证明二测试题及答案A

合集下载

二次函数单元测试题A卷(含答案)

二次函数单元测试题A卷(含答案)

第22章二次函数单元测试题(A卷)(考试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列函数不属于二次函数的是()A.y=(x﹣1)(x+2)B.y=(x+1)2C.y=2(x+3)2﹣2x2D.y=1﹣x22.二次函数y=2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)3.若将函数y=3x2的图象向左平行移动1个单位,再向下平移2个单位,则所得抛物线的解析式为()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2C.y=3(x+1)2+2 D.y=3(x﹣1)2﹣24.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法不正确的是()A.b2﹣4ac>0 B.a>0 C.c>0 D.5.给出下列函数:①y=2x;②y=﹣2x+1;③y=(x>0);④y=x2(x<﹣1).其中,y随x 的增大而减小的函数是()A.①②B.①③C.②④D.②③④6.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B. C.D.7.二次函数y=ax2+bx+c图象上部分的对应值如下表,则y>0时,x的取值范围是()x﹣2 ﹣1 0 1 2 3y﹣4 0 2 2 0 ﹣4A.﹣1<x<2 B.x>2或x<﹣1 C.﹣1≤x≤2D.x≥2或x≤﹣1 8.抛物线y=x2﹣2x+1与坐标轴交点为()A.二个交点B.一个交点C.无交点D.三个交点9.在半径为4cm的圆中,挖去一个半径为xcm的圆面,剩下一个圆环的面积为ycm2,则y 与x的函数关系式为()A.y=πx2﹣4 B.y=π(2﹣x)2C.y=﹣(x2+4)D.y=﹣πx2+16π10.如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.二、填空题(每小题3分,共18分)11.已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),则二次函数的解析式是.12.二次函数y=x2﹣4x+5的最小值为.13.抛物线y=x2+x﹣4与y轴的交点坐标为.14.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价元,最大利润为元.15.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a ﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是.第15题第16题16.如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是.则他将铅球推出的距离是m.三、解答题(共8小题,共72分)17.已知抛物线y=4x2﹣11x﹣3.(6分)(Ⅰ)求它的对称轴;(Ⅱ)求它与x轴、y轴的交点坐标.18.已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.(5分)19.已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:(9分)x…﹣1 0 1 2 3 4 …y…10 5 2 1 2 5 …(1)求该二次函数的关系式;(2)当x为何值时,y有最小值,最小值是多少?(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,试比较y1与y2的大小.20.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的解析式;(8分)(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)21.二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(8分)(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值.22.某产品每千克的成本价为20元,其销售价不低于成本价,当每千克售价为50元时,它的日销售数量为100千克,如果每千克售价每降低(或增加)一元,日销售数量就增加(或减少)10千克,设该产品每千克售价为x(元),日销售量为y(千克),日销售利润为w(元).(12分)(1)求y关于x的函数解析式,并写出函数的定义域;(2)写出w关于x的函数解析式及函数的定义域;(3)若日销售量为300千克,请直接写出日销售利润的大小.23.二次函数y=ax2+bx+c的图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1)(12分).(1)试求a,b所满足的关系式;(2)设此二次函数的图象与x轴的另一个交点为C,当△AMC的面积为△ABC面积的倍时,求a的值;(3)是否存在实数a,使得△ABC为直角三角形?若存在,请求出a的值;若不存在,请说明理由.24.如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.(12分)(1)若点A的坐标是(﹣4,4).①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.参考答案一、选择题1、选C2、解:∵y=2(x﹣1)2+3,∴其顶点坐标是(1,3).故选A.3、解:原抛物线的顶点为(0,0),向左平行移动1个单位,再向下平移2个单位,那么新抛物线的顶点为(﹣1,﹣2),可设新抛物线的解析式为y=3(x﹣h)2+k,代入得y=3(x+1)2﹣2.故选B.4、解:A、正确,∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0;B、正确,∵抛物线开口向上,∴a>0;C、正确,∵抛物线与y轴的交点在y轴的正半轴,∴c>0;D、错误,∵抛物线的对称轴在x的正半轴上,∴﹣>0.故选D.5、选D;6、选D7、解:由列表可知,当x=﹣1或x=2时,y=0;所以当﹣1<x<2时,y的值为正数.故选A.8、解:当x=0时y=1,当y=0时,x=1∴抛物线y=x2﹣2x+1与坐标轴交点有两个.选A9、选D;10、B二、填空题(每小题3分,共18分)11、解:根据题意得,解得.∴二次函数的解析式是y=x2﹣4x+3.12、解:配方得:y=x2﹣4x+5=x2﹣4x+22+1=(x﹣2)2+1,当选x=2时,二次函数y=x2﹣4x+5取得最小值为1.13、解:把x=0代入得,y=﹣4,即交点坐标为(0,﹣4).14、解:设应降价x元,销售量为(20+x)个,根据题意得利润y=(100﹣x)(20+x)﹣70(20+x)=﹣x2+10x+600=﹣(x﹣5)2+625,故为了获得最大利润,则应降价5元,最大利润为625元.15、②③.16、解:当y=0时,﹣x2+x+=0,解之得x1=10,x2=﹣2(不合题意,舍去),所以推铅球的距离是10米.三、解答题(共8小题,共72分)17、解:(I)由已知,a=4,b=﹣11,得,∴该抛物线的对称轴是x=;(II)令y=0,得4x2﹣11x﹣3=0,解得x1=3,x2=﹣,∴该抛物线与x轴的交点坐标为(3,0),(﹣,0),令x=0,得y=﹣3,∴,解得,∴该二次函数关系式为y=x2﹣4x+5;(2)∵y=x2﹣4x+5=(x﹣2)2+1,∴当x=2时,y有最小值,最小值是1,(3)∵A(m,y1),B(m+1,y2)两点都在函数y=x2﹣4x+5的图象上,所以,y1=m2﹣4m+5,y2=(m+1)2﹣4(m+1)+5=m2﹣2m+2,y2﹣y1=(m2﹣2m+2)﹣(m2﹣4m+5)=2m﹣3,∴①当2m﹣3<0,即m<时,y1>y2;②当2m﹣3=0,即m=时,y1=y2;③当2m﹣3>0,即m>时,y1<y2.20、解:(1)把点A(1,0),B(3,2)分别代入直线y=x+m和抛物线y=x2+bx+c得:0=1+m,,∴m=﹣1,b=﹣3,c=2,所以y=x﹣1,y=x2﹣3x+2;(2)x2﹣3x+2>x﹣1,解得:x<1或x>3.∴所求的函数解析式为y=﹣x2+x+5∵a=﹣<0∴当x=﹣=时,y有最大值==;解法2:设图象经过A、C、B二点的二次函数的解析式为y=a(x﹣4)(x+1)∵点C(0,5)在图象上,∴把C坐标代入得:5=a(0﹣4)(0+1),解得:a=﹣,∴所求的二次函数解析式为y=﹣(x﹣4)(x+1)∵点A,B的坐标分别是点A(﹣1,0),B(4,0),∴线段AB的中点坐标为(,0),即抛物线的对称轴为直线x=∵a=﹣<0将x=30代入w=(600﹣10x)(x﹣20)=3000.23、解:(1)将A(1,0),B(0,l)代入y=ax2+bx+c,得:,可得:a+b=﹣1(2分)(2)∵a+b=﹣1,∴b=﹣a﹣1代入函数的解析式得到:y=ax2﹣(a+1)x+1,顶点M的纵坐标为,因为,由同底可知:,(3分)整理得:a2+3a+1=0,解得:(4分)由图象可知:a<0,因为抛物线过点(0,1),顶点M在第二象限,其对称轴x=,∴﹣1<a<0,∴舍去,则(1﹣)2=(1+)+2,解得:a=﹣1,由﹣1<a<0,不合题意.所以不存在.(9分)综上所述:不存在.(10分)24、解:(1)①∵AC∥x轴,A点坐标为(﹣4,4).∴点C的坐标是(0,4)把A、C两点的坐标代入y=﹣x2+bx+c得,,解得;②四边形AOBD是平行四边形;理由如下:由①得抛物线的解析式为y=﹣x2﹣4x+4,∴顶点D的坐标为(﹣2,8),过D点作DE⊥AB于点E,则DE=OC=4,AE=2,∵AC=4,∴BC=AC=2,∴AE=BC.∴=,又∵AB=AC+BC=3BC,∴OB=BC,∴在Rt△OBC中,根据勾股定理可得:OC=BC,AC=OC,∵C点是抛物线与y轴交点,∴OC=c,∴A点坐标为(﹣c,c),∴顶点横坐标=c,b=c,∵将A点代入可得c=﹣(﹣c)2+c•c+c,∴横坐标为±c,纵坐标为c即可,令c=2,∴A点坐标可以为(2,2)或者(﹣2,2).。

二次根式测试题及答案

二次根式测试题及答案

二次根式测试题及答案
一、选择题
1. 以下哪个选项不是二次根式?
A. √3
B. √x
C. √x^2
D. √x^3
答案:D
2. 计算√(4×9)的结果是什么?
A. 6
B. 12
C. √36
D. √4×√9
答案:B
3. 以下哪个表达式等于√(2x)?
A. √2x
B. √x×√2
C. √2×√x
D. √2+√x
答案:C
二、填空题
1. 计算√(25)的结果是______。

答案:5
2. 如果√(a+b) = √a + √b,那么a和b的值分别是______。

答案:0
三、解答题
1. 化简下列二次根式:
√(32) = ______。

答案:4√2
2. 解方程:
√x + 3 = 7。

答案:x = 16
四、证明题
1. 证明√2是一个无理数。

答案:略
五、应用题
1. 一个正方形的面积是50平方厘米,求这个正方形的边长。

答案:边长为√50厘米,即5√2厘米。

六、综合题
1. 一个直角三角形的两条直角边分别为3厘米和4厘米,求斜边的长度。

答案:斜边长度为5厘米,根据勾股定理,√(3^2 + 4^2) = √(9
+ 16) = √25 = 5。

七、附加题
1. 如果一个数的平方根等于这个数本身,这个数是多少?
答案:0或1(因为√0 = 0,√1 = 1)
请注意,以上测试题及答案仅供参考,具体题目和答案应根据实际教学大纲和教材内容进行调整。

