湖南省怀化市中考真题
湖南省怀化市2023年中考英语试题(附参考答案)
湖南省怀化市2023年中考英语试题(附参考答案)满分120分100分钟完成第一部分听力技能(共两节,满分20分)第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话读两遍。
What does the girl like?A.Tigers.B.Elephants.C.Pandas.2.What’s Robert’s favorite sport?A.Tennis.B.Basketball.C.Soccer.3.What can Lily play?A.The guitar.B.The piano.C.The violin.4.What time does Frank usually get to school?A At 7:00. B.At 7:30. C.At 8:00.5.Where is the supermarket?A.Next to the bank.B.In a school.C.Near the hospital.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白,每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听材料,回答问题。
6.Whom did Lucy visit last week?A.Her aunt.B.Her sister.C.Her uncle.7.What did Lucy do in the countryside?A.Climbed the mountain.B.Fed the chickens.C.Went fishing.听材料,回答问题。
8.Where is Mike’s cousin from?A.Guangzhou.B.Hangzhou.C.Changsha.9.When will they go to the movies?A.On Monday.B.On Friday.C.On Sunday.听材料,回答问题。
2023年湖南省怀化市中考数学真题(解析版)
怀化市2023年初中学业水平考试试卷数学温馨提示:1.本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分150分.2.请你将姓名、准考证号等相关信息按要求填涂在答题卡上.3.请你在答题卡上作答,答在本试题卷上无效.一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1. 下列四个实数中,最小的数是( )A. 5- B. 0 C. 12 D. 【答案】A【解析】【分析】先根据实数的大小比较法则比较数的大小,再求出最小的数即可.【详解】1502-<<<Q \最小的数是:5-故选:A .【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则是解此题的关键.2. 2023年4月12日21时,正在运行的中国大科学装置“人造太阳”——世界首个全超导托卡马克东方超环(EAST )装置取得重大成果,在第122254次实验中成功实现了403秒稳态长脉冲高约束模式等离子体运行,创造了托卡马克装置高约束模式运行新的世界纪录.数据122254用科学记数法表示为( )A. 412.225410´ B. 41.2225410´ C. 51.2225410´ D. 60.12225410´【答案】C【解析】【分析】科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:数据122254用科学记数法表示为51.2225410´,故选:C .【点睛】本题考查的知识点是科学记数法—表示较绝对值较大的数.把一个大于等于10的数写成科学记数法10n a ´的形式时,将小数点放到左边第一个不为0的数位后作为a ,把整数位数减1作为n ,从而确定它的科学记数法形式.3. 下列计算正确的是( )A. 235a a a ×= B. 623a a a ¸= C. ()2329ab a b = D. 523a a -=【答案】A【解析】【分析】根据同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项分别计算后,即可得到答案.【详解】解:A .235a a a ×=,故选项正确,符合题意;B .624a a a ¸=,故选项错误,不符合题意;C .()2326ab a b =,故选项错误,不符合题意;D .523a a a -=,故选项错误,不符合题意.故选:A .【点睛】此题考查了同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项,熟练掌握运算法则是解题的关键.4. 剪纸又称刻纸,是中国最古老的民间艺术之一,它是以纸为加工对象,以剪刀(或刻刀)为工具进行创作的艺术.民间剪纸往往通过谐音、象征、寓意等手法提炼、概括自然形态,构成美丽的图案.下列剪纸中,既是轴对称图形,又是中心对称图形的是( )A B. C. D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、不是轴对称图形,是中心对称图形,故A 选项不合题意;B 、是轴对称图形,不是中心对称图形,故B 选项不合题意..C 、既是轴对称图形又是中心对称图形,故C 选项符合题意;D 、是轴对称图形,不是中心对称图形,故D 选项不合题意.故选:C .【点睛】本题主要考查了轴对称图形和中心对称图形,解题关键在于能够熟练掌握轴对称图形和中心对称图形的定义.5. 在平面直角坐标系中,点(2,3)P -关于x 轴对称的点P ¢的坐标是( )A. (2,3)-- B. (2,3)- C. (2,3)- D. (2,3)【答案】D【解析】【分析】根据关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数,即可求解.【详解】解:点(2,3)P -关于x 轴对称的点P ¢的坐标是(2,3),故选:D .【点睛】本题考查了关于x 轴对称的两个点的坐标特征,熟练掌握关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.6. 如图,平移直线AB 至CD ,直线AB ,CD 被直线EF 所截,160Ð=°,则2Ð的度数为( )A. 30°B. 60°C. 100°D. 120°【答案】B【解析】【分析】根据平移可得AB CD ∥,根据平行线的性质以及对顶角相等,即可求解.【详解】解:如图所示,∵平移直线AB 至CD∴AB CD ∥,160Ð=°,的∴13Ð=Ð,又∵23ÐÐ=,∴2160Ð=Ð=°,故选:B .【点睛】本题考查了平移的性质,平行线的性质,对顶角相等,熟练掌握平行线的性质是解题的关键.7. 某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A. 众数是9.6B. 中位数是9.5C. 平均数是9.4D. 方差是0.3【答案】A【解析】【分析】先把5个数据按从小到大的顺序排列,而后用中位数,众数,平均数和方差的定义及计算方法逐一判断.【详解】解:5个数按从小到大的顺序排列9.2,9.4,9.6,9.6,9.7,A 、9.6出现次数最多,众数是9.6,故正确,符合题意;B 、中位数是9.6,故不正确,不符合题意;C 、平均数是()19.2+9.4+9.62+9.7=9.55´,故不正确,不符合题意;D 、方差是()()()()222219.29.5+9.49.5+29.69.5+9.79.5=0.0325éù´----ëû,故不正确,不符合题意.故选:A .【点睛】本题考查了中位数,众数,平均数和方差,熟练掌握这些定义及计算方法是解决此类问题的关键.8. 下列说法错误的是( )A. 成语“水中捞月”表示的事件是不可能事件B. 一元二次方程230x x ++=有两个相等的实数根C. 任意多边形的外角和等于360°D. 三角形三条中线的交点叫作三角形的重心【答案】B【解析】【分析】根据不可能事件、根的判别式、多边形的外角和以及三角形的重心的定义分别进行判断即可.【详解】解:A 、成语“水中捞月”表示的事件是不可能事件,故此选项不符合题意;B 、21413110D =-´´=-<,则一元二次方程230x x ++=没有实数根,故此选项符合题意;C 、任意多边形的外角和等于360°,故此选项不符合题意;D 、三角形三条中线的交点叫作三角形的重心,故此选项不符合题意;故选:B .【点睛】本题考查不可能事件、根的判别式、多边形的外角和以及三角形的重心的定义,熟练掌握有关知识点是解题的关键.9. 已知压力(N)F 、压强()Pa P 与受力面积()2m S 之间有如下关系式:F PS =.当F 为定值时,下图中大致表示压强P 与受力面积S 之间函数关系的是( )A. B. C.D.【答案】D【解析】【分析】根据反比例函数的定义,即可得到答案.【详解】解:根据题意得:F P S=,∴当物体的压力F 为定值时,该物体的压强P 与受力面积S 的函数关系式是:F P S =,则函数图象是双曲线,同时自变量是正数.故选:D .【点睛】本题主要考查反比例函数,掌握F P S =以及反比例函数定义,是解题的关键.10. 如图,反比例函数(0)k y k x=>的图象与过点(1,0)-的直线AB 相交于A 、B 两点.已知点A 的坐标为(1,3),点C 为x 轴上任意一点.如果9ABC S =V ,那么点C 的坐标为()的A. (3,0)- B. (5,0) C. (3,0)-或(5,0) D. (3,0)或(5,0)-【答案】D【解析】【分析】反比例函数(0)k y k x=>的图象过点(1,3),可得3y x =,进而求得直线AB 的解析式为3322y x =+,得出B 点的坐标,设(),0C c ,根据1313922ABC S c æö=´+´+=ç÷èøV ,解方程即可求解.【详解】解:∵反比例函数(0)k y k x =>的图象过点(1,3)∴133k =´=∴3y x=设直线AB 的解析式为y mx n =+,∴30m n m n =+ìí=-+î,解得:3232m n ì=ïïíï=ïî,∴直线AB 的解析式为3322y x =+,联立33223y x y xì=+ïïíï=ïî,解得:13x y =ìí=î或232x y =-ìïí=-ïî,∴32,2B æö--ç÷èø,设(),0C c ,∵1313922ABC S c æö=´+´+=ç÷èøV ,解得:3c =或5c =-,∴C 的坐标为(3,0)或(5,0)-,故选:D .【点睛】本题考查了一次函数与反比例数交点问题,待定系数法求解析式,求得点B 的坐标是解题的关键.二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上)11. 有意义,则x 的取值范围是__________.【答案】9x ³【解析】【分析】根据二次根式有意义的条件得出90x -³,即可求解.有意义,∴90x -³,解得:9x ³,故答案为:9x ³.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.12. 分解因式:2242a a -+=_____.【答案】()221a -【解析】【详解】解:先提取公因式2后继续应用完全平方公式分解即可:原式()()2222121a a a =-+=-,故答案为:()221a -.13. 已知关于x 的一元二次方程220x mx +-=的一个根为1-,则m 的值为__________,另一个根为__________.【答案】①. 1- ②. 2【解析】【分析】将=1x -代入原方程,解得m ,根据一元二次方程根与系数的关系,得出122x x ´=-,即可求解.【详解】解:∵关于x 一元二次方程220x mx +-=的一个根为1-,∴120m --=解得:1m =-,设原方程的另一个根为2x ,则12·2x x =-,∵11x =-∴22x =故答案为:12-,.【点睛】本题考查了一元二次方程根的定义,一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.14. 定义新运算:(,)(,)a b c d ac bd ×=+,其中a ,b ,c ,d 为实数.例如:(1,2)(3,4)132411×=´+´=.如果(2,3)(3,1)3x ×-=,那么x =__________.【答案】1【解析】【分析】根据新定义列出一元一次方程,解方程即可求解.【详解】解:∵(2,3)(3,1)3x ×-=∴()23313x ´+´-=即66x =解得:1x =故答案为:1.【点睛】本题考查了新定义运算,解一元一次方程,根据题意列出方程解题的关键.15. 如图,点P 是正方形ABCD 的对角线AC 上的一点,PE AD ^于点E ,3PE =.则点P 到直线AB 的距离为__________.的【答案】3【解析】【分析】过点P 作PQ AB ^于Q ,证明四边形四边形AEPQ 是正方形,即可求解.【详解】解:如图所示,过点P 作PQ AB ^于Q ,∵点P 是正方形ABCD 的对角线AC 上的一点,PE AD ^于点E∴四边形AEPQ 是矩形,45EAP Ð=°∴AEP △是等腰直角三角形,∴AE EP=∴四边形AEPQ 是正方形,∴3PQ EP ==,即点P 到直线AB 的距离为3故答案为:3.【点睛】本题考查了正方形的性质与判定,点到直线的距离,熟练掌握正方形的性质与判定是解题的关键.16. 在平面直角坐标系中,AOB V 为等边三角形,点A 的坐标为()1,0.把AOB V 按如图所示的方式放置,并将AOB V 进行变换:第一次变换将AOB V 绕着原点O 顺时针旋转60°,同时边长扩大为AOB V 边长的2倍,得到11A OB △;第二次旋转将11A OB △绕着原点O 顺时针旋转60°,同时边长扩大为11A OB △,边长的2倍,得到22A OB △,….依次类推,得到20332033A OB V ,则20232033A OB △的边长为__________,点2023A 的坐标为__________.【答案】①. 20232 ②. ()202220222,2【解析】【分析】根据旋转角度为60°,可知每旋转6次后点A 又回到x 轴的正半轴上,故点2023A 在第四象限,且202320232OA =,即可求解.【详解】解:∵AOB V 为等边三角形,点A 的坐标为()1,0,∴1OA =,∵每次旋转角度为60°,∴6次旋转360°,第一次旋转后,1A 在第四象限,12OA =,第二次旋转后,2A 在第三象限,222OA =,第三次旋转后,3A 在x 轴负半轴,332OA =,第四次旋转后,4A 在第二象限,442OA =,第五次旋转后,5A 在第一象限,552OA =,第六次旋转后,6A 在x 轴正半轴,662OA =,……如此循环,每旋转6次,点A 的对应点又回到x 轴正半轴,∵202363371¸=L ,点2023A 在第四象限,且202320232OA =,如图,过点2023A 作2023A H x ^轴于H ,在2023Rt OHA V 中,202360HOA Ð=°,∴202320232022202320231cos 2cos60222OH OA HOA =×Ð=´°=´=,20232022202320232023sin 22A H OA HOA =×Ð==,∴点2023A 的坐标为()202220222,2.故答案为:20232,()202220222,2.【点睛】本题考查图形的旋转,解直角三角形的应用.熟练掌握图形旋转的性质,根据旋转角度找到点的坐标规律是解题的关键.三、解答题(本大题共8小题,共86分)17. 计算:()1012sin 451(1)3-æö-+-°---ç÷èø【答案】4【解析】【分析】先计算负整数指数幂、算术平方根、零指数幂、减法运算,再进行加减混合运算即可.【详解】解:()1012sin 451(1)3-æö-++°---ç÷èø23311=+-++4=【点睛】此题考查了实数混合运算,熟练掌握相关运算法则是解题的关键.18. 先化简234111a a a -æö+¸ç÷--èø,再从1-,0,1,2中选择一个适当的数作为a 的值代入求值.【答案】12a -,当1a =-时,原式为13-;当0a =时,原式为12-.【解析】【分析】本题先对要求的式子进行化简,再选取一个适当的数代入即可求出结果.【详解】解:234111a a a -æö+¸ç÷--èø()()2213111a a a a a a +--æö=+¸ç÷---èø()()21122a a a a a +-=×-+-12a =-,当a 取2-,1,2时分式没有意义,所以1a =-或0,当1a =-时,原式11123==---;当0a =时,原式11022==--.【点睛】本题考查分式的化简求值,解题时要注意先对括号里边进行通分,再约分化简.19. 如图,矩形ABCD 中,过对角线BD 的中点O 作BD 的垂线EF ,分别交AD ,BC 于点E ,F .(1)证明:BOF DOE ≌△△;(2)连接BE 、DF ,证明:四边形EBFD 是菱形.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据矩形的性质得出AD BC ∥,则12,34Ð=ÐÐ=Ð,根据O 是BD 的中点,可得BO DO =,即可证明()AAS BOF DOE ≌△△;(2)根据BOF DOE ≌△△可得ED BF =,进而可得四边形EBFD 是平行四边形,根据对角线互相垂直的四边形是菱形,即可得证.【小问1详解】证明:如图所示,∵四边形ABCD 是矩形,∴AD BC ∥,∴12,34Ð=ÐÐ=Ð,∵O 是BD 的中点,∴BO DO =,在BOF V 与DOE V 中1234BO DO Ð=ÐìïÐ=Ðíï=î,∴()AAS BOF DOE ≌△△;【小问2详解】∵BOF DOE≌△△∴ED BF =,又∵ED BF∥∴四边形EBFD 是平行四边形,∵EF BD^∴四边形EBFD 是菱形.【点睛】本题考查了矩形的性质,全等三角形的性质与判定,菱形的判定,熟练掌握特殊四边形的性质与判定是解题的关键.20. 为弘扬革命传统精神,清明期间,某校组织学生前往怀化市烈士陵园缅怀革命先烈.大家被革命烈士纪念碑的雄伟壮观震撼,想知道纪念碑的通高CD (碑顶到水平地面的距离),于是师生组成综合实践小组进行测量.他们在地面的A 点用测角仪测得碑顶D 的仰角为30°,在B 点处测得碑顶D 的仰角为60°,已知35m AB =,测角仪的高度是1.5m (A 、B 、C 在同一直线上),根据以上数据求烈士纪念碑的通高CD .1.732»,结果保留一位小数)【答案】烈士纪念碑的通高CD 约为31.8米【解析】【分析】根据题意,四边形,,AMNB NBCE AMEC 是矩形, 1.5CE =米,35MN AB ==米,根据三角形的外角的性质得出,30NMD MDN Ð=Ð=°,等角对等边得出35ND NM ==,进而解Rt DEN V ,求得DE ,最后根据CD DE CE =+,即可求解.【详解】解:依题意,四边形,,AMNB NBCE AMEC 是矩形, 1.5CE =米,35MN AB ==米,∵30,60DMN DNE Ð=°Ð=°∴30MDN DNE DMN Ð=Ð-Ð=°∴30NMD MDN Ð=Ð=°,∴35ND NM ==米,在Rt DEN V 中,sin DEDNE DNÐ=∴sin 603530.3DE DN =×°=»米∴ 1.530.331.8CD CE DE =+=+=米【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数关系是解题的关键.21. 近年,“青少年视力健康”受到社会的广泛关注.某校综合实践小组为了解该校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力调查.根据调查结果和视力有关标准,绘制了两幅不完整的统计图.请根据图中信息解答下列问题:(1)所抽取的学生人数为__________;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数;(3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视”的人数.【答案】(1)200人(2)统计图见解析,126°(3)1050人【解析】【分析】(1)用“视力正常”的人数除以其人数占比即可求出抽取的学生人数;(2)先求出“中度近视”的人数,进而求出“轻度近视”的人数,由此补全统计图即可;再用360°乘以“轻度近视”的人数占比即可求出对应的圆心角度数;(3)用3000乘以样本中“轻度近视”的人数占比即可得到答案.