BC =CE 可得出结论.24.答案:解:(1)把(1,0),(0,32)代入抛物线解析式得:{−12+b +c =0c =32, 解得:{b =−1c =32,则抛物线解析式为y =−12x 2−x +32;(2)抛物线解析式为y =−12x 2−x +32=−12(x +1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y =−12x 2,其顶点恰好落在原点.解析:此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.(1)把已知点的坐标代入抛物线解析式求出b 与c 的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可. 25.答案:解:(1)如图1,延长FE ,AC 交于点H ,连接BD ,∵AB 是直径,∴∠ADB =90°,∴∠DAB+∠ABD=90°,∵四边形ABDC是圆内接四边形,∴∠HCD=∠ABD,且∠F=∠BAD,∴∠HCD+∠F=90°,∴∠H=90°,∴AC⊥EF;(2)如图2,延长FE,AC交于点H,连接BD,∵四边形ABDC是圆内接四边形,∴∠HCD=∠ABD,∵2∠CAE+∠DAG=∠ABD,且∠HCD=∠CAE+∠ADC,∴∠CAE+∠ADC=2∠CAE+∠DAG,∴∠ADC=∠CAE+∠DAG,且∠AGC=∠ADC,且∠AGC=∠AEC+∠GAD,∴∠CAE+∠DAG=∠GAD+∠AEC,∴∠AEC=∠CAE,∴AC=CE;(3)如图3,过点K作KM⊥AE,过点E作EN⊥AK,过点A作AP⊥CE,交EC的延长线于P,∵∠H=∠AMK=90°,∠AEH=∠MEF,∴∠HAE=∠MKE,且∠HAE=∠CEA,∴∠CEA=∠MKE,∵PA⊥AE,∠HAE=∠CEA,∴∠CPA=∠CAP,∴PC=AC,且AC=CE,∴PE=2AC,且EK=2AC,∴PE=EK,且∠PAE=∠KME=90°,∠CEA=∠MKE,∴△PAE≌△EMK(AAS)∴AE=MK,∵AK=10,△AEK的面积=18,∴12AK×EN=12×10×EN=18,12AE×MK=12×AE2=18,∴EN=185,AE=6,∴AN=√AE2−EN2=√36−32425=245,∴KN=AK−AN=265,∴EK=√EN2+NK2=√32425+67625=2√10.解析:(1)如图1,延长FE,AC交于点H,连接BD,由圆周角定理可求∠DAB+∠ABD=90°,由圆的内接四边形的性质可得∠HCD=∠ABD,可求∠H=90°,可得AC⊥EF;(2)如图2,延长FE,AC交于点H,连接BD,由圆的内接四边形的性质可得∠HCD=∠ABD,由角的数量关系可求∠AEC=∠CAE,可得AC=CE;(3)如图3,过点K作KM⊥AE,过点E作EN⊥AK,过点A作AP⊥CE,交EC的延长线于P,由“AAS”可证△PAE≌△EMK,可得AE=MK,由三角形面积公式可求EN=185,AE=6,由勾股定理可求解.本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,勾股定理等知识,添加恰当辅助线构造全等三角形是本题的关键.。

★试卷3套精选★上海市奉贤区2020年中考数学模拟试题

★试卷3套精选★上海市奉贤区2020年中考数学模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定【答案】B【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.2.下列四个多项式,能因式分解的是()A.a-1 B.a2+1C.x2-4y D.x2-6x+9【答案】D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.3.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.23C.22D5【答案】C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得2详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12×22PD DG+=22,故选:C.点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.4.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为()A.15 m B.53m C.103m D.123m【答案】A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×3=153,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=153×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.59153)A.2到3之间B.3到4之间C.4到5之间D.5到6之间【答案】D915335+,∵253,∴355到6之间.故选D.【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.6.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件【答案】C【解析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.7.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°【答案】A【解析】试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.考点:平行线的性质.9.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )A .6π B .3π C .2π-12D .12【答案】A【解析】先根据勾股定理得到AB=2,再根据扇形的面积公式计算出S 扇形ABD ,由旋转的性质得到Rt △ADE ≌Rt △ACB ,于是S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD . 【详解】∵∠ACB=90°,AC=BC=1, ∴AB=2, ∴S 扇形ABD =()2302=3606ππ⨯,又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE , ∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD −S △ABC =S 扇形ABD =6π, 故选A. 【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键. 10.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >1;②b+c+1=1;③3b+c+6=1;④当1<x <3时,x 2+(b ﹣1)x+c <1. 其中正确的个数为A .1B .2C .3D .4【答案】B【解析】分析:∵函数y=x 2+bx+c 与x 轴无交点,∴b 2﹣4c <1;故①错误。