高一数学必修二期末测试题及答案

高一数学必修二期末测试题及答案

(A)(B )(C)(D)图1高一数学必修二期末测试题(总分100分 时间100分钟)班级:______________姓名:______________一、选择题(8小题,每小题4分,共32分)1.如图1所示,空心圆柱体的主视图是( )2.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( )(A)1条 (B )2条 (C)3条 (D)4条3.如图2,已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,设α为二面角D AE D --1的平面角,则αsin =( )(A)32 (B )35(C) 32(D)322图24.点(,)P x y 是直线l :30x y ++=上的动点,点(2,1)A ,则AP 的长的最小值是( )(B ) (C)(D)5.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短 路径长度是( )(A )4 (B )5 (C )1 (D )6.下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,l =βαI ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β7.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为( )(A )4± (B )2± (C ) ± (D )8.将一张画有直角坐标系的图纸折叠一次,使得点)2,0(A 与点B(4,0)重合.若此时点)3,7(C 与点),(n m D 重合,则n m +的值为( )(A)531 (B) 532 (C) 533(D)534二、填空题(6小题,每小题4分,共24分)9.在空间直角坐标系中,已知)5,2,2(P 、),4,5(z Q 两点之间的距离为7,则z =_______. 10.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值. 其中正确说法是 .11.四面体的一条棱长为x ,其它各棱长均为1,若把四面体的体积V 表示成关于x 的函数)(x V ,则函数)(x V 的单调递减区间为 .12.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于AB ,两点,则公共弦AB 所在直线的直线方程是 .13.在平面直角坐标系中,直线033=-+y x 的倾斜角是 .14.正六棱锥ABCDEF P -中,G 为侧棱PB 的中点,则三棱锥D ­GAC 与三棱锥P ­GAC 的体积之比GAC P GAC D V V --:= .三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程.16.(本题10分)如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.17.(本题12分)已知圆04222=+--+m y x y x . (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是ο60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点.(1)证明:DN ⊥二、填空题(6小题,每小题4分,共24分)9. 111或-=z ; 10. ①③④; 11. ⎪⎪⎭⎫⎢⎣⎡3,26 ;12. 30x y +=; 13. 150°; 14. 2:1.三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程. 解析:(Ⅰ)由直线方程的点斜式,得),2(435+-=-x y 整理,得所求直线方程为.01443=-+y x……………4分(Ⅱ)过点(2,2)与l 垂直的直线方程为4320x y --=,……………5分由110,4320.x y x y +-=⎧⎨--=⎩得圆心为(5,6),……………7分∴半径5R ==,……………9分PCA故所求圆的方程为22(5)(6)25x y -+-=. ………10分16.(本题10分) 如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.解析:(Ⅰ)在直三棱柱111C B A ABC -中,侧面C C BB 11⊥底面ABC ,且侧面C C BB 11∩底面ABC =BC , ∵∠ABC =90°,即BC AB ⊥,∴⊥AB 平面C C BB 11 ∵⊂1CB 平面C C BB 11,∴AB CB ⊥1. ……2分∵1BC CC =,1CC BC ⊥,∴11BCC B 是正方形,∴11CB BC ⊥,∴11ABC CB 平面⊥. …………… 4分 (Ⅱ)取1AC 的中点F ,连BF 、NF . ………………5分 在△11C AA 中,N 、F 是中点,∴1//AA NF ,121AA NF =,又∵1//AA BM ,121AA BM =,∴BM NF //,BM NF =,………6分故四边形BMNF 是平行四边形,∴BF MN //,…………8分而BF ⊂面1ABC ,MN ⊄平面1ABC ,∴//MN 面1ABC ……10分17.(本题12分)已知圆04222=+--+m y x y x .(1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解析:(1)方程04222=+--+m y x y x ,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎪⎨⎪⎧x 2+y 2-2x -4y +m =0,x +2y -4=0,消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0, 化简得5y 2-16y +m +8=0.设M (x 1,y 1),N (x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0, 即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得NMBD CA16-8×165+5×m +85=0,解之得m =85.(3)由m =85,代入5y 2-16y +m +8=0,化简整理得25y 2-80y +48=0,解得y 1=125,y 2=45.∴x 1=4-2y 1=-45,x 2=4-2y 2=125. ∴M ⎝ ⎛⎭⎪⎫-45,125,N⎝ ⎛⎭⎪⎫125,45,∴MN 的中点C 的坐标为⎝ ⎛⎭⎪⎫45,85.又|MN |=⎝ ⎛⎭⎪⎫125+452+⎝ ⎛⎭⎪⎫45-1252=855, ∴所求圆的半径为455.∴所求圆的方程为⎝ ⎛⎭⎪⎫x -452+⎝ ⎛⎭⎪⎫y -852=165.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是ο60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点.(1)证明:DN ⊥PMB DN PMB DN PMB MQ MQDN 平面平面平面////⇒⎪⎭⎪⎬⎫⊄⊆ …………………4分(2) MB PD ABCD MB ABCD PD ⊥⇒⎭⎬⎫⊆⊥平面平面又因为底面ABCD 是ο60=∠A ,边长为a 的菱形,且M 为AD 中点,所以AD MB ⊥.又所以PAD MB 平面⊥..PAD PMB PMB MB PAD MB 平面平面平面平面⊥⇒⎭⎬⎫⊆⊥………………8分(3)因为M 是AD 中点,所以点A 与D 到平面PMB 等距离.过点D 作PM DH ⊥于H ,由(2)平面PMB ⊥平面PAD ,所以PMB DH 平面⊥.故DH 是点D 到平面PMB 的距离..55252a a aa DH =⨯=所以点A 到平面PMB 的距离为a 55.………12分。

推理测试题及答案

推理测试题及答案

推理测试题及答案推理测试题1:题目:一个侦探正在调查一起谋杀案。

受害者被发现死在自家的书房里,书房的门是锁着的,窗户也是关闭的,但窗户上的锁是坏的。

侦探发现受害者身上有刀伤,旁边有一把带血的刀。

受害者的宠物猫在房间里,但并没有受伤。

侦探询问了三个人,他们都有不在场证明:- A说:“我整个晚上都在电影院。

”- B说:“我整个晚上都在图书馆。

”- C说:“我整个晚上都在健身房。

”问题:谁可能是凶手?答案:C可能是凶手。

因为猫通常对暴力行为有反应,但房间里的猫没有受伤,说明凶手在猫熟悉的环境中。

健身房是唯一一个可能让猫感到熟悉的地方,因为C经常去那里,猫可能习惯了C的气味。

推理测试题2:题目:在一个小镇上,有五个朋友:Alice, Bob, Charlie, David和Eve。

他们每个人都有不同的职业:医生、律师、教师、工程师和画家。

已知以下信息:- Alice不是医生。

- Bob和David不是同职业。

- Charlie不是工程师。

- 教师和律师住在相邻的房子里。

- Eve不是教师。

问题:每个人的职业是什么?答案:- Alice是律师,因为她不能是医生,且Eve不是教师,所以Alice只能是律师。

- Bob是工程师,因为Charlie不是工程师,且Bob和David不是同职业,所以Bob只能是工程师。

- Charlie是医生,因为Alice不是医生,且Bob是工程师,所以Charlie只能是医生。

- David是教师,因为Bob是工程师,且教师和律师住相邻的房子,Alice是律师,所以David是教师。

- Eve是画家,因为其他职业都已经被确定。

推理测试题3:题目:在一个晚宴上,有四位女士和四位男士坐在一起。

他们分别坐在桌子的两边,每边各四位。

女士们坐在一侧,男士们坐在另一侧。

已知以下信息:- 每位男士旁边都坐着一位女士。

- 穿红色衣服的女士坐在穿蓝色衣服的女士旁边。

- 穿绿色衣服的女士坐在穿黄色衣服的女士对面。

2024-2025学年四川省成都市树德中学高三上学期10月月考数学试题及答案

2024-2025学年四川省成都市树德中学高三上学期10月月考数学试题及答案

1.已知集合2,0,则A .{}2x x ≤B .{}4x x ≤C .{}04x x <≤D .{}02x x <≤2.设()1,2a =- ,()4,b k = ,若a b ⊥,则a b +=A .5B .C .20D .253.设甲:{}n a 为等比数列;乙:{}1n n a a +⋅为等比数列,则A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件4.已知tan 3α=-,则3sin sin sin 2()ααπα-=+A .34-B .34C .310D .310-5.已知关于x 的不等式2230ax x a -+<在(]0,2上有解,则实数a 的取值范围是A .47(,)-∞B .33(-,)∞C .(]0,-∞D .()0,-∞6.已知抛物线E :24y x =的焦点为F ,以F 为圆心的圆与E 交于,A B 两点,与E 的准线交于,C D两点,若CD =,则AB =A .3B .4C .6D .87.在同一平面直角坐标系内,函数()y f x =及其导函数()y f x ='的图象如图所示,已知两图象有且仅有一个公共点,其坐标为()0,1,则A .函数()e x y f x =⋅的最大值为1B .函数()e xy f x =⋅的最小值为1C .函数()e x f x y =的最大值为1D .函数()exf x y =的最小值为18.已知函数()2ln2x f x x+=-,设()()()220.3log 0.32ln 2,,a f b f c f ===,则,,a b c 的大小关系是A .a c b>>B .a b c >>C .b c a >>D .c b a>>二.多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.小明上学有时坐公交车,有时骑自行车,他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到,坐公交车平均用时10min ,样本方差为9;骑自行车平均用时15min ,样本方差为1.已知坐公交车所花时间X 与骑自行车所花时间Y 都服从正态分布,用样本均值和样本方差估计,X Y 分布中的参数,并利用信息技术工具画出X 和Y 的分布密度曲线如图所示.若小明每天需在早上8点之前到校,否则就迟到,则下列判断正确的是A .()2103,X NB .若小明早上7:50之后出发,并选择坐公交车,则有60%以上的可能性会迟到C .若小明早上7:42出发,则应选择骑自行车D .若小明早上7:47出发,则应选择坐公交车10.已知函数()y f x =是定义在R 上的偶函数,对于任意x R ∈,都有()()()42f x f x f +=+成立.当[)0,2x ∈时,()21x f x =-,下列结论中正确的有A .()20f =B .函数()y f x =在()2,4上单调递增C .直线4x =是函数()y f x =的一条对称轴D .关于x 的方程()2log 2f x x =+共有4个不等实根11.我国著名科幻作家刘慈欣的小说《三体Ⅱ·黑暗森林》中的“水滴”是三体文明使用新型材料-强互作用力(SIM )材料所制成的宇宙探测器,其外形与水滴相似,某科研小组研发的新材料水滴角测试结果如图所示(水滴角可看作液、固、气三相交点处气—液两相界面的切线与液—固两相交线所成的角),圆法和椭圆法是测量水滴角的常用方法,即将水滴轴截面看成圆或者椭圆(长轴平行于液—固两者的相交线,椭圆的短半轴长小于圆的半径)的一部分,设图中用圆法和椭圆法测量所得水滴角分别为1θ,2θ,则下列结论中正确的有附:椭圆()222210x y a b a b+=>>上一点()00,x y 处的切线方程为00221x x y y a b +=.A .圆法中圆的半径为52B .12tan 3θ=C .12θθ>D .12θθ<三.填空题:本题共3小题,每小题5分,共15分.12.“十一”期间人民群众出游热情高涨,某地为保障景区的安全有序,将增派6名警力去,A B 两个景区执勤.要求A 景区至少增派3名警力,B 景区至少增派2名警力,则不同的分配方法的种数为.13.已知圆台的下底面半径为6,上底面半径为3,其侧面积等于上、下底面积之和,则圆台的高为.14.已知函数()()()()123(0)f x a x x x x x x a =--->,设曲线()y f x =在点()(),i i x f x 处切线的斜率为()1,2,3i k i =,若123,,x x x 均不相等,且22k =-,则134k k +的最小值为.四.解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且满足)2222sin bc A a c b =+-.(1)求B 的大小;(2)若3b =,ABC ∆,求ABC ∆的周长.16.(15分)已知椭圆2222:1(0)x y C a b a b +=>>经过点,(E P 为椭圆C 的右顶点,O 为坐标原点,OPE ∆的面(1)求椭圆C 的标准方程;(2)过点(1,0)D -作直线l 与椭圆C 交于,A B ,A 关于原点O 的对称点为C ,若||||BA BC =,求直线AB 的斜率.17.(15分)如图,在四棱锥Q ABCD -中,四边形ABCD 为直角梯形,//CD AB ,BC AB ⊥,平面QAD ⊥平面ABCD ,QA QD =,点M 是AD 的中点.(1)证明:QM BD ⊥.(2)点N 是CQ 的中点,22AD AB CD ===,当直线MN 与平面QBC 时,求QM 的长度.18.(17分)已知函数()22ln f x x x a x =-+,()a ∈R .(1)若1a =,求函数()f x 在点()()1,1f 处的切线;(2)若对任意的()12,0,x x ∈+∞,12x x ≠,有()()()1221120x x x f x x f x ⎡⎤-⋅->⎣⎦恒成立,求实数a 的取值范围.19.(17分)2023年10月11日,中国科学技术大学潘建伟团队成功构建255个光子的量子计算机原型机“九章三号”,求解高斯玻色取样数学问题比目前全球最快的超级计算机快一亿亿倍.相较传统计算机的经典比特只能处于0态或1态,量子计算机的量子比特(qubit )可同时处于0与1的叠加态,故每个量子比特处于0态或1态是基于概率进行计算的.现假设某台量子计算机以每个粒子的自旋状态作为量子比特,且自旋状态只有上旋与下旋两种状态,其中下旋表示“0”,上旋表示“1”,粒子间的自旋状态相互独立.现将两个初始状态均为叠加态的粒子输入第一道逻辑门后,粒子自旋状态等可能的变为上旋或下旋,再输入第二道逻辑门后,粒子的自旋状态有p 的概率发生改变,记通过第二道逻辑门后的两个粒子中上旋粒子的个数为X .(1)已知13p =,求两个粒子通过第二道逻辑门后上旋粒子个数为2的概率;(2)若一条信息有()*1,n n n >∈N 种可能的情况且各种情况互斥,记这些情况发生的概率分别为1p ,2p ,…,n p ,则称()()()12n H f p f p f p =++⋅⋅⋅+(其中()2log f x x x =-)为这条信息的信息熵.试求两个粒子通过第二道逻辑门后上旋粒子个数为X 的信息熵H ;(3)将一个下旋粒子输入第二道逻辑门,当粒子输出后变为上旋粒子时则停止输入,否则重复输入第二道逻辑门直至其变为上旋粒子,设停止输入时该粒子通过第二道逻辑门的次数为Y (1,2,3,,,)Y n = ,证明:当n 无限增大时,Y 的数学期望趋近于一个常数.参考公式:01q <<时,lim 0nn q →+∞=,lim 0n n nq →+∞=.树德中学高2022级高三上学期10月阶段性测试数学试题参考答案一.单选题:1-8CAACB DCC 二.多选题:9-11ACD AC AD 三.填空题12-14354181.【答案】C 【详解】由2log 1x ≤,则22log log 2x ≤,所以02x <≤,所以{}{}2log 102A x x x x =≤=<≤,{}04A B x x ⋃=<≤故选:C2.【答案】A 【详解】()1,2a =- ,()4,b k = ,若a b ⊥ ,则有1420a b k ⋅=-⨯+=,解得2k =,则有()()()1,24,23,4a b =-+=+ ,得5a b += .故选:A 3.【答案】A 【详解】充分性:若{}n a 为等比数列,设其公比为q ,则12111n n n n n n a a a a a a q ++--⋅⋅==,所以{}1n n a a +⋅为等比数列,公比为2q ,满足充分性.必要性:若{}1n n a a +⋅为等比数列,公比为2-,则112n n n n a a a a +-⋅=-⋅,即112n n aa +-=-,假设{}n a 为等比数列,此时1212n n a q a +-==-无解,故不满足必要性.所以甲是乙的充分不必要条件.故选:A 4.【答案】C 【详解】因为tan 3α=-,则33sin sin sin sin cos sin 2ααααπαα--=⎛⎫+ ⎪⎝⎭()2222sin 1sin sin cos tan 3cos cos sin 1tan 10ααααααααα---====++.故选:C.5.【答案】B 【详解】当(]0,2x ∈时,由2230ax x a -+<可得22233x a x x x<=++,由基本不等式可得23x x≤+,当且仅当x =3a <.故选:B.6.【答案】D 【详解】由抛物线方程知:12p=,()1,0F ∴,不妨设点A 在第一象限,如图所示,直线CD 与x 轴交于点E ,由CD =,则2ED EF ==,圆的半径()222125r +=,所以5AF =,由抛物线的定义可得:52A px +=,所以4A x =,又因为点A 在抛物线上,所以()4,4A ,248AB ∴=⨯=.故选:D.7.【答案】C 【详解】AB 选项,由题意可知,两个函数图像都在x 轴上方,任何一个为导函数,则另外一个函数应该单调递增,判断可知,虚线部分为()y f x '=,实线部分为()y f x =,故()()()()()0e e e x x xy f x f x f x f x ='''=⋅+⋅+>⋅恒成立,故()e xy f x =⋅在R 上单调递增,则A ,B 显然错误,对于C ,D ,()2()e ()e ()()e e x xxx f x f x f x f x y ''--'==,由图像可知(,0)x ∈-∞,e ()()0x f x f x y '-=>'恒成立,故()e xf x y =单调递增,当(0,)x ∈+∞,()()0e xf x f x y '-'=<,()ex f x y =单调递减,所以函数()e xf x y =在0x =处取得极大值,也为最大值,()010ef =,C 正确,D 错误.故选:C8.【答案】C 【详解】解:函数()2ln2x f x x+=-,由202x x+>-,即(2)(2)0x x +-<,2x <解得()2,2x ∈-显然()()f x f x -=,∴()f x 为偶函数,∴当()0,2x ∈时,()2ln2xf x x+=-在()0,2x ∈单增,()f x ∴在()20,-上为减函数,在()0,2上为增函数()220.30.301=∈,,322222103log 0.3log 0.3log log 232=-=>=所以22103log 0.3log ,232⎛⎫=∈ ⎪⎝⎭3232ln 2ln 4ln 2e =<=,32ln 212⎛⎫∈ ⎪⎝⎭,∴b c a >>.故选:C .二.多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【答案】ACD 【详解】由题意知,()2~10,3X N ,()2~15,1Y N ,A 正确。