【小问1详解】解:9045%200¸=人,∴所抽取的学生人数为200人,故答案为:200;【小问2详解】解:中度近视的人数为20015%30´=人,“轻度近视”对应的扇形的圆心角的度数为70360126200°´=° ∴高度近视的人数为20090703010---=人,补全统计图如下:【小问3详解】解:7030001050200´=人,∴估计该校学生中近视程度为“轻度近视”的人数为1050人.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,正确读懂统计图是解题的关键.22. 如图,AB 是O e 的直径,点P 是O e 外一点,PA 与O e 相切于点A ,点C 为O e 上的一点.连接PC 、AC 、OC ,且PC PA =.(1)求证:PC 为O e 的切线;(2)延长PC 与AB 的延长线交于点D ,求证:PD OC PA OD ×=×;(3)若308CAB OD Ð=°=,,求阴影部分的面积.【答案】(1)见解析 (2)见解析(3)8π3-【解析】【分析】(1)连接PO ,证明V V ≌PAO PCO ,即可得证;(2)根据sin OCPAD OD PD ==,即可得证;(3)根据圆周角定理得出260COD CAB Ð=Ð=°,进而勾股定理求得CD ,根据OCD OBC S S S =-V 阴影扇形,即可求解.【小问1详解】证明:∵PA 是O e 的切线,∴90PAO Ð=°如图所示,连接POPAO V 与PCO △中,PA PCOA OCPO PO =ìï=íï=î在∴V V ≌PAO PCO ()SSS 90PCO PAO \Ð=Ð=°∵C 为O e 上的一点.∴PC 是O e 的切线;【小问2详解】∵PC 是O e 的切线;∴OC PD ^,∴sin OC PA D OD PD==∴PD OC PA OD×=×【小问3详解】解:∵ BCBC =,308CAB OD Ð=°=,∴260COD CAB Ð=Ð=°,∵OC PD^∴30D Ð=°,∴142OC OD ==∴CD =,∴2160π2360OCD OBC S S S CO CD CO =-=´´-´V 阴影扇形21144π26=´´-´π38=【点睛】本题考查了切线的性质与判定,圆周角定理,求含30度角的直角三角形的性质,勾股定理,求扇形面积,熟练掌握以上知识是解题的关键.23. 某中学组织学生研学,原计划租用可坐乘客45人的A 种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B 种客车,则可少租6辆,且恰好坐满.(1)求原计划租用A 种客车多少辆?这次研学去了多少人?(2)若该校计划租用A 、B 两种客车共25辆,要求B 种客车不超过7辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若A 种客车租金为每辆220元,B 种客车租金每辆300元,应该怎样租车才最合算?【答案】(1)原计划租用A 种客车26辆,这次研学去了1200人(2)共有3种租车方案,方案一:租用A 种客车18辆,则租用B 种客车7辆;方案二:租用A 种客车19辆,则租用B 种客车6辆;方案三:租用A 种客车20辆,则租用B 种客车5辆,(3)租用A 种客车20辆,则租用B 种客车5辆才最合算【解析】【分析】(1)设原计划租用A 种客车x 辆,根据题意列出一元一次方程,解方程即可求解;(2)设租用A 种客车a 辆,则租用B 种客车()25a -辆,根据题意列出一元一次不等式组,解不等式组即可求解;(3)分别求得三种方案的费用,进而即可求解.【小问1详解】解:设原计划租用A 种客车x 辆,根据题意得,()4530606x x +=-,解得:26x =所以()602661200´-=(人)答:原计划租用A 种客车26辆,这次研学去了1200人;【小问2详解】解:设租用A 种客车a 辆,则租用B 种客车()25a -辆,根据题意,得()2574560251200a a a -£ìí+-³î解得:1820a ££,∵a 为正整数,则18,19,20a =,∴共有3种租车方案,方案一:租用A 种客车18辆,则租用B 种客车7辆,方案二:租用A 种客车19辆,则租用B 种客车6辆,方案三:租用A 种客车20辆,则租用B 种客车5辆,【小问3详解】∵A 种客车租金为每辆220元,B 种客车租金每辆300元,∴B 种客车越少,费用越低,方案一:租用A 种客车18辆,则租用B 种客车7辆,费用为1822073006060´+´=元,方案二:租用A 种客车19辆,则租用B 种客车6辆,费用为1922063005980´+´=元,方案三:租用A 种客车20辆,则租用B 种客车5辆,费用为2022053005900´+´=元,∴租用A 种客车20辆,则租用B 种客车5辆才最合算.【点睛】本题考查了一元一次方程的应用,一元一次不等式组的应用,根据题意列出一元一次方程与不等式组是解题的关键.24. 如图一所示,在平面直角坐标系中,抛物线28y ax bx =+-与x 轴交于(4,0)(2,0)A B -、两点,与y 轴交于点C .(1)求抛物线的函数表达式及顶点坐标;(2)点P 为第三象限内抛物线上一点,作直线AC ,连接PA 、PC ,求PAC △面积的最大值及此时点P 的坐标;(3)设直线135:4l y kx k =+-交抛物线于点M 、N ,求证:无论k 为何值,平行于x 轴的直线237:4l y =-上总存在一点E ,使得MEN Ð为直角.【答案】(1)228=+-y x x(2)PAC △面积的最大值为8,此时点P 的坐标为()2,8P --(3)见解析【解析】【分析】(1)待定系数法求解析式即可求解;(2)如图所示,过点P 作PD x ^轴于点D ,交AC 于点E ,得出直线AC 的解析式为28y x =--,设()2,28P m m m +-,则(),28E m m --,得出()224PE m =-++,当PE 取得最大值时,PAC △面积取得最大值,进而根据二次函数的性质即可求解;(3)设()11,M x y 、()22,N x y ,MN 的中点坐标为1212,22x x y y Q ++æöç÷èø,联立235428y kx k y x x ì=+-ïíï=+-î,消去y ,整理得:()23204x k x k +--+=,得出121232,4x x k x x k +=-=-+,则211351,224Q k k æö--ç÷èø,设Q 点到2l 的距离为QE ,则QE =22135371124422k k æö---=+ç÷èø,依题意,212352y y k +=-,()221212122y y x x x x -=-+-()()12122x x x x =-++()12k x x =-,得出()()2221212MN x x y y =-+-()221k =+,则21MN k =+,12MN QE =,E 点总在Q e 上,MN 为直径,且Q e 与237:4l y =-相切,即可得证.【小问1详解】解:将(4,0)(2,0)A B -、代入28y ax bx =+-,得164804280a b a b --=ìí+-=î,解得:12a b =ìí=î,∴抛物线解析式为:228=+-y x x ;【小问2详解】解:如图所示,过点P 作PD x ^轴于点D ,交AC 于点E ,由228=+-y x x ,令0x =,解得:8y =-,∴()0,8C -,设直线AC 的解析式为8y kx =-,将点()4,0A -代入得,480k --=,解得:2k =-,∴直线AC 的解析式为28y x =--,设()2,28P m m m +-,则(),28E m m --,∴()22828PE m m m =---+-24m m=--()224m =-++,当2m =-时,PE 的最大值为4∵114222PAC S PE OA PE PE =´=´´=△∴当PE 取得最大值时,PAC △面积取得最大值∴PAC △面积的最大值为248´=,此时2m =-,2284488m m +-=--=-∴()2,8P --【小问3详解】解:设()11,M x y 、()22,N x y ,MN 的中点坐标为1212,22x x y y Q ++æöç÷èø,联立235428y kx k y x x ì=+-ïíï=+-î,消去y ,整理得:()23204x k x k +--+=, ∴121232,4x x k x x k +=-=-+,∴12122x x k +=-,∴()()1212135135222424y y k x x k k k k +=++-=-+-213524k =-,∴211351,224Q k k æö--ç÷èø,设Q 点到2l 的距离为QE ,则QE =22135371124422k k æö---=+ç÷èø,∵()11,M x y 、()22,N x y ,∴212352y y k +=-,()221212122y y x x x x -=-+-()()12122x x x x =-++()12k x x =-∴()()2221212MN x x y y =-+-()()2221212x x k x x =-+-()()22121x x k =-+()()22121241x x x x k éù=+-+ëû()()222431k k k éù=-+-+ëû()()2211k k =++()221k =+∴21MN k =+,∴12MN QE =∴QM QN QE ==,∴E 点总在Q e 上,MN 为直径,且Q e 与237:4l y =-相切,∴MEN Ð为直角.∴无论k 为何值,平行于x 轴的直线237:4l y =-上总存在一点E ,使得MEN Ð为直角.【点睛】本题考查了二次函数的应用,一元二次方程根与系数的关系,切线的性质与判定,直角所对的弦是直径,熟练掌握以上知识是解题的关键.。
2020年湖南省怀化市中考数学试卷及其答案
2020年湖南省怀化市中考数学试卷一、选择题(每小题3分,共40分;每小題的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.(3分)下列数中,是无理数的是()A.﹣3B.0C.D.2.(3分)下列运算正确的是()A.a2+a3=a5B.a6÷a2=a4C.(2ab)3=6a3b3D.a2•a3=a63.(3分)《三国演义》《红楼梦》《水浒传》《西游记》是我国古典长篇小说四大名著.其中2016年光明日报出版社出版的《红楼梦》有350万字,则“350万”用科学记数法表示为()A.3.5×106B.0.35×107C.3.5×102D.350×1044.(3分)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.95.(3分)如图,已知直线a,b被直线c所截,且a∥b,若∠α=40°,则∠β的度数为()A.140°B.50°C.60°D.40°6.(3分)小明到某公司应聘,他想了解自己入职后的工资情况,他需要关注该公司所有员工工资的()A.众数B.中位数C.方差D.平均数7.(3分)在Rt△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,DE⊥AC,垂足为点E,若BD=3,则DE的长为()A.3B.C.2D.68.(3分)已知一元二次方程x2﹣kx+4=0有两个相等的实数根,则k的值为()A.k=4B.k=﹣4C.k=±4D.k=±29.(3分)在矩形ABCD中,AC、BD相交于点O,若△AOB的面积为2,则矩形ABCD的面积为()A.4B.6C.8D.1010.(3分)在同一平面直角坐标系中,一次函数y1=k1x+b与反比例函数y2=(x>0)的图象如图所示,则当y1>y2时,自变量x的取值范围为()A.x<1B.x>3C.0<x<1D.1<x<3二、填空题(每小题3分,共24分;请将答案直接填写在答题卡的相应位置上)11.(3分)代数式有意义,则x的取值范围是.12.(3分)因式分解:x3﹣x=.13.(3分)某校招聘教师,其中一名教师的笔试成绩是80分,面试成绩是60分,综合成绩笔试占60%,面试占40%,则该教师的综合成绩为分.14.(3分)如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=°.15.(3分)如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是(结果保留π).16.(3分)如图,△OB1A1,△A1B2A2,△A2B3A3,…,△An﹣1BnAn,都是一边在x轴上的等边三角形,点B 1,B2,B3,…,Bn都在反比例函数y=(x>0)的图象上,点A1,A2,A3,…,An,都在x轴上,则An的坐标为.三、解答题(本大题共8小题,共86分)17.计算:+2﹣2﹣2cos45°+|2﹣|.18.先化简,再求值:(﹣)÷,然后从﹣1,0,1中选择适当的数代入求值.19.为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:(1)本次被抽查的学生共有名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为度;(2)请你将条形统计图补全;(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C.社会实践类”的学生共有多少名?(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.20.如图,某数学兴趣小组为测量一棵古树的高度,在距离古树m米的A点处测得古树顶端D的仰角为30°,然后向古树底端C步行20米到达点B处,测得古树顶端D的仰角为45°,且点A、B、C 在同一直线上,求古树CD的高度.(已知:≈1.414,≈1.732,结果保留整数)21.定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是;(填序号)①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD中,AD∥BC,AC⊥BD,过点D作BD垂线交BC的延长线于点E,且∠DBC=45°,证明:四边形ABCD是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD内接于⊙O中,∠BCD=60°.求⊙O的半径.22.某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.(1)设该商店购进甲型平板电脑x台,请写出全部售出后该商店获利y与x之间函数表达式.(2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.23.如图,在⊙O中,AB为直径,点C为圆上一点,延长AB到点D,使CD=CA,且∠D=30°.(1)求证:CD是⊙O的切线.(2)分别过A、B两点作直线CD的垂线,垂足分别为E、F两点,过C点作AB的垂线,垂足为点G.求证:CG2=AE•BF.24.如图所示,抛物线y=x2﹣2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.(1)求点C及顶点M的坐标.(2)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求△BCN面积的最大值及此时点N 的坐标.(3)若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点B、C、D、G为顶点的四边形是平行四边形.若存在,求出点G的坐标;若不存在,试说明理由.(4)直线CM交x轴于点E,若点P是线段EM上的一个动点,是否存在以点P、E、O为顶点的三角形与△ABC相似.若存在,求出点P的坐标;若不存在,请说明理由.2020年湖南省怀化市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共40分;每小題的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.(3分)下列数中,是无理数的是()A.﹣3B.0C.D.【解答】解:﹣3,0,是有理数,是无理数.故选:D.2.(3分)下列运算正确的是()A.a2+a3=a5B.a6÷a2=a4C.(2ab)3=6a3b3D.a2•a3=a6【解答】解:a2与a3不是同类项,不能合并,因此选项A计算错误,不符合题意;a6÷a2=a4,因此选项B计算正确,符合题意;(2ab)3=8a3b3≠6a3b3,因此选项C计算错误,不符合题意;a2•a3=a5≠a6,因此选项D计算错误,不符合题意.故选:B.3.(3分)《三国演义》《红楼梦》《水浒传》《西游记》是我国古典长篇小说四大名著.其中2016年光明日报出版社出版的《红楼梦》有350万字,则“350万”用科学记数法表示为()A.3.5×106B.0.35×107C.3.5×102D.350×104【解答】解:350万=350×104=3.5×102×104=3.5×106.故选:A.4.(3分)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.9【解答】解:设这个多边形的边数为n,根据题意得:180°(n﹣2)=1080°,解得:n=8.故选:C.5.(3分)如图,已知直线a,b被直线c所截,且a∥b,若∠α=40°,则∠β的度数为()A.140°B.50°C.60°D.40°【解答】解:∵∠α=40°,∴∠1=∠α=40°,∵a∥b,∴∠β=∠1=40°.故选:D.6.(3分)小明到某公司应聘,他想了解自己入职后的工资情况,他需要关注该公司所有员工工资的()A.众数B.中位数C.方差D.平均数【解答】解:根据题意,小明到某公司应聘,了解这家公司的员工的工资情况,就要全面的了解中间员工的工资水平,故最应该关注的数据是中位数,故选:B.7.(3分)在Rt△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,DE⊥AC,垂足为点E,若BD=3,则DE的长为()A.3B.C.2D.6【解答】解:∵∠B=90°,∴DB⊥AB,又∵AD平分∠BAC,DE⊥AC,∴DE=BD=3,故选:A.8.(3分)已知一元二次方程x2﹣kx+4=0有两个相等的实数根,则k的值为()A.k=4B.k=﹣4C.k=±4D.k=±2【解答】解:∵一元二次方程x2﹣kx+4=0有两个相等的实数根,∴Δ=(﹣k)2﹣4×1×4=0,解得:k=±4.故选:C.9.(3分)在矩形ABCD中,AC、BD相交于点O,若△AOB的面积为2,则矩形ABCD的面积为()A.4B.6C.8D.10【解答】解:∵四边形ABCD是矩形,对角线AC、BD相交于点O,∴AC=BD,且OA=OB=OC=OD,∴S△ADO =S△BCO=S△CDO=S△ABO=2,∴矩形ABCD的面积为4S△ABO=8,故选:C.10.(3分)在同一平面直角坐标系中,一次函数y1=k1x+b与反比例函数y2=(x>0)的图象如图所示,则当y1>y2时,自变量x的取值范围为()A.x<1B.x>3C.0<x<1D.1<x<3【解答】解:由图象可得,当y1>y2时,自变量x的取值范围为1<x<3,故选:D.二、填空题(每小题3分,共24分;请将答案直接填写在答题卡的相应位置上)11.(3分)代数式有意义,则x的取值范围是x>1.【解答】解:由题意得:x﹣1>0,解得:x>1,故答案为:x>1.12.(3分)因式分解:x3﹣x=x(x+1)(x﹣1).【解答】解:原式=x(x2﹣1)=x(x+1)(x﹣1),故答案为:x(x+1)(x﹣1)13.(3分)某校招聘教师,其中一名教师的笔试成绩是80分,面试成绩是60分,综合成绩笔试占60%,面试占40%,则该教师的综合成绩为72分.【解答】解:根据题意知,该名老师的综合成绩为80×60%+60×40%=72(分)故答案为:72.14.(3分)如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=130°.【解答】解:在△ADC和△ABC中,,∴△ABC≌△ADC(SSS),∴∠D=∠B,∵∠B=130°,∴∠D=130°,故答案为:130.15.(3分)如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是24π(结果保留π).【解答】解:由三视图可知该几何体是圆柱体,其底面半径是4÷2=2,高是6,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π,∴这个圆柱的侧面积是4π×6=24π.故答案为:24π.16.