上海市奉贤区名校2020届数学中考模拟试卷

上海市奉贤区名校2020届数学中考模拟试卷

上海市奉贤区名校2020届数学中考模拟试卷一、选择题1.如图,抛物线y =a (x ﹣1)2+k (a >0)经过点(﹣1,0),顶点为M ,过点P (0,a+4)作x 轴的平行线1,l 与抛物线及其对称轴分别交于点A ,B ,H .以下结论:①当x =3.1时,y >0;②存在点P ,使AP =PH ;③(BP ﹣AP )是定值;④设点M 关于x 轴的对称点为M',当a =2时,点M′在l 下方,其中正确的是( )A .①③B .②③C .②④D .①④2.如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,若∠BCD=40°,则∠ABD 的度数为( )A.40°B.50°C.80°D.90°3.如图,在菱形ABCD 中,120BAD ∠=︒ ,已知△ABC 的周长为15,则菱形ABCD 的对角线BD 的长为( ).A .BC .D 4.如图示,用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD 在边AD 上,则ABBC的值是( )A .2B C .14D 5.如图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,下列等式中不一定成立的是( )A .∠1=∠2B .∠3=∠5C .∠BAD=∠DCED .∠4=∠66.已知,V ABC 中,135BAC ︒∠=,AB AC ==P 为边AC 上一动点,//PQ BC 交AB 于Q ,设PC x =,PCQ △的面积为y ,则y 与x 的函数关系图象是( )A .B .C .D .7.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),60AOC ∠=︒,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M ,N(点M 在点N 的上方),若OMN ∆的面积为S ,直线l 的运动时间为t 秒(04)t ≤≤,则能大致反映S 与t 的函数关系的图象是( )A. B.C. D.8.如图,将一张矩形的纸对折,旋转90°后再对折,然后沿着下图中的虚线剪下,则剪下的纸片打开后的形状一定为( )A.三角形B.菱形C.矩形D.正方形9.如图,抛物线y=ax2﹣6ax+5a(a>0)与x轴交于A、B两点,顶点为C点.以C点为圆心,半径为2画圆,点P在⊙C上,连接OP,若OP的最小值为3,则C点坐标是()A.B.(4,﹣5)C.(3,﹣5)D.(3,﹣4)10.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与交于B、C两点,则弦BC的长的最小值为( )A.22 B.24 C.D.11.如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与2yx=-(x<0)和3yx=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.32B.52C.2 D.512.如图,在平面直角坐标系中,⊙P的圆心是(2,a),半径为2,直线y=﹣x与⊙P相交于A、B两点,若弦AB的长为a的值是()A .﹣B .﹣C .﹣2D .﹣2二、填空题13.如图,在平面直角坐标系xOy 中,已知A ,B(0,6),M(0,2),点Q 在直线AB 上,把BMQ 沿着直线MQ 翻折,点B 落在点P 处,联结PQ ,如果直线PQ 与直线AB 所构成的夹角为60°,那么点P 的坐标是____________14.在平面直角坐标系xOy 中,点A 的坐标为(1,0),P 是第一象限内任意一点,连接PO ,PA ,若∠POA =m°,∠PAO =n°,则我们把(m°,n°)叫做点P 的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).(1)点(12_____; (2)若点P 到x 轴的距离为12,则m+n 的最小值为_____. 15.如图,直线a ∥b ,直线l 与a ,b 分别交于A ,B 两点,过点B 作BC ⊥AB 交直线a 于点C ,若∠1=35°,则∠2=_____度.16.若关于x 的方程250x x k ++=有实数根,则k 的取值范围是________. 17.﹣124的倒数是____. 18.如图,△ABC 是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A 落在直尺的一边上,AB 与直尺的另一边交于点D ,BC 与直尺的两边分别交于点E ,F .若∠CAF=20°,则∠BED 的度数为_______°.三、解答题19.(1)计算: 11tan 60|23-︒⎛⎫+- ⎪⎝⎭;(2)先化简22x -2x 1x -1+÷x-1-x 1x 1⎛⎫+ ⎪+⎝⎭,然后从. 20.某商场销售一批名牌衬衫,平均每天可销售20件每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件,求:(1)若商场每件衬衫降价10元,则商场每天可盈利多少元? (2)若商场平均每天要盈利1250元,每件衬衫应降价多少元? (3)要使商场平均每天盈利1500元,可能吗?请说明理由.21.如图,已知在Rt ABC ∆中,90ABC ∠=︒,在AB 上取点D ,使得AD CD =,若//CD BE . (1)求证:AB BE =;(2)若CD 平分ACB ∠,求ABE ∠的度数.22.在阳光体育活动时间,小亮、小莹、小芳和小刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中小刚的概率; (2)如果确定小亮做裁判,用“手心”“手背”的方法决定其余三人哪两人打第一场,游戏规则是:三人同时伸“手心、手背”的中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.23.十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下: 表1全国森林面积和森林覆盖率 1220请根据以上信息解答下列问题:(1)从第 次清查开始,北京的森林覆盖率超过全国的森林覆盖率; (2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3)第八次清查的全国森林面积20768.73(万公顷)记为a ,全国森林覆盖率21.63%记为b ,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到 万公顷(用含a 和b 的式子表示).24.先化简,再求值:22121111x x x x ⎛⎫++-÷ ⎪--⎝⎭,其中x . 25.如图,一次函数y=kx+b 的图象与反比例函数y=m x(x>0)的图象交于A(2,-1)、B(12,n)两点,点C 的坐标为(0,2),过点C 的直线l 与x 轴平行.(1)求一次函数与反比例函数的解析式; (2)求△ABC 的面积. 【参考答案】*** 一、选择题13.(-或(0,2)-或4) 14.(60°,60°) 90 15.55 16.254k ≤. 17.94-18.80 三、解答题 19.(1)0;(2)12或-12. 【解析】【分析】(1)指数幂、二次根式、特殊角的三角函数值和绝对值的意义进行计算;(2)先通分做分式的加减法,再将除法转变成乘法,然后把多项式因式分解并进行约分化简.最后选择合适的数代入求值. 【详解】解:(1)原式(2)原式=22-21-1x x x +÷-11x x +-()-1x =()()()2-11-1x x x +÷()()-1--111x x x x ++ =-11x x +÷()2-1--11x x x + =-11x x +÷2-1x x x + =-11x x +·()11x x x +-=-1x.∵满足-2,-1,0,1,2, 又∵x =±1或x=0时,分母的值为0, ∴x 只能取-2或2. 当x=-2时,原式=12,当x=2时,原式=-12.(答对两种情况之一即得满分) 故答案为:12或-12. 【点睛】本题第1小题考查了实数的加减混合运算,整数指数幂,锐角三角函数值等知识点.第2小题考查了分式的四则混合运算和化简求值.熟练掌握实数和分式的运算法则是关键.20.(1)商场每天可盈利1200元;(2)每件衬衫应降价15元;(3)不可能,理由见解析. 【解析】 【分析】(1)根据降价10元求出每天盈利的钱即可;(2)设每件衬衫降价x 元,根据题意列出方程,求出方程的解即可得到结果; (3)设每件衬衫降价y 元,根据题意列出方程,求出方程的解即可得到结果. 【详解】(1)降价10元,每天可多售出20件, (40﹣10)×(20+20)=1200, 答:商场每天可盈利1200元; (2)设每件衬衫降价x 元, 依题意得:(40﹣x )(20+10×5x)=1250, 化简得:x 2﹣30x+225=0, 解得:x 1=x 2=15, 答:每件衬衫应降价15元; (3)不可能,理由是:假设每件衬衫降价y 元时,商场平均每天盈利1500元,(40﹣y )(20+10×5x)=1500, 化简得:y 2﹣30y+350=0, ∵△=900﹣1400=﹣500<0, ∴原方程无实数根, 则不可能. 【点睛】此题考查了一元二次方程的应用,弄清题意是解本题的关键. 21.(1)见解析;(2)∠ABE =120°. 【解析】 【分析】(1)欲证明AB=BE ,只需推知∠A=∠E 即可.(2)由三角形内角和定理和等腰三角形的性质求得∠A=30°,结合(1)中的∠A=∠E 和△ABE 的内角和是180°解答. 【详解】(1)∵AD =CD ∴∠A =∠ACD . 又∵CD ∥BE ∴∠ACD =∠E . ∴∠A =∠E . ∴AB =BE ;(2)∵在Rt △ABC 中,∠ABC =90° ∴∠A+∠ACB =90°. ∵CD 平分∠ACB , ∴∠ACD =∠BCD . 又∵∠A =∠ACD ,∴∠A+∠ACD+∠BCD =3∠A =90°. ∴∠A =30°.∵由(1)得∠A =∠E =30°. ∴∠ABE =180°﹣2∠A =120°. 【点睛】考查了等腰三角形的性质,平行线的性质.解题过程中,注意“等角对等边”、“等边对等角”以及三角形内角和是180度等性质的运用,难度一般. 22.(1)13;(2)14. 【解析】 【分析】(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中小刚的概率即可; (2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率. 【详解】解:(1)∵确定小亮同学打第一场,∴再从小莹、小芳和小刚中随机选取一人打第一场,恰好选中小刚同学的概率为13; (2)画树状图如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与小刚不同的结果有2个,则小莹和小芳打第一场的概率为14. 【点睛】此题考查了概率公式、列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件. 23.(1)四;(2)见解析;(3)0.2715ab. 【解析】 【分析】(1)比较两个折线统计图,找出满足题意的调查次数即可; (2)描出第四次与第五次北京森林覆盖率,补全折线统计图即可;(3)根据第八次全面森林面积除以森林覆盖率求出全国总面积,除以第九次的森林覆盖率,即可得到结果. 【详解】解:(1)观察两折线统计图比较得:从第四次清查开始,北京的森林覆盖率超过全国的森林覆盖率; 故答案为:四;(2)补全折线统计图,如图所示:(3)根据题意得:a b ×27.15%=0.2715a b, 则全国森林面积可以达到0.2715ab万公顷, 故答案为:0.2715ab. 【点睛】此题考查了折线统计图,弄清题中的数据是解本题的关键.24.21x x -+,4-【解析】【分析】根据分式的运算法则即可求出答案 【详解】 原式=22(1)(1)1(1)x x x x x -+--+=21x x -+ , 当x时,原式=21x x -==+.【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 25.y=2x-5;y=2x-;(2)S △ABC =214.【解析】 【分析】(1)直接将A(2,-1)代入反比例函数y=m x中,可得m=-2,即得y=2x -.然后将B(12,n),代入已求解析式中,求出n 值,即得B 的坐标;把A 、B 两点坐标分别代入一次函数y=x+b 中,建立二元一次方程组,解出K 、b 的值即可.(2)先求出一次函数数y=2x-5与y 轴的交点坐标为(0,-5) ,采用割补法,利用三角形面积公式即可求出△ABC 的面积 . 【详解】(1)解:∵A(2,-1)、B(12,n)两点在反比例画数y=m x(x>0)的图象上, ∴m=2×(-1)=-2,m= 12×n, ∴n=-4, ∴B(12,-4),反比例函数的解析式为y=2x-, ∵A(2,-1)、B(12,-4)两点在一次函数y=x+b 的图象上, ∴ 122,15-4=2k bk b k b -=+⎧=⎧⎪⎨⎨=-+⎩⎪⎩解得, ∴一次函数的解析式为y=2x-5.(2)解:∵一次函数数y=2x-5与y 轴的交点坐标为(0,-5), ∴S △ABC =12×7×2-12×7×12=214. 【点睛】此题考查反比例函数与一次函数的交点问题 ,解题关键在于把已知点代入解析式。