高二数学必修二测试题及答案

高二数学必修二测试题及答案

高二数学必修二测试题及答案【导语】着眼于眼前,不要沉迷于玩乐,不要沉迷于学习进步没有别*的痛楚中,进步是一个由量变到质变的进程,只有足够的量变才会有质变,沉迷于痛楚不会改变什么。

作者高二频道为你整理了《高二数学必修二测试题及答案》,期望对你有所帮助!【一】卷Ⅰ一、挑选题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数、,“”是“方程的曲线是双曲线”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数是偶数D.存在一个能被2整除的数不是偶数3.已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为A.B.C.D.4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题是“甲降落在指定范畴”,是“乙降落在指定范畴”,则命题“至少有一位学员没有降落在指定范畴”可表示为A.B.C.D.5.若双曲线的离心率为,则其渐近线的斜率为A.B.C.D.6.曲线在点处的切线的斜率为A.B.C.D.7.已知椭圆的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线的焦点坐标为A.B.C.D.8.设是复数,则下列命题中的假命题是A.若,则B.若,则C.若,则D.若,则9.已知命题“若函数在上是增函数,则”,则下列结论正确的是A.否命题“若函数在上是减函数,则”是真命题B.逆否命题“若,则函数在上不是增函数”是真命题C.逆否命题“若,则函数在上是减函数”是真命题D.逆否命题“若,则函数在上是增函数”是假命题10.马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件11.设,,曲线在点()处切线的倾斜角的取值范畴是,则到曲线对称轴距离的取值范畴为A.B.C.D.12.已知函数有两个极值点,若,则关于的方程的不同实根个数为A.2B.3C.4D.5卷Ⅱ二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么等于________.14.函数在区间上的值是________.15.已知函数,则=________.16.过抛物线的焦点作倾斜角为的直线,与抛物线分别交于、两点(在轴左侧),则.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明进程或演算步骤.17.(本小题满分10分)已知z是复数,和均为实数(为虚数单位).(Ⅰ)求复数;(Ⅱ)求的模.18.(本小题满分12分)已知集合,集合若是的充分不必要条件,求实数的取值范畴.19.(本小题满分12分)设椭圆的方程为点为坐标原点,点,分别为椭圆的右顶点和上顶点,点在线段上且满足,直线的斜率为.(Ⅰ)求椭圆的离心率;(Ⅱ)设点为椭圆的下顶点,为线段的中点,证明:.20.(本小题满分12分)设函数(其中常数).(Ⅰ)已知函数在处获得极值,求的值;(Ⅱ)已知不等式对任意都成立,求实数的取值范畴.21.(本小题满分12分)已知椭圆的离心率为,且椭圆上点到椭圆左焦点距离的最小值为. (Ⅰ)求的方程;(Ⅱ)设直线同时与椭圆和抛物线相切,求直线的方程.22.(本小题满分12分)已知函数(其中常数).(Ⅰ)讨论函数的单调区间;(Ⅱ)当时,,求实数的取值范畴.参考答案一.挑选题CDBACCDABBDB二.填空题三.解答题17.解:(Ⅰ)设,所以为实数,可得,又由于为实数,所以,即.┅┅┅┅┅┅┅5分(Ⅱ),所以模为┅┅┅┅┅┅┅10分18.解:(1)时,,若是的充分不必要条件,所以,,检验符合题意;┅┅┅┅┅┅┅4分(2)时,,符合题意;┅┅┅┅┅┅┅8分(3)时,,若是的充分不必要条件,所以,,检验不符合题意.综上.┅┅┅┅┅┅┅12分19.解(Ⅰ)已知,,由,可得,┅┅┅┅┅┅┅3分所以,所以椭圆离心率;┅┅┅┅┅┅┅6分(Ⅱ)由于,所以,斜率为,┅┅┅┅┅┅┅9分又斜率为,所以(),所以.┅┅┅┅┅┅┅12分20.解:(Ⅰ),由于在处获得极值,所以,解得,┅┅┅┅┅┅┅3分此时,时,,为增函数;时,,为减函数;所以在处获得极大值,所以符合题意;┅┅┅┅┅┅┅6分(Ⅱ),所以对任意都成立,所以,所以.┅┅┅┅┅┅┅12分21.解:(Ⅰ)设左右焦点分别为,椭圆上点满足所以在左顶点时取到最小值,又,解得,所以的方程为.(或者利用设解出得出取到最小值,对于直接说明在左顶点时取到最小值的,酌情扣分);┅┅┅┅┅┅┅4分(Ⅱ)由题明显直线存在斜率,所以设其方程为,┅┅┅┅┅┅┅5分联立其与,得到,,化简得┅┅┅┅┅┅┅8分联立其与,得到,,化简得,┅┅┅┅┅┅┅10分解得或所以直线的方程为或┅┅┅┅┅┅┅12分22.(Ⅰ),设,该函数恒过点.当时,在增,减;┅┅┅┅┅┅┅2分当时,在增,减;┅┅┅┅┅┅┅4分当时,在增,减;┅┅┅┅┅┅┅6分当时,在增.┅┅┅┅┅┅┅8分(Ⅱ)原函数恒过点,由(Ⅰ)可得时符合题意.┅┅┅┅┅┅┅10分当时,在增,减,所以,不符合题意.┅┅┅┅┅┅┅12分【二】一、挑选题1.一个物体的位移s(米)和与时间t(秒)的关系为s?4?2t?t,则该物体在4秒末的瞬时速度是A.12米/秒B.8米/秒C.6米/秒D.8米/秒2.由曲线y=x2,y=x3围成的封闭图形面积为为A.21711B.C.D.41212323.给出下列四个命题:(1)若z?C,则z≥0;(2)2i-1虚部是2i;(3)若a?b,则a?i?b?i;(4)若z1,z2,且z1>z2,则z1,z2为实数;其中正确命题的个数为....A.1个B.2个C.3个D.4个4.在复平面内复数(1+bi)(2+i)(i是虚数单位,b是实数)表示的点在第四象限,则b的取值范畴是A.bB.b??11C.?<b<2D.b<2225.下面几种推理中是演绎推理的为....A.由金、银、铜、铁可导电,料想:金属都可导电;1111,,,的通项公式为an?B.料想数列(n?N?);n(n?1)1?22?33?42C.半径为r圆的面积S??r,则单位圆的面积S??;D.由平面直角坐标系中圆的方程为(x?a)2?(y?b)2?r2,估计空间直角坐标系中球的方程为(x?a)2?(y?b)2?(z?c)2?r2.6.已知f?x2x?1??2a?3a,若f1??8,则f??1??xA.4B.5C.-2D.-337.若函数f?x??lnx?ax在点P?1,b?处的切线与x?3y?2?0垂直,则2a?b等于A.2B.0C.-1D.-28.sinx?cosx?dx的值为A.0B.2?2??C.2D.449.设f?x?是一个多项式函数,在?a,b?上下列说法正确的是A.f?x?的极值点一定是最值点B.f?x?的最值点一定是极值点C.f?x?在?a,b?上可能没有极值点D.f?x?在?a,b?上可能没有最值点10.函数f?x?的定义域为?a,b?,导函数f??x?在?a,b?内的图像如图所示,则函数f?x?在?a,b?内有极小值点A.1个B.2个C.3个D.4个11.已知a1?1,an?1?an且?an?1?an??2?an?1?an??1?0,运算a2,a3,料想an等于A.nB.nC.nD.n?3?n12.已知可导函数f(x)(x?R)满足f¢(x)>f(x),则当a?0时,f(a)和eaf(0)大小关系为A.f(a)eaf(0)C.f(a)=eaf(0)D.f(a)≤eaf(0)232二、填空题13.若复数z=(a-2)+3i(a?R)是纯虚数,则14.f(n)=1+a+i=.1+ai111++鬃?(n?N+)23n经运算的f(2)?357,f(4)?2,f(8)?,f(16)?3,f(32)?,估计当n≥2时,有______.2221(n?N+),记f(n)?(1?a1)(1?a2)(1?an),试通过运算(n+1)215.若数列?an?的通项公式an=f(1),f(2),f(3)的值,估计出f(n)?________________.16.半径为r的圆的面积s(r)??r2,周长C(r)?2?r,若将r看作(0,+∞)上的变量,则(?r2)'?2?r①,①式用语言可以叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R的球,若将R看作(0,+?)上的变量,请写出类比①的等式:____________________.上式用语言可以叙述为_________________________.三、解答题:17.抛物线y?x2?1,直线x?2,y?0所围成的图形的面积18.已知a?b?c,求证:114??.a?bb?ca?c2an?2an?219.已知数列{an}的前n项和Sn满足:Sn?,且an?0,n?N?.2an(1)求a1,a2,a3;(2)料想{an}的通项公式,并用数学归纳法证明21.设函数f?x??xekx?k?0?(1)求曲线y?f?x?在点0,f?0?处的切线方程.(2)若函数f?x?在区间??1,1?内单调递增,求k的取值范畴.22.已知函数f(x)=alnx+x(a为实常数).(1)若a=-2,求证:函数f(x)在(1,+?)上是增函数;(2)求函数f(x)在[1,e]上的最小值及相应的x值;22??一、挑选题题号答案1C2A3A4A5C6A7D8C9C10A11B12B12.提示:令g(x)=e-xf(x),则gⅱ(x)=e-x[f(x)-f(x)]>0.所以g(x)在(-?,?)上为增函数,g(a)>g(0).e-af(a)>e0f(0),即f(a)>eaf(0),故选B.二、填空题13.n?24-3in14.f(2)?25n?2111f(n)?(1?2)(1?2)[1?]2n?223(n?1)215.f(n)?111111?(1?)(1?)(1?)(1?)(1?)(1?)22 33n?1n?113243nn?2n?2...???22334n?1n?12n?216.(?R)'?4?R;球的体积函数的导数等于球的表面积函数4332三、解答题17.解由x?1?0,得抛物线与轴的交点坐标是(?1,0)和(1,0),所求图形分成两块,分别用定积分表示面积2S1??|x2?1|dx,S2??(x2?1)dx.1112故面积S?S1?S2??1?1|x2?1|dx??(x2?1)dx=?(1?x2)dx??(x2?1)dx1?11212x3=(x?)318.证明:∵1?111818x32?(?x)1=1??12?(?1)?.333333a-ca-ca-b+b-ca-b+b-c+=+a-bb-ca-bb-cb-ca-bb-ca-b+≥2+2?a-bb-ca-bb-c4,(a>b>c)=2+∴a-ca-c114.+≥4得+≥a-bb-ca-bb-ca-ca11+-1,所以,a1=-1?2a119.(1)a1=S1=3,又∵an>0,所以a1=3-1.S2=a1?a2?a21??1,所以a2?5?3,2a23S3=a1?a2?a3?(2)料想an=a31??1所以a3?7?5.2a32n-1.3-1成立.2k-1成立2k+1.2n+1-证明:1o当n=1时,由(1)知a1=2o假定n=k(k?N+)时,ak=2k+1-ak+1=Sk?1?Sk?(ak?1aa111-??1)?(k??1)=k+1+2ak+12ak?12ak2所以ak+1+22k+1ak+1-2=0ak+1=2(k+1)+1-2(k+1)-1所以当n=k+1时料想也成立.综上可知,料想对一切n?N+都成立.kxkx¢¢f(x)=e+kxe21.解:(1),f(0)=1,f(0)=0∴y=f(x)在(0,0)处的切线方程为y=x.(x)=ekx+kxekx=(1+kx)ekx=0,得x=-(2)法一f¢若k>0,则当x?(?,当x?(1(k10)k1(x)0,f(x)单调递增.,+?)时,f¢k1若k0,f(x)单调递增.),f¢k1当x?((x)<0,f(x)单调递减.,+?)时,f¢k若f(x)在区间(-1,1)内单调递增,1≤-1,即k≤1.k1当k<0时,-≥1,即k≥-1.k故f(x)在区间(-1,1)内单调递增时当k>0时,-k的取值范畴是[-1,0)U(0,1]法二∵f(x)在区间(-1,1)内单调递增,(x)≥0在区间(-1,1)上恒成立.∴f¢ekx+kxekx≥0,∵ekx>0,∴1+kx≥0.即1+kx≥0在区间(-1,1)上恒成立.令g(x)=1+kx,4ìg(-1)≥0??∴í解得-1≤k≤1.?g(1)≥0??当k=0时,f(x)=1.故k的取值范畴是[-1,0)U(0,1].22.解:(1)当a??2时,f(x)?x2?2lnx,2(x2-1)(x)=>0.x?(1,?),f¢x故函数f(x)在(1,+?)上是增函数.2x2+a(x)=>0.(2)f¢x当x?[1,e],2x2+a?[a2,a+2e2].若a≥-2,f¢,(x)在[1,e]上非负(仅当a=-2,x=1时,f¢(x)=0)故函数f(x)在[1,e]上是增函数.此时,[f(x)]min=f(1)=1.若-2e2故[f(x)]min=f(-若a≤-2e2,f¢(x)在[1,e]上非正(仅当时a=-2e2,x=e时,f¢(x)=0)故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2.综上可知,当a≥-2时,f(x)的最小值为1,相应的x的值为1;当-2e22e2时,f(x)的最小值为a+e2,相应的x值为e.。