(3分)如图,△OB1A1,△A1B2A2,△A2B3A3,…,△An﹣1BnAn,都是一边在x轴上的等边三角形,点B 1,B2,B3,…,Bn都在反比例函数y=(x>0)的图象上,点A1,A2,A3,…,An,都在x轴上,则An的坐标为(2,0).【解答】解:如图,过点B1作B1C⊥x轴于点C,过点B2作B2D⊥x轴于点D,过点B3作B3E⊥x轴于点E,∵△OA1B1为等边三角形,∴∠B1OC=60°,OC=A1C,∴B1C=OC,设OC的长度为t,则B1的坐标为(t,t),把B1(t,t)代入y=得t•t=,解得t=1或t=﹣1(舍去),∴OA1=2OC=2,∴A1(2,0),设A1D的长度为m,同理得到B2D=m,则B2的坐标表示为(2+m,m),把B2(2+m,m)代入y=得(2+m)×m=,解得m=﹣1或m=﹣﹣1(舍去),∴A1D=,A1A2=,OA2=,∴A2(,0)设A2E的长度为n,同理,B3E为n,B3的坐标表示为(2+n,n),把B3(2+n,n)代入y=得(2+n)•n=,∴A2E=,A2A3=,OA3=,∴A3(,0),综上可得:An(,0),故答案为:.三、解答题(本大题共8小题,共86分)17.计算:+2﹣2﹣2cos45°+|2﹣|.【解答】解:原式====.18.先化简,再求值:(﹣)÷,然后从﹣1,0,1中选择适当的数代入求值.【解答】解:原式====.∵x+1≠0且x﹣1≠0且x+2≠0,∴x≠﹣1且x≠1且x≠﹣2,当x=0时,分母不为0,代入:原式=.19.为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:(1)本次被抽查的学生共有50名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为72度;(2)请你将条形统计图补全;(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C.社会实践类”的学生共有多少名?(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.【解答】解:(1)本次被抽查的学生共有:20÷40%=50(名),扇形统计图中“A.书画类”所占扇形的圆心角的度数为;故答案为:50,72;(2)B类人数是:50﹣10﹣8﹣20=12(人),补全条形统计图如图所示:(3)名,答:估计该校学生选择“C.社会实践类”的学生共有96名;(4)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)由表格可得:共有16种等可能的结果,其中王芳和小颖两名学生选择同一个项目的结果有4种,∴王芳和小颖两名学生选择同一个项目的概率=.20.如图,某数学兴趣小组为测量一棵古树的高度,在距离古树m米的A点处测得古树顶端D的仰角为30°,然后向古树底端C步行20米到达点B处,测得古树顶端D的仰角为45°,且点A、B、C 在同一直线上,求古树CD的高度.(已知:≈1.414,≈1.732,结果保留整数)【解答】解:由题意可知,AB=20,∠DAB=30°,∠C=90°,∠DBC=45°,∵△BCD是等腰直角三角形,∴CB=CD,设CD=x,则BC=x,AC=20+x,在Rt△ACD中,tan30°===,解得x=10+10≈10×1.732+10=27.32≈27,∴CD=27,答:CD的高度为27米.21.定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是④;(填序号)①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD中,AD∥BC,AC⊥BD,过点D作BD垂线交BC的延长线于点E,且∠DBC=45°,证明:四边形ABCD是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD内接于⊙O中,∠BCD=60°.求⊙O的半径.【解答】解:(1)①平行四边形的对角线互相平分但不垂直和相等,故不是垂等四边形;②矩形对角线相等但不一定垂直,故不是垂等四边形;③菱形的对角线互相垂直但不一定相等,故不是垂等四边形;④正方形的对角线互相垂直且相等,故正方形是垂等四边形;故选:④;(2)∵AC⊥BD,ED⊥BD,∴AC∥DE,又∵AD∥BC,∴四边形ADEC是平行四边形,∴AC=DE,又∵∠DBC=45°,∴△BDE是等腰直角三角形,∴BD=DE,∴BD=AC,又∵BD⊥AC,∴四边形ABCD是垂等四边形;(3)如图,过点O作OE⊥BD,连接OD,∵四边形ABCD是垂等四边形,∴AC=BD,又∵垂等四边形的面积是24,∴AC•BD=24,解得,AC=BD=4,又∵∠BCD=60°,∴∠DOE=60°,设半径为r,根据垂径定理可得:在△ODE中,OD=r,DE=,∴r===4,∴⊙O的半径为4.22.某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.(1)设该商店购进甲型平板电脑x台,请写出全部售出后该商店获利y与x之间函数表达式.(2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.【解答】解:(1)由题意得:y=(2000﹣1600)x+(3000﹣2500)(20﹣x)=﹣100x+10000,∴全部售出后该商店获利y与x之间函数表达式为y=﹣100x+10000;(2)由题意得:,解得12≤x≤15,∵x为正整数,∴x=12、13、14、15,共有四种采购方案:①甲型电脑12台,乙型电脑8台,②甲型电脑13台,乙型电脑7台,③甲型电脑14台,乙型电脑6台,④甲型电脑15台,乙型电脑5台,∵y=﹣100x+10000,且﹣100<0,∴y随x的增大而减小,∴当x取最小值时,y有最大值,即x=12时,y最大值=﹣100×12+10000=8800,∴采购甲型电脑12台,乙型电脑8台时商店获得最大利润,最大利润是8800元.23.如图,在⊙O中,AB为直径,点C为圆上一点,延长AB到点D,使CD=CA,且∠D=30°.(1)求证:CD是⊙O的切线.(2)分别过A、B两点作直线CD的垂线,垂足分别为E、F两点,过C点作AB的垂线,垂足为点G.求证:CG2=AE•BF.【解答】(1)证明:连接OC,如图所示,∵CA=CD,且∠D=30°,∴∠CAD=∠D=30°,∵OA=OC,∴∠CAD=∠ACO=30°,∴∠COD=∠CAD+∠ACO=30°+30°=60°,∴∠OCD=180°﹣∠D﹣∠COD=180°﹣30°﹣60°=90°,∴OC⊥CD,∴CD是⊙O的切线;(2)∵∠COB=60°,且OC=OB,∴△OCB为等边三角形,∴∠CBG=60°,又∵CG⊥AD,∴∠CGB=90°,∴∠GCB=∠CGB﹣∠CBG=30°,又∵∠GCD=60°,∴CB是∠GCD的角平分线,∵BF⊥CD,BG⊥CG,∴BF=BG,又∵BC=BC,∴Rt△BCG≌Rt△BCF(HL),∴CF=CG.∵∠D=30°,AE⊥ED,∠AED=90°,∴∠EAD=60°,又∵∠CAD=30°,∴AC是∠EAG的角平分线,∵CE⊥AE,CG⊥AB,∴CE=CG,∵∠AEC=∠BFC=90°,∠EAC=30°=∠BCF,∴△AEC∽△CFB,∴,即AE•BF=CF•CE,又CE=CG,CF=CG,∴AE•BF=CG2.24.如图所示,抛物线y=x2﹣2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.(1)求点C及顶点M的坐标.(2)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求△BCN面积的最大值及此时点N 的坐标.(3)若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点B、C、D、G为顶点的四边形是平行四边形.若存在,求出点G的坐标;若不存在,试说明理由.(4)直线CM交x轴于点E,若点P是线段EM上的一个动点,是否存在以点P、E、O为顶点的三角形与△ABC相似.若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)令y=x2﹣2x﹣3中x=0,此时y=﹣3,故C点坐标为(0,﹣3),又∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点M的坐标为(1,﹣4);(2)过N点作x轴的垂线交直线BC于Q点,连接BN,CN,如图1所示:令y=x2﹣2x﹣3=0,解得:x=3或x=﹣1,∴B(3,0),A(﹣1,0),设直线BC的解析式为:y=ax+b,将C(0,﹣3),B(3,0)代入直线BC的解析式得:,解得:,∴直线BC的解析式为:y=x﹣3,设N点坐标为(n,n2﹣2n﹣3),故Q点坐标为(n,n﹣3),其中0<n<3,则==,(其中xQ ,xC,xB分别表示Q,C,B三点的横坐标),且QN=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n,xB ﹣xC=3,故,其中0<n<3,当时,S有最大值为,△BCN此时点N的坐标为(),(3)存在,理由如下:设D点坐标为(1,t),G点坐标为(m,m2﹣2m﹣3),且B(3,0),C(0,﹣3)分情况讨论:①当DG为对角线时,则另一对角线是BC,由中点坐标公式可知:线段DG的中点坐标为,即,线段BC的中点坐标为,即,此时DG的中点与BC的中点为同一个点,∴,解得,经检验,此时四边形DCGB为平行四边形,此时G坐标为(2,﹣3);②当DB为对角线时,则另一对角线是GC,由中点坐标公式可知:线段DB的中点坐标为,即,线段GC的中点坐标为,即,此时DB的中点与GC的中点为同一个点,∴,解得,经检验,此时四边形DCBG为平行四边形,此时G坐标为(4,5);③当DC为对角线时,则另一对角线是GB,由中点坐标公式可知:线段DC的中点坐标为,即,线段GB的中点坐标为,即,此时DC的中点与GB的中点为同一个点,∴,解得,经检验,此时四边形DGCB为平行四边形,此时G坐标为(﹣2,5);综上所述,G点坐标存在,为(2,﹣3)或(4,5)或(﹣2,5);(4)存在,理由如下:连接AC,OP,如图2所示:设MC的解析式为:y=kx+m,将C(0,﹣3),M(1,﹣4)代入MC的解析式得:,解得:∴MC的解析式为:y=﹣x﹣3,令y=0,则x=﹣3,∴E点坐标为(﹣3,0),∴OE=OB=3,且OC⊥BE,∴CE=CB,∴∠CBE=∠E,设P(x,﹣x﹣3),又∵P点在线段EC上,∴﹣3<x<0,则,,由题意知:△PEO相似于△ABC,分情况讨论:①△PEO∽△CBA,∴,∴,解得,满足﹣3<x<0,此时P的坐标为;②△PEO∽△ABC,∴,∴,解得x=﹣1,满足﹣3<x<0,此时P的坐标为(﹣1,﹣2).综上所述,存在以点P、E、O为顶点的三角形与△ABC相似,P点的坐标为或(﹣1,﹣2).。
湖南省怀化市2020年中考语文试卷和参考答案详细解析完整版
2020年湖南省怀化市中考语文试卷一、语言积累与运用(39分,选择题每小题3分)1.(3分)有人从我们学过的课文中,选取词语组成一首赞美白衣天使抗疫的小诗,但出现了汉字字形或加点字注音的错误,请指出完全正确的一项()A.疫情肆虐.(lüè)尽惶恐B.一霎倒气呜咽.(yān)中C.遏止蔓延医不辍.(chuò)D.深霄督战亦由衷.(zhōng)2.(3分)下列各句中,加点成语使用有误的一项是()A.春节疫情期间,怀化市医护人员妙手回春....,创造了新冠患者“零死亡”的奇迹。
B.拍雪人和塑雪罗汉需要人们鉴赏,这是荒园,人迹罕至....,所以不相宜。
C.全国各地的观众对影片《战狼2》趋之若鹜....,刷新了中国电影票房纪录。
D.人常以柔情比水,但至柔至和的水一旦被压迫竟会这样怒不可遏....。
3.(3分)下列句子中,没有语病的一项是()A.在学校,你与同学能否融洽相处,取决于你有一颗包容的心。
B.弘扬传统文化,并不是复古守旧,而是要着眼于科学对待传统文化,坚持古为今用、以古鉴今,努力实现传统文化的创造性转化、创造性发展。
C.一直以来,少年儿童中普遍存在蛀牙现象,原因是养成了很多不良习惯造成的。
D.经过讨论、表决和推举三个程序,红光村村委会的人选顺利产生。
4.(3分)阅读下面的文字,选项中表述有误的一项是()一扇晴窗,在面对时空的流变时飞进春花,就有春花;飘进萤火,就有萤火;传进秋声,就来了秋声;侵进冬寒,就有了冬寒。
闯进来情爱,就有情爱;刺进来忧伤,就有忧伤。
一任什么事情到了我们的晴窗,我们都能更真切地体验生活的深味。
A.“一扇晴窗”中的“扇”在此为名词。
B.“飘进萤火,就有萤火”一句中,“飘进萤火”为动宾短语。
C.“一扇晴窗,在面对时空的流变时飞进春花,就有春花”中“晴窗”为主语中心语。
D.“一任什么事情到了我们的晴窗,我们都能更真切地体验生活的深味”为条件关系复句。
5.(3分)下列文化常识表述正确的一项是()A.古代有许多特定年龄的别称,如二十弱冠、三十不惑、四十而立……百岁期颐。
【中考真题】2022年湖南省怀化市中考地理试卷(附答案)
2022年湖南省怀化市中考地理真题学校:___________姓名:___________班级:___________考号:___________一、选择题下图为北极航线示意图。
读图,完成下面小题。
1.图中,A处是____海映。
它是____两洲的分界线。
()A.霍尔木兹海峡亚洲、非洲B.直布罗陀海峡非洲、欧洲C.白令海峡亚洲、北美洲D.土耳其海峡亚洲、欧洲2.图中①①①①四地中,人口最稠密的是()A.①B.①C.①D.①3.下列关于北极地区的叙述,不正确的是()A.降水稀少,淡水资源匮乏B.酷寒,多狂风,降水稀少C.北极地区的“主人”是北极熊D.北极地区的科学考察站有极昼极夜现象北京时间2022年4月16日,神舟十三号载人飞船返回舱在东风着陆场(约为101°E,42°N)成功着陆。
下图为经纬网局部图。
读图,完成下面小题。
4.图中四点,最靠近东风着陆场的是()A.a点B.b点C.c点D.d点5.神舟十三号载人飞船返回地球时()A.湖南省稻谷飘香B.怀化市昼长夜短C.最适合到南极科考D.太阳直射南半球6.以下关于影响我国载人航天事业发展的主要因素,用雷达图表示合理的是()A.B.C.D.小美同学对法国特别感兴趣,她查找了一些关于法国旅游资源的图片。
读图,完成下面小题。
7.以下旅游资源中,有一幅图不属于法国,请你帮她找出来()A.B.C.D.8.下列天气。
适合小美外出游玩的是()A.B.C.D.民居特色体现当地自然环境特点。
图1为四种气候类型资料图,图2为东南亚传统民居图。
读图,完成下面小题。
9.图2中,民居特色与图1中____气候类型资料相符合。
()A.①B.①C.①D.①10.该地的自然环境特点可以概括为()A.干旱B.高寒C.湿热D.干热图1为北美洲简图,图2为美国农业分布图。
读图,完成下面小题。
11.北美洲西部温带海洋性气候呈南北狭长分布,主要影响因素是()A.地形地势因素B.纬度因素C.海陆位置D.人类活动12.美国农业因地制宜,图2反映出美国农业生产的____特点。
2023年湖南省怀化市中考地理真题(原卷版和解析版)
怀化市2023年初中学业水平考试试卷地理温馨提示:(1)本学科试卷分试题卷与答题卡两部分,考试时量90分钟,满分100分。
(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上。
(3)请你在答题卡上作答,在试题卷上答题无效。
一、选择题(每小题2分,共50分。
每小题的四个选项中只有一个符合题目要求。
)2022年长江流域遭遇了有完整气象记录以来的最严重干旱,重庆等多个地方连续发生森林火灾。
读重庆市(29°N,106°E)大足区山火蔓延情况图,完成下面小题。
1.要想及时监测本次山火的蔓延情况,宜使用()A.世界政区图B.中国气候图C.世界地形图D.卫星影像图2.图中四点中,最接近重庆位置的是()A. B. C. D.3.受此次干旱灾害影响,当地农民最期盼的天气是()A. B. C. D.北京时间2022年11月30日,神舟十四号航天员与神舟十五号航天员首次实现“太空会师”,6名航天员将共同在“天宫”空间站工作生活约5天时间,完成各项既定任务和交接工作。
读地球公转示意图,完成下面小题。
4.航天员“太空会师”之日,地球公转至图中()A.①-②之间B.②-③之间C.③-④之间D.④-①之间5.航天员“太空会师”期间()A.贵州荷花满塘B.黑龙江冰天雪地C.湖南草长莺飞D.海南沙尘漫天2022年10月26日,中国第39次南极考察队搭乘“雪龙号2”船从上海出发执行南极科考任务,围绕南大洋重点海域对全球气候变化的响应与反馈等重大科学问题,开展了调查研究工作。
根据材料,完成下面小题。
6.雪龙号在航行过程中,科考人员目陼了这样一个场景:突然之间,冰川在他们眼前瞬间崩塌,轰然跌落入海,激起巨大的浪花!造成这种现象的最主要原因是()A.海陆变迁B.全球变暖C.水土流失D.臭氧层空洞的影响7.我国科考人员在南极考察期间,最不可能遇到的困难是()A.暴雨B.暴雪C.暴风D.干燥读世界人口分布图,完成下面小题。
最新版湖南省怀化市2022届中考数学试卷和答案解析详解完整版
湖南省怀化市2022届中考数学试卷一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上).1.﹣的相反数是()A.B.2C.﹣D.﹣22.代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个3.2022年3月11日,新华社发文总结2021年中国取得的科技成就,其中包括“奋斗者”号载人潜水器最深下潜至10909米.其中数据10909用科学记数法表示为()A.10.909×102B.1.0909×103C.0.10909×104D.1.0909×1044.下列说法正确的是()A.相等的角是对顶角B.对角线相等的四边形是矩形C.三角形的外心是它的三条角平分线的交点D.线段垂直平分线上的点到线段两端的距离相等5.下列计算正确的是()A.(2a2)3=6a6B.a8÷a2=a4C.=2D.(x﹣y)2=x2﹣y26.下列一元二次方程有实数解的是()A.2x2﹣x+1=0B.x2﹣2x+2=0C.x2+3x﹣2=0D.x2+2=07.一个多边形的内角和为900°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形8.如图,△ABC沿BC方向平移后的像为△DEF,已知BC=5,EC=2,则平移的距离是()A.1B.2C.3D.49.从下列一组数﹣2,π,﹣,﹣0.12,0,﹣中随机抽取一个数,这个数是负数的概率为()A.B.C.D.10.如图,直线AB交x轴于点C,交反比例函数y=(a>1)的图像于A、B两点,过点B作BD⊥y轴,垂足为点D,若S△BCD=5,则a的值为()A.8B.9C.10D.11二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上)11.计算﹣=.12.因式分解:x2﹣x4=.13.已知点A(﹣2,b)与点B(a,3)关于原点对称,则a﹣b =.14.如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=2,则S△ABC=.15.如图,AB与⊙O相切于点C,AO=3,⊙O的半径为2,则AC的长为.16.正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是.三、解答题(本大题共8小题,共86分)17.计算:(3.14﹣π)0+|﹣1|+()﹣1﹣.18.解不等式组,并把解集在数轴上表示出来.19.某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A位于C村西南方向和B村南偏东60°方向上,C村在B村的正东方向且两村相距2.4km.有关部门计划在B、C两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明. (参考数据:≈1.73,≈1.41)20.如图,点A,B,C,D在⊙O上,=.求证:(1)AC=BD;(2)△ABE∽△DCE.21.电视剧《一代洪商》在中央电视台第八套播出后,怀化市各旅游景点知名度得到显菩提高.为全面提高旅游服务质量,旅游管理部门随机抽取了100名游客进行满意度调查,并绘制成如下不完整的频数分布表和扇形统计图。
2023年湖南省怀化市中考英语试卷(含答案)120337