2020届上海市奉贤区中考数学二模

2020届上海市奉贤区中考数学二模

19.解原式= 2 2 1 −(2- 2)+1 ·······································(每个 2 分,共 8 分) 4
= 2 − 2 + 2 +1 = 3 2 −1. ······························································(2 分)
E
E
CP
G
D
C
D
A
O
FB
A
O
B
图8
备用图
第 -4- 页
微信公众号:上海教学案中心
奉贤区 2019 学年度九年级数学质量调研参考答案
一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)
1.D ;
2.A ;
3.A ;
4.B ;
二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)
5.C ;
x
∴ CD = (2 - 4)2 +(4 - 2)2 = 2 2 .·····························································(1 分)
22.(1)过点 E 作 EH AB 轴,垂足为 H. ·············································(1 分) ∵四边形 ABCD 是矩形,∴∠DAB=90°,∴AD//EH. ∴∠DAE=∠AEH. ··············································································(1 分) ∵∠DAE=30°,∴∠AEH=30°. 在直角△AEH 中,∠AHE=90°,∴ EH = AE cos AEH .···························(2 分) ∵AD=AE=3cm,∴ EH = 3 3 = 3 3 cm.··············································(1 分)

上海市奉贤区2019-2020学年中考数学第二次调研试卷含解析

上海市奉贤区2019-2020学年中考数学第二次调研试卷含解析

上海市奉贤区2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是某个几何体的三视图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥2.在平面直角坐标系中,位于第二象限的点是( )A .(﹣1,0)B .(﹣2,﹣3)C .(2,﹣1)D .(﹣3,1)3.已知二次函数y=-x 2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x 的图象上,则平移后的抛物线解析式为( )A .y=-x 2-4x-1B .y=-x 2-4x-2C .y=-x 2+2x-1D .y=-x 2+2x-24.若抛物线y =x 2﹣3x+c 与y 轴的交点为(0,2),则下列说法正确的是( )A .抛物线开口向下B .抛物线与x 轴的交点为(﹣1,0),(3,0)C .当x =1时,y 有最大值为0D .抛物线的对称轴是直线x =32 5.如图,平行四边形 ABCD 中,E 为 BC 边上一点,以 AE 为边作正方形AEFG ,若 40BAE ∠=︒,15CEF ∠=︒,则 D ∠的度数是A .65︒B .55︒C .70︒D .75︒6.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:17.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )A .15B .25C .35D .458.下列运算,结果正确的是( )A .m 2+m 2=m 4B .2m 2n÷12mn=4m C .(3mn 2)2=6m 2n 4D .(m+2)2=m 2+4 9.如图所示的几何体的左视图是( )A .B .C .D .10.如图,在平面直角坐标系中,△OAB 的顶点A 在x 轴正半轴上,OC 是△OAB 的中线,点B 、C 在反比例函数y=2x(x >0)的图象上,则△OAB 的面积等于( )A .2B .3C . 4D .611.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒12. 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b+ab 2的值为_____.14.计算:a 3÷(﹣a )2=_____.15.化简:21211x x +=+-_____________. 16.点 C 在射线 AB 上,若 AB=3,BC=2,则AC 为_____.17.已知抛物线 2y ax bx c =++的部分图象如图所示,根据函数图象可知,当 y >0 时,x 的取值范围是__.18.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm 的圆盘,如图所示,AB 与CD 水平,BC 与水平面的夹角为60°,其中AB=60cm ,CD=40cm ,BC=40cm ,那么该小朋友将圆盘从A 点滚动到D 点其圆心所经过的路线长为____cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.20.(6分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图.请根据有关信息解答:(1)接受测评的学生共有________人,扇形统计图中“优”部分所对应扇形的圆心角为________°,并补全条形统计图;(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;(3)测评成绩前五名的学生恰好3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率.21.(6分)如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为F ,交AD 的延长线于点E ,交DC 于点N .求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.22.(8分)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.(1)求证:DB为⊙O的切线;(2)若AD=1,PB=BO,求弦AC的长.23.(8分)“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②这30户家庭2018年4月份义务植树数量的平均数是______,众数是______;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有______户.24.(10分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.()1小明和小刚都在本周日上午去游玩的概率为________;()2求他们三人在同一个半天去游玩的概率.25.(10分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x 轴另一交点为(﹣,0).(1)求抛物线F的解析式;(1)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1的值(用含m的式子表示);(3)在(1)中,若m=,设点A′是点A关于原点O的对称点,如图1.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.26.(12分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程.①在科研所到宿舍楼之间修一条高科技的道路;②对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=ax+b(0≤x≤3).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w=防辐射费+修路费.(1)当科研所到宿舍楼的距离x=3km时,防辐射费y=____万元,a=____,b=____;(2)若m=90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?27.(12分)315211xx x-⎧⎨-+-⎩<()<参考答案。