线性代数练习册附答案

线性代数练习册附答案

- .. - 优质文档-第1章 矩阵 习 题1. 写出下列从变量x ,y 到变量x 1, y 1的线性变换的系数矩阵: (1)⎩⎨⎧==011y xx ; (2) ⎩⎨⎧+=-=ϕϕϕϕcos sin sin cos 11y x y y x x2.(通路矩阵)a 省两个城市a 1,a 2和b 省三个城市b 1,b 2,b 3的交通联结情况如图所示,每条线上的数字表示联结这两城市的不同通路总数.试用矩阵形式表示图中城市间的通路情况.3. 设⎪⎪⎪⎭⎫ ⎝⎛--=111111111Α,⎪⎪⎪⎭⎫ ⎝⎛--=150421321B ,求3AB -2A 和A TB .4. 计算(1) 2210013112⎪⎪⎪⎭⎫ ⎝⎛(2) ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛1)1,,(212221211211y x c b b b a a b a a y x5. 已知两个线性变换32133212311542322yy y x y y y x y y x ++=++-=+=⎪⎩⎪⎨⎧,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,写出它们的矩阵表示式,并求从321,,z z z 到321,,x x x 的线性变换.6. 设f (x )=a 0x m+ a 1x m -1+…+ a m ,A 是n 阶方阵,定义f (A )=a 0A m+ a 1A m -1+…+ a m E .当f (x )=x 2-5x +3,⎪⎪⎭⎫⎝⎛--=3312A 时,求f (A ).- .7. 举出反例说明下列命题是错误的.(1) 若A2= O,则A= O.(2) 若A2= A,则A= O或A= E..7. 设方阵A满足A2-3A-2E=O,证明A及A-2E都可逆,并用A分别表示出它们的逆矩阵.. - 优质文档-8.用初等行变换把下列矩阵化成行最简形矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛------=132126421321A(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=03341431210110122413B .- .. - 优质文档-9. 对下列初等变换,写出相应的初等方阵以及B 和A 之间的关系式.⎪⎪⎪⎭⎫ ⎝⎛--=121121322101A ~122r r -⎪⎪⎪⎭⎫ ⎝⎛---121123302101~13c c +⎪⎪⎪⎭⎫⎝⎛--131123302001=B .10. 设ΛAP P =-1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=2001Λ,求A 9.11. 设⎪⎪⎪⎭⎫ ⎝⎛-=200030004A ,矩阵B 满足AB =A+2B ,求B .12. 设102212533A --⎛⎫ ⎪=- ⎪⎪-⎝⎭, 利用初等行变换求A-1.复习题一1. 设A , B , C 均为n 阶矩阵,且ABC =E ,则必有( ). (A) ACB =E ; (B) CBA =E ; (C) BAC =E ; (D) BCA =E .2. 设⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a a a a a a a a a B ,- .. - 优质文档-⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫ ⎝⎛=1010100012P ,则必有 ( ) .(A) AP 1P 2=B ; (B )AP 2P 1=B ; (C) P 1P 2A =B ; (D) P 2P 1A =B .3. 设A 为4阶可逆矩阵,将A 的第1列与第4列交换得B ,再把B 的第2列与第3列交换得C ,设⎪⎪⎪⎪⎪⎭⎫⎝⎛=0010100001010001P ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=10000010010000012P ,则C -1=( ). (A) A -1P 1P 2; (B)P 1A -1P 2; (C) P 2P 1A -1; (D) P 2A -1P 1.4. 设n 阶矩阵A 满足A 2-3A +2E =O ,则下列结论中一定正确的是( ).(A) A -E 不可逆 ; (B) A -2E 不可逆 ; (C) A -3E 可逆; (D) A -E 和A -2E 都可逆. 5. 设A =(1,2,3),B =(1,1/2,1/3),令C =A TB ,求.6. 证明:如果A k =O ,则(E -A )-1=E +A +A 2+…+A k -1,k 为正整数.7.设A ,B 为三阶矩阵,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=710004100031A ,且A -1BA =6A +BA ,求B .8. 设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O O B A .- .. - 优质文档-9. 设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-0000000000000000121n n aa a a X (021≠n a a a ),求X -1.第2章 行列式习 题1.利用三阶行列式解下列三元线性方程组⎪⎩⎪⎨⎧=-+-=-+-=+-013222321321321x x x x x x x x x2.当x 取何值时,0010413≠xx x.3.求下列排列的逆序数:(1) 315624; (2)13…(2n-1)24…(2n).4. 证明:3232a cb a b a ac b a b a acb a=++++++.- ..- 优质文档-5. 已知四阶行列式|A |中第2列元素依次为1,2,-1,3,它们的余子式的值依次为3,-4,-2,0 ,求|A |.6. 计算下列行列式: (1) 1111111111111111------(2)yx y x x y x y yx y x +++(3) 0111101111011110(4)1222123312111x x x x x x(5)nn a a a D +++=11111111121,其中021≠n a a a .7.设n 阶矩阵A 的伴随矩阵为A *,证明: |A *|=|A |n-1,(n ≥2).- .. - 优质文档-8. 设A ,B 都是三阶矩阵,A *为A 的伴随矩阵,且|A |=2,|B |=1,计算 |-2A *B -1|.9.设⎪⎪⎪⎭⎫ ⎝⎛--=111012112A ,利用公式求A -1.复习题二1.设A ,B 都是n 阶可逆矩阵,其伴随矩阵分别为A *、B *,证明:(AB )*=B *A *.2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=2200020000340043A ,求A -1.3.已知A 1, A 2, B 1, B 2都是31矩阵,设A =( A 1, A 2, B 1,),B =( A 1, A 2, B 2),|A |=2,|B |=3,求|A+2B |.- .. - 优质文档-4.设A ,B 都是n 阶方阵,试证:AB E EA B E -=. 第3章 向量空间习 题1. 设α1=(1,-1,1)T , α2=(0,1,2)T , α3=(2,1,3)T,计算3α1-2α2+α3.2. 设α1=(2,5,1,3)T , α2=(10,1,5,10)T , α3=(4,1,-1,1)T ,且3(α1- x )+2(α2+x )=5(α3+x ) ,求向量x .3. 判别下列向量组的线性相关性:(1) α1=(-1,3,1)T , α2=(2,-6,-2)T , α3=(5,4,1)T;(2) β1=(2,3,0)T, β2=(-1,4,0)T,β3=(0,0,2)T .4. 设β1=α1, β2=α1+α2, β3=α1+α2+a3,且向量组α1, α2, α3线性无关,证明向量组β1, β2, β3线性无关.5. 设有两个向量组α1, α2, α3和β1=α1-α2+α3, β2=α1+α2-α3,β3= -α1+α2+α3,证明这两个向量组等价.- .6. 求向量组α1=(1,2,-1)T, α2=(0,1,3)T, α3=(-2,-4,2)T,α4=(0,3,9)T的一个极大无关组,并将其余向量用此极大无关组线性表示.7. 设α1, α2,…, αn是一组n维向量,已知n维单位坐标向量ε1,ε2,…,εn能由它们线性表示,证明:α1, α2,…,αn线性无关.8. 设有向量组α1, α2, α3,α4, α5,其中α1, α2, α3线性无关,α4=aα1+bα2,α5=cα2+dα3(a, b, c, d均为不为零的实数),求向量组α1, α3,α4, α5的秩.. - 优质文档-9. 设矩阵A = (1,2,…,n ), B =(n ,n -1,…,1),求秩R (A TB ).10. 设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=97963422644121121112A ,求A 的秩,并写出A 的一个最高阶非零子式.- ..- 优质文档- 11. 已知矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+---=120145124023021t t A ,若A 的秩R (A )=2,求参数t 的值.12. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=5913351146204532A ,求A 的列向量组的秩,并写出它的一个极大无关组.13. 设A 为n 阶矩阵,E 为n 阶单位矩阵,证明:如果A 2=A ,则R (A )+R (A -E )=n .14. 已知向量空间3R 的两组基为 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=010,01121αα,⎪⎪⎪⎭⎫ ⎝⎛=1130α和⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=111,01121ββ-,⎪⎪⎪⎭⎫ ⎝⎛-=1103β, 求由基α1, α2, α3到基β1, β2,β3的过渡矩阵.复习题三1.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k k k k 111111111111A ,已知A 的秩为3,求k 的值.- .. - 优质文档-2.设向量组A : α1, …,αs 与B :β1,…,βr ,若A 组线性无关且B 组能由A 组线性表示为(β1,…,βr )=(α1, …,αs )K ,其中K 为r s 矩阵, 试证:B 组线性无关的充分必要条件是矩阵K 的秩R (K )=r .3.设有三个n 维向量组A :α1, α2, α3;B :α1, α2, α3, α4;C :α1, α2, α3, α5.若A 组和C 组都线性无关,而B 组线性相关,证明向量组α1, α2, α3, α4-α5线性无关.4.设向量组A : α1=(1,1,0)T ,α2=(1,0,1)T ,α3=(0,1,1)T 和B : β1=(-1,1,0)T ,β2=(1,1,1)T ,β3=(0,1,-1)T(1) 证明:A 组和B 组都是三维向量空间3R 的基;(2) 求由A 组基到B 组基的过渡矩阵;(3) 已知向量α在B 组基下的坐标为(1,2,-1)T ,求α在A 组基下的坐标.第4章 线性方程组习 题1. 写出方程组⎪⎩⎪⎨⎧=+++=+++=+322 3512254321432121x x x x x x x x x x 的矩阵表示形式及向量表示形式.2.