2023年湖南省怀化市中考英语试卷试卷考试总分:96 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、单选题(本题共计 8 小题,每题 1 分,共计8分)1. Jim is ________ careless boy. He always drops________“o"when he writes the word"dangerous”.A.a; theB.a; anC.the; an2. He gets up ________ 6:00________ Sunday morning.( )A.at; /B.on; inC.at; onD.on; on3. —Mary, which do you prefer? Weekdays or weekends?—Of course weekdays. Because I'm ________ on weekends.A.busyB.much busierC.the busiest4. Parents ________ tell their kids to stop at the red light when crossing the road.A.mustB.mayC.canD.might5. —Please be quiet. Our son ______.—OK. I go for a walk now.A.is sleepingB.sleepsC.sleepD.sleeping6. Thanks for ________ me to work out the math problems.A.helpB.helpsC.helping7. The first 5G mobile phone ________ by Huawei in 2018.A.producedB.is producedC.was produced8. Do you know ________ today?A.when is the bookstore closedB.when does the bookstore closeC.when the bookstore closes二、完形填空(本题共计 1 小题,共计10分)9.(10分)I am an English girl. My(1)________ Nancy White.(2)________ first name is Nancy andmy(3)________ name is White. I have(4)________ ID card. It(5)________ is 369699. I have a friend. She is(6)________ girl.(7)________ name is Jenny. Mr. Li is my English teacher.(8)________ is very nice. We all like him very much. What's(9)________ telephone number? Oh,(10)________ 666-4349.(1)s's are(2)A.IB.MyC.SheD.Her(3)A.familyB.firstD.given(4)A.aB.anC.theD.two(5)B.numberC.cardD.family(6)A.anB.aC.theD./(7)A.SheB.HerC.HeD.His(8)A.YourB.HeC.HerD.His(9)A.herB.itsC.hisD.he's(10)A.itsB.isC.it'sD.it三、阅读理解(本题共计 6 小题,共计48分)10.(7分)Skillsw ise Delivery Services Summer JobsAged between 16 and 40 years?Need some money this summer?Can you work 6 hours a day?We are looking for 15 friendly and hard-working people to help sort and deliverparcels(分拣和投递包裹)from late June to the end of August.Pay rates(付费标准)7:00 a.m.-6:00 p.m. £4.80/hour6:00 p.m.-7:00 a.m. £6.10/hourIf you are careful and can work well with others, we would like to hear from you.To apply(申请)for the job, please e-mail Elaine Grey at ************************Apply before 10th June.For more information call 0118-932814(1)How many workers does Skillswise Delivery Services need?A.6.B.15.C.16.D.40.(2)If Mike works from 10:00 a.m. to 4:00 p.m., how much can he get a day?A.£4.80.B.£6.10.C.£28.80.D.£36.60.11.(7分)Mr. Black, a worker from America, went to Beijing for his holiday with his family. One day he had a bad cold and coughed day and night. So he went to see a doctor. After the doctor had examined(检查)him, he said, "Here are two bottles of medicine for you. The big, two pills(药丸)a day. The small, one pill a day." Mr. Black hurriedly called his sons to come when he got back. He told them, "The elder, two pills a day. The younger, one pill a day." "Who told you to do that?" his wife asked in surprise. "It is the doctor," answered Mr. Black proudly(自豪地).(1)Mr. Black was ________.A.an EnglishmanB.a ChineseC.a FrenchmanD.an American(2)Mr. Black went to Beijing with at least(至少)________ people.A.threeB.one(3)________ caught a bad cold.A.Mr. BlackB.The younger sonC.The elder sonD.Mrs. Black(4)The doctor said, "The big, two pills a day." "The big" means ________.A.Mr. Black's elder sonB.Mr. Black's wifeC.the big appleD.the medicine in the big bottle(5)Mrs. Black asked, "Who told you to do that." "to do that" means ________.A.go to the doctorB.cough day and nightC.tell the two sons to take the medicineD.sell the medicine12.(7分)People eat different things in different parts of the world.In South China(华南)we eat rice every day. Sometimes we eat it two or three times a day, for breakfast, lunch, and supper. We usually eat it with fish, meat and vegetable.The Japanese eat rice, too. They also eat a lot of fish. They sometimes eat raw(生的)fish. In Africa, maize(玉米)is the most important food. People there make maize into flour(面粉). From this flour they make different kinds of bread and cakes.In western countries, for example, Britain, Australia and the USA, the most important food is bread or potatoes. People there usually make their bread from wheat(小麦)flour. They cook the potatoes in different ways. In England the most popular food is fish and chips. Sometimes people make this food at home, but usually they buy it at the shop. They eat this food at home, in their work place, in the park or on the road. People call it "take-away" food.(1)This passage is about ________.A.foodB.drinkC.clothesD.ways of life(2)Who sometimes eat fish when it isn't cooked?A.People in China.B.People in Japan.C.People in Africa.D.People in Britain.(3)The most important food for African people is ________.C.vegetableD.maize(4)Which of the following countries is called "a western country"?A.One of the countries in Africa.B.Japan.C.China.D.Australia.(5)People eat "take-away" food ________.A.at homeB.on their way to schoolC.in their officesD.A, B and C13.(7分)An interview w ith Andy GriffithsAndy Griffiths is well known as a writer of children's books. Here are some interesting things you might not know about him!★What do you like to do after a long day of w riting?I go for long runs and bike rides beside the beach. An hour of exercise after a long day of writing gives me energy. Then I'm ready to write some more.★Do you w rite using a computer or by hand?At first I write the stories by hand, and then I transfer(转录)them onto a computer. I like to write by hand when I travel. I find it very easy to lose myself in my diary when I am away from my usual activities.★What super pow er w ould you like to have?x—ray vision(透视眼)if I can control it.★What is your favourite food?I'm never happier than when I'm drinking banana milkshakes. And I love fish. But I don't like drinking fish milkshakes—they are just terrible!★What is your favourite book?Alice in Wonderland. It has so many surprises and such silliness in it.★Do you w rite for adults too?Yeah, but only if I really have to. I much prefer the freedom and fun of writing for children.★What do you say to kids w ho say, "Why should I read?"As Dr. Seuss says, "The more you read, the more things you will know. The more you learn, the more places you'll go."(1)What does Andy Griffiths usually do to relax?A.Exercise.B.Travel.C.Keep a diary.D.Go fishing.(2)We can see that Andy Griffiths ________.A.only writes for childrenB.writes Alice in WonderlandC.may write with a child heartD.doesn't like banana milkshakes(3)Andy Griffiths means that reading can help people ________.A.become good writersB.learn more living skillsC.learn more about the worldD.keep away from usual activities14.(10分) 阅读下面的短文,回答问题。
湖南怀化语文中考试卷真题
湖南怀化语文中考试卷真题一、基础知识与运用(共20分)1. 根据题目所给的汉字,选择正确的读音。
(每题1分,共5分)(1)湖南的“湘”字的正确读音是______。
(2)“怀化”中的“怀”字的正确读音是______。
(3)“试卷”中的“卷”字的正确读音是______。
(4)“真题”中的“真”字的正确读音是______。
(5)“专家”中的“专”字的正确读音是______。
2. 根据题目所给的词语,找出拼写错误的一项,并改正。
(每题1分,共5分)(1)A. 锲而不舍 B. 锲而舍之 C. 锲而不舍 D. 锲而不舍(2)A. 脍炙人口 B. 炙人口 C. 脍炙人口 D. 炙人口(3)A. 千锤百炼 B. 千锤百练 C. 千锤百炼 D. 千锤百练(4)A. 一诺千金 B. 一诺千斤 C. 一诺千金 D. 一诺千斤(5)A. 心旷神怡 B. 心旷神怡 C. 心旷神怡 D. 心旷神怡3. 根据题目所给的句子,选择恰当的成语填空。
(每题2分,共10分)(1)面对困难,我们不能________,而应该勇敢面对。
A. 畏首畏尾B. 瞻前顾后C. 临危不惧D. 锲而不舍(2)他虽然年事已高,但仍然________地工作。
A. 孜孜不倦B. 乐此不疲C. 勤勤恳恳D. 兢兢业业(3)这次考试,我们班的成绩________,老师非常满意。
A. 一鸣惊人B. 突飞猛进C. 一落千丈D. 稳步上升(4)他________地讲述了自己的经历,赢得了大家的尊重。
A. 滔滔不绝B. 口若悬河C. 娓娓道来D. 口若悬河(5)面对这次挑战,我们________,最终取得了胜利。
A. 齐心协力B. 同心协力C. 众志成城D. 齐心协力二、阅读理解(共30分)阅读下面的文言文,完成4-7题。
《岳阳楼记》节选范仲淹庆历四年春,滕子京谪守巴陵郡。
越明年,政通人和,百废俱兴。
乃重修岳阳楼,增其旧制,刻唐贤今人诗赋于其上。
属予作文以记之。
予观夫巴陵胜状,在洞庭一湖。
(中考精品卷)湖南省怀化市中考数学真题(解析版)
2022年湖南省怀化市中考数学真题一、选择题1.12-的相反数是( )A. 2-B. 2C.12- D. 12【答案】D【解析】【分析】根据相反数的性质,互为相反数的两个数的和为0即可求解.【详解】解:因为-12+12=0,所以-12的相反数是12.故选:D.【点睛】本题考查求一个数的相反数,掌握相反数的性质是解题关键.2. 代数式25x,1π,224x+,x2﹣23,1x,12xx++中,属于分式的有( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是,根据此依据逐个判断即可.【详解】分母中含有字母的是22 4x+,1x,12xx++,∴分式有3个,故选:B.【点睛】本题考查分式的定义,能够准确判断代数式是否为分式是解题的关键.3. 2022年3月11日,新华社发文总结2021年中国取得的科技成就,其中包括“奋斗者”号载人潜水器最深下潜至10909米.其中数据10909用科学记数法表示为( )A. 10.909×102B. 1.0909×103C. 0.10909×104D. 1.0909×104【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:10909用科学记数法可以表示:1.0909×104.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列说法正确的是( )A. 相等的角是对顶角B. 对角线相等的四边形是矩形C. 三角形的外心是它的三条角平分线的交点D. 线段垂直平分线上的点到线段两端的距离相等【答案】D【解析】【分析】根据对顶角的概念、矩形的判定、三角形外心的定义和垂直平分线的性质逐项判定即可得出结论.【详解】解:A、根据对顶角的概念可知,相等的角不一定是对顶角,故该选项不符合题意;B、根据矩形的判定“对角线相等的平行四边形是矩形”可知该选项不符合题意;C、根据三角形外心的定义,外心是三角形外接圆圆心,是三角形三条边中垂线的交点,故该选项不符合题意;D、根据线段垂直平分线的性质可知该选项符合题意;故选:D.【点睛】本题考查基本几何概念、图形判定及性质,涉及到对顶角的概念、矩形的判定、三角形外心的定义和垂直平分线的性质等知识点,熟练掌握相关几何图形的定义、判定及性质是解决问题的关键.5. 下列计算正确的是( )A. (2a2)3=6a6B. a8÷a2=a4=2 D. (x﹣y)2=x2﹣y2【答案】C【解析】【分析】根据积的乘方、同底数幂的除法、二次根式的化简、完全平方公式求解即可;【详解】解:A.(2a2)3=8a6≠6a6,故错误;B a8÷a2=a6≠a4,故错误;.D.(x ﹣y )2=x 2﹣2xy +y 2≠x 2﹣y 2,故错误; 故选:C .【点睛】本题主要考查积的乘方、同底数幂的除法、二次根式的化简、完全平方公式等知识,掌握相关运算法则是解题的关键. 6. 下列一元二次方程有实数解的是( ) A. 2x 2﹣x +1=0 B. x 2﹣2x +2=0C. x 2+3x ﹣2=0D. x 2+2=【答案】C 【解析】【分析】判断一元二次方程实数根的情况用根的判别式进行判断.【详解】A 选项中,224(1)42170b ac =-=--⋅⋅=-<△,故方程无实数根; B 选项中,2(2)41240=--⋅⋅=-<△,故方程无实数根;C 选项中,2341(2)170=-⋅⋅-=>△,故方程有两个不相等的实数根;D 选项中,80=-<△,故方程无实数根; 故选C .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程实数根情况的判定方法是解题的关键.7. 一个多边形的内角和为900°,则这个多边形是( ) A. 七边形 B. 八边形C. 九边形D. 