(完整版)小学数学应用题分类题型

合集下载

小学四年级数学下册应用题解决问题题型分类

小学四年级数学下册应用题解决问题题型分类

(小学四年级数学应用题分类大全)行程问题:1、卡车从南方出发,沿高速公路开往杭州。

如果每小时行90千米,已经行了2小时,此时距终点还有20千米,南京到杭州的距离是多少千米呢?2、甲、乙两地相距150千米。

一辆汽车从甲地开往乙地,行了3小时后,离乙地还有15千米。

这辆汽车平均每小时行多少千米?3、一列火车,提速前平均每小时行驶71千米,从秦皇岛到邯郸用12小时,提速后平均每小时行驶95千米,提速后从秦皇岛开往邯郸大约需要几小时?4、一辆从北京到青岛的长途客车,中途经过天津和济南。

早晨6:30从北京发车,平均每小时行驶85千米,大约何时可以到达青岛?北京到天津137km;天津到济南360km;济南到青岛393km。

5、王叔叔从县城开车去王庄送化肥。

去的时候每小时行40千米,用了3小时,返回时只用了2小时。

返回时平均每小时行多少千米?6、一辆旅游车在平原和山区各行了2小时,最后到达山顶。

已知旅游车在平原每小时行50千米,山区每小时行30千米。

这段路程有多长?7、甲、乙两车同时从A地开往B地。

甲车每小时行78千米,乙车每小时行66千米,8小时两车相距多少千米?8、甲、乙两地相距6千米,某人从甲地步行去乙地。

前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。

问他走后一半路程用了多少分钟?栽树、排队问题1、校门口一条长180米的林荫路两侧各栽了一行杨树,起点和终点都栽。

共栽了20棵,如果相邻两棵树之间的距离相等,你知道相邻两棵树之间的距离吗?2、有24名小朋友在操场上做游戏,小朋友们围成一个正方形,每边人数相等,每边有几名小朋友?3、同学们排队做操,如果每行站24人,需要站36行;如果每行站32人,需要站多少行?4、在一条长为180米的小路一旁植树,每20米栽一棵。

一共需要栽多少棵树?5、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。

一共需要多少棵树苗?6、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。

小学数学典型应用题归类总结(30种)

小学数学典型应用题归类总结(30种)

小学数学典型应题归类总结(30种)1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2、 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送10吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

2 、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

小学数学六年级应用题分类总复习题型整理汇总

小学数学六年级应用题分类总复习题型整理汇总

小学数学应用题总复习简单应用题 (1)复合应用题 ...................................................................................................................2b5E2RGbCAP列方程解应用题 ........................................................................................................... 4p1EanqFDPw用比例知识解应用题 ..................................................................................................... 5DXDiTa9E3d分数应用题基本题型 .................................................................................................... 7RTCrpUDGiT基本练习 ....................................................................................................................... 95PCzVD7HxA对比、变式练习 ............................................................................................................. 11jLBHrnAILg简单应用题一、各种数量关系。

简单应用题所涉及的数量关系除了和、差、积、商以外,还包括以下常见的数量关系:收入-支出=结余单价×数量=总价速度×时间=路程单产量×数量=总产量工效×时间=工作总量本金×利率×时间=利息二、基本训练A组1、填空。

小学六年级数学应用题分类训练60题(附答案)

小学六年级数学应用题分类训练60题(附答案)