2020年上海市中考数学二模试卷及解析

2020年上海市中考数学二模试卷及解析

2020年上海市二模试卷数学试卷一、选择题(本大题共6小题,共24分)1. 拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省32400000斤,这些粮食可供9万人吃一年.“32400000”这个数据用科学记数法表示为( )A. 324×105B. 32.4×106C. 3.24×107D. 0.32×1082. 如果关于x 的方程x −m +2=0(m 为常数)的解是x =−1,那么m 的值是( )A. m =3B. m =−3C. m =1D. m =−13. 将抛物线y =x 2−2x −1向上平移1个单位,平移后所得抛物线的表达式是( )A. y =x 2−2xB. y =x 2−2x −2C. y =x 2−x −1D. y =x 2−3x −14. 现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别是S 甲2、S 乙2,如果S 甲2>S 乙2,那么两个队中队员的身高较整齐的是( )A. 甲队B. 乙队C. 两队一样整齐D. 不能确定5. 已知|a ⃗ |=1,|b ⃗ |=3,而且b ⃗ 和a ⃗ 的方向相反,那么下列结论中正确的是( ) A. a ⃗ =3b ⃗ B. a ⃗ =−3b ⃗ C. b ⃗ =3a ⃗ D. b ⃗ =−3a ⃗6. 对于一个正多边形,下列四个命题中,错误的是 ( )A. 正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B. 正多边形是中心对称图形,正多边形的中心是它的对称中心C. 正多边形每一个外角都等于正多边形的中心角D. 正多边形每一个内角都与正多边形的中心角互补二、填空题(本大题共12小题,共48分) 7. 计算:a 6÷a 3=______.8. 分解因式:2a 2−4a =______.9. 已知关于x 的方程x 2+3x −m =0有两个相等的实数根,则m 的值为______. 10. 不等式组{x +1≥0x −1<1的解集是______.11. 方程√2x −1=1的根是______. 12. 已知反比例函数y =2k+1x的图象经过点(2,−1),那么k 的值是______.13. 不透明的袋中装有8个小球,这些小球除了有红白两种颜色外其它都一样,其中2个小球为红色,6个小球为白色,随机地从袋中摸取一个小球是红球的概率为______.14. 在一次有12人参加的测试中,得100分、95分、90分、85分、75分的人数分别是1、4、3、2、2,那么这组数据的众数是______分.15. 在Rt △ACB 中,∠C =90°,AC =3,BC =3√3,以点A 为圆心作圆A ,要使B 、C两点中的一点在圆A 外,另一点在圆A 内,那么圆A 的半径长r 的取值范围是______. 16. 如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,过点O 的线段EF 与AD 、BC 分别交于点E 、F ,如果AB =4,BC =5,OE =32,那么四边形EFCD 的周长为______.17. 各顶点都在方格纸横竖格子线的交错点上的多边形称为格点多边形,奥地利数学家皮克(G.Pick,1859~1942年)证明了格点多边形的面积公式:S =a +12b −1,其中a 表示多边表内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图格点多边形的面积是______.18. 如图,点M 的坐标为(3,2),点P 从原点O 出发,以每秒1个单位的速度沿y 轴向上移动,同时过点P 的直线l 也随之上下平移,且直线l 与直线y =−x 平行,如果点M 关于直线l 的对称点落在坐标轴上,如果点P 的移动时间为t 秒,那么t 的值可以是______.三、计算题(本大题共1小题,共10分)19. 计算:(−2018)0+(12)−2−12+tan60∘+√(3−π)2.四、解答题(本大题共6小题,共68分) 20. 解方程:16x 2−4=x+2x−2−1x+2.21. 如图已知:△ABC 中,AD 是边BC 上的高、E 是边AC 的中点,BC =11,AD =12,DFGH 为边长为4的正方形,其中点F 、G 、H 分别在AD 、AB 、BC 上. (1)求BD 的长度; (2)求cos ∠EDC 的值.22.某乒乓球馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元;暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设打乒乓x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请根据函数图象,写出选择哪种消费方式更合算.23.如图,在矩形ABCD中,点E是边AB的中点,△EBC沿直线EC翻折,使B点落在矩形ABCD内部的点P处,联结AP并延长AP交CD于点F,联结BP交CE于点Q.(1)求证:四边形AECF是平行四边形;(2)如果PA=PE,求证:△APB≌△EPC.24.在平面直角坐标系xOy中,如图,抛物线y=mx2−2x+n(m、n是常数)经过点A(−2,3)、B(−3,0),与y轴的交点为点C.(1)求此抛物线的表达式;(2)点D为y轴上一点,如果直线BD和直线BC的夹角为15°,求线段CD的长度;(3)设点P为此抛物线的对称轴上的一个动点,当△BPC为直角三角形时,求点P的坐标.25.在圆O中,AB是圆O的直径,AB=10,点C是圆O上一点(与点A、B不重合),点M是弦BC的中点.(1)如图1,如果AM交OC于点E,求OE:CE的值;(2)如图2,如果AM⊥OC于点E,求sin∠ABC的值;(3)如图3,如果AB:BC=5:4,点D为弦BC上一动点,过点D作DF⊥OC,交半径OC于点H,与射线BO交于圆内点F.探究一:如果设BD=x,FO=y,求y关于x的函数解析式及其定义域;探究二:如果以点O为圆心,OF为半径的圆经过点D,直接写出此时BD的长度;请你完成上述两个探究.答案和解析1.【答案】C【解析】解:32400000=3.24×107元.故选:C.用科学记数法表示较大的数时,一般形式为a×10−n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10−n,其中1≤|a|<10,确定a与n的值是解题的关键.2.【答案】C【解析】解:把x=−1,代入方程关于x的方程x−m+2=0(m为常数)得:−1−m+2=0,解得:m=1,故选:C.理解一元一次的解和解一元一次方程的概念是解此题的关键.本题考查了一元一次方程两个概念,重点是理解一元一次方程的解和会解一元一次方程.3.【答案】A【解析】解:∵将抛物线y=x2−2x−1向上平移1个单位,∴平移后抛物线的表达式y=x2−2x−1+1,即y=x2−2x.故选:A.根据向上平移纵坐标加求得结论即可.本题考查了二次函数图象与几何变换,此类题目利用顶点的平移确定抛物线函数图象的变化更简便.4.【答案】B【解析】【分析】根据方差的意义,方差越小数据越稳定,故比较方差后可以作出判断.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2>S乙2,∴两个队中队员的身高较整齐的是:乙队.故选:B.5.【答案】D【解析】解:∵|a |=1,|b⃗|=3,而且b⃗ 和a⃗的方向相反,∴b⃗=−3a,故选:D.根据平面向量的性质即可解决问题.本题考查平面向量的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【答案】B【解析】解:A、正多边形是轴对称图形,每条边的垂直平分线是它的对称轴,正确,故此选项错误;B、正奇数多边形多边形不是中心对称图形,错误,故本选项正确;C、正多边形每一个外角都等于正多边形的中心角,正确,故本选项错误;D、正多边形每一个内角都与正多边形的中心角互补,正确,故本选项错误.故选:B.利用正多边形的对称轴的性质、对称性、中心角的定义及中心角的性质作出判断即可.本题考查了正多边形和圆的知识,解题的关键是正确的理解正多边形的有关的定义.7.【答案】a3【解析】解:a6÷a3=a6−3=a3.故应填a3.根据同底数幂相除,底数不变指数相减计算即可.本题主要考查同底数幂的除法运算性质,熟练掌握运算性质是解题的关键.8.【答案】2a(a−2)【解析】解:2a2−4a=2a(a−2).故答案为:2a(a−2).观察原式,找到公因式2a,提出即可得出答案.本题考查了因式分解的基本方法一---提公因式法.本题只要将原式的公因式2a提出即可.9.【答案】−94【解析】解:∵关于x的方程x2+3x−m=0有两个相等的实数根,∴△=32−4×1×(−m)=0,解得:m=−94,故答案为:−94.根据方程有两个相等的实数根得出△=0,求出m的值即可.本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac的关系是解答此题的关键.10.【答案】−1≤x<2【解析】解:{x+1≥0 ①x−1<1 ②由①得:x≥−1,由②得:x<2,∴不等式组的解集为−1≤x<2.故答案为−1≤x<2.分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的解法,不等式组取解集的方法为:同大取大;同小取小;大小小大去中间;大大小小无解.11.【答案】1【解析】解:两边平方得2x−1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.本题思路是两边平方后去根号,解方程.平方时可能产生增根,要验根.12.【答案】k=−32【解析】解:∵反比例函数y=2k+1x的图象经过点(2,−1),∴−1=2 k+12∴k=−32;故填k=−32.根据点的坐标与函数解析式的关系,将点的坐标代入,可以得到−1=2 k+12,然后解方程,便可以得到k的值.本题侧重考查利用待定系数法求函数的解析式的方法,可以结合代入法进行解答13.【答案】14【解析】【分析】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.用红色小球的个数除以球的总个数即可得.【解答】解:∵袋子中共有8个小球,其中红色小球有2个,∴随机地从袋中摸取一个小球是红球的概率为26+2=28=14,故答案为:14.14.【答案】95【解析】解:∵95分出现了4次,出现的次数最多,∴这组数据的众数是95分;故答案为:95.根据众数的定义即众数是一组数据中出现次数最多的数据,即可得出答案.此题考查了众数,熟练掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.15.【答案】3<r<6【解析】解:∵Rt△ACB中,∠C=90°,AC=3,BC=3√3,∴AB=6,如果以点A为圆心作圆,使点C在圆A内,则r>3,点B在圆A外,则r<6,因而圆A半径r的取值范围为3<r<6.