十边形【答案】A 【解析】【分析】根据n 边形的内角和是(n ﹣2)•180°,列出方程即可求解. 【详解】解:根据n 边形的内角和公式,得 (n ﹣2)•180°=900°, 解得n =7,∴这个多边形的边数是7, 故选:A .【点睛】本题考查了多边形的内角和,解题的关键是熟记内角和公式并列出方程. 8. 如图,△ABC 沿BC 方向平移后的像为△DEF ,已知BC =5,EC =2,则平移的距离是( )A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】根据题意判断BE 的长就是平移的距离,利用已知条件求出BE 即可. 【详解】因为ABC 沿BC 方向平移,点E 是点B 移动后的对应点, 所以BE 的长等于平移的距离,由图像可知,点B 、E 、C 在同一直线上,BC =5,EC =2, 所以BE =BC -ED =5-2=3, 故选 C .【点睛】本题考查了平移,正确找出平移对应点是求平移距离关键.9. 从下列一组数﹣2,π,﹣12,﹣0.12,0中随机抽取一个数,这个数是负数的概率为( ) A.56B.23C.12D.13【答案】B 【解析】【分析】找出题目给的数中的负数,用负数的个数除以总的个数,求出概率即可. 【详解】∵数﹣2,π,﹣12,﹣0.12,06个数, 其中﹣2,﹣12,﹣0.12为负数,有4个, ∴这个数是负数的概率为4263P ==, 故答案选:B .【点睛】本题考查负数的认识,概率计算公式,正确找出负数的个数是解答本题的关键. 10. 如图,直线AB 交x 轴于点C ,交反比例函数y =1a x-(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )的A. 8B. 9C. 10D. 11【答案】D 【解析】【分析】设1a B m m -⎛⎫ ⎪⎝⎭,,由S △BCD =112a m m -⋅即可求解. 【详解】解:设1a B m m -⎛⎫⎪⎝⎭,, ∵BD ⊥y 轴 ∴S △BCD =112a m m-⋅=5, 解得:11a = 故选:D .【点睛】本题主要考查反比例函数的应用,掌握反比例函数的相关知识是解题的关键.二、填空题11. 计算52x x ++﹣32x +=_____. 【答案】1 【解析】【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++ 故答案为:1.【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减. 12. 因式分解:24-=x x _____. 【答案】2(1)(1)+-x x x【解析】【分析】根据提公因式法和平方差公式进行分解即可. 【详解】解:()242221(1)(1)-=-=+-x x x x x x x ,故答案为:2(1)(1)+-x x x【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.13. 已知点A (﹣2,b )与点B (a ,3)关于原点对称,则a ﹣b =______. 【答案】5 【解析】【分析】根据平面直角坐标系中,关于原点对称的点横、纵坐标都互为相反数,求出a ,b 的值即可.【详解】∵点A (﹣2,b )与点B (a ,3)关于原点对称, ∴2a =,3b =-, ∴()235a b -=--= 故答案为:5.【点睛】本题考查平面直角坐标系中,关于原点对称的点的坐标的特点,掌握特殊位置关系的点的坐标变化是解答本题的关键.14. 如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,若S △ADE =2,则S △ABC =_____.【答案】8 【解析】【分析】根据三角形中位线定理求得DE ∥BC ,12DE BC =,从而求得△ADE ∽△ABC ,然后利用相似三角形的性质求解.【详解】解:∵D 、E 分别是AB 、AC 的中点,则DE 为中位线, 所以DE ∥BC ,12DE BC = 所以△ADE ∽△ABC∴21()4ADE ABC S DE S BC ==∵S△ADE=2,∴S△ABC=8故答案为:8.【点睛】本题考查中位线及平行线性质,本题难度较低,主要考查学生对三角形中位线及平行线性质等知识点的掌握.15. 如图,AB与⊙O相切于点C,AO=3,⊙O的半径为2,则AC的长为_____.【解析】【分析】根据切线的性质得到∠OCA=90°,再利用勾股定理求解即可.【详解】解:连接OC,∵AB与⊙O相切于点C,∴OC⊥AB,即∠OCA=90°,在Rt△OCA中,AO=3 ,OC=2,∴AC=【点睛】本题考查了切线的性质,勾股定理,熟练掌握切线的性质是解题关键.切线的性质:圆的切线垂直于经过切点的半径.16. 正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是_____.【答案】744 【解析】【分析】由题意知,第n 行有n 个数,第n 行的最后一个偶数为n (n +1),计算出第27行最后一个偶数,再减去与第21位之差即可得到答案.【详解】由题意知,第n 行有n 个数,第n 行的最后一个偶数为n (n +1), ∴第27行的最后一个数,即第27个数为2728756⨯=,∴第27行的第21个数与第27个数差6位数,即75626744-⨯=, 故答案为:744.【点睛】本题考查数字类规律的探究,根据已知条件的数字排列找到规律,用含n 的代数式表示出来由此解决问题是解题的关键.三、解答题17. 计算:(3.14﹣π)0+|﹣1|+(12)﹣1. 【答案】【解析】【分析】分别根据二次根式的性质、负整数指数幂、零指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(3.14﹣π)0﹣1|+(12)﹣1.【点睛】本题考查的是实数的运算,熟知二次根式的性质、负整数指数幂、零指数幂的计算法则是解答此题的关键.18. 解不等式组,并把解集在数轴上表示出来.()51313221x x x x ⎧->+⎨-≤+⎩①②【答案】23x <≤,数轴见解析 【解析】【分析】根据解一元一次不等式组的方法步骤求解,然后在数轴上把解集表示出来即可.【详解】解:()51313221x x x x ⎧->+⎨-≤+⎩①②由①得2x >,由②得3x ≤,该不等式组的解集为23x <≤, 在数轴上表示该不等式组的解集为:【点睛】本题考查一元一次不等式组的解法步骤及用数轴表示不等式组的解集,熟练掌握相关解法步骤是解决问题的关键.19. 某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A 位于C 村西南方向和B 村南偏东60°方向上,C 村在B 村的正东方向且两村相距2.4千米.有关部门计划在B 、C 两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明. 1.73≈1.41)【答案】不穿过,理由见解析 【解析】【分析】先作AD ⊥BC ,再根据题意可知∠ACD=45°,∠ABD =30°,设CD =x ,可表示AD 和BD ,然后根据特殊角三角函数值列出方程,求出AD ,与800米比较得出答案即可.【详解】不穿过,理由如下:过点A 作AD ⊥BC ,交BC 于点D ,根据题意可知∠ACD=45°,∠ABD =30°. 设CD =x ,则BD=2.4-x , 在Rt △ACD 中,∠ACD=45°, ∴∠CAD=45°, ∴AD=CD =x .在Rt △ABD 中,t an 30A D B D︒=,即2.4x x =-, 解得x =0.88,可知AD=088千米=880米,因为880米>800米,所以公路不穿过纪念园.【点睛】本题主要考查了解直角三角形的应用,构造直角三角形是解题的关键.20. 如图,点A ,B ,C ,D 在⊙O 上, AB = CD.求证:(1)AC =BD ; (2)△ABE ∽△DCE . 【答案】(1)见解析 (2)见解析【解析】【分析】(1)两个等弧同时加上一段弧后两弧仍然相等;再通过同弧所对的弦相等证明即可;(2)根据同弧所对的圆周角相等,对顶角相等即可证明相似. 【小问1详解】∵ AB = CD∴ AB AD += CD AD + ∴ BAD ADC =∴BD =AC 【小问2详解】 ∵∠B =∠C ;∠AEB =∠DEC ∴△ABE ∽△DCE【点睛】本题考查等弧所对弦相等、所对圆周角相等,掌握这些是本题关键.21. 电视剧《一代洪商》在中央电视台第八套播出后,怀化市各旅游景点知名度得到显菩提高.为全面提高旅游服务质量,旅游管理部门随机抽取了100名游客进行满意度调查,并绘制成如下不完整的频数分布表和扇形统计图..频数分布表 满意程度频数(人) 频率 非常满意50 0.5 满意30 0.3 一般 a c 不满意b 0.05 合计 100 1根据统计图表提供的信息,解答下列问题:(1)a = ,b = ,c = ;(2)求扇形统计图中表示“一般”的扇形圆心角α的度数;(3)根据调查情况,请你对各景点的服务提一至两条合理建议.【答案】(1)15;5;0.15(2)54°(3)有理即可;见详解【解析】【分析】(1)根据图表信息进行求解即可;(2)根据满意度“一般”所占圆的的比例乘360°即可得α的度数;(3)根据图表数据给出合理建议即可;【小问1详解】解:1000.055b =⨯=(人);1005030515a =---=(人); 10.50.30.050.15c =---=【小问2详解】0.1536054⨯︒=︒答:扇形统计图中表示“一般”扇形圆心角α的度数为54°.【小问3详解】根据图表可以看出绝大多数还是相当满意的,所以我觉得我们可以多一些对细节的规划,在环境一块更加注重,做到尽善尽美,推出一些具备特色的服务项目,给到游客不一样的体验.【点睛】本题主要考查扇形统计图,圆心角的求解,解本题的关键在于需认真读题并正确计算出结果.22. 如图,在等边三角形ABC 中,点M 为AB 边上任意一点,延长BC 至点N ,使CN =AM ,连接MN 交AC 于点P ,MH ⊥AC 于点H .(1)求证:MP =NP ;(2)若AB =a ,求线段PH 的长(结果用含a 的代数式表示).【答案】(1)见详解;(2)0.5a .【解析】【分析】(1)过点M 作MQ ∥CN ,证明MQP NCP ≅△△即可;(2)利用等边三角形的性质推出AH =HQ ,则PH =HQ +PQ =0.5(AQ +CQ ).【小问1详解】如下图所示,过点M 作MQ ∥CN ,∵ABC 为等边三角形,MQ ∥CN , ∴1AM AB AQ AC==, 则AM =AQ ,且∠A =60°,∴AMQ △为等边三角形,则MQ =AM =CN ,的又∵MQ ∥CN ,∴∠QMP =∠CNP ,在MQP NCP △与△中,MPQ NPC QMP CNP QM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴MQP NCP ≅△△,则MP =NP ;【小问2详解】∵AMQ △为等边三角形,且MH ⊥AC ,∴AH =HQ ,又由(1)得,MQP NCP ≅△△,则PQ =PC ,∴PH =HQ +PQ =0.5(AQ +CQ )=0.5AC =0.5a .【点睛】本题考查了等边三角形的性质与判定、三角形全等的判定,正确作出辅助线是解题的关键.23. 去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售. 优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a 套,购买费用为W 元,请写出W 关于a 的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?【答案】(1)每件雨衣40元,每双雨鞋35元(2)()600.954052705600.848305a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩(3)最多可购买6套【解析】【分析】(1)根据题意,设每件雨衣()5+x 元,每双雨鞋x 元,列分式方程求解即可; (2)根据题意,按套装降价20%后得到每套60元,根据费用=单价×套数即可得出结论; (3)根据题意,结合(2)中所求,得出不等式4830320a +≤,求解后根据实际意义取值即可.【小问1详解】解:设每件雨衣()5+x 元,每双雨鞋x 元,则4003505x x=+,解得35x =, 经检验,35x =是原分式方程的根,540x ∴+=,答:每件雨衣40元,每双雨鞋35元;【小问2详解】解:根据题意,一套原价为354075+=元,下降20%后的现价为()75120%60⨯-=元,则()600.954,052705600.84830,5a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩; 【小问3详解】解:320270> ,∴购买的套数在5a ≥范围内,即4830320a +≤,解得145 6.04224a ≤≈, 答:在(2)的情况下,今年该部门购买费用不超过320元时最多可购买6套.【点睛】本题考查实际应用题,涉及分式方程的实际应用、一次分段函数的实际应用和不等式解实际应用题等知识,熟练掌握实际应用题的求解步骤“设、列、解、答”,根据题意得出相应关系式是解决问题的关键.24. 如图一所示,在平面直角坐标中,抛物线y =ax 2+2x +c 经过点A (﹣1,0)、B (3,0),与y 轴交于点C ,顶点为点D .在线段CB 上方的抛物线上有一动点P ,过点P 作PE ⊥BC 于点E ,作PF ∥AB 交BC 于点F .(1)求抛物线和直线BC 的函数表达式,(2)当△PEF 周长为最大值时,求点P 的坐标和△PEF 的周长.(3)若点G 是抛物线上的一个动点,点M 是抛物线对称轴上的一个动点,是否存在以C 、B 、G 、M 为顶点的四边形为平行四边形?若存在,求出点G 的坐标,若不存在,请说明理由.【答案】(1)抛物线函数表达式为2y x 2x 3=-++,直线BC 的函数表达式为3y x =-+ (2)点P 的坐标为 (32,154),△PEF的周长为91)4(3)存在,(2,3)或(-2,-5)或(4,-5)【解析】【分析】(1)由点A ,B 的坐标,利用待定系数即可求解析式;(2)利用直线和抛物线的位置关系相切时对应的等腰直角三角形PEF 周长最大,二次函数与一次函数联立方程,根的判别式0∆=,从而找出对应点P 坐标,进而求出周长; (3)根据平行四边形对角线性质和中点公式,把BC 是否为对角线分情况进行分析,设出点G 的横坐标,利用中点公式列方程计算即可求解.【小问1详解】解:将点A (-1,0),B (3,0)代入2y ax 2x c =++,得:02096a c a c =-+⎧⎨=++⎩ ,解得13a c =-⎧⎨=⎩, 所以抛物线解析式为2y x 2x 3=-++,C (0,3)的设直线BC 的函数表达式y kx b =+ ,将B (3,0),C (0,3)代入得:033k b b =+⎧⎨=⎩ ,解得13k b =-⎧⎨=⎩, 所以直线BC 的函数表达式为3y x =-+【小问2详解】解:如图,设将直线BC 平移到与抛物线相切时的解析式为y x p =-+ ,与抛物线联立得:223y x p y x x =-+⎧⎨=-++⎩ 整理得2330x x p -+-=234(3)0p ∆=--= ,解得p =, 将214p =代入2330x x p -+-=,解得32x =, 将32x =代入2y x 2x 3=-++得154y =, 即△PEF 的周长为最大值时,点P 的坐标为 (32,154) 将32x =代入3y x =-+得32y =, 则此时1539424PF =-=,因为△PEF 为等腰直角三角形,94PE FE ===则△PEF 的周长最大为91)4+【小问3详解】答:存在.已知B (3,0),C (0,3),设点G(m ,223m m -++ ),N (1,n ),当BC 为平行四边形对角线时,根据中点公式得:13m += ,2m =,则G 点坐标为(2,3);当BC 为平行四边形对角线时,同样利用中点坐标公式得:31m += 或31m -= ,解得2m =- 或4m = 则G 点坐标为(-2,-5)或(4,-5)故点G 坐标为(2,3)或(-2,-5)或(4,-5)【点睛】本题考查了待定系数法求二次函数解析式、二次函数图像上点的坐标特征、待定系数法求一次函数解析式、直线与抛物线的位置关系、根的判别式,等腰直角三角形性质,平行四边形的性质,解题的关键(1)根据点的坐标利用待定系数求解析式;(2利用直线和抛物线的位置关系,巧妙利用判别式;(3)熟悉平行四边形对角线性质,结合中点公式分情况展开讨论。
2022年湖南省怀化市中考数学试卷(含答案)
2022年湖南省怀化市中考数学试卷一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上).1.(4分)(2022•怀化)﹣的相反数是()A.B.2C.﹣D.﹣22.(4分)(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个3.(4分)(2022•怀化)2022年3月11日,新华社发文总结2021年中国取得的科技成就,其中包括“奋斗者”号载人潜水器最深下潜至10909米.其中数据10909用科学记数法表示为()A.10.909×102B.1.0909×103C.0.10909×104D.1.0909×1044.(4分)(2022•怀化)下列说法正确的是()A.相等的角是对顶角B.对角线相等的四边形是矩形C.三角形的外心是它的三条角平分线的交点D.线段垂直平分线上的点到线段两端的距离相等5.(4分)(2022•怀化)下列计算正确的是()A.(2a2)3=6a6B.a8÷a2=a4C.=2D.(x﹣y)2=x2﹣y26.(4分)(2022•怀化)下列一元二次方程有实数解的是()A.2x2﹣x+1=0B.x2﹣2x+2=0C.x2+3x﹣2=0D.x2+2=07.(4分)(2022•怀化)一个多边形的内角和为900°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形8.(4分)(2022•怀化)如图,△ABC沿BC方向平移后的像为△DEF,已知BC=5,EC =2,则平移的距离是()A.1B.2C.3D.49.(4分)(2022•怀化)从下列一组数﹣2,π,﹣,﹣0.12,0,﹣中随机抽取一个数,这个数是负数的概率为()A.B.C.D.10.(4分)(2022•怀化)如图,直线AB交x轴于点C,交反比例函数y=(a>1)的图象于A、B两点,过点B作BD⊥y轴,垂足为点D,若S△BCD=5,则a的值为()A.8B.9C.10D.11二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上)11.(4分)(2022•怀化)计算﹣=.12.(4分)(2022•怀化)因式分解:x2﹣x4=.13.(4分)(2022•怀化)已知点A(﹣2,b)与点B(a,3)关于原点对称,则a﹣b=.14.(4分)(2022•怀化)如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=2,则S△ABC=.15.(4分)(2022•怀化)如图,AB与⊙O相切于点C,AO=3,⊙O的半径为2,则AC的长为.16.(4分)(2022•怀化)正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是.三、解答题(本大题共8小题,共86分)17.(8分)(2022•怀化)计算:(3.14﹣π)0+|﹣1|+()﹣1﹣.18.(8分)(2022•怀化)解不等式组,并把解集在数轴上表示出来.19.(10分)(2022•怀化)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A位于C村西南方向和B村南偏东60°方向上.C村在B村的正东方向且两村相距2.4km.有关部门计划在B、C两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.(参考数据:≈1.73,≈1.41)20.(10分)(2022•怀化)如图,点A,B,C,D在⊙O上,=.求证:(1)AC=BD;(2)△ABE∽△DCE.21.(12分)(2022•怀化)电视剧《一代洪商》在中央电视台第八套播出后,怀化市各旅游景点知名度得到显著提高.为全面提高旅游服务质量,旅游管理部门随机抽取了100名游客进行满意度调查,并绘制成如下不完整的频数分布表和扇形统计图.