小学六年级数学应用题分类训练60题一、分数的应用题1、一本书,看了它的 23,还剩下60,这本书有多少页? 60÷23==90(页) 2、一本书,看了它的23又20页,还剩下60,这本书有多少页? (60+20)÷(1--23)=240(页) 3、一条公路,修了全长的15,修了22千米,这条公路一共有多少千米? 22÷15=110(千米) 4、一条公路,修了全长的15,还剩下22千米,这条公路一共有多少千米? 22÷(1-15)=27.5(千米) 5、六(2)班有学生44 人,男生比女生多15,六(2)班男生、女生各有多少人?44÷(1+1+15)=20(人) 20+5=25(人)6、六(2)班有学生38人,男生比女生少10%,六(2)班男生、女生各有多少人?38÷(1+1-10%)=20(人) 20×(1-10%)=18(人)7、某仓库储存一批化肥,第一次取出总数的14 ,第二次取出总数的13少10袋,这时仓库里还剩60袋,仓库里一共有化肥多少袋?解:设材料一共有化肥x 袋x - 14 x -(13x -10)=60 解得:x=1208、甲乙两地相距220千米,一列客车和一列货车同时从两地相对开出,货车每小时行60千米,比客车快15,几小时后,两车相遇? 60÷(1+15)=50(km/h ) 220÷(60+50)= 2(小时) 9、一件上衣和一条裤子贵一共200元,其中裤子的价格是上衣的23,一条裤子多少元?解:设一件上衣为x 元x +23x = 120 解得:x=12010、一件上衣比一条裤子贵60元,其中裤子的价格是上衣的23,一条裤子多少元?解:设一条裤子为x 元(x +60)×23= x 解得:x=120二、比的应用题1、一个长方形的周长是40厘米 ,长与宽的比是 3:2,这个长方形的面积是多少平方厘米?40÷2÷(3+2)=4(cm) (4×3)×(4×2)=96(cm 2)2、用一根 48厘米长的铁丝做成一个长方体模型 ,长、宽、高的比是 3∶2 ∶1 ,这个长方体的体积是多少?48÷4÷(3+2+1)=2(cm) (2×3)×(2×2)×(2×1)=48(cm 3)3、 一个长方体高为2分米 ,长与宽的比是 3 ∶2 ,棱长总和为 48分米 ,这个长方体的体积是多少?( 48-2×4) ÷4÷(3+2)=2(cm)(2×3)×(2×2)×2=48(cm 3)4、某班男女人数比是3:2,男生比女生多6人,这个班男女学生各多少人? 6÷[(3-2)÷(3+2)]=30(人)30÷(2+3)×3=18(人) 30-18=12(人)5、两桶油,第一桶油净重12千克,从第二桶倒出20%后,第一桶跟第二桶油的重量比是4:3,求原来两桶油果共有多少千克?解:设原来两桶油共有x 千克12:[(x -12)×(1-20%)]=4:3 解得:x=225、一本故事书,第一天看了24页,第二天看了全书的19,剩下页数跟看了 的页数跟的比是4:1,这本书共有多少页?解:设这本书共有x 页( 19 x +24) :[ x -( 19x +24)]=1:4 解得:x=2706、基建队配制一种混泥土,水泥、砂石和河沙的比是2:3:5,如果要配制这种混泥土200立方米,需要水泥砂石河沙各多少立方米?200(2+3+5)=40(立方米)水泥:40×2=80(立方米) 砂石:40×3=120(立方米) 河沙:40×5=200(立方米)7、学校买回260 本故事书,按学生比例分给六年级三个班,已知六(1)班40 人,六(2)班44人,六(3)46人,每个班分得故事书多少本? 260÷(40+44+46)=2(本) 40×2=80(本)44×2=88(本) 46×2=92(本)8、爸爸和儿子一共55岁,已知爸爸跟儿子的年龄比是4:1,问爸爸和儿子个多少岁?55÷(4+1)=11(岁)爸: 11×4=44(岁)儿: 11×1=11(岁)9、五年级和六年级一共有学生160人,其中五、六年级人数的比是3︰5五、六年级同学各有学生多少人?160÷(3+5)=20(人)五年级同学:20×3=60(人)六年级同学:20×5=100(人)10、一个三角形的三个内角的比是1:2:3,这个三角形的三个内角的度数分别是多少?1800÷(1+2+3)=300 1×300=3002×300=600 3×300=900三、百分数应用题1、现有含盐率10%的盐水40千克,加入多少千克盐后,才能制成含盐率20%的盐水?解:设加入x千克盐水。

小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳汇总30种题型1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? 3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式 3.2×791÷2.8=904(套)答:现在可以做904套。

3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。

小学阶段所有数学应用题分类专项训练(附答案)

小学阶段所有数学应用题分类专项训练(附答案)

小学阶段所有数学应用题分类专项训练(附答案)简单应用题所涉及的数量关系除了和、差、积、商以外,还包括以下常见的数量关系:单价×数量=总价速度×时间=路程收入-支出=结余单产量×数量=总产量工效×时间=工作总量简单应用题(一步)1 求总数小明有8支铅笔,小华有4支笔,两人一共有几支铅笔?2 求剩余学校有11个皮球,借走了9个,还剩几个?3 求两数相差多少有12只白兔,7只黑兔,白兔比黑兔多几只?4 求比一个数多几的数黄花有5朵,红花比黄花多3朵,红花有几朵?5 求比一个数少几的数学校买红黑水8瓶,买的蓝黑水比红黑水少3瓶。