用克朗姆法则解下列线性方程组⎪⎩⎪⎨⎧=+=+--=-0322az cx bc bz cy ab ay bx ,其中0≠abc3.问μλ,取何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++02 00 321321321x x x x x x x x x μμλ有非零解?- .. - 优质文档-4. 设有线性方程组⎪⎩⎪⎨⎧-=+-=++=++42 - 4 3212321321x x x k x kx x x k x x ,讨论当k 为何值时, (1)有唯一解?(2)有无穷多解?(3)无解?5. 求齐次线性方程组⎪⎩⎪⎨⎧=-++=-++=++-0 26 83054202108432143214321x x x x x x x x x x x x 的一个基础解系.6.设四元非齐次线性方程组的系数矩阵的秩为3,已知η1, η2, η3是它的三个解向量,且η1=(2,3,4,5)T , η2+η3=(1,2,3,4)T ,求此方程组的的通解.7 .求下列非齐次线性方程组的通解:⎪⎩⎪⎨⎧=+++=+++=+322 3512254321432121x x x x x x x x x x- .. - 优质文档-8.设有向量组A :12122,131-==-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα,3110-=⎛⎫ ⎪ ⎪ ⎪⎝⎭α及向量131β=-⎛⎫ ⎪ ⎪ ⎪⎝⎭, 问向量β能否由向量组A 线性表示?9. 设η*是非齐次线性方程组AX =b 的一个解,ξ1, ξ2,…, ξn -r 是它的导出组的一个基础解系,证明:(1)η*, ξ1, ξ2,…, ξn -r 线性无关;(2)η*, η*+ξ1, η*+ξ2,…, η*+ξn -r 线性无关.复习题四1.设⎪⎪⎪⎭⎫ ⎝⎛=101102121a a a A ,且方程组AX =θ的解空间的维数为2,则a =.2.设齐次线性方程组a 1x 1+a 2x 2+…+a n x n =0,且a 1,a 2,…,a n 不全为零,则它的基础解系所含向量个数为.3.设有向量组π:α1=(a ,2,10)T , α2=(-2,1,5)T ,α3=(-1,1,4)T 及向量β=(1,b ,-1)T,问a , b 为何值时, (1)向量β不能由向量组π线性表示;(2)向量β能由向量组π线性表示,且表示式唯一;(3)向量β能由向量组π线性表示,且表示式不唯一,并求一般表示式.4.设四元齐次线性方程组(Ⅰ)⎩⎨⎧=-=+004221x x x x (Ⅱ)⎩⎨⎧=+-=+-00432321x x x x x x 求: (1) 方程组(Ⅰ)与(Ⅱ)的基础解系;(2) 方程组(Ⅰ)与(Ⅱ)的公共解.5.设矩阵A =(α1, α2, α3, α4),其中α2,α3, α4线性无关,α1=2α2-α3,向量β=α1+α2+α3+α4,求- .. - 优质文档-非齐次线性方程组Ax=β的通解.6. 设⎪⎪⎪⎭⎫ ⎝⎛=321a a a α,⎪⎪⎪⎭⎫ ⎝⎛=321b b b β,⎪⎪⎪⎭⎫ ⎝⎛=321c c c γ,证明三直线⎪⎩⎪⎨⎧=++=++=++0:0:0:333322221111c y b x a l c y b x a l c y b x a l 3,2,1,022=≠+i b a i i相交于一点的充分必要条件是向量组βα,线性无关,且向量组γβα,,线性相关.第5章 矩阵的特征值和特征向量习 题1.已知向量α1=(1,-1,1)T ,试求两个向量α2, α3,使α1, α2, α3为R 3的一组正交基.2.设A , B 都是n 阶正交矩阵,证明AB 也是正交矩阵.3. 设A 是n 阶正交矩阵,且|A |=-1,证明:-1是A 的一个特征值.4.求矩阵⎪⎪⎪⎭⎫ ⎝⎛----201335212的特征值和特征向量.5. 已知三阶矩阵A 的特征值为1,2,3,计算行列式|A 3-5A 2+7E |.- ..- 优质文档- 6.设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭⎫ ⎝⎛-=40000005y Λ相似,求y x ,;并求一个正交矩阵P ,使P -1AP =Λ.7.将下列对称矩阵相似对角化:(1)⎪⎪⎪⎭⎫⎝⎛----020212022(2)⎪⎪⎪⎭⎫ ⎝⎛310130004.8. 设λ是可逆矩阵A 的特征值,证明:(1)λA 是A *的特征值.(2)当1,-2,3是3阶矩阵A 的特征值时,求A *的特征值.9.设三阶实对称矩阵A 的特征值为λ1=6, λ2=λ3=3,属于特征值λ1=6的特征向量为p 1=(1,1,1)T ,求矩阵A .复习题五- .. - 优质文档- 1.设n 阶矩阵A 的元素全为1,则A 的n 个特征值是.2.已知3阶矩阵A , A -E , E +2A 都不可逆,则行列式|A +E |=.3.设⎪⎪⎪⎭⎫ ⎝⎛=11111b b a a A ,⎪⎪⎪⎭⎫ ⎝⎛=200010000B ,已知A 与B 相似,则a , b 满足.4.设A 为2阶矩阵, α1, α2为线性无关的2维列向量,A α1=0, A α2=2α1+, α2,则A 的非零特征值为.5.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=50413102x A 可相似对角化,求x .6.设矩阵A 满足A 2-3A +2E =O ,证明A 的特征值只能是1或2. 7.已知p 1=(1,1,-1)T 是对应矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的特征值λ的一个特征向量.(1) 求参数a , b 及特征值λ; (2) 问A 能否相似对角化?说明理由.8. 设⎪⎪⎭⎫ ⎝⎛--=3223A ,求φ(A )=A 10-5A 9. 第6章 二次型习 题1.写出下列二次型的矩阵表示形式:42324131212423222146242x x x x x x x x x x x x x x f -+-+-+++=2.写出对称矩阵⎪⎪⎪⎭⎫ ⎝⎛----=32201112121A 所对应的二次型.- .. - 优质文档- 3.已知二次型322123222132164),,(x x x x ax x x x x x f ++++=的秩为2,求a 的值.4.求一个正交变换将322322213214332),,(x x x x x x x x f +++=化成标准形.5.用配方法将二次型31212322214253x x x x x x x f -+++=化成标准形,并写出所用的可逆线性变换.6. 设二次型)0(233232232221>+++=a x ax x x x f ,若通过正交变换Py x =化成标准形23222152y y y f ++=,求a 的值.7. 判别下列二次型的正定性:(1)312123222122462x x x x x x x f ++---=(2)4342312124232221126421993x x x x x x x x x x x x f --+-+++=- .. - 优质文档-8. 设3231212322214225x x x x x ax x x x f +-+++=为正定二次型,求a 的取值X 围.复习题六1. 设A 为n m ⨯矩阵,B =λE +A TA ,试证:λ>0时,矩阵B 为正定矩阵.2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2100120000010010A ,写出以A , A -1为矩阵的二次型,并将所得两个二次型化成标准形.3. 已知二次曲面方程5223121232221=-+++x x x bx ax x x ,通过正交变换X=PY 化为椭圆柱面方程522221=+y y ,求b a ,的值.4. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,2)(A E B +=k ,其中k 为实数,求对角矩阵Λ,使B与Λ相似,并讨论k 为何值时,B 为正定矩阵.测试题一一、计算题:1.计算行列式111131112+=n D n.- .. - 优质文档- 2.设⎪⎪⎪⎭⎫ ⎝⎛-=201A ,⎪⎪⎪⎭⎫ ⎝⎛---=210530001B ,计算T B A 3. 3.设A 、B 都是四阶正交矩阵,且0<B ,*A 为A 的伴随矩阵,计算行列式*2BAA -.4.设三阶矩阵A 与B 相似,且⎪⎪⎪⎭⎫ ⎝⎛=321A ,计算行列式E B 22-.5.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=2411120201b a A ,且A 的秩为2,求常数b a ,的值. 二、解答题:6.设4,3,2,1),,,1(32==i t t t T i i i i α,其中4321,,,t t t t 是各不相同的数,问4维非零向量β能否由4321,,,αααα线性表示?说明理由. 7.求齐次线性方程组 ⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x 的一个基础解系.8.问k 取何值时,线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211k x x kx k x kx x kx x x(1)有唯一解;(2)有无穷多解;(3)无解.9.已知四阶方阵A =(4321,,,αααα),其中321,,ααα线性无关,3243ααα-=,求方程组4321αααα+++=Ax 的通解.10.三阶实对称矩阵A 的特征值是1,2,3.矩阵A 的属于特征值1,2的特征向量分别是T )1,1,1(1--=α,T )1,2,1(2--=α,求A 的属于特征值3的所有特征向量,并求A 的一个相似变换矩阵P 和对角矩阵Λ,使得Λ=-AP P 1. 三、证明题:11.设2112ααβ+=,32223ααβ+=,13334ααβ+=,且321,,ααα线性无关,证明:321,,βββ也线性无关.12.设A 为实对称矩阵,且满足O E A A =--22,证明E A 2+为正定矩阵. 测试题二一、填空题:1、若规定自然数从小到大的次序为标准次序,则排列134782695的逆序数为;2、已知A 为三阶正交矩阵,且A <0,则*AA =;3、设方阵A =⎪⎪⎪⎭⎫ ⎝⎛--24523121x ,若A 不可逆,则=x ;4、设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛=5432P ,⎪⎪⎭⎫ ⎝⎛-=Λ1001,则6A =; 5、“若向量组321,,ααα线性无关,向量组432,,ααα线性相关,则4α一定能由32,αα线性表示”.该命题正确吗? 。

离散数学第二部分测试题-有答案2

离散数学第二部分测试题-有答案2

离散数学第二部分测试题一、 填空题1.D=}{φ,则幂集}}.{,{)(φφρ=D2. B={1,{2,3}},则幂集=)(B ρ}}}3,2{,1{}},3,2{{},1{,{φ3. 若集合A ,B 的元素个数分别为n B m A ==,,则A 到B 有 nm ⨯2种不同的二元关系。

4. A={φ,a ,{b}},B=}{φ,则{}><><><=⨯φφφφ},{,,,,b a B A5. 设A={1,2,3},则在A 上有 5 个不同的划分。

6.设P ={<1, 2>, <1, 4>, <2, 3>, <4, 4>}和Q ={ <1, 2>, <2, 3>,<4, 2>} 则dom(P ∪Q )= {1,2,4} ,ran(P ∪Q ) = { 2,3,4}7. A I 是集合A 上的恒等关系,A 上的关系R 具有 反对称 性当且仅当1A R R I -⋂⊆8. A I 是集合A 上的恒等关系,A 上的关系R 具有 反自反 性当且仅当Φ=⋂R I A9. 设R 为A 上的关系,R 在A 上具有 传递 当且仅当R R R ⊆ 。