频数分布表满意程度频数(人)频率非常满意500.5满意300.3一般a c不满意b0.05合计1001根据统计图表提供的信息,解答下列问题:(1)a=,b=,c=;(2)求扇形统计图中表示“一般”的扇形圆心角α的度数;(3)根据调查情况,请你对各景点的服务提一至两条合理建议.22.(12分)(2022•怀化)如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).23.(12分)(2022•怀化)去年防汛期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防汛工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售.优惠方案为:若一次购买不超过5套,则每套打九折;若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a套,购买费用为W元,请写出W关于a的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?24.(14分)(2022•怀化)如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A (﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF∥AB交BC于点F.(1)求抛物线和直线BC的函数表达式.(2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.(3)若点G是抛物线上的一个动点,点M是抛物线对称轴上的一个动点,是否存在以C、B、G、M为顶点的四边形为平行四边形?若存在,求出点G的坐标,若不存在,请说明理由.2022年湖南省怀化市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上).1.(4分)(2022•怀化)﹣的相反数是()A.B.2C.﹣D.﹣2【分析】根据相反数的定义:只有符号不同的两个数互为相反数即可得出答案.【解答】解:﹣的相反数是,故选:A.【点评】本题考查了相反数,掌握只有符号不同的两个数互为相反数是解题的关键.2.(4分)(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【分析】根据分式的定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式叫做分式判断即可.【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【点评】本题考查了分式的定义,掌握一般地,如果A,B表示两个整式,并且B中含有字母,那么式叫做分式是解题的关键,注意π是数字.3.(4分)(2022•怀化)2022年3月11日,新华社发文总结2021年中国取得的科技成就,其中包括“奋斗者”号载人潜水器最深下潜至10909米.其中数据10909用科学记数法表示为()A.10.909×102B.1.0909×103C.0.10909×104D.1.0909×104【分析】把比较大的数写成a×10n,其中1≤a<10,n为正整数即可得出答案.【解答】解:10909=1.0909×104,故选:D.【点评】本题考查了科学记数法﹣表示较大的数,掌握10的指数比原来的整数位数少1是解题的关键.4.(4分)(2022•怀化)下列说法正确的是()A.相等的角是对顶角B.对角线相等的四边形是矩形C.三角形的外心是它的三条角平分线的交点D.线段垂直平分线上的点到线段两端的距离相等【分析】根据对顶角的定义,矩形的判定,三角形的外心,线段垂直平分线的性质可得出答案.【解答】解:A、相等的角不一定是对顶角,故本选项说法错误,不符合题意;B、对角线相等的四边形不一定是矩形,故本选项说法错误,不符合题意;C、三角形的外心是它的三条边的垂直平分线的交点,故本选项说法错误,不符合题意;D、线段垂直平分线上的点到线段两端的距离相等,故本选项符合题意.故选:D.【点评】本题考查了矩形的判定,三角形的外心,线段垂直平分线的性质,熟练掌握相关定理以及性质进而判定出命题的正确性.5.(4分)(2022•怀化)下列计算正确的是()A.(2a2)3=6a6B.a8÷a2=a4C.=2D.(x﹣y)2=x2﹣y2【分析】直接利用积的乘方运算法则以及同底数幂的除法运算法则、二次根式的性质、完全平方公式分别计算,进而得出答案.【解答】解:A.(2a2)3=8a6,故此选项不合题意;B.a8÷a2=a6,故此选项不合题意;C.=2,故此选项符合题意;D.(x﹣y)2=x2﹣2xy+y2,故此选项不合题意;故选:C.【点评】此题主要考查了积的乘方运算以及同底数幂的除法运算、二次根式的性质、完全平方公式,正确掌握相关运算法则是解题关键.6.(4分)(2022•怀化)下列一元二次方程有实数解的是()A.2x2﹣x+1=0B.x2﹣2x+2=0C.x2+3x﹣2=0D.x2+2=0【分析】根据各方程的系数结合根的判别式Δ=b2﹣4ac,可求出各方程根的判别式Δ的值,取Δ≥0的选项即可得出结论.【解答】解:A.∵Δ=(﹣1)2﹣4×2×1=﹣7<0,∴方程2x2﹣x+1=0没有实数根;B.∵Δ=(﹣2)2﹣4×1×2=﹣4<0,∴方程x2﹣2x+2=0没有实数根;C.∵Δ=32﹣4×1×(﹣2)=17>0,∴方程x2+3x﹣2=0有两个不相等的实数根;D.∵Δ=02﹣4×1×2=﹣8<0,∴方程x2+2=0没有实数根.故选:C.【点评】本题考查了根的判别式,牢记“①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根”是解题的关键.7.(4分)(2022•怀化)一个多边形的内角和为900°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【分析】根据多边形的内角和公式:(n﹣2)•180°列出方程,解方程即可得出答案.【解答】解:设多边形的边数为n,(n﹣2)•180°=900°,解得:n=7.故选:A.【点评】本题考查了多边形的内角与外角,体现了方程思想,掌握多边形的内角和=(n ﹣2)•180°是解题的关键.8.(4分)(2022•怀化)如图,△ABC沿BC方向平移后的像为△DEF,已知BC=5,EC =2,则平移的距离是()A.1B.2C.3D.4【分析】利用平移的性质,找对应点,对应点间的距离就是平移的距离.【解答】解:点B平移后对应点是点E.∴线段BE就是平移距离,∵已知BC=5,EC=2,∴BE=BC﹣EC=5﹣2=3.故选:C.【点评】考查图形平移性质,关键找到平移前后的对应点.9.(4分)(2022•怀化)从下列一组数﹣2,π,﹣,﹣0.12,0,﹣中随机抽取一个数,这个数是负数的概率为()A.B.C.D.【分析】首先确定这组数据的负数的个数,然后再利用概率的公式求解即可.【解答】这组数据共有6个数,其中是负数的有﹣2,﹣,﹣0.12,﹣这4个,∴P(随机抽取一个数,这个数是负数)=.故选:B.【点评】本题主要考查随机事件概率的求法.10.(4分)(2022•怀化)如图,直线AB交x轴于点C,交反比例函数y=(a>1)的图象于A、B两点,过点B作BD⊥y轴,垂足为点D,若S△BCD=5,则a的值为()A.8B.9C.10D.11【分析】设点B的坐标为(a,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(a,),∵S△BCD=5,且a>1,∴×a×=5,解得:a=11,经检验,a=11是原分式方程的解,故选:D.【点评】本题考查反比例函数与一次函数的交点问题,准确识图,理解反比例函数图象上点的坐标特征是解题关键.二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上)11.(4分)(2022•怀化)计算﹣=1.【分析】原式利用通分分式的减法法则计算,约分即可得到结果.【解答】解:原式===1.故答案为:1.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.12.(4分)(2022•怀化)因式分解:x2﹣x4=x2(1+x)(1﹣x).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x2(1﹣x2)=x2(1+x)(1﹣x).故答案为:x2(1+x)(1﹣x).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(4分)(2022•怀化)已知点A(﹣2,b)与点B(a,3)关于原点对称,则a﹣b=5.【分析】根据关于原点对称的点的坐标,可得答案.【解答】解:∵点A(﹣2,b)与点B(a,3)关于原点对称,∴a=2,b=﹣3,∴a﹣b=2+3=5,故答案为:5.【点评】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的坐标规律得出a,b是解题关键.14.(4分)(2022•怀化)如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=2,则S△ABC=8.【分析】由中位线定理可得线段DE与BC的比,即可得出△ADE与△ABC的比,又已知△ADE的面积,进而即可得出△ABC的面积.【解答】解:∵D,E分别是AB,AC的中点,∴DE:BC=1:2,DE∥BC,∴△ADE∽△ABC,∴==,即,∴S△ABC=8.故答案为:8.【点评】本题主要考查了三角形的中位线定理以及相似三角形面积比与对应边之比的关系,证明△ADE∽△ABC是解题的关键.15.(4分)(2022•怀化)如图,AB与⊙O相切于点C,AO=3,⊙O的半径为2,则AC的长为.【分析】连接OC,根据切线的性质得到OC⊥AC,再根据勾股定理计算,得到答案.【解答】解:连接OC,∵AB与⊙O相切于点C,∴OC⊥AC,在Rt△AOC中,OC=2,OA=3,则AC===,故答案为:.【点评】本题考查的是切线的性质、勾股定理,掌握圆的切线垂直于过切点的半径是解题的关键.16.(4分)(2022•怀化)正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是744.【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••第n行有n个数,则前n行共有个数,再根据偶数的特征确定第几行第几个数是几.【解答】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•第n行有n个数.∴前n行共有个数.∴前27行共有378个数,∴第27行第21个数是一共378个数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点评】本题考查了数列的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.三、解答题(本大题共8小题,共86分)17.(8分)(2022•怀化)计算:(3.14﹣π)0+|﹣1|+()﹣1﹣.【分析】根据零指数幂,绝对值,负整数指数幂,二次根式的化简计算即可.【解答】解:原式=1+﹣1+2﹣2=2﹣.【点评】本题考查了实数的运算,零指数幂,绝对值,负整数指数幂,考查学生的运算能力,掌握a0=1(a≠0),a﹣p=(a≠0)是解题的关键.18.(8分)(2022•怀化)解不等式组,并把解集在数轴上表示出来.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:,解不等式①,得:x>2,解不等式②,得:x≤3,∴原不等式组的解集是2<x≤3,其解集在数轴上表示如下:.【点评】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.19.(10分)(2022•怀化)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A位于C村西南方向和B村南偏东60°方向上.C村在B村的正东方向且两村相距2.4km.有关部门计划在B、C两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.(参考数据:≈1.73,≈1.41)【分析】过A点作AD⊥BC于D点,根据题意可得BD=AD,CD=AD,由BC=2400m 可得关于AD的方程,计算可求解AD的长,进而可求解.【解答】解:过A点作AD⊥BC于D点,由题意知:∠ABC=90°﹣60°=30°,∠ACD=45°,∴BD=AD,CD=AD,∵BC=2.4km=2400m,∴AD+AD=2400,解得:AD=1200(﹣1)≈876>800,故该公路不能穿过纪念园.【点评】本题主要考查解直角三角形的应用﹣方向角,构造直角三角形是解题的关键.20.(10分)(2022•怀化)如图,点A,B,C,D在⊙O上,=.求证:(1)AC=BD;(2)△ABE∽△DCE.【分析】(1)根据等式的性质可得:,再由圆心角,弧,弦的关系可得结论;(2)根据两角相等可证明两三角形相似.【解答】证明:(1)∵=,∴,∴AC=BD;(2)∵∠A=∠D,∠B=∠C,∴△ABE∽△DCE.【点评】本题考查了全等三角形的判定与性质,圆心角、弧、弦的关系.根据已知条件推知AC=BD是解题的难点.21.(12分)(2022•怀化)电视剧《一代洪商》在中央电视台第八套播出后,怀化市各旅游景点知名度得到显著提高.为全面提高旅游服务质量,旅游管理部门随机抽取了100名游客进行满意度调查,并绘制成如下不完整的频数分布表和扇形统计图.频数分布表满意程度频数(人)频率非常满意500.5满意300.3一般a c不满意b0.05合计1001根据统计图表提供的信息,解答下列问题:(1)a=15,b=5,c=0.15;(2)求扇形统计图中表示“一般”的扇形圆心角α的度数;(3)根据调查情况,请你对各景点的服务提一至两条合理建议.【分析】(1)用样本容量乘“不满意”的频率求出b,进而求出a、c的值;(2)用360°乘“一般”的频率即可;(3)根据频数分布表的数据提出建议即可.【解答】解:(1)由题意得,b=100×0.05=5,a=100﹣50﹣30﹣5=15,c=1﹣0.5﹣0.3﹣0.05=0.15,故答案为:15;5;0.15;(2)扇形统计图中表示“一般”的扇形圆心角α的度数为360°×0.15=54°;(3)在调查数据中,还有约20%的游客对服务态度表示“一般”或“不满意”,说明旅游质量还有待提高.(答案不唯一).【点评】此题考查了频数(率)分布直方图,中位数,以及用样本估计总体,弄清题意是解本题的关键.22.(12分)(2022•怀化)如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.【点评】本题考查了等边三角形的性质和判定,全等三角形的判定和性质,平行线的性质等,熟练掌握全等三角形的判定方法是解题的关键.23.(12分)(2022•怀化)去年防汛期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防汛工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售.优惠方案为:若一次购买不超过5套,则每套打九折;若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a套,购买费用为W元,请写出W关于a的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?【分析】(1)设每件雨衣x元,则每双雨鞋(x﹣5)元,根据购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双)列出方程并解答;(2)根据题意求出a的取值范围,并求出w与a的关系式解答即可;(3)根据题意列出不等式并解答.【解答】解:(1)设每件雨衣x元,则每双雨鞋(x﹣5)元,根据题意,得,解得x=40,经检验x=40是所列方程的根,并符合题意.所以x﹣5=35,答:每件雨衣40元,则每双雨鞋35元;(2)由题意知,一套雨衣雨鞋的单价为:(40+35)×(1﹣20%)=60(元),当购买a套雨衣和雨鞋a≤5时,费用为w=0.9x60a=54a;当购买a套雨衣和雨鞋a>5时,费用为w=0.9×60×5+(a﹣5)×60×0.8=48a+30,∴W关于a的函数关系式为:w=;(3)由题意得:48a+30≤320,解得a≤,答:最多可购买6套.【点评】本题考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.24.(14分)(2022•怀化)如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A (﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF∥AB交BC于点F.(1)求抛物线和直线BC的函数表达式.(2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.(3)若点G是抛物线上的一个动点,点M是抛物线对称轴上的一个动点,是否存在以C、B、G、M为顶点的四边形为平行四边形?若存在,求出点G的坐标,若不存在,请说明理由.【分析】(1)利用待定系数法,把问题转化为方程组,求出a,c的值,设BC的解析式为y=kx+b,把B,C两点坐标代入求出k,b即可;(2)如图一中,连接PC,OP,PB.设P(m,﹣m2+2m+3),证明△PEF是等腰直角三角形,求出PE的最大值,可得结论;(3)存在.如图二中,设M(1,t),G(m,﹣m2+2m+3).分两种情形:CB为平行四边形的边,CB为平行四边形的对角线,分别构建方程求解.【解答】解:(1)∵抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3,令x=0,可得y=3,∴C(0,3),设直线BC的解析式为y=kx+b,则,∴,∴直线BC的解析式为y=﹣x+3;(2)如图一中,连接PC,OP,PB.设P(m,﹣m2+2m+3),∵B(3,0),C(0,3),∴OB=OC=3,∴∠OBC=45°,∵PF∥AB,∴∠PFE=∠OBC=45°,∵PE⊥BC,∴△PEF是等腰直角三角形,∴PE的值最大时,△PEF的周长最大,∵S△PBC=S△POB+S△POC﹣S△OBC=×3×(﹣m2+2m+3)+×3×m﹣×3×3=﹣m2+m=﹣(m﹣)2+,∵﹣<0,∴m=时,△PBC的面积最大,面积的最大值为,此时PE的值最大,∵×3×PE=,∴PE=,∴△PEF的周长的最大值=++=+,此时P(,);(3)存在.理由:如图二中,设M(1,t),G(m,﹣m2+2m+3).当BC为平行四边形的边时,则有|1﹣m|=3,解得m=﹣2或4,∴G(﹣2,﹣5)或(4,﹣5),当BC为平行四边形的对角线时,(1+m)=(0+3),∴m=2,∴G(2,3),综上所述,满足条件的点G的坐标为(﹣2,5)或(4,﹣5)或(2,3).【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
2023年湖南省怀化市中考化学真题(WORLD版 附答案)
实验结论:结合资料得出该Vc泡腾片的发泡原理是柠檬酸与碳酸氢钠发生反应。
探究二:探究Vc泡腾片中NaHCO3的含量
为探究该Vc泡腾片中NaHCO3的含量,同学们进行了如图4所示的探究。
实验步骤:
A.某些商贩用甲醛水溶液(福尔马林)浸泡海鲜,这样的海鲜可放心食用
B.人们正在开发和利用的新能源有太阳能、风能、地热能、潮汐能等
C.日常使用的金属材料,大多数属于合会
D.塑料、合成纤维、合成橡胶是当今社会使用的三大合成材料
16.在怀化市初中学业水平实验操作考试中,小明同学抽到的化学考题是“配制50g质质量分数为6%的氯化钠流液”,他的以下实验操作步骤中不正确的是
(2)试剂X是______(填名称),写出溶液A中加入试剂X发生反应的化学方程式______。
三、实验与探究题(本题有2道小题,化学方程式每空2分,其余每空1分。26题11分,27题9分,共20分)
26.下图是实验室常用的装置。
请回答下列问题:
(1)写出标号①的仪器名称______。
(2)写出实验室用A装置(不考虑棉花)制取氧气的化学方程式______,若要收集较纯净的氧气应选用的装置是______(填装置字母),实验结束后应______(请从下列选项选择)。
加入过量的碳酸钠溶液,过滤
A.AB.BC.CD.D
19.下列图像能正确反映其对应关系的是
A.某温度下,向一定量的硝酸钾饱和溶液中不断加入硝酸钾晶体
B.向一定量的二氧化锰中加入过氧化氢溶液