故答案为3<r<6;熟记“设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内”即可求解,本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.16.【答案】12【解析】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF(AAS),∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.故答案为:12.根据平行四边形的性质知,AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE和∠COF是对顶角相等,根据全等三角形的性质得到OF=OE=1.5,CF=AE,所于是得到结论.本题利用了平行四边形的性质,由已知条件先证出△OAE≌△OCF,再全等三角形的性质,转化边的关系后再求解.17.【答案】6【解析】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴格点多边形的面积S=a+12b−1=4+12×6−1=6.故答案为:6.分别统计出多边形内部的格点数a和边界上的格点数b,再代入公式S=a+12b−1,即可得出格点多边形的面积.本题考查格点多边形面积的计算,解题的关键是根据图形正确统计出a,b的值.18.【答案】2或3(答一个即可)【解析】解:设直线l:y=−x+b.如图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点.过点M作MD⊥x轴于点D,则OD=3,MD=2.由直线l:y=−x+b可知∠PDO=∠OPD=45°,∴∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,−1).∵M(3,2),F(0,−1),∴线段MF中点坐标为(32,1 2 ).直线y=−x+b过点(32,12),则=−32+b,解得:b=2,∴t=2.∵M(3,2),E(1,0),∴线段ME中点坐标为(2,1).直线y=−x+b过点(2,1),则1=−2+b,解得:b=3,∴t=3.故点M关于l的对称点,当t=2时,落在y轴上,当t=3时,落在x轴上.故答案为:2或3(答一个即可).找出点M关于直线l在坐标轴上的对称点E、F,如图所示.求出点E、F的坐标,然后分别求出ME、MF中点坐标,最后分别求出时间t的值.考查了一次函数的图象与几何变换.注意在x轴、y轴上均有点M的对称点,不要漏解;其次注意点E、F坐标以及线段中点坐标的求法.19.【答案】解:原式=1+4−2+√3π−3=π+√3.【解析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【答案】解:方程两边同乘以(x+2)(x−2)得:16=(x+2)2−(x−2),整理得:x2+3x−10=0,解此方程得:x1=−5,x2=2,经检验x1=−5是原方程的解,x2=2是增根(舍去),所以原方程的解是:x=−5.【解析】先把分式方程转化成整式方程,求出方程的解,再进行检验即可.本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.21.【答案】解:(1)∵四边形DFGH为顶点在△ABD边长的正方形,且边长为4,∴GF//BD,GF=DF=4,∴GFBD =AFAD,∵AD=12,∴AF=8,则4BD =812,解得:BD=6;(2)∵BC=11,BD=6,∴CD=5,在直角△ADC中,AC2=AD2+DC2,∴AC=13,∵E是边AC的中点,∴ED=EC,∴∠EDC=∠ACD,∴cos∠EDC=cos∠ACD=513.【解析】(1)由四边形DFGH为边长为4的正方形得GFBD =AFAD,将相关线段的长度代入计算可得;(2)先求出CD、AC的长,再由E是边AC的中点知ED=EC,据此得∠EDC=∠ACD,再根据余弦函数的定义可得答案.本题主要考查正方形的性质,解题的关键是掌握正方形的性质、勾股定理、三角函数的应用及直角三角形的性质等.22.【答案】解:(1)由题意可得,选择银卡消费时,y与x之间的函数关系式为:y=10x+150,选择普通票消费时,y与x之间的函数关系式为:y=20x;(2)当10x+150=20x时,得x=15,当10x+150=600时,得x=45,答:当打球次数不足15次时,选择普通票最合算,当打球次数介于15次到45次之间时,选择银卡最合算,当打球次数超过45次时,选择金卡最合算,当打球次数恰为15次时,选择普通票或银卡同为最合算,当打球次数恰为45次时,选择金卡或银卡同为最合算.【解析】(1)根据题意可以直接写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)根据函数图象和(1)中的函数解析式可以分别求得普通票消费和银卡消费相等的情况,银卡消费和金卡消费相等的情况,再根据图象即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.23.【答案】证明:(1)由折叠得到EC垂直平分BP,设EC与BP交于Q,∴BQ=EQ∵E为AB的中点,∴AE=EB,∴EQ为△ABP的中位线,∴AF//EC,∵AE//FC,∴四边形AECF为平行四边形;(2)∵AF//EC,∴∠APB=∠EQB=90°,由翻折性质∠EPC=∠EBC=90°,∠PEC=∠BEC,∵E为直角△APB斜边AB的中点,且AP=EP,∴△AEP为等边三角形,∠BAP=∠AEP=60°,∠CEP=∠CEB=180°−60°2=60°,在△ABP和△EPC中,{∠BAP=∠CEP ∠APB=∠EPC AP=EP,∴△ABP≌△EPC(AAS).【解析】(1)由折叠的性质得到BE=PE,EC与PB垂直,根据E为AB中点,得到AE= EB=PE,利用三角形内一边上的中线等于这条边的一半的三角形为直角三角形,得到∠APB为90°,进而得到AF与EC平行,再由AE与FC平行,利用两对边平行的四边形为平行四边形即可得证;(2)根据三角形AEP 为等边三角形,得到三条边相等,三内角相等,再由折叠的性质及邻补角定义得到一对角相等,根据同角的余角相等得到一对角相等,再由AP =EB ,利用AAS 即可得证.此题考查全等三角形的判定与性质,折叠的性质,熟练掌握全等三角形的判定与性质是解本题的关键.24.【答案】解:(1)依题意得:{4m +4+n =39m +6+n =0, 解得:{m =−1n =3, ∴抛物线的表达式是y =−x 2−2x +3.(2)∵抛物线y =−x 2−2x +3与y 轴交点为点C ,∴点C 的坐标是(0,3),又点B 的坐标是(−3,0),∴OC =OB =3,∠CBO =45°,∴∠DBO =30°或60°.在直角△BOD 中,DO =BO ⋅tan ∠DBO ,∴DO =√3或3√3,∴CD =3−√3或3√3−3.(3)由抛物线y =−x 2−2x +3得:对称轴是直线x =−1,根据题意:设P(−1,t),又点C 的坐标是(0,3),点B 的坐标是(−3,0),∴BC 2=18,PB 2=(−1+3)2+t 2=4+t 2,PC 2=(−1)2+(t −3)2=t 2−6t +10, ①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2−6t +10,解之得:t =−2,②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2−6t +10=4+t 2,解之得:t =4,③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2−6t +10=18,解之得:t 1=3+√172,t 2=3−√172.综上所述P 的坐标为(−1,−2)或(−1,4)或(−1,3+√172)或(−1,3−√172).【解析】(1)将点A 和点B 坐标代入解析式求解可得;(2)先求出点C 坐标,从而得出OC =OB =3,∠CBO =45°,据此知∠DBO =30°或60°,依据DO =BO ⋅tan ∠DBO 求出得DO =√3或3√3,从而得出答案;(3)设P(−1,t),知BC 2=18,PB 2=4+t 2,PC 2=t 2−6t +10,再分点B 、点C 和点P 为直角顶点三种情况分别求解可得.本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、等腰三角形的性质、两点间的距离公式及直角三角形的性质等知识点.25.【答案】解:(1)过点O 作ON//BC 交AM 于点N ,如图1∴AOAB =ONBM,ONMC=OECE,∵AO=BO=12AB∴AOAB=ONBM=12∵点M是弦BC的中点∴BM=MC∴OECE =ONBM,∴OE:CE=1:2;(2)联结OM,如图2∵点M是弦BC的中点,OM经过圆心O ∴OM⊥BC,∠OMC=90°,∵AM⊥OC,∴∠MEO=90°∴∠OMC=∠MEO=90°又∠MOC=∠EOM ∴△MOC∽△EOM;∴OMOE =OCOM,∵OE:CE=1:2∴OM=√33OC,∵OB=OC∴∠ABC=∠OCM在直角△MOC中,sin∠OCM=OMOC =√33∴sin∠ABC=√33;(3)探究一:如图3,过点D作DL⊥DF交BO于点L,取BC中点M,连接OM∵DF⊥OC,∴DL//OC,∴∠LDB=∠C=∠B ∴BL=DL,∵AB=10,AB:BC=5:4,∴BC=8,OC=5,∵BM=CM=4,∴cos∠OCM=MCOC=CHCD=45∵DL//OC,∴BLOB=BDBC设BD=x,则CD=8−x,∴BL=DL=58x,CH=45(8−x),OH=OC−CH=5−45(8−x),∵OH//DL,∴OHLD =OFFL,∴45x−7558=yy+5−58y;∴y关于x的函数解析式是y=207x−5定义域是74≤x<72,探究二:∵以O为圆心,OF为半径的圆经过D,∴OF=OD,∵DF⊥OC,∴OC垂直平分DF,FO=OL,∴y=5−58x,∴207x−5=5−58x,解得:x=11219,∴BD=11219.【解析】(1)如图1,过点O作ON//BC交AM于点N,根据三角形的中位线的性质得到ON=12BM,根据平行线分线段成比例定理即可得到结论;(2)如图1,连接OM,根据垂径定理得到OM⊥BC,根据余角的性质得到∠OME=∠MCE,根据相似三角形的性质得到ME2=OE⋅CE,设OE=x,则CE=2x,ME=√2x,解直角三角形即可得到结论;(3)探究一:如图2,过点D作DL⊥DF交BO于点L,根据平行线的性质得到∠LDB=∠C=∠B,根据等腰三角形的判定定理得到BL=DL,设BD=x,则CD=8−x,BL=DL=58x,CH=45(8−x),OH=OC−CH=5−45(8−x),根据平行线成线段成比例定理得到y=20x−357(其中74≤x<72);探究二:根据题意得到OF=OD,根据等腰三角形的性质得到DF⊥OC,根据直角三角形的性质得到FO=OL,列方程即可得到结论.本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.。