10.设R 为A 上的关系,R 在A 上自反的当且仅当 A I R ⊆ 11.设R 为A 上的关系,R 在A 上对称的当且仅当1R R -=二、 选择题1.集合A={全班同学}上的同龄关系R 为( B )A .对称关系B .等价关系C .偏序关系D .三个都不是 2.在由3个元素组成的集合上,可以有( D )种不同的关系。

A . 3; B .8; C .9 ; D .5123.设集合{}c b a A ,,=,A 上的二元关系{}><><=b b a a R ,,,不具备关系( D )性质A .传递性B .反对称性C .对称性D .自反性三、 计算题1.设集合A={1,2,3},A 上的关系R={<1,1>,<1,2>,<2,2>,<3,2>,<3,3>}(1) 画出R 的关系图; (2) 写出R 的关系矩阵问R 具有关系的哪几些特殊性质(自反、对称、传递等)解 (1)(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110010011M 该关系是自反的但不是反自反的,因为每个顶点都有个环;它是反对称的但不是对称的,因为图中只有单向边;它也是传递的,因为不存在顶点x,y,z ,使得x 到y 有边,y 到z 有边,但x 到z 没边,其中}3,2,1{,,∈z y x 。

【AB卷】部编人教版五年级语文上册第二单元检测题附参考答案

【AB卷】部编人教版五年级语文上册第二单元检测题附参考答案

部编版五年级上册语文第二单元测试题(A卷)姓名班级(考试时间90分钟,满分100分)一、读下面话段,完成练习。

(5分)每当上工、下工,一行人走搭石的时候,动作是那么胁调有序!前面的抬起脚来,后面的紧跟上去。

嗒嗒的声音,像.清快的音乐;清波漾漾,人影绰绰,给人画一般的美感。

1.语段中有两个错别字,找出来并改正:。

(1分)2.画线句运用了的修辞手法。

请你用加点词再写一个句子。

(2分)3.“清波漾漾,人影绰绰”描绘了一幅怎样的画面?请发挥想象写一写。

(2分)二、下列加点字读音完全相同的一项是( )。

(2分)A.房间间隔间断挑拨离间B.将领将帅将军将计就计C.强逼强辩强求强人所难D.划算划船划分出谋划策三、根据画线部分写成语。

(4分)1.人们把这看成从道理上说应当这样的事。

( )2.秦王一边看一边称赞,一个字也不提十五座城的事。

( )3.他有气势,无所畏惧地说:“我看您并不想交付十五座城。

”( )4.敌人尝到了地道的厉害,想种种办法来破坏。

( )四、按要求完成句子训练。

(10分)1.指出下列句子使用的说明方法。

(2分)①人在奋力奔跑的时候,最大速度能够达到24千米每小时。

( )②光的速度是惊人的,大约是30万千米每秒,比流星体的速度要快几千!( )2.按要求写句子。

(3分)(1)人们从河的两岸找来一些平整方正的石头。

缩句:(2)秦王我都不怕,还会怕廉将军吗?改为陈述句:(3)冀中平原上的人民坚持了生产。

冀中平原上的人民有力地打击了敌人。

用关联词连成一句:3.照样子,把成语的意思用具体的情景表现出来。

(3分)例:喋喋不休——我们明天要去春游,妈妈从昨天就开始不停地叮嘱我;不要到水边玩,不要在马路上追逐打闹,要听从老师指挥,不要乱跑,不要乱丢垃圾……左右为难——4.仿写。

(2分)一排排搭石,联结着故乡的小路,也联结着乡亲们美好的情感。

,联结着,也联结着。

五、补充下列名句,并完成练习。

(8分)①盛年不重来,②莫等闲,,③不饱食以终日,上面几句名言的主题是;第①句出自之口,第②句出自之口。

人教版高中化学选修二测试题全套及答案解析.doc

人教版高中化学选修二测试题全套及答案解析.doc

最新人教版高中化学选修二测试题全套及答案解析模块综合测评(时间:90分钟分值:100分)一、选择题(本题包括18小题,每小题3分,共54分)1.节能减排与我们的生活息息相关,参与节能减排是每一位公民应尽的义务。

下列举措不符合这一要求的是()A・实行塑料购物袋有偿使用B.房屋装修中尽量增加钢材和木材使用量C.进一步推广使用乙醇汽油作为汽车的燃料D.洗涤衣物时合理使用无磷洗衣粉等洗涤剂【解析】A项为我国环保局的一项措施;C项中使用乙醇汽油可减少对石油的依赖;D 项中含磷洗衣粉会造成水质恶化,故洗涤衣物时尽量使用无磷洗衣粉。

【答案】B2.在NH3、H2SO4的工业生产中,具有的共同点是()A・使用吸收塔设备B.使用尾气吸收装置C.使用吐作原料D.使用催化剂【解析】合成氨不需要吸收塔,也不需尾气吸收装置,制硫酸不需用电作原料。

【答案】D3.下列物质的化学式和俗名一致的是()A.氯化钠(NaCl,食盐)B.氢氧化钠(NaOH,纯碱)C・碳酸钠(Na2CO3,苏打、烧碱)D.碳酸氢钠(NaHCOs,大苏打)【解析】B项,纯碱是Na2CO3的俗名,NaOH俗名为烧碱、火碱、苛性钠;C项中烧碱是NaOH; D项碳酸氢钠俗名小苏打。

[答案】A4.下列说法正确的是()A.在设计化工生产的化学反应条件时,只要将化学反应的特点和化学反应理论相结合进行全面分析就没问题了B.在设计化工生产的化学反应条件时,若化学反应的速率很高,就不需要考虑催化剂的问题C.在现代工业上将二氧化硫氧化为三氧化硫的适宜条件是高温、高压和催化剂v205D.在2SO2+O22SO3中,对“450 °C”的选择,来自对反应物性质和催化剂性450 °C质的综合考虑【解析】在设计化工生产的化学反应条件时,若化学反应速率过高而对生产不利时,就要考虑施加负催化剂的问题。

【答案】D5.勤洗手和经常对环境进行消毒是预防传染病的有效途径。

某消毒液为无色液体,用红色石蕊试纸检验,发现试纸先变蓝后褪色。

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套最新人教版高中数学选修2-2综合测试题及答案2套模块综合检测(A)一、选择题1.复数z=2-i(i为虚数单位)在复平面内对应的点所在象限为()A。

第一象限B。

第二象限C。

第三象限D。

第四象限解析:∵z=2-i=(2.-1),在第四象限.∴复数z对应的点的坐标为(2.-1)。

答案:D2.函数f(x)=x^3+4x+5的图象在x=1处的切线在x轴上的截距为()A。

10B。

5/3C。

-1D。

-7/3解析:f′(x)=3x^2+4,f′(1)=7,f(1)=10,y-10=7(x-1),y=7(x-1)+10时,x=7/3.答案:D3.类比下列平面内的三个结论所得的空间内的结论成立的是()①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;③如果一条直线与两条平行直线中的一条相交,则必与另一条相交。

A。

①②③B。

①③C。

①D。

②③解析:类比①的结论为:平行于同一个空间的两个平面平行,成立;类比②的结论为:一个空间如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个空间与两个平行平面中的一个相交,则必与另一个相交,成立。

答案:A4.函数y=x^3-3x^2-9x(-2<x<2)有()A。

极大值5,极小值-27B。

极大值5,极小值-11C。

极大值5,无极小值D。

极小值-27,无极大值解析:y′=3x^2-6x-9=3(x-3)(x+1),得x=-1,x=3,当x0;当x>-1时,y′<0.当x=-1时,y极大值=5,x取不到3,无极小值。

答案:C5.函数y=4x^2+1/x的单调递增区间是()A。

(0,+∞)B。

(-∞,1)C。

(1,2)D。

(2,+∞)解析:令y′=8x-1/x^2=0,即x=1/2,y′(x)=8x-1/x^2>0,所以y=4x^2+1/x在(0,+∞)上单调递增。

数学第二单元测试题及答案

数学第二单元测试题及答案

数学第二单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. 32. 如果一个数的平方等于它本身,那么这个数可以是:A. 0B. 1C. -1D. A和B3. 两个连续整数的和是15,这两个整数分别是:A. 7和8B. 6和9C. 7和7D. 无法确定4. 一个数的立方是-27,这个数是:A. -3B. 3C. -27D. 275. 以下哪个分数是最接近0的?A. -1/2B. 1/3C. -1/3D. 1/2二、填空题(每题3分,共15分)6. 一个数的平方根是4,那么这个数是________。

7. 一个数的立方根是-2,那么这个数是________。

8. 如果一个数的绝对值是5,那么这个数可以是________。

9. 一个数的倒数是1/4,那么这个数是________。

10. 一个数的平方是25,这个数是________。

三、解答题(每题5分,共25分)11. 计算下列表达式的值:(3x - 2)(3x + 2)。

12. 解方程:2x + 5 = 17。

13. 证明:(a + b)² = a² + 2ab + b²。

14. 找出下列数列的第10项:1, 4, 9, 16, ...15. 计算下列多项式乘法:(x² - 3x + 2)(x - 4)。

四、应用题(每题10分,共40分)16. 一个长方形的长是20米,宽是15米,求它的周长和面积。

17. 一个班级有40名学生,其中1/4的学生是男生,班级里有多少男生?18. 一个工厂每天生产100个零件,如果每个零件的成本是5元,工厂每天的成本是多少?19. 一个圆的半径是7厘米,求它的面积。

答案:一、选择题1. B2. D3. A4. A5. C二、填空题6. 167. -88. ±59. 410. ±5三、解答题11. 9x² - 412. x = 613. 证明略14. 10015. x³ - 7x² - 8x + 8四、应用题16. 周长:70米,面积:300平方米17. 10男生18. 500元19. 153.94平方厘米(π取3.14)结束语:本测试题覆盖了数学第二单元的主要内容,包括整数、分数、方程、数列、几何图形等知识点。

2023年-2024年法律职业资格之法律职业客观题二能力测试试卷A卷附答案

2023年-2024年法律职业资格之法律职业客观题二能力测试试卷A卷附答案

2023年-2024年法律职业资格之法律职业客观题二能力测试试卷A卷附答案单选题(共45题)1、黄某与唐某自愿达成离婚协议并约定财产平均分配,婚姻关系存续期间的债务全部由唐某偿还。

经查,黄某以个人名义在婚姻存续期间向刘某借款10万元用于购买婚房。

下列哪一表述是正确的?A.刘某只能要求唐某偿还10万元B.刘某只能要求黄某偿还10万元C.如黄某偿还了10万元,则有权向唐某追偿10万元D.如唐某偿还了10万元,则有权向黄某追偿5万元【答案】 C2、祥瑞化工公司从天空化工公司购买了一批化工产品,后又将该批产品卖给了福盛公司。

福盛公司用该批产品作为生产原料。

由于该批化工产品质量不合格,导致生产的产品全部为废品。

福盛公司对祥瑞公司提起诉讼。

祥瑞公司向法院申请追加天空公司参加诉讼。

请回答第95 ~97题。

A.天空公司是本诉的当事人B.天空公司不是本案当事人C.天空公司与祥瑞公司是本案共同被告D.天空公司是第三人【答案】 D3、方某、李某、刘某和张某签订借款合同,约定:“方某向李某借款100万元,刘某提供房屋抵押,张某提供保证。

”除李某外其他人都签了字。

刘某先把房本交给了李某,承诺过几天再作抵押登记。

李某交付100万元后,方某到期未还款。

下列哪一选项是正确的?A.借款合同不成立B.方某应返还不当得利C.张某应承担保证责任D.刘某无义务办理房屋抵押登记【答案】 C4、家住甲市A区张某在甲市B区某医院就诊,因治疗效果不好发生争议。

双方前往C 区的医疗调解委员会进行调解。

经过调解人员的调解,双方达成了调解协议。

请回答A.可以由张某向法院提出申请B.只能由张某向法院提出申请C.可以由张某或者某医院单独向法院提出申请D.只能由张某和某医院共同向法院提出申请【答案】 D5、甲公司向乙公司签发了一张银行承兑汇票,丙银行进行了承兑,乙公司将汇票背书转让给丁公司,丁公司将汇票背书转让给张某,后张某又将汇票背书转让给乙公司,乙公司向银行提示付款时被拒绝,乙公司可以向谁行使追索权?A.甲公司B.丙银行C.丁公司D.张某【答案】 A6、甲公司与乙银行签订1份500万元的借款合同,由丙公司提供保证担保,因甲公司到期不能还款,乙银行便要求丙公司承担保证责任。