C.向盛有等质量,等溶质质量分数稀硫酸的两支试管中,分别加入过量的金属镁和铝
2023年湖南省怀化市中考数学真题+答案解析
2023年湖南省怀化市中考数学真题+答案解析(真题部分)一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.(4分)下列四个实数中,最小的数是()A.﹣5 B.0 C.D.2.(4分)2023年4月12日21时,正在运行的中国大科学装置“人造太阳”——世界首个全超导托卡马克东方超环(EAST)装置取得重大成果,在第122254次实验中成功实现了403秒稳态长脉冲高约束模式等离子体运行,创造了托卡马克装置高约束模式运行新的世界纪录.数据122254用科学记数法表示为()A.12.2254×104B.1.22254×104C.1.22254×105D.0.122254×1063.(4分)下列计算正确的是()A.a2•a3=a5B.a6÷a2=a3C.(ab3)2=a2b9D.5a﹣2a=34.(4分)剪纸又称刻纸,是中国最古老的民间艺术之一,它是以纸为加工对象,以剪刀(或刻刀)为工具进行创作的艺术.民间剪纸往往通过谐音、象征、寓意等手法提炼、概括自然形态,构成美丽的图案.下列剪纸中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.(4分)在平面直角坐标系中,点P(2,﹣3)关于x轴对称的点P′的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,﹣3)D.(2,3)6.(4分)如图,平移直线AB至CD,直线AB,CD被直线EF所截,∠1=60°,则∠2的度数为()A.30°B.60°C.100°D.120°7.(4分)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是()A.众数是9.6 B.中位数是9.5C.平均数是9.4 D.方差是0.38.(4分)下列说法错误的是()A.成语“水中捞月”表示的事件是不可能事件B.一元二次方程x2+x+3=0有两个相等的实数根C.任意多边形的外角和等于360°D.三角形三条中线的交点叫作三角形的重心9.(4分)已知压力F(N)、压强p(Pa)与受力面积S(m2)之间有如下关系式:F=pS.当F为定值时,如图中大致表示压强p与受力面积S之间函数关系的是()A.B.C.D.10.(4分)如图,反比例函数y=(k>0)的图象与过点(﹣1,0)的直线AB相交于A、B两点.已=9,那么点C的坐标为()知点A的坐标为(1,3),点C为x轴上任意一点.如果S△ABCA.(﹣3,0)B.(5,0)C.(﹣3,0)或(5,0)D.(3,0)或(﹣5,0)二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上)11.(4分)要使代数式有意义,则x的取值范围是.12.(4分)分解因式:2x2﹣4x+2=.13.(4分)已知关于x的一元二次方程x2+mx﹣2=0的一个根为﹣1,则m的值为,另一个根为.14.(4分)定义新运算:(a,b)•(c,d)=ac+bd,其中a,b,c,d为实数.例如:(1,2)•(3,4)=1×3+2×4=11.如果(2x,3)•(3,﹣1)=3,那么x=.15.(4分)如图,点P是正方形ABCD的对角线AC上的一点,PE⊥AD于点E,PE=3.则点P到直线AB的距离为.16.(4分)在平面直角坐标系中,△AOB为等边三角形,点A的坐标为(1,0).把△A0B按如图所示的方式放置,并将△AOB进行变换:第一次变换将△AOB绕着原点O顺时针旋转60°,同时边长扩大为△AOB边长的2倍,得到△A1OB1;第二次旋转将△A1OB1绕着原点O顺时针旋转60°,同时边长扩大为△A1OB1边长的2倍,得到△A2OB2,….依次类推,得到△A2033OB2033,则△A2023OB2033的边长为,点A2023的坐标为.三、解答题(本大题共8小题,共86分)17.(8分)计算:|﹣2|+()﹣1﹣+(sin45°﹣1)0﹣(﹣1).18.(8分)先化简(1+)÷,再从﹣1,0,1,2中选择一个适当的数作为a的值代入求值.19.(10分)如图,矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)证明:△BOF≌△DOE;(2)连接BE、DF,证明:四边形EBFD是菱形.20.(10分)为弘扬革命传统精神,清明期间,某校组织学生前往怀化市烈士陵园缅怀革命先烈.大家被革命烈士纪念碑的雄伟壮观震撼,想知道纪念碑的通高CD(碑顶到水平地面的距离),于是师生组成综合实践小组进行测量.他们在地面的A点用测角仪测得碑顶D的仰角为30°,在B点处测得碑顶D的仰角为60°,已知AB=35m,测角仪的高度是1.5m(A、B、C在同一直线上),根据以上数据求烈士纪念碑的通高CD.(≈1.732,结果保留一位小数)21.(12分)近年,“青少年视力健康”受到社会的广泛关注.某校综合实践小组为了解该校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力调查.根据调查结果和视力有关标准,绘制了两幅不完整的统计图.请根据图中信息解答下列问题:(1)所抽取的学生人数为;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数;(3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视”的人数.22.(12分)如图,AB是⊙O的直径,点P是⊙O外一点,P A与⊙O相切于点A,点C为⊙O上的一点.连接PC、AC、OC,且PC=P A.(1)求证:PC为⊙O的切线;(2)延长PC与AB的延长线交于点D,求证:PD•OC=P A•OD;(3)若∠CAB=30°,OD=8,求阴影部分的面积.23.(12分)某中学组织学生研学,原计划租用可坐乘客45人的A种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B种客车,则可少租6辆,且恰好坐满.(1)求原计划租用A种客车多少辆?这次研学去了多少人?(2)若该校计划租用A、B两种客车共25辆,要求B种客车不超过7辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若A种客车租金为每辆220元,B种客车租金每辆300元,应该怎样租车才最合算?24.(14分)如图一所示,在平面直角坐标系中,抛物线y=ax2+bx﹣8与x轴交于A(﹣4,0)、B(2,0)两点,与y轴交于点C.(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接P A、PC,求△P AC面积的最大值及此时点P的坐标;(3)设直线l1:y=kx+k﹣交抛物线于点M、N,求证:无论k为何值,平行于x轴的直线l2:y=﹣上总存在一点E,使得∠MEN为直角.2023年湖南省怀化市中考数学真题+答案解析(答案部分)一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.(4分)下列四个实数中,最小的数是()A.﹣5 B.0 C.D.【分析】正数>0>负数;一个正数越大,其算术平方根越大;据此进行判断即可.【解析】解:∵1<2,∴<,即1<,则<,那么﹣5<0<<,则最小的数为:﹣5,故选:A.2.(4分)2023年4月12日21时,正在运行的中国大科学装置“人造太阳”——世界首个全超导托卡马克东方超环(EAST)装置取得重大成果,在第122254次实验中成功实现了403秒稳态长脉冲高约束模式等离子体运行,创造了托卡马克装置高约束模式运行新的世界纪录.数据122254用科学记数法表示为()A.12.2254×104B.1.22254×104C.1.22254×105D.0.122254×106【分析】将一个数表示为a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解析】解:122254=1.22254×105,故选:C.3.(4分)下列计算正确的是()A.a2•a3=a5B.a6÷a2=a3C.(ab3)2=a2b9D.5a﹣2a=3【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、合并同类项法则,分别判断得出答案.【解析】解:A.a2•a3=a5,故此选项符合题意;B.a6÷a2=a4,故此选项不合题意;C.(ab3)2=a2b6,故此选项不合题意;D.5a﹣2a=3a,故此选项不合题意.故选:A.4.(4分)剪纸又称刻纸,是中国最古老的民间艺术之一,它是以纸为加工对象,以剪刀(或刻刀)为工具进行创作的艺术.民间剪纸往往通过谐音、象征、寓意等手法提炼、概括自然形态,构成美丽的图案.下列剪纸中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可.【解析】解:A.原图是中心对称图形,不是轴对称图形,不符合题意;B.原图是轴对称图形,不是中心对称图形,不符合题意;C.原图既是中心对称图形,又是轴对称图形,符合题意;D.原图是轴对称图形,不是中心对称图形,不符合题意;故选:C.5.(4分)在平面直角坐标系中,点P(2,﹣3)关于x轴对称的点P′的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,﹣3)D.(2,3)【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解析】解:点P(2,﹣3)关于x轴对称的点P′的坐标是(2,3).故选:D.6.(4分)如图,平移直线AB至CD,直线AB,CD被直线EF所截,∠1=60°,则∠2的度数为()A.30°B.60°C.100°D.120°【分析】根据平移直线AB至CD,可得AB∥CD,所以∠BMF=∠2,根据对顶角相等得∠BMF =∠1=60°,所以∠2=60°.【解析】解:如图,∵平移直线AB至CD,∴AB∥CD,∴∠BMF=∠2,∵∠BMF=∠1=60°,∴∠2=60°.故选:B.7.(4分)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是()A.众数是9.6 B.中位数是9.5C.平均数是9.4 D.方差是0.3【分析】根据方差、中位数、众数及平均数的定义,结合数据进行分析即可.【解析】解:在这组数据中,9.6出现的次数最多,故众数是9.6,故选项A符合题意;把这组数据从小到大排列,排在中间的数是9.6,故中位数是9.6,故选项B不符合题意;平均数是=9.5,故选项C不符合题意;方差是:[2×(9.6﹣9.5)2+(9.2﹣9.5)2+(9.7﹣9.5)2+(9.4﹣9.5)2]=0.032,故选项D不符合题意.故选:A.8.(4分)下列说法错误的是()A.成语“水中捞月”表示的事件是不可能事件B.一元二次方程x2+x+3=0有两个相等的实数根C.任意多边形的外角和等于360°D.三角形三条中线的交点叫作三角形的重心【分析】根据随机事件的定义可以判断A;根据根的判别式可以判断B;根据任意多边形的外角和都是360°可以判断C;根据三角形重心的定义可以判断D.【解析】解:成语“水中捞月”表示的事件是不可能事件,故选项A正确,不符合题意;∵一元二次方程x2+x+3=0,∴Δ=12﹣4×1×3=﹣11<0,∴一元二次方程x2+x+3=0无实数根,故选项B错误,符合题意;任意多边形的外角和等于360°,故选项C正确,不符合题意;三角形三条中线的交点叫作三角形的重心,故选项D正确,不符合题意;故选:B.9.(4分)已知压力F(N)、压强p(Pa)与受力面积S(m2)之间有如下关系式:F=pS.当F为定值时,如图中大致表示压强p与受力面积S之间函数关系的是()A.B.C.D.【分析】根据函数的解析式判断函数的图形即可.【解析】解:∵压力F(N)、压强p(Pa)与受力面积S(m2)之间有如下关系式:F=pS.∴当F为定值时,压强p与受力面积S之间函数关系是反比例函数,故选:D.10.(4分)如图,反比例函数y=(k>0)的图象与过点(﹣1,0)的直线AB相交于A、B两点.已=9,那么点C的坐标为()知点A的坐标为(1,3),点C为x轴上任意一点.如果S△ABCA .(﹣3,0)B .(5,0)C .(﹣3,0)或(5,0)D .(3,0)或(﹣5,0)【分析】利用待定系数法求得两函数的解析式,然后解析式联立成方程组,解方程组求得点B 的坐标,根据S △ACD +S △BCD =S △ABC =9,求得CD 的长度,进而即可求得点C 的坐标.【解析】解:把点A (1,3)代入y =(k >0)得,3=,∴k =3,∴反比例函数为y =,设直线AB 为y =ax +b ,代入点D (﹣1,0),A (1,3)得, 解得,∴直线AB 为y =x +, 解,得或,∴B (﹣2,﹣),∵S △ABC =9,∴S △ACD +S △BCD =,∴CD =4,∴点C 的坐标为(﹣5,0)或(3,0).故选:D .二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上)11.(4分)要使代数式有意义,则x 的取值范围是 x ≥9 .【分析】根据代数式有意义,可得x﹣9≥0,进一步求解即可.【解析】解:∵代数式有意义,∴x﹣9≥0,∴x≥9,故答案为:x≥9.12.(4分)分解因式:2x2﹣4x+2=2(x﹣1)2.【分析】先提取公因数2,再利用完全平方公式进行二次分解.a2±2ab+b2=(a±b)2.【解析】解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.13.(4分)已知关于x的一元二次方程x2+mx﹣2=0的一个根为﹣1,则m的值为﹣1,另一个根为2.【分析】将x=﹣1代入原方程,可得出关于m的一元一次方程,解之即可得出m的值,再结合两根之积等于﹣2,即可求出方程的另一个根.【解析】解:将x=﹣1代入原方程可得1﹣m﹣2=0,解得:m=﹣1,∵方程的两根之积为=﹣2,∴方程的另一个根为﹣2÷(﹣1)=2.故答案为:﹣1,2.14.(4分)定义新运算:(a,b)•(c,d)=ac+bd,其中a,b,c,d为实数.例如:(1,2)•(3,4)=1×3+2×4=11.如果(2x,3)•(3,﹣1)=3,那么x=1.【分析】直接利用运算公式将原式变形,进而计算得出答案.【解析】解:(2x,3)•(3,﹣1)=3,6x﹣3=3,解得:x=1.故答案为:1.15.(4分)如图,点P是正方形ABCD的对角线AC上的一点,PE⊥AD于点E,PE=3.则点P到直线AB的距离为3.【分析】过点P作PF⊥AB于点F,根据正方形的性质易得△AEP为等腰直角三角形,AE=PE=3,再根据有三个角为直角,且邻边相等的四边形为正方形证明四边形AFPE为正方形,以此即可求解.【解析】解:过点P作PF⊥AB于点F,∵四边形ABCD为正方形,∴AB=BC=CD=AD,∠DAB=∠B=∠BCD=∠D=90°,∴∠P AE=45°,∴△AEP为等腰直角三角形,AE=PE=3,∵PE⊥AD,PF⊥AB,∴∠F AE=∠AEP=∠AFP=90°,又∵AE=PE,∴四边形AFPE为正方形,∴AE=PF=3,∴点P到直线AB的距离为3.故答案为:3.16.(4分)在平面直角坐标系中,△AOB为等边三角形,点A的坐标为(1,0).把△A0B按如图所示的方式放置,并将△AOB进行变换:第一次变换将△AOB绕着原点O顺时针旋转60°,同时边长扩大为△AOB边长的2倍,得到△A1OB1;第二次旋转将△A1OB1绕着原点O顺时针旋转60°,同时边长扩大为△A1OB1边长的2倍,得到△A2OB2,….依次类推,得到△A2033OB2033,则△A2023OB2033的边长为22023,点A2023的坐标为(22022,22022).【分析】利用等边三角形的性质,探究规律后,利用规律解决问题.【解析】解:由题意OA=1=20,OA1=2=21,OA2=4=22,OA3=8=23,…OA n=2n,∴△A2023OB2033的边长为22023,∵2023÷6=372…1,∴A2023与A1都在第四象限,坐标为(22022,22022•).故答案为:22023,(22022,22022).三、解答题(本大题共8小题,共86分)17.(8分)计算:|﹣2|+()﹣1﹣+(sin45°﹣1)0﹣(﹣1).【分析】直接利用负整数指数幂的性质以及零指数幂的性质、二次根式的性质、绝对值的性质分别化简,进而得出答案.【解析】解:原式=2+3﹣3+1+1=4.18.(8分)先化简(1+)÷,再从﹣1,0,1,2中选择一个适当的数作为a的值代入求值.【分析】直接利用分式的混合运算法则化简,进而把已知数据代入得出答案.【解析】解:原式=•=•=,当a=1或2时,分式无意义,故当a=﹣1时,原式=﹣,当a=0时,原式=﹣.19.(10分)如图,矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)证明:△BOF≌△DOE;(2)连接BE、DF,证明:四边形EBFD是菱形.【分析】(1)根据矩形的对边平行得到AD∥BC,于是有∠EDO=∠FBO,根据点O是BD的中点得出DO=BO,结合对顶角相等利用ASA可证得△BOF和△DOE全等;(2)由(1)△BOF≌△DOE可得BF=DE,结合DE∥BF,可得四边形EBFD是平行四边形,再根据对角线互相垂直的平行四边形是菱形即可得证.【解析】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠EDO=∠FBO,∵点O是BD的中点,∴DO=BO,又∵∠EOD=∠FOB,∴△BOF≌△DOE(ASA);(2)证明:由(1)已证△BOF≌△DOE,∴BF=DE,∵四边形ABCD是矩形,∴AD∥BC,即DE∥BF,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形EBFD是菱形.20.(10分)为弘扬革命传统精神,清明期间,某校组织学生前往怀化市烈士陵园缅怀革命先烈.大家被革命烈士纪念碑的雄伟壮观震撼,想知道纪念碑的通高CD(碑顶到水平地面的距离),于是师生组成综合实践小组进行测量.他们在地面的A点用测角仪测得碑顶D的仰角为30°,在B点处测得碑顶D的仰角为60°,已知AB=35m,测角仪的高度是1.5m(A、B、C在同一直线上),根据以上数据求烈士纪念碑的通高CD.(≈1.732,结果保留一位小数)【分析】根据题意可得AM=BN=CE=1.5m,AB=MN=35m,∠DEM=90°,∠DNE=60°,∠DME =30°,先利用三角形的外角性质可得∠DMN=∠MDN=30°,从而可得DN=MN=35m,然后在Rt△DNE中,利用锐角三角函数的定义求出DE的长,即可得的答案.【解析】解:由题意得:AM=BN=CE=1.5m,AB=MN=35m,∠DEM=90°,∠DNE=60°,∠DME=30°,∵∠DNE是△DMN的外角,∴∠MND=∠DNE﹣∠DMN=30°,∴∠DMN=∠MDN=30°,∴DN=MN=35m,在Rt△DNE中,DE=DN•sin60°=35×=(m),∴DC=DE+CE=+1.5≈+1.5≈31.8(m).答:烈士纪念碑的通高CD约为31.8m.21.(12分)近年,“青少年视力健康”受到社会的广泛关注.某校综合实践小组为了解该校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力调查.根据调查结果和视力有关标准,绘制了两幅不完整的统计图.请根据图中信息解答下列问题:(1)所抽取的学生人数为200;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数;(3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视”的人数.【分析】(1)由“视力正常人数及其所占百分比可得总人数;(2)用(1)的结论乘15%可得“中度近视”的人数,进而得出“高度近视”的人数,再补全条形统计图;用360°乘“轻度近视”所占比例可得扇形统计图中“轻度近视”对应的扇形的圆心角的度数;(3)用3000乘样本中“轻度近视”所占比例可得答案.【解析】解:(1)所抽取的学生人数为:90÷45%=200.故答案为:200;(2)样本中“中度近视”的人数为:200×15%=30(人),“高度近视”的人数为:200﹣90﹣70﹣30=10(人),补全条形统计图如下:扇形统计图中“轻度近视”对应的扇形的圆心角的度数为:360°×=126°;(3)3000×=1050(人),答:估计该校学生中近视程度为“轻度近视”的人数约1050人.22.