2020年上海市奉贤区中考数学二模试卷(含答案解析)

2020年上海市奉贤区中考数学二模试卷(含答案解析)

2020年上海市奉贤区中考数学二模试卷一、选择题(本大题共6小题,共24.0分)1.下列根式中,与√18是同类二次根式的是()A. √8B. √6C. √13D. √272.在学校举办的“中华诗词大赛”中,有11名选手进入决赛,他们的决赛成绩各不相同,其中一名参赛选手想知道自己是否能进入前6名,他需要了解这11名学生成绩的()A. 中位数B. 平均数C. 众数D. 方差3.不等式组1≤x<2的解集在数轴上可表示为()A. B.C. D.4.把直线y=3x向上平移4个单位后所得到直线的函数表达式是()A. y=3x−4B. y=3x+4;C. y=3(x−4)D. y=3(x+4)5.将一把直尺与一块直角三角板如图放置,如果∠1=58°,那么∠2的度数为A. 32°B. 58°C. 138°D. 148°6.如图,∠O=30∘,C为OB上一点,且OC=8,以点C为圆心,半径为4的圆与直线OA的位置关系是().A. 相离B. 相交C. 相切D. 以上三种情况均有可能二、填空题(本大题共12小题,共48.0分)7.计算:2m+3m+1−1m+1=______.8. 若m +n =6,m 2−n 2=18,则(n −m)÷2=______.9. 方程√x +2=x 的根是______.10. 已知反比例函数y =k−2x 的图象在每个象限内y 的值随x 的值增大而减小,则k 的取值范围是_______________ .11. 若一条抛物线经过平移后与抛物线y =−13x 2+2重合,且顶点坐标为(4,−2),则它的表达式为________.12. 若x y =25,则x+yy = ______ .13. 从 1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是______.14. 某校为了解九年级学生的体能情况,随机抽取了30名学生进行1分钟仰卧起坐测试,统计结果并绘制成如图所示的频数分布直方图。

2019-2020学年上海市奉贤区九年级第二学期(二模)考试数学(答案部分)

2019-2020学年上海市奉贤区九年级第二学期(二模)考试数学(答案部分)