(完整版)二次根式测试题及答案

(完整版)二次根式测试题及答案

九年级数学第二十一章二次根式测试题(A )时间:45分钟分数:100分一、选择题(每小题2分,共20分)1. 下列式子一定是二次根式的是( )A .B .C .D .2--x x 22+x 22-x 2.若,则( )b b -=-3)3(2A .b>3B .b<3C .b ≥3D .b ≤33.若有意义,则m 能取的最小整数值是( )13-m A .m=0B .m=1C .m=2D .m=34.若x<0,则的结果是( )xx x 2-A .0 B .—2 C .0或—2 D .25.(2005·岳阳)下列二次根式中属于最简二次根式的是( )A .B .C .D .1448ba44+a 6.如果,那么( ))6(6-=-∙x x x x A .x ≥0 B .x ≥6 C .0≤x ≤6 D .x 为一切实数7.(2005·湖南长沙)小明的作业本上有以下四题:①;②;③;④24416a a =a a a 25105=⨯a aa a a=∙=112。

做错的题是( )a a a =-23A .① B .② C .③ D .④8.化简的结果为( )6151+A .B .C .D .3011330303033011309.(2005·青海)若最简二次根式的被开方数相同,则a 的值为a a 241-+与( )A . B . C .a=1 D .a= —143-=a 34=a 10.(2005·江西)化简得( ))22(28+-A .—2B .C .2D . 22-224-二、填空题(每小题2分,共20分)11.① ;② 。

=-2)3.0(=-2)52(12.二次根式有意义的条件是。

31-x 13.若m<0,则=。

332||m m m ++14.成立的条件是。

1112-=-∙+x x x 15.比较大小: 。

321316. ,。

=∙y xy 82=∙271217.计算= 。

充要条件的测试题及答案

充要条件的测试题及答案

充要条件的测试题及答案一、选择题1. 以下哪个选项正确描述了充要条件?A. 条件A是条件B的充分条件B. 条件A是条件B的必要条件C. 条件A是条件B的充要条件D. 条件A是条件B的既不充分也不必要条件答案:C2. 如果A⇒B,B⇒A,则A和B的关系是:A. A是B的充分条件B. A是B的必要条件C. A是B的充要条件D. A与B互为独立条件答案:C二、判断题1. 如果A是B的充分条件,那么B也是A的必要条件。

()答案:错误2. 如果A是B的必要条件,那么B是A的充分条件。

()答案:正确三、简答题1. 解释什么是充要条件,并给出一个例子。

答案:充要条件指的是两个条件之间存在一种相互依赖的关系,即一个条件的存在必然导致另一个条件的存在,反之亦然。

例如,一个数是偶数(条件A)是它能够被2整除(条件B)的充要条件。

2. 区分“充分条件”和“必要条件”并给出各自的例子。

答案:充分条件指的是一个条件的存在足以保证另一个条件的存在,但不是唯一的保证。

例如,一个数是偶数是它能够被2整除的充分条件。

必要条件指的是一个条件的存在是另一个条件存在所必需的,但不是充分的。

例如,一个数能够被2整除是它为偶数的必要条件。

四、应用题1. 如果x > 0是x² > 0的充分条件,判断x < 0是否是x² > 0的必要条件。

答案:不是。

因为x < 0时,x²仍然是正数,但x > 0是x² > 0的充分条件,意味着x² > 0时,x一定大于0,但x < 0时x² > 0并不成立,所以x < 0不是x² > 0的必要条件。

2. 证明如果A是B的充要条件,那么B也是A的充要条件。

答案:如果A是B的充要条件,根据充要条件的定义,A⇒B且B⇒A。

这意味着如果A成立,则B必然成立;反之,如果B成立,则A也必然成立。

最新高二数学题库 高二数学选修12推理与证明测试题及答案

最新高二数学题库 高二数学选修12推理与证明测试题及答案

推理与证明命题人:杨建国 审题人:郝 蓉本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.测试时间120分钟.一、选择题(本大题共12小题,每小题5分,共60分) 1. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误2.下面使用类比推理,得到正确结论的是( ) A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b )” 3.在十进制中01232004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为( ) A.29 B. 254 C. 602 D. 20044. 设0()sin f x x =,10()()f x f x '=,21()()f x f x '=,…,1()()n n f x f x +'=,n ∈N ,则2010()f x =( )A.cos x B .-cos x C .sin x D -sin x5.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误6.下面几种推理是类比推理的是( )A .两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线的同旁内角,则∠A +∠B =1800 B .由平面三角形的性质,推测空间四边形的性质C .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.D .一切偶数都能被2整除,1002是偶数,所以1002能被2整除.7.黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第五个图案中有白色地面砖( )块.A.21B.22C.20D.238.用反证法证明命题“若整系数一元二次方程20(0)ax bx c a ++=≠有有理根,那么,,a b c 中至少有一个是偶数”时,下列假设中正确的是( )(A )假设,,a b c 不都是偶数 (B )假设,,a b c 都不是偶数 (C )假设,,a b c 至多有一个是偶数 (D )假设,,a b c 至多有两个是偶数9.如果=++==+)5()6()3()4()1()2(,2)1()()()(f f f f f f f b f a f b a f 则且( ). A .512B .537 C .6 D .82()3110:344,()(cos sin )(),24x x y x y y x y αα≥⎧∙=∙=-∙+-⎨<⎩、定义运算例如则的最大值为( )A .4B .3C .2D .111.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a+≥+∙+.其中不成立的有A.1个B.2个C.3个D.4个 12.已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为( ) A.4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21f x x =+二、填空题(本大题共6小题,每小题5分,共30分)13.已知一列数1,-5,9,-13,17,……,根据其规律,下一个数应为 . 14.下列表述正确的是 .①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理。

初中数学北师大版八年级上册第七章 平行线的证明2 定义与命题-章节测试习题

初中数学北师大版八年级上册第七章 平行线的证明2 定义与命题-章节测试习题

章节测试题1.【答题】命题“垂直于同一条直线的两条直线互相平行”的条件是()A.如果两条直线垂直于同一条直线B.两条直线互相平行C.两条直线互相垂直D.两条直线垂直于同一条直线【答案】D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【解答】命题“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.选D.2.【答题】下列命题的逆命题是真命题的是()A.直角都相等B.钝角都小于180°C.如果x2+y2=0,那么x=y=0D.对顶角相等【答案】C【分析】根据逆命题是否为真命题逐一进行判断即可.【解答】相等的角不都是直角,故A选项不符合题意,小于180°的角不都是钝角,故B选项不符合题意,如果x=y=0,那么x2+y2=0,正确,是真命题,符合题意,相等的角不一定都是对顶角,故D选项不符合题意,选C.3.【答题】把命题”对顶角相等”写成“如果……那么……”的形式是______.【答案】如果两个角是对顶角,那么这两个角相等【分析】对顶角相等的条件是两个角是对顶角,结论是两角相等,据此即可改写成“如果…,那么…”的形式.【解答】∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,∴命题“对顶角相等”写成“如果…那么…”的形式为:“如果两个角是对顶角,那么这两个角相等”,故答案为:如果两个角是对顶角,那么两个角相等.4.【答题】命题“两个锐角的和是直角”是______命题(填“真”或“假”).【答案】假【分析】根据真、假命题的定义判断即可。

【解答】两个锐角的和可能是锐角,直角或钝角,即两个锐角的和是直角是假命题.5.【题文】判断下列命题是真命题还是假命题,如果是假命题,请举出一个反例.(1)如果一个数是偶数,那么这个数是4的倍数.(2)两个负数的差一定是负数.【答案】(1)假命题(2)假命题【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,假命题举出反例即可.【解答】解:(1)假命题.反例:6是偶数,但6不是4的倍数.(2)假命题.反例:(-5)-(-8)=+3.6.【题文】把命题改写成“如果……那么……”的形式.(1)对顶角相等.(2)两直线平行,同位角相等.(3)等角的余角相等.【答案】见解答【分析】根据命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.由此可得结论.【解答】解:(1)如果两个角是对顶角,那么这两个角相等.(2)如果两条直线平行,那么同位角相等.(3)如果两个角同为等角的余角,那么这两个角相等.7.【题文】指出下列命题的条件和结论.(1)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(2)如果∠1=∠2,∠2=∠3,那么∠1=∠3.(3)锐角小于它的余角.【答案】见解析【分析】根据命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.由此可得结论.【解答】解:(1)条件:两条直线被第三条直线所截,同旁内角互补;结论:这两条直线平行.(2)条件:∠1=∠2,∠2=∠3;结论:∠1=∠3.(3)条件:一个角是锐角;结论:这个角小于它的余角.8.【答题】下列句子中,不是命题的是()A. 两点之间,线段最短B. 对顶角相等C. 同位角相等D. 连结A.B两点【答案】D【分析】判断一件事情的语句叫做命题.【解答】解:A、B、C都符合命题的概念,故正确;D、没有作出判断,故错误.选D.9.【答题】下列语句不是命题的()A. 鲸鱼是哺乳动物B. 植物都需要水C. 你必须完成作业D. 实数包括零【答案】C【分析】可以判定真假的语句是命题,根据其定义对各个选项进行分析,从而得到答案.【解答】解:A,是,因为可以判定这是个真命题;B,是,因为可以判定其是真命题;C,不是,因为这是一个陈述句,无法判断其真假;D,是,可以判定其是真命题;选C.10.【答题】“两条直线相交只有一个交点”的题设是()A. 两条直线B. 相交C. 只有一个交点D. 两条直线相交【答案】D【分析】任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.【解答】解:“两条直线相交只有一个交点”的题设是两条直线相交.选D.11.【答题】命题“同位角相等,两直线平行”中,条件是______,结论是A. 同位角相等;两直线平行B. 同位角不相等;两直线平行C. 同位角不相等;两直线不平行D. 同位角相等;两直线不平行【答案】A【分析】由命题的题设和结论的定义进行解答.【解答】解:命题中,已知的事项是“同位角相等”,由已知事项推出的事项是“两直线平行”,所以“同位角相等”是命题的题设部分,“两直线平行”是命题的结论部分.故空中填:同位角相等;两直线平行,选A.12.【答题】如果两条直线相交,那么它们只有一个交点.这个命题的条件是______,结论是______.A. 两条直线不相交;它们不只有一个交点B. 两条直线不相交;它们只有一个交点C. 两条直线相交;它们只有一个交点D. 两条直线相交;它们不只有一个交点【答案】C【分析】命题分为题设和结论两部分,题设是如果后面的部分,结论是那么后面的部分.【解答】解:这个命题的条件是两条直线相交,结论是它们只有一个交点,选C.13.【答题】命题:“内错角相等,两直线平行”的题设是______,结论是______.A. 内错角相等;两直线平行B. 内错角相等;两直线不平行C. 内错角不相等;两直线平行D. 内错角不相等;两直线不平行【答案】A【分析】根据题设与结论的定义即可判断.【解答】解:内错角相等,两直线平行”的题设是:内错角相等,结论是:两直线平行.故答案是: A.14.【答题】命题“直角三角形两个锐角互余”的条件是______,结论是______.A. 两个锐角互余,则这两个锐角不在一个直角三角形中B. 一个直角三角形中的两个锐角;这两个锐角互余C. 一个直角三角形中的两个锐角;这两个锐角互补D. 两个锐角互补,则这两个锐角在一个直角三角形中【答案】B【分析】命题有条件和结论两部分组成,条件是已知的,结论是结果.【解答】解:“直角三角形两个锐角互余”的条件是一个直角三角形中的两个锐角,结论是这两个锐角互余,选B.15.【答题】把命题“等角的补角相等”改写成“如果…那么…”的形式是(______ )A. 如果两个角相等,那么它们是等角的补角B. 如果两个角是补角,那么它们相等C. 如果两个角是等角的补角,那么它们相等D. 如果两个角相等,那么它们是等角的余角【答案】C【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为: C.16.【答题】命题“等角的余角相等”写成“如果…,那么…”的形式(______)A. 如果两个角的补角相等,那么这两个角相等B. 如果两个角的余角相等,那么这两个角相等C. 如果两个角相等,那么这两个角的余角相等D. 如果两个角相等,那么这两个角的补角相等【答案】C【分析】任何一个命题都可以写成“如果…,那么…”的形式如果后面是题设,那么后面是结论.【解答】解:命题“等角的余角相等”的题设是“两个角相等”,结论是“这两个角的余角相等”.故命题“等角的余角相等”写成“如果…,那么…”的形式是:如果两个角相等,那么这两个角的余角相等,选C.17.【答题】下列语句中不是命题的是()A. 两点之间线段最短B. 连接A,B两点C. 两条直线相交有且只有一个交点D. 对顶角不相等【答案】B【分析】找到不是判断一件事情的语句的选项即可.【解答】解:A、判断出两点之间,线段最短,是命题,不符合题意;B、没有做出任何判断,不是命题,符合题意;C、由两条直线相交可得只有一个交点,是命题,不符合题意;D、判断是对顶角不相等,是命题,不符合题意;选B.18.【答题】下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡直角都相等.其中真命题的个数的是()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①对顶角相等,是真命题,②只有在两直线平行时,同位角才相等,假命题,③等角的余角相等,是真命题,④直角都等于90°,是真命题,真命题有3个,选C.19.【答题】对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A. ∠1=50°,∠2=40°B. ∠1=50°,∠2=50°C. ∠1=∠2=45°D. ∠1=40°,∠2=40°【答案】C【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A,满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故错误;B、不满足条件,故错误;C、满足条件,不满足结论,故正确;D、不满足条件,也不满足结论.选C.20.【答题】a、b是实数,下列命题是真命题的是()A. a≠b,则a2≠b2B. 若a2>b2,则a>bC. 若|a|>|b|,则a>bD. 若|a|>|b|,则a2>b2【答案】D【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、假命题,反例:2≠-2,但2 2 =(-2)2;B、假命题,反例:-3 2>0 2,但-3<0;C、假命题,反例:|-9|>|0|,则-9<0;D、真命题,|a|>|b|,则a 2>b 2.选D.。