(12分)如图,AB是⊙O的直径,点P是⊙O外一点,P A与⊙O相切于点A,点C为⊙O上的一点.连接PC、AC、OC,且PC=P A.(1)求证:PC为⊙O的切线;(2)延长PC与AB的延长线交于点D,求证:PD•OC=P A•OD;(3)若∠CAB=30°,OD=8,求阴影部分的面积.【分析】(1)先由切线的性质得∠P AO=90°,然后依据“SSS”判定△POC和△POA全等,从而得∠PCO=∠P AO=90°,据此即可得出结论;(2)由∠DCO=∠DAP=90°,∠ODC=∠PDA可判定△ODC和△PDA相似,进而根据相似三角形的性质可得出结论;(3)连接BC,过点C作CE⊥OB于点E,先证△OCB为等边三角形,再设OE=a,则OA=OB =OC=2a,,在Rt△CDE和在Rt△DOC中,由勾股定理得CD2=CE2+DE2=OD2﹣OC2,由此可求出a的值,进而得⊙O的半径为4,然后根据S阴影=S△DOC﹣S扇形BOC即可得出答案.【解析】(1)证明:∵AB为⊙O的直径,P A为⊙O的切线,∴P A⊥OA,即:∠P AO=90°,∵点C在⊙O上,∴OC=OA,在△POC和△POA中,,∴△POC≌△POA(SSS),∴∠PCO=∠P AO=90°,即:PC⊥OC,又OC为⊙O的半径,∴PC为⊙O的切线.(2)证明:由(1)可知:OC⊥PD,∴∠DCO=∠DAP=90°,又∠ODC=∠PDA,∴△ODC∽△PDA,∴,即:PD•OC=P A•OD.(3)解:连接BC,过点C作CE⊥OB于点E,∵∠CAB=30°,∴∠COB=60°,又OC=OB,∴△OCB为等边三角形,∵CE⊥OB,∴OE=BE,设OE=a,显然a≠0,则OA=OB=OC=2a,在Rt△OCE中,OE=a,OC=2a,由勾股定理得:,∵OD=8,∴DE=OD﹣OE=8﹣a,在Rt△CDE中,,DE=8﹣a,由勾股定理得:,在Rt△DOC中,OC=2a,OD=8,由勾股定理得:CD2=OD2﹣OC2=82﹣(2a)2,,整理得:a2﹣2a=0,∵a≠0,∴a=2,∴OC=2a=4,,∴,又∵,∴.23.(12分)某中学组织学生研学,原计划租用可坐乘客45人的A种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B种客车,则可少租6辆,且恰好坐满.(1)求原计划租用A种客车多少辆?这次研学去了多少人?(2)若该校计划租用A、B两种客车共25辆,要求B种客车不超过7辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若A种客车租金为每辆220元,B种客车租金每辆300元,应该怎样租车才最合算?【分析】(1)设原计划租用A种客车x辆,则这次研学去了(45x+30)人,根据这次去研学的人数不变,可得出关于x的一元一次方程,解之即可得出结论;(2)设租用B种客车y辆,则租用A种客车(25﹣y)辆,根据“租用的25辆客车可乘坐人数不少于1200人,且租用的B种客车不超过7辆”,可得出关于y的一元一次不等式组,解之可得出y 的取值范围,再结合y为正整数,即可得出各租车方案;(3)利用总租金=每辆A种客车的租金×租用A种客车的辆数+每辆B种客车的租金×租用B种客车的辆数,可分别求出各选择各方案所需总租金,比较后,即可得出结论.【解析】解:(1)设原计划租用A种客车x辆,则这次研学去了(45x+30)人,根据题意得:45x+30=60(x﹣6),解得:x=26,∴45x+30=45×26+30=1200.答:原计划租用A种客车26辆,这次研学去了1200人;(2)设租用B种客车y辆,则租用A种客车(25﹣y)辆,根据题意得:,解得:5≤y≤7,又∵y为正整数,∴y可以为5,6,7,∴该学校共有3种租车方案,方案1:租用5辆B种客车,20辆A种客车;方案2:租用6辆B种客车,19辆A种客车;方案3:租用7辆B种客车,18辆A种客车;(3)选择方案1的总租金为300×5+220×20=5900(元);选择方案2的总租金为300×6+220×19=5980(元);选择方案3的总租金为300×7+220×18=6060(元).∵5900<5980<6060,∴租用5辆B种客车,20辆A种客车最合算.24.(14分)如图一所示,在平面直角坐标系中,抛物线y=ax2+bx﹣8与x轴交于A(﹣4,0)、B(2,0)两点,与y轴交于点C.(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接P A、PC,求△P AC面积的最大值及此时点P的坐标;(3)设直线l1:y=kx+k﹣交抛物线于点M、N,求证:无论k为何值,平行于x轴的直线l2:y=﹣上总存在一点E,使得∠MEN为直角.【分析】(1)运用待定系数法,将A(﹣4,0)、B(2,0)代入y=ax2+bx﹣8,即可求得抛物线的函数表达式,再利用配方法或顶点坐标公式即可求得抛物线的顶点坐标;(2)运用待定系数法可得直线AC的解析式为y=﹣2x﹣8,设P(t,t2+2t﹣8),过点P作PF∥y轴,交AC于点F,则F(t,﹣2t﹣8),进而可得S△P AC =S△P AF+S△PCF=2(﹣t2﹣4t)=﹣2(t+2)2+8,运用二次函数的性质即可求得答案;(3)由直线l1:y=kx+k﹣交抛物线于点M、N,可得x2+(2﹣k)x+﹣k=0,利用根与系数关系可得x M+x N=k﹣2,x M x N=﹣k,利用两点间距离公式可得MN2=(x M﹣x N)2+(y M﹣y N)2=(1+k2)2,设MN的中点为O′,过点O′作O′E⊥直线l2,垂足为E,O′E=MN,以MN为直径的⊙O′一定经过点E,所以∠MEN=90°,即证得结论.【解析】(1)解:∵抛物线y=ax2+bx﹣8与x轴交于A(﹣4,0)、B(2,0)两点,∴,解得:,∴抛物线的函数表达式为y=x2+2x﹣8,∵y=x2+2x﹣8=(x+1)2﹣9,∴抛物线的顶点坐标为(﹣1,﹣9);(2)解:∵抛物线y=x2+2x﹣8与y轴交于点C,∴C(0,﹣8),设直线AC的解析式为y=mx+n,则,解得:,∴直线AC的解析式为y=﹣2x﹣8,设P(t,t2+2t﹣8),过点P作PF∥y轴,交AC于点F,如图,则F(t,﹣2t﹣8),∴PF=﹣2t﹣8﹣(t2+2t﹣8)=﹣t2﹣4t,∴S△P AC =S△P AF+S△PCF=PF•(t+4)+PF•(﹣t)=2PF=2(﹣t2﹣4t)=﹣2(t+2)2+8,∵﹣2<0,∴当t=﹣2时,S△P AC的最大值为8,此时点P(﹣2,﹣8);(3)证明:∵直线l1:y=kx+k﹣交抛物线于点M、N,∴x2+2x﹣8=kx+k﹣,整理得:x2+(2﹣k)x+﹣k=0,∴x M+x N=k﹣2,x M x N=﹣k,∵y M=kx M+k﹣,y N=kx N+k﹣,∴y M﹣y N=k(x M﹣x N),∴MN2=(x M﹣x N)2+(y M﹣y N)2=(1+k2)(x M﹣x N)2=(1+k2)[(x M+x N)2﹣4x M x N]=(1+k2)[(k﹣2)2﹣4(﹣k)]=(1+k2)2,∵设MN的中点为O′,∴O′(,k2﹣),过点O′作O′E⊥直线l2:y=﹣,垂足为E,如图,∴E(,﹣),∴O′E=k2﹣﹣(﹣)=(1+k2),∴O′E=MN,∴以MN为直径的⊙O′一定经过点E,∴∠MEN=90°,∴在直线l2:y=﹣上总存在一点E,使得∠MEN为直角.。
湖南省怀化市中考化学试卷及答案
湖南省怀化市中考化学试卷及答案(满分l 00分,考题时间90分钟>可能用到的相对原子质量:H:1 C:120:16Cl:35.5Ca:40一、我能选择(本题共20小题,每小题只有一个正确答案,每小题2分,共40分>.1.下列物质变化属于化学变化的是 ( >A.纸张燃烧 B.瓷器破碎 C.石蜡熔化 D.滴水成冰2.厨房中的下列物质能形成水溶液的是 ( >A.面粉 B.食用油 C.奶粉 D.白糖3.下列实验基本操作不正确的是 ( >4.下列物质属于混合物的是 ( >A.蒸馏水 B.铁粉 C.空气 D.氧化铝5.“酒香不怕巷子深",这句俗语主要说明了 ( >A.分子的质量和体积很小 B.分子是可以分成原子的C.分子之间有间隔 D.分子是不断运动的6.通过测定人体内或排出的液体的pH,可以了解人体的健康状况。
已知人体内的一些液体的正常pH范围如下表所示:物质血浆胰液胃液唾液pH 7.35~7.45 7.5~8.O 0.9~1.5 6.6~7.1上述四种物质中碱性最强的是 ( >A.血浆 B.胃液 C.胰液 D.唾液7.下列原子结构示意图中表示稀有气体原子的是 ( >8.世博会期间的一次性餐具、一次性杯子、托盘、包装盒是用生物材料——“玉M塑料"制成,展会上使用的路牌、胸卡、磁卡等也是由源于玉M的聚乳酸材料制成,彰显了绿色理念。
这样做可以有效减少( >M6H0UtX149A.白色污染 B.臭氧层空洞 C.温室效应 D.酸雨9.小杨同学发现他家的禾苗明显比别人家的矮小瘦弱,叶片发黄,有的叶脉呈淡棕色,通过化学学习可知需要施用氮肥。
你认为应该施加下列哪种化肥 ( >M6H0UtX149A.CO(NH2>2 B.KCl C.Ca(H2 PO4>2 D.K2SO4 10.下图四位同学正在讨论某一个化学方程式表示的意义,他们所描述的化学方程式是 ( >1.是氧化反应2.各物质的分子个数比为l:3:2:33.反应在点燃条件下进行4.各物质的质量比为23:48:44:27A.2CO+O22CO2 B.S+O2SO2C.C2H50H+3O22CO2+3H2O D.CH4+2O2CO2+2H2O11.今年开始,我市初中毕业会考需要填涂答题卡,进行网上阅卷。
精品解析:2022年湖南省怀化市中考语文真题(解析版)
【答案】①. xiù ②.遵③.骛④.裁
【解析】
【详解】星宿(xiù):天文学术语,寓指日、月、五星栖宿的场所。
遵循:遵照、遵守、遵从。
心无旁骛:心中没有另外的追求。形容心思集中,专心致志。注意“骛”不要写成“鹜”。
别出心裁:表示与众不同的新观念或办法。用来形容诗文、美术、建筑等的构思设想独具一格,与众不同。
5.下列有关文学与文化常识表述正确的一项是
A. 《资治通鉴》是北宋司马光主持编纂的一部纪传体通史,记载了从战国到五代共1362年间的史事。
B. 春节贴春联、拜年,端午节赛龙舟、挂艾草,重阳节登高、喝雄黄酒,这些都是传统节日的习俗。
C. 古代文人喜欢以“居士”取别号。如白居易号“香山居士”,李白号“青莲居士”,苏轼号“东坡居士”。
2022年怀化市初中学业水平考试试卷
语文
温馨提示:
(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为150分。
(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上。
(3)请你在答题卡上作答,答在本试题卷上无效。
一、语言积累与运用(41分,选择题每小题3分)
1.请给下列文段中加点的字注音或根据拼音写汉字。
【解析】
【详解】默写题作答时,一要透彻理解诗文内容;二要认真审题,找出符合题意的诗文句子;三是答题内容要准确,做到不添字、不漏字、不写错字。本题中注意“窈窕、羹、襟、惟、蜡炬、沧”等字的正确书写。
9.综合性学习
【材料一】
【材料二】
【海外网2月21日电】2月20日,北京冬奥会正式闭幕,这届冬奥会为世界留下了独具特色的中国记忆,收获了众多好评,各国运动员持续发文为北京冬奥会点赞。“感谢、祝福”成了高频词。
【中考真题】2022年湖南省怀化市中考英语试卷(附答案)
2022年湖南省怀化市中考英语真题学校:___________姓名:___________班级:___________考号:___________一、单项选择1.As we know, Singapore is _______ Asian country.A.a B.an C.the2.The air in Huaihua is _______ than before.A.good B.better C.best3.I want to buy something special for my grandmother, _______ her birthday is coming. A.because B.although C.so4.The teacher told Jack _______ off the light when he left the classroom.A.turn B.turning C.to turn5.—Would you like to go to the history museum with me?—_______.A.Sure, I’d love to B.Yes, I do C.That’s right 6.Mingming will have a class meeting _______ 3:30 this afternoon.A.on B.in C.at7.We _______ each other since I came to Changsha, but we often send emails. A.haven’t seen B.didn’t see C.don’t see 8.—Whose English book is this?—It _______ be Lily’s, but I’m not sure.A.might B.can’t C.must9.Tea _______ by accident about 5000 years ago.A.invented B.was invented C.is invented 10.—Do you know _______?—She is a teacher.A.What is Linda’s job B.What Linda’s job is C.What was Linda’s job 二、完形填空阅读下面的短文,从每题所给的A、B、C三个选项中选出可以填入空白处的最佳选项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(C)1.37×103千米(D)1.37×102千米
2.下列运算中,结果正确的是( )
(A) (B) (C) (D)
3.不等式 < 的正整数解有( )
(A)1个(B)2个(C)3个(D)4个
4.方程 的解是( )
(A) (B) (C) (D) 或
5.如图1,是张老师晚上出门散步时离家的距离 与时间 之间的函数图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( )
(3)设(2)中的抛物线交 轴于D、E两点,在抛物线上是否存在点P,使得 ?若存在,请求出点P的坐标;若不存在,请说明理由.
2008年怀化市初中毕业学业考试试卷参考答案及评分标准
数学
一、选择题(每小题2
3
4
5
6
7
8
9
10
答案
A
B
C
B
D
B
A
D
A
B
二、填空题(每小题2分,共20分)
(1)求出 两点的坐标;
(2)根据图象求使正比例函数值大于反比例函数值的 的范围;
24.(本题满分7分)
如图10,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.
求证:(1) ;
(2)
25.(本题满分7分)
如图11,已知△ 的面积为3,且AB=AC,现将△ 沿CA方向平移CA长度得到△ .
15.如图5,△ 内接于⊙O,点 是 上任意一点(不与 重合), 的取值范围是.
16.已知△ 中, ,3cosB=2,AC= ,
则AB=.
17.师生做游戏,杨老师要随机将2名男生和2
名女生排队,两名女生排在一起的概率是.
18.如图6,在平行四边形ABCD中,
DB=DC、 ,CE BD于E,
则 .
19.某厂接到为汶川地震灾区赶制无底帐篷的任
假设抛物线上存在点 .
当 故满足条件的存在.它们是 .10分
10.设反比例函数 中, 随 的增大而增大,则一次函数 的图象不经过( )
(A)第一象限(B)第二象限(C)第三象限(D)第四象限
得分
评卷人
复评人
二、填空题(每小题2分,共20分)
11.分解因式: .
12.方程组 的解是___.
13.已知数据2,3,4,5,6, 的平均数是4,则 的值是.
14.如图4,直线 被直线 所截,若 , ,则 的度数等于.
6.如图2,AB//CD, ,
的度数是( )
(A) (B) (C) (D)
7.如图3,是小玲在5月11日“母亲节”送给她妈妈的礼盒,图中所示礼盒的主视图是( )
8.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是( )
9.随机掷一枚质地均匀的硬币两次,落地后至多有一次正面朝下的概率为( )
(A) (B) (C) (D)
(2)根据图象知,当 或 时,正比例函数值大于反比例函数值7分
24.证明:(1) 四边形 和四边形 都是正方形
3分
4分
(2)由(1)得
7分
∴ AMN∽ CDN6分
25解:(1)由平移的性质得
.3分
(2) .证明如下:由(1)知四边形 为平行四边形
5分
27.解:(1)因为租用甲种汽车为 辆,则租用乙种汽车 辆.
21.(本题满分7分)
先化简,再求值:
22.(本题满分7分)
袋中装有红、黄、绿三种颜色的球若干个,每个球只有颜色不同.现从中任意摸出一个球,得到红球的概率为 ,得到黄球的概率为 .已知绿球有3个,问袋中原有红球、黄球各多少个?
23.(本题满分7分)
如图9,已知正比例函数 与反比例函数 的图象交于 两点.
(1)设租用甲种汽车 辆,请你设计所有可能的租车方案;
(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.
28.(本题满分10分)
如图13,在平面直角坐标系中,圆M经过原点O,且与 轴、 轴分别相交于 两点.
(1)求出直线AB的函数解析式;
(2)若有一抛物线的对称轴平行于 轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;
题号
11
12
13
14
15
16
17
18
19
20
答案
4
<∠POC<
6
203670
16
三、解答题
21.解: 2分
5分
7分
22.解:摸到绿球的概率为: 1分
则袋中原有三种球共 (个)3分
所以袋中原有红球 (个)5分
袋中原有黄球 (个)7分
23.解:(1)解方程组 得, 2分
所以A、B两点的坐标分别为:A(1,1)、B(-1,-1)4分
务,帐篷表面由防水隔热的环保面料制成.样式如图7所示,则赶制这样的帐篷3000顶,大约需要用防水
隔热的环保面料(拼接处面料不计)m2.
(参考数据: )
20.某市出租车公司收费标准如图8所示,如果小明乘此出租
车最远能到达13千米处,那末他最多只有元钱.
得分
评卷人
复评人
三.解答题(本大题8个小题,满分60分)
由题意,得 2分
解之,得 3分
即共有两种租车方案:
第一种是租用甲种汽车7辆,乙种汽车1辆;
第二种是全部租用甲种汽车8辆5分
(2)第一种租车方案的费用为 6分
第二种租车方案的费用为 7分
所以第一种租车方案最省钱8分
28.解:(1)设AB的函数表达式为
∵ ∴ ∴
∴直线AB的函数表达式为 .3分
(2)设抛物线的对称轴与⊙M相交于一点,依题意知这一点就是抛物线的顶点C。又设对称轴与 轴相交于点N,在直角三角形AOB中,
(1)求四边形CEFB的面积;
(2)试判断AF与BE的位置关系,并说明理由;
(3)若 ,求AC的长.
26.(本题满分7分)
某校教学楼后面紧邻一个土坡,坡上面是一块平地,如图12所示, ,斜坡 长 ,坡度 .为了防止山体滑坡,保障安全,学校决定对该土坡进行改造,地质人员勘测,当坡角不超过 时,可确保山体不滑坡.
2008年怀化市初中毕业学业考试试卷
数学
题号
一
二
三
总分
合分人
21
22
23
24
25
26
27
28
得分
亲爱的同学,请你仔细审题,细心答题,相信你一定会有出色的表现.本学科试题共三道大题,28道小题,满分100分,考试时量120分钟.
得分
评卷人
复评人
一、选择题(每小题2分,共20分)
1.北京2008年第29届奥运会火炬接力活动历时130天,传递总里程13.7万千米,传递总里程用科学记数法表示为()
因为⊙M经过O、A、B三点,且 ⊙M的直径,∴半径MA=5,∴N为AO的中点AN=NO=4,∴MN=3∴CN=MC-MN=5-3=2,∴C点的坐标为(-4,2).
设所求的抛物线为
则
∴所求抛物线为 7分
(3)令 得D、E两点的坐标为D(-6,0)、E(-2,0),所以DE=4.
又AC= 直角三角形的面积
(1)求改造前坡B到地面的垂直距离 的长;
(2)为确保安全,学校计划改造时保持坡脚 不动,坡顶 沿 削进到 处,问 至少是多少米?
27.(本题满分8分)
5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.