买蓝黑水多少瓶?6 求几个相同加数的和一辆小汽车有4个轮子,6辆小汽车一共有多少个轮子?7 把一个数平均分成几份 15只皮球,平均分给3个班。

每班分得几只?8 求一个数包含几个另一个数 24个同学做旗子游戏,每班分给3把,够分给几个班?9 求一个数的几倍某车间有女工28人,男工人数是女工的4倍。

男工有多少人?10 求一倍数饲养小组有母鸡12只,恰好是公鸡的3倍,公鸡有几只?应用题(两步)求总数学校里原有7棵梨树,12棵杏树,又栽了15棵桃树。

现在有多少棵果树?求剩余小小图书室有图书85本,其中,有连环画25本,画报有15本,剩下的是故事书。

故事书有多少本?求比-多小红在期中考试中,语文得了81分,政治比语文多5分,数学比政治又多6分,数学得多少分?求比-少食堂一月份吃大米45袋,二月份比一月份少吃3袋,三月份比二月份少吃2袋。

三月份吃大米多少袋?求总数、求剩余同学们做了16只红风车,20只花风车。

送给幼儿园18只,还剩多少只?求总数、求两数相差多少老师和同学打扫卫生,其中男同学15人,女同学12人,老师7人。

同学比老师多几人?求总数、求比-多一些小孩和大人在游泳,其中有男孩20人,女孩10人,大人比小孩多25人。

大人有多少人?求总数、求比-少一只羊重30千克,另一只羊重25千克,一头猪的重量比这两只羊的总重量轻8千克。

小学数学必考30个类型应用题及解答

小学数学必考30个类型应用题及解答

小学数学必考30个类型应用题及解答工程问题4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?解:由题意可知1/甲+1/乙+1/甲+1/乙+ (1)甲=11/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1 (1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2 ,又因为1/乙=1/17所以1/甲=2/17,甲等于17÷2=8.5天8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?答案为6天解:由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期方程方法:[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1解得x=69.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?答案为40分钟。

解:设停电了x分钟,1-1/120*x=(1-1/60*x)*2解得x=40三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

新人教版六年级数学上册应用题分类题型

新人教版六年级数学上册应用题分类题型

新人教版六年级数学上册应用题分类题型六年级上册数学应用题分类题型类型一:求一个数是另一个数的几分之几或百分之几的应用题解题规律:一个数除以另一个数等于几分之几(百分之几)1)求甲比乙多几分之几或百分之几的问题解题规律:甲-乙)除以乙或甲除以乙-12)求甲比乙少几分之几或百分之几的问题解题规律:甲-乙)除以乙或1-甲除以乙例题1:商店有一种衣服,原价40元,降价后每件只卖34元,便宜了百分之几?类型二:求一个数的几分之几是多少的问题的解题规律:一个数(单位“1”)乘以几分之几等于部分量(与几分之几相对应的量)例题2:XXX五月份制造机床108台,六月份比五月份多制造9/4台,六月份一共制造了多少台机床?例题3:一套衣服裤子单价是125元,上衣的价钱比裤子贵5/21,这套衣服一共多少钱?例题4:工地运来水泥32吨,第一天用去全部的1/9,第二天比第一天多用去54吨,第二天用去多少吨?类型三:已知一个数的几分之几是多少,求这个数。

此类问题的解题规律为:部分量除以分率等于一个数(单位“1”)。

部分量要与分率相对应。

例题5:打一份稿件,第一天打了7/12,第二天打的和第一天同样多,现在还剩39页。

这份稿件共有多少页?例题6:春蕾书店新到一批儿童读物,第一天卖出比总数的2/9,少100本,这样剩下1500本,新到的这批儿童读物总共是多少本?例题7:某校有女生160人,正好占男生人数的2/9,全校有多少人?类型四:比与分数的应用题例题8:林林读一本故事书,已读的页数与余未读的页数之比是1:5,如果再读30页,则已读的页数与余未读的页数之比是3:5.这本书一共有多少页?例题9:希望小学美术课外小组男生比女生少18人,男女生人数的比是3:5.美术课外小组里男女各有多少人?例题10:甲乙两车同时从AB两地相对开出,经过2小时,甲车已行的路程与全程的比是2:5,乙车行了全程的3/4,这时两车还相距96千米,AB两地相距多少千米?类型五:有关百分率的应用题(常见的百分率有哪些)例题11:六年级一班今天出勤48人,缺勤2人,出勤率是多少?去年,青和村种植了96户油菜,收获了千克油菜籽。

人教版四年级数学上册:全册13大重点应用题类型整理大全,提升必练

人教版四年级数学上册:全册13大重点应用题类型整理大全,提升必练

四年级数学上册:全册13大重点应用题类型整理大全,提升必练【解释】:第一句:1.归一问题、2.归总问题、3.连乘问题、4.连除问题;第二句:5.路程问题、6.面积问题、7.够不够问题;第三句:8.和差问题、9.倍数问题、10.份数问题;第四句:11.价格问题、12.优惠类问题、13.求角度数问题;一、归一问题:1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?二、归总问题:1、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?2、小华每天读24页书,12天读完了《红岩》一书。