奉贤区2019学年度九年级数学质量调研参考答案及评分说明(202005)一、选择题:(本大题共6题,每题4分,满分24分)1.D ; 2.A ; 3.A ; 4.B ; 5.C ; 6.B . 二、填空题:(本大题共12题,每题4分,满分48分) 三、解答题(本大题共7题,其中19-22题每题10分,23、24题每题12分,25题14分,满分78分)19.解原式=1214(-+ ······································· (每个2分,共8分)211=. ······························································ (2分)20.解原式=2336(3)3x x x x ··························································· (4分)=2331(3)33x x x x x . ···································································· (3分)当3x 时,原式133633. ·················································· (3分)21.(1)解:过点C 作CH y 轴,垂足为H ,得//CH x 轴.∴BC CHAB AO . ··················································································· (1分)∵A (-2,0),∴AO =2,∴CH =2.∵点C 的纵坐标为4,∴点C 的坐标为(2,4).······································· (2分) 设直线AB 的表达式(0)y kxb k,由它经过点A 、C ,得2024k b kb, 解得12k b. ···································· (2分)∴直线AB 的表达式2y x .(2)∵反比例函数y =xm的图像交于点C (2,4),∴8=m . ······················ (1分) ∵直线AB 与与y 轴的正半轴交于点B ,∴点B 的坐标为(0,2). ·············· (1分) ∵BD ∥x 轴,∴点D 纵坐标为2. ·························································· (1分) ∵点D 在反比例函数y =x 8的图像上,∴点D 坐标为(4,2). ···················· (1分)∴22=+=222)(44)(2--CD . ····························································· (1分)7. 3ab ;8. 3x;9. 15x =;10. 11x y =⎧⎨=⎩;11.13;12. 减小;13.106.1;14.12a b - ;15.360;16.40; 17.18r <<; 18.125.22.(1)过点E 作EH AB 轴,垂足为H . ············································· (1分) ∵四边形ABCD 是矩形,∴∠DAB =90°,∴AD //EH . ∴∠DAE =∠AEH . ·············································································· (1分) ∵∠DAE =30°,∴∠AEH =30°.在直角△AEH 中,∠AHE =90°,∴AEH cos AE EH ∠⋅=. ························· (2分)∵AD=AE =3cm ,∴233233=⨯=EH cm . ············································· (1分) 即点E 到边AB 的距离是233cm .(2)过点E 作EH AB ,垂足为H . ∵四边形ABCD 是矩形,∴AD=BC . ∵AD =3cm ,∴BC=3cm .在直角△ABC 中,∠ABC =90°,AB =4cm ,,∴225ACAB BC cm .································································ (1分) ∵EH //BC ,∴AEEHACBC. ∵AE=AD=3 cm ,∴354EH.∴95EH cm . ··········································· (2分) ∵推移过程中边的长度保持不变,∴,AD AE BF AB DC EF .∴四边形ABCD 是平行四边形. ····························································· (1分) ∴936455ABFE S AB EH 平行四边形cm 2. ·············································· (1分)23.证明:(1)∵CA CE BC ⋅=2,∴BCCA CEBC. ··········································· (1分) ∵BCA ECB ∠=∠,∴△BCE ∽△ACB . ············································ (1分) ∴CBE CAB . ······································································· (1分) ∵AC ⊥BC ,∠DAB=90°,∴90BEC CBE ∠+∠=︒,90DAE CAB ∠+∠=︒. ∴BEC DAE . ········································································· (1分) ∵BEC DEA ,∴DAE DEA . ·············································· (1分) ∴AD DE . ·················································································· (1分) (2)∵DF ⊥AC, AC ⊥BC ,∴∠DFE=∠BCA =90°.∴//DF BC .∴CE BE EF DE=. ················································································· (2分) ∵//DC AB ,∴BE AEDE CE=. ····························································· (1分) ∴CE AEEF CE=. ···················································································· (1分) ∵AD DE ,DF ⊥AC ,∴AF EF . ···················································· (1分)∴2CE AE EF =⋅. ·············································································· (1分)24.解:(1)由题意,抛物线2y x bx 经过点A (2,0),得042b , 解得 2b····················································· (2分) ∴抛物线的表达式是22y x x =-. ·························································· (1分) 它的顶点C 的坐标是(1,-1). ······························································ (1分) (2)∵直线122y x =-与x 轴交于点B , ∴点B 的坐标是(4,0) . ················· (1分) ①将抛物线22y x x =-向右平移2个单位,使得点A 与点B 重合,此时平移后的抛物线表达式是231()y x =--. ······································ (2分) ②将抛物线22y x x =-向右平移4个单位,使得点O 与点B 重合,此时平移后的抛物线表达式是251()y x =--. ······································· (1分) (3)设向下平移后的抛物线表达式是:22y x x n =-+,得点D (0,n ). ∵DP ∥x 轴,∴点D 、P 关于抛物线的对称轴直线1x 对称,∴P (2,n ).∵点P 在直线BC 上,∴12212n =⨯-=-.∴平移后的抛物线表达式是:222y x x =--. ·········································· (2分) ∴新抛物线的顶点M 的坐标是(1,-2). ················································ (1分) ∴MC //OB ,∴∠MCP =∠OBC . 在Rt △OBC 中,sin OCOBC BC, 由题意得:OC =2,25BC , ∴25sin sin 525MCPOBC. ····················································· (1分)即∠MCP25.解:(1)联结EO ,交弦CD 于点H .∵E 为弧CD 的中点,∴EO ⊥AB . ······························································ (1分) ∵CD ∥AB ,∴OH ⊥CD .∴CH=12CD .联结CO ,∵AB =10,CD =8,∴CO=5,4CH =.∴3OH =. ·········································································· (1分) ∴2EH EO OH =-=.∵点F 与点B 重合,∴45OBE HGE ∠=∠=︒.∵PE ⊥BE ,∴45HPE HGE ∠=∠=︒,∴PE GE =. ········································ (1分) ∴2PH HG ==.∴2CP CH PH =-=. ·············································································· (1分) (2)∵∠PEH+∠OEF=90°,∠OFE+∠OEF=90°,∴∠PEH=∠OFE .∵∠PHE=∠EOF=90°,∴PEH ∆∽EFO ∆. ·············································· (2分) ∴EH PHFO EO=. ∵245EH FO y PH x EO ,,,===-=,∴245xy -=. ··································· (1分) ∴10034y x x()=≤<-. ··········································································· (2分) (3)过点P 作PQAB ,垂足为Q .∵GP =GF ,∴∠GPF=∠GFP . ································································· (1分) ∵CD ∥AB ,∴∠GPF=∠PFQ .∵PE ⊥EF ,∴PQ=PE . ·········································································· (1分) 由(2)可知,PEH ∆∽EFO ∆,∴PE PHEF EO=. ∵PQ=OH=3,∴PE=3.∵2EH ,=∴PH ==∴3EF =.∴EF = ························································································ (2分)∴11322EPF S PE EF ∆=⋅⋅=⨯⨯=················································· (1分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考生注意:2019学年奉贤区质量调研九年级数学202005(满分150分,考试时间100分钟)1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)1.下列计算中,结果等于a2m的是(▲)(A )a m a m ;(B )a m a 2;(C )(a m )m ;(D )(a m )2.2.下列等式成立的是(▲)(A )(3)23;(B )(3)23;(C )333;(D )(-3)23.3.如果关于x 的一元二次方程x 2﹣2x +m =0有两个不相等的实数根,那么实数m 的值可以是(▲)(A )0;(B )1;(C )2;(D )3.4.甲、乙、丙、丁四位同学本学期5次50米短跑成绩的平均数x (秒)及方差S 2(秒2)如表1所示.如果从这四位同学中选出一位成绩较好且状态稳定的同学参加学校比赛,那么应该选的同学是(▲)表1:(A D )丁.5.四边形ABCD 的两条对角线AC 、BD 互相平分.添加下列条件,一定能判定四边形ABCD 为菱形的是(▲)(A )∠ABD =∠BDC ;(B )∠ABD =∠BAC ;(C )∠ABD =∠CBD ;(D )∠ABD =∠BCA .6.如果线段AM 和线段AN 分别是△ABC 边BC 上的中线和高,那么下列判断正确的是(▲)(A )AM >AN ;(B )AM ≥AN ;(C )AM <AN ;(D )AM ≤AN .二、填空题(本大题共12题,每题4分,满分48分)7.计算:9a 3b ÷3a 2=▲.8.如果代数式2在实数范围内有意义,那么实数x 的取值范围是▲.3x9.方程x 14的解是▲.甲乙丙丁x777.57.5S 22.1 1.92 1.8图3D10.二元一次方程x +2y =3的正整数解是▲.11.从分别写有数字1,2,4的三张相同卡片中任取两张,如果把所抽取卡片上的两个数字分别作为点M的横坐标和纵坐标,那么点M 在双曲线y =4上的概率是▲.x12.如果函数y =kx (k ≠0)的图像经过第二、四象限,那么y 的值随x 的值增大而▲.(填“增大”或“减小”)13.据国家统计局数据,2019年全年国内生产总值接近100万亿,比2018年增长6.1%.假设2020年全年国内生产总值的年增长率保持不变,那么2020年的全年国内生产总值将达到▲万亿.14.已知平行四边形ABCD ,E 是边AB 的中点.设AB =a ,BC =b ,那么DE =▲.(结果用a 、b 表示).15.某校计划为全体1200名学生提供以下五种在线学习的方式:在线听课、在线答题、在线讨论、在线答疑和在线阅读.为了解学生需求,该校随机对部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成扇形统计图(如图1).由这个统计图可知,全校学生中最喜欢“在线答疑”的学生人数约为▲人.16.