数学2单元测试题及答案

数学2单元测试题及答案

数学2单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于9,那么这个数是:A. 3B. -3C. 3或-3D. 93. 以下哪个表达式的结果不是整数?A. 4 * 5B. 6 ÷ 2C. 7 - 4D. 8 ÷ 44. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π5. 以下哪个是二次方程?A. x + 2 = 0B. x^2 + 2x + 1 = 0C. x^3 - 4x^2 + 4x = 0D. x^2 - 1 = 0二、填空题(每题3分,共15分)6. 如果一个数的绝对值是5,那么这个数可能是______。

7. 一个三角形的内角和为______度。

8. 如果一个数的立方等于-27,那么这个数是______。

9. 一个数的平方根是4,那么这个数是______。

10. 一个数的相反数是-5,那么这个数是______。

三、解答题(每题5分,共30分)11. 解方程:3x - 7 = 2x + 5。

12. 证明勾股定理:在一个直角三角形中,直角边的平方和等于斜边的平方。

13. 计算下列表达式的值:(2 + 3) × (5 - 4)。

14. 一个圆的直径是14cm,求它的周长。

四、应用题(每题7分,共14分)15. 一个班级有40名学生,其中30名学生喜欢数学,20名学生喜欢英语。

如果一个学生至少喜欢一门学科,那么喜欢两门学科的学生有多少?16. 一个工厂每天生产300个零件,如果每个零件的成本是2元,工厂每天的总成本是多少?五、附加题(10分)17. 一个数列的前三项是2, 3, 5,从第四项开始,每一项都是前三项的和。

求这个数列的第10项。

答案:一、选择题1. B2. C3. D4. B5. B二、填空题6. ±57. 1808. -39. 1610. 5三、解答题11. 解:3x - 7 = 2x + 5x = 1212. 证明:设直角三角形的直角边为a和b,斜边为c。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北九上第一章《证明二》水平测试(A )一、精心选一选,慧眼识金(每小题3分,共30分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )去配.A. ①B. ②C. ③D. ①和②2.下列说法中,正确的是( ).A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图2,AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8cm ,BE =3cm ,那么AC 长为( ).A .4cmB .5cmC .8cmD .34cm4.如图3,在等边ABC ∆中,,D E 分别是,BC AC 上的点,且BD CE =,AD 与BE 相交于点P ,则12∠+∠的度数是( ).A .045B .055C .060D .0755.如图4,在ABC ∆中,AB=AC ,036A ∠=,BD 和CE 分别是ABC ∠和ACB ∠的平分线,且相交于点P. 在图4中,等腰三角形(不再添加线段和字母)的个数为( ).A .9个B .8个C .7个D .6个.如图5,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( ).A .1处B .2处C .3处D .4处7.如图6,A 、C 、E 三点在同一条直线上,△DAC 和△EBC 都是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:① △ACE ≌△DCB ;② CM =CN ;③ AC =DN. 其中,正确结论的个数是( ).A .3个B .2个C . 1个D .0个8.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在同一条直线上(如图7),可以证明ABC ∆≌EDC ∆,得ED=AB. 因此,测得DE 的长就是AB 的长,在这里判定ABC ∆≌EDC ∆的条件是( ).A .ASAB .SASC .SSSD .HL9.如图8,将长方形ABCD 沿对角线BD 翻折,点C 落在点E 的位置,BE 交AD 于点F.求证:重叠部分(即BDF ∆)是等腰三角形.证明:∵四边形ABCD 是长方形,∴AD ∥BC又∵BDE ∆与BDC ∆关于BD 对称,∴ 23∠=∠. ∴BDF ∆是等腰三角形.请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项( ). ①12∠=∠;②13∠=∠;③34∠=∠;④BDC BDE ∠=∠A .①③B .②③C .②①D .③④10.如图9,已知线段a ,h 作等腰△ABC ,使AB =AC ,且BC =a ,BC 边上的高AD =h . 张红的作法是:(1)作线段BC =a ;(2)作线段BC 的垂直平分线MN ,MN 与BC 相交于点D ;(3)在直线MN 上截取线段h ;(4)连结AB ,AC ,则△ABC 为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是( ).A. (1)B. (2)C. (3)D. (4)二、细心填一填,一锤定音(每小题3分,共30)1.如图10,已知,在△ABC 和△DCB 中,AC=DB ,若不增加任何字母与辅助线,要使 △ABC ≌△DCB ,则还需增加一个条件是____________.2.如图11,在Rt ABC ∆中,090,BAC AB AC ∠==,分别过点,B C 作经过点A 的直线的垂线段BD ,CE ,若BD=3厘米,CE=4厘米,则DE 的长为_______.3.如图12,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,则∠ABC 等于_________度.4.如图13,在等腰ABC ∆中,AB=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若BCE ∆ 的周长为50,则底边BC 的长为_________.5.在ABC ∆中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得的锐角为050,则 图8底角B 的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和 等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段 垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的 距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,点B 与点A 重合,折痕为DE ,则CD 的长为________.8.如图15,在ABC ∆中,AB=AC ,0120A ∠=,D 是BC 上任意一点,分别做DE ⊥AB 于E ,DF ⊥AC 于F ,如果BC=20cm ,那么DE+DF= _______cm.9.如图16,在Rt △ABC 中,∠C =90°,∠B =15°,DE 是AB 的中垂线,垂足为D ,交BC 于点E ,若4BE =,则AC =_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材, 由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗(假设两步为1米)三、耐心做一做,马到成功(本大题共48分)1.(7分)如图18,在∆ABC 中,090ACB ∠=,CD 是AB 边上的高, 030A ∠=. 求证:AB= 4BD.2.(7分)如图19,在∆ABC 中,090C ∠=,AC=BC ,AD 平分CAB ∠交BC 于点D ,DE ⊥AB 于点E ,若AB=6cm. 你能否求出BDE ∆的周长若能,请求出;若不能,请说明理由.3.(10分)如图20,D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点. 现有四个条件:①AB =AC ;②OB =OC ;③∠ABE =∠ACD ;④BE =CD .(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正.确.的命题:命题的条件是 和 ,命题的结论是 和 (均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC ∆中,090A ∠=,AB=AC ,ABC ∠的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点E. 求证:12CE BD =.5.(8分)如图22,在∆ABC 中,090C ∠=.(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.6.(8分)如图23,090AOB ∠=,OM 平分AOB ∠,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗试说明理由.四、拓广探索(本大题12分)如图24,在∆ABC 中,AB=AC ,AB 的垂直平分线交AB 于点N ,交BC 的延长线于点M ,若040A ∠=.(1)求NMB ∠的度数;(2)如果将(1)中A ∠的度数改为070,其余条件不变,再求 NMB ∠的度数;图21 图24图23(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A ∠改为钝角,你对这个规律性的认识是否需要加以修改答案:一、精心选一选,慧眼识金1.C ;2.B ;3.D .点拨:BC=BE=3cm ,AB=BD=5cm ;4.C .点拨:利用ABD ∆≌BCE ∆;5.B ;6.D .点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B .点拨:① ②正确;8.A ;9.C ;10.C .点拨:在直线MN 上截取线段h ,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACB DBC ∠=∠;2.7厘米. 点拨:利用ABD ∆≌CAE ∆;3.030;4.23.点拨:由27BE CE AC AB +===,可得502723BC =-=;5.070或020.点拨;当ABC ∆为锐角三角形时,070B ∠=;当ABC ∆为钝角三角形时,020B ∠=;6.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;7.154cm . 点拨:设CD x =,则易证得10BD AD x ==-.在Rt ACD ∆中,222(10)5x x -=+,解得154x =.8.10.点拨:利用含030角的直角三角形的性质得,()1122DE DF BD CD BC +=+=.9.2. 点拨:在Rt AEC ∆中,030AEC ∠=,由AE=BE= 4,则得AC=2;10.16.点拨:AB=26米,AC+BC=34米,故少走8米,即16步.三、耐心做一做,马到成功1.∵090ACB ∠=,030A ∠=,∴AB=2BC ,060B ∠=.又∵CD ⊥AB ,∴030DCB ∠=,∴BC=2BD. ∴AB= 2BC= 4BD.2.根据题意能求出BDE ∆的周长.∵090C ∠=,090DEA ∠=,又∵AD 平分CAB ∠,∴DE=DC.在Rt ADC ∆和Rt ADE ∆中,DE=DC ,AD=AD ,∴Rt ADC ∆≌Rt ADE ∆(HL ).∴AC=AE ,又∵AC=BC ,∴AE=BC.∴BDE ∆的周长DE DB EB BC EB AE EB AB =++=+=+=.∵AB=6cm ,∴BDE ∆的周长=6cm.3.(1)①,③;②,④.(2)已知:D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点,且AB =AC ,∠ABE =∠ACD.求证:OB =OC ,BE =CD .证明:∵AB=AC ,∠ABE =∠ACD ,∠A=∠A ,∴△ABE ≌△ACD (ASA ).∴BE=CD. 又∵ABC ACB ∠=∠,∴BCD ACB ACD ABC ABE CBE ∠=∠-∠=∠-∠=∠∴BOC ∆是等腰三角形,∴OB =OC.4.延长CE 、BA 相交于点F.∵0090,90EBF F ACF F ∠+∠=∠+∠=,∴EBF ACF ∠=∠.在Rt ABD ∆和Rt ACF ∆中,∵DBA ACF ∠=∠,AB=AC ,∴Rt ABD ∆≌Rt ACF ∆(ASA ). ∴BD CF =.在Rt BCE ∆和Rt BFE ∆中,∵BE=BE ,EBC EBF ∠=∠,∴Rt BCE ∆≌Rt BFE ∆(ASA ).∴CE EF =. ∴1122CE CF BD ==. 5.(1)图略. 点拨:作线段AB 的垂直平分线.(2)连结BP. ∵点P 到AB 、BC 的距离相等,∴BP 是ABC ∠的平分线, ∴ABP PBC ∠=∠.又∵点P 在线段AB 的垂直平分线上,∴PA=PB ,∴A ABP ∠=∠. ∴00190303A ABP PBC ∠=∠=∠=⨯=. 6.过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F. ∵OM 平分AOB ∠,点P 在OM 上,∴PE=PF. 又∵090AOB ∠=,∴090EPF ∠=.∴EPF CPD ∠=∠,∴EPC FPD ∠=∠. ∴Rt PCE ∆≌Rt PDF ∆(ASA ),∴PC=PD.四、拓广探索(1)∵AB=AC ,∴B ACB ∠=∠. ∴()()000011180180407022B A ∠=-∠=-=. ∴000090907020NMB B ∠=-∠=-=.(2)解法同(1).同理可得,035NMB ∠=.(3)规律:NMB ∠的度数等于顶角A ∠度数的一半. 证明:设A α∠=.∵AB=AC ,∴B C ∠=∠,∴()011802B α∠=-. ∵090BNM ∠=,∴()00011909018022NMB B αα∠=-∠=--=. 即NMB ∠的度数等于顶角A ∠度数的一半.(4)将(1)中的A ∠改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.。

相关文档
最新文档