如图2,一艘轮船由西向东航行,在A 处测得灯塔P 在北偏东60°的方向,继续向东航行40海里后到B 处,测得灯塔P 在北偏东30°的方向,此时轮船与灯塔之间的距离是▲海里.抽取的学生最感兴趣的学习方式的扇形图A 在线听课B 在线答题E 10%A20%AC 在线讨论DB PD 在线答疑E 在线阅读C 15%图125%ABCB图217.在矩形ABCD 中,AB =5,BC =12.如果分别以A 、C 为圆心的两圆外切,且圆A 与直线BC 相交,点D 在圆A 外,那么圆C 的半径长r 的取值范围是▲.18.如图3,在Rt △ABC 中,∠ACB =90°,∠B =35°,CD 是斜边AB 上的中线,如果将△BCD 沿CD 所在直线翻折,点B 落在点E 处,联结AE ,那么∠CAE 的度数是▲度.三、解答题(本大题共7题,满分78分)19.(本题满分10分)1计算:82222220200.CE20.(本题满分10分)先化简,再求值:x 3x 26x9(16x ),其中x 3.321.(本题满分10分,每小题满分5分)已知:如图4,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (-2,0),与y 轴的正半轴交于点B ,与反比例函数y =m (xx(1)求直线AB 的表达式;0)的图像交于点C ,且AB =BC ,点C 的纵坐标为4.ym (2)过点B 作BD ∥x 轴,交反比例函数y =x的图像于点D ,求线段CD 的长度.BAox图422.(本题满分10分,每小题满分5分)如图5,由于四边形具有不稳定性,因此在同一平面推矩形的边可以改变它的形状(推移过程中边的长度保持不变).已知矩形ABCD ,AB =4cm ,AD =3cm ,固定边AB ,推边AD ,使得点D 落在点E 处,点C 落在点F 处.(1)如图5-1,如果∠DAE =30°,求点E 到边AB 的距离;(2)如图5-2,如果点A 、E 、C 三点在同一直线上,求四边形ABFE 的面积.DDFF图5A图5-1BA23.(本题满分12分,每小题满分6分)已知:如图6,在梯形ABCD 中,CD ∥AB ,∠DAB=90°,对角线AC 、BD 相交于点E ,AC ⊥BC ,垂足为点C ,且BC 2=CE ⋅CA .DC(1)求证:AD=DE ;(2)过点D 作AC 的垂线,交AC 于点F ,E求证:CE 2=AE ⋅AF .AB图6CE图5-2BCCGPDCD24.(本题满分12分,每小题满分4分)如图7,在平面直角坐标系xOy 中,抛物线y x2于点B ,与y 轴交于点C .(1)求这条抛物线的表达式和顶点的坐标;bx 经过点A (2,0).直线y =1x -2与x 轴交2(2)将抛物线yx 2bx 向右平移,使平移后的抛物线经过点B ,求平移后抛物线的表达式;(3)将抛物线yx 2bx 向下平移,使平移后的抛物线交y 轴于点D ,交线段BC 于点P 、Q ,(点P 在点Q 右侧),平移后抛物线的顶点为M ,如果DP ∥x 轴,求∠MCP 的正弦值.图725.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图8,已知半圆⊙O 的直径AB =10,弦CD ∥AB ,且CD =8,E 为弧CD 的中点,点P 在弦CD 上,联结PE ,过点E 作PE 的垂线交弦CD 于点G ,交射线OB 于点F .(1)当点F 与点B 重合时,求CP 的长;(2)设CP =x ,OF =y ,求y 与x 的函数关系式及定义域;(3)如果GP =GF ,求△EPF 的面积.EEAOF BA图8O B备用图yoA BxC133336奉贤区2019学年度九年级数学质量调研参考答案一、选择题:(本大题共6题,每题4分,满分24分)1.D ;2.A ;3.A ;4.B ;5.C ;6.B .二、填空题:(本大题共12题,每题4分,满分48分)7.3ab ;8.x 3;9.x =15;⎧x =110.⎨y =1;⎩11.1;312.减小;13.106.1;14.1a -b ;215.360;16.40;17.1<r <8;18.125.三、解答题(本大题共7题,其中19-22题每题10分,23、24题每题12分,25题14分,满分78分)19.解原式=22⨯1-(2-42)+1······································(每个2分,共8分)=2-2+2+1=32-1.······························································(2分)2220.解原式=x (x 33)2x 36····························································(4分)x 3=x 3x 31.······································································(3分)(x 3)2x 3x 3当x3时,原式=.··················································(3分)21.(1)解:过点C 作CH y 轴,垂足为H ,得CH //x 轴.∴BC CH .···················································································(1分)ABAO∵A (-2,0),∴AO =2,∴CH =2.∵点C 的纵坐标为4,∴点C 的坐标为(2,4).·······································(2分)设直线AB 的表达式y kxb (k0),由它经过点A 、C ,得2k b 2kb,解得k 4b1.·····································(2分)2∴直线AB 的表达式y x 2.(2)∵反比例函数y =m 的图像交于点C (2,4),∴m =8.······················(1分)x∵直线AB 与与y 轴的正半轴交于点B ,∴点B 的坐标为(0,2).·············(1分)∵BD ∥x 轴,∴点D 纵坐标为2.··························································(1分)∵点D 在反比例函数y =8的图像上,∴点D 坐标为(4,2).···················(1分)x 22即点E 到边AB 的距离是33cm .2(2)过点E 作EHAB ,垂足为H .∵四边形ABCD 是矩形,∴AD=BC .∵AD =3cm ,∴BC=3cm .在直角△ABC 中,∠ABC =90°,AB =4cm ,,∴ACAB 2BC 25cm .································································(1分)∵EH //BC ,∴AE EH.ACBC∵AE=AD=3cm ,∴3EH.∴EH9cm .···········································(2分)545∵推移过程中边的长度保持不变,∴AD AE BF ,ABDC EF .∴四边形ABCD 是平行四边形.·····························································(1分)∴S 平行四边形ABFEAB EH4936cm 2.··············································(1分)5523.证明:(1)∵BC 2=CE ⋅CA ,∴BC CA .·········································(1分)CEBC∵∠ECB =∠BCA ,∴△BCE ∽△ACB .············································(1分)∴CBECAB .········································································(1分)∵AC ⊥BC ,∠DAB=90°,∴∠BEC +∠CBE =90︒,∠DAE +∠CAB =90︒.∴BECDAE .·········································································(1分)·····························(1分)22.(1)过点E 作EHAB 轴,垂足为H .································∵四边形ABCD 是矩形,∴∠DAB =90°,∴AD //EH .∴∠DAE =∠AEH .································································∵∠DAE =30°,∴∠AEH =30°.在直角△AEH 中,∠AHE =90°,∴EH =AE ⋅cos ∠AEH .······················································(1分)(1分)(2分)∵AD=AE =3cm ,∴EH =3⨯3=33c m .································1分)2OBCOC BC,∵BEC DEA ,∴DAEDEA .··············································(1分)∴ADDE .··················································································(1分)(2)∵DF ⊥AC ,AC ⊥BC ,∴∠DFE=∠BCA =90°.∴DF //BC .∴CE =BE .·················································································(2分)EFDE∵DC //AB ∴BE =AE .·····························································(1分)DECE∴CE =AE.····················································································(1分)EFCE∵AD DE ,DF ⊥AC ,∴AFEF .····················································(1分)∴CE 2=AE ⋅EF .··············································································(1分)24.解:(1)由题意,抛物线yx 2bx 经过点A (2,0),解得b ·····················································(2分)∴抛物线的表达式是y =x 2-2x .··························································(1分)它的顶点C 的坐标是(1,-1).······························································(1分)(2)∵直线y =1x -2与x 轴交于点B ,∴点B 的坐标是(4,0).··················(1分)2①将抛物线y =x 2-2x 向右平移2个单位,使得点A 与点B 重合,此时平移后的抛物线表达式是y =(x -3)2-1·······································(2分)②将抛物线y =x 2-2x 向右平移4个单位,使得点O 与点B 重合,此时平移后的抛物线表达式是y =(x -5)2-1·········································(1分)(3)设向下平移后的抛物线表达式是:y =x 2-2x +n ,得点D (0,n ).∵DP ∥x 轴,∴点D 、P 关于抛物线的对称轴直线x ∵点P 在直线BC 上,∴n =1⨯2-2=-1.21对称,∴P (2,n ).∴平移后的抛物线表达式是:y =x 2-2x -2.··········································(2分)∴新抛物线的顶点M 的坐标是(1,-2).················································(1分)∴MC //OB ,∴∠MCP =∠OBC .在Rt △OBC 中,sin,得042b ,由题意得:OC=2,BC25,∴sin即∠MCP的正弦值是5.5.·····················································(1分)25.解:(1)联结EO,交弦CD于点H.∵E为弧CD的中点,∴EO⊥AB.······························································(1分)∵CD∥AB,∴OH⊥CD.∴CH=1CD.2联结CO,∵AB=10,CD=8,∴CO=5,CH=4.∴OH==3.··········································································(1分)∴EH=EO-OH=2.∵点F与点B重合,∴∠OBE=∠HGE=45︒.∵PE⊥BE,∴∠HPE=∠HGE=45︒,∴PE=GE.········································(1分)∴PH=HG=2.∴CP=CH-PH=2.··············································································(1分)(2)∵∠PEH+∠OEF=90°,∠OFE+∠OEF=90°,∴∠PEH=∠OFE.∵∠PHE=∠EOF=90°,∴∆PEH∽∆EFO.···············································(2分)∴EH=PH.FO EO∵EH=2,FO=y,PH=4-x,EO=5,∴2=4-x.···································(1分)y5∴y=10(0≤x<3).········································································(2分)4-x(3)过点P作PQ AB,垂足为Q.∵GP=GF,∴∠GPF=∠GFP.································∵CD∥AB,∴∠GPF=∠PFQ.·································(1分)∵PE⊥EF,∴PQ=PE.···········································································(1分)MCP sin OBC2255 5CO2-CH2PE 2-EH 255由(2)可知,∆PEH ∽∆EFO ,∴PE=PH.EFEO∵PQ=OH=3,∴PE=3.∵EH =2,∴PH ==.∴3=5.EF5∴EF =35.························································································(2分)∴S=1⋅PE ⋅EF =1⨯3⨯3=95.··················································(1分)∆EPF222。

相关文档
最新文档