小明每天读36页书,几天可以读完《红岩》?三、连乘问题:1、小东每天练2张毛笔字,每张上有16个字,小东一星期(7天)写了多少个字?2、一个方队,共8列,小明在第3列,小明前面有5个人,后面有6个人,这个方队共有多少人?3、一个方队有8列,小明在第6列,从前往后数,小明是第5个人,从后往前数,小明是第6个人,这个方队共有多少人?4、一学校为四川灾区捐款,学校共有6个年级,每个年级有3个班,平均每班捐款123元,他们一共捐了多少钱?5、每个书架有3层,每层可放书36本,学校有20个这样的书架。

一共可放书多少本?6、1只青蛙1天吃害虫98条,按这样计算,20只青蛙一个月(30天)能捉多少条害虫?7、三年级一班有38个同学,举行接力赛,每人跑2圈。

(操场长30米,宽20米)这个班的学生大约一共跑了多少米8、一本小说大约50页,每页大约有25行字,每行大约30个字,这本书大概有多少字?9、铅笔每盒有24支,每支9角,小明想买2盒,小明要付多少元钱?10、新兴小区一幢楼有16层,共3个单元,每个单元每层住2户,这幢楼住多少户人家?11、六一节,老师准备给每个同学准备2个香蕉,1个苹果,全班有36人,一共要准备多少个水果?12、每盒有16个鸡蛋,每箱有4盒,6箱共需要多少个鸡蛋?四、连除问题:1、4台织布机一周织布1568米,平均每台织布机每天织布多少米?2、360人排成4个方阵,每个方阵有5列,平均每列站多少人?3、服装店一天工卖出3箱衣服,每箱6件,一共收入3600元,平均每件衣服多少元?4、7头猪一星期喂245千克食料,平均1头猪1天喂多少食料?5、1盒月饼有2层,每层有4个,一个工厂一天生产了560个月饼,这个工厂一天生产了几盒月饼?6、奶奶家养了59只母鸡,125只公鸡,把这些鸡关在8只鸡笼里,平均每只鸡笼里关几只鸡?7、森林里有420张桌子,想摆成7个大组,每个大组摆6列,平均每列有几张桌子?8、128个梨,每盒装8个,2盒装一箱。

三年级数学常见应用题归类

三年级数学常见应用题归类

三年级数学常见应用题归类数学是逻辑思考和问题解决能力培养的重要学科。

对于三年级的学生来说,掌握一些基础的数学应用题类型对于他们日后的数学学习至关重要。

以下是三年级数学应用题的一些常见类型及其解题思路:1. 加法和减法问题- 类型:购物时的总价计算,物品数量的增减等。

- 解题思路:理解加法和减法的基本含义,将问题转化为数学表达式,然后进行计算。

2. 乘法和除法问题- 类型:分配物品到多个组,计算平均数,求几个相同加数的和等。

- 解题思路:识别问题中的乘法或除法关系,使用乘法表和除法规则进行计算。

3. 时间问题- 类型:计算时间间隔,时钟的读数,日历的日期计算等。

- 解题思路:了解时间单位(时、分、秒)之间的转换关系,使用加减法进行时间的计算。

4. 长度和距离问题- 类型:测量物体的长度,计算两地之间的距离等。

- 解题思路:掌握长度单位(米、厘米等)的换算,使用加减法或乘除法进行长度的计算。

5. 货币问题- 类型:货币的兑换,购物找零,计算总花费等。

- 解题思路:理解不同面额货币之间的关系,使用加减法进行货币的计算。

6. 比例和分数问题- 类型:分配比例,计算分数,理解部分与整体的关系等。

- 解题思路:理解比例和分数的基本概念,使用乘除法进行比例的计算。

7. 面积问题- 类型:计算图形的面积,如正方形、长方形等。

- 解题思路:掌握不同图形面积的计算公式,使用乘法进行面积的计算。

8. 体积和容量问题- 类型:计算容器的容量,物体的体积等。

- 解题思路:了解体积和容量单位的换算,使用乘法进行体积和容量的计算。

9. 速度和路程问题- 类型:计算速度,路程,时间三者之间的关系。

- 解题思路:使用速度=路程/时间的公式,进行速度和路程的计算。

10. 几何图形问题- 类型:识别和计算基本几何图形的属性,如边长、角度等。

- 解题思路:了解基本几何图形的性质,使用相关的数学公式进行计算。

11. 逻辑推理问题- 类型:根据已知条件,推断未知量或解决逻辑谜题。

(完整)六年级分数除法应用题分类

(完整)六年级分数除法应用题分类

分数除法应用题一、同步知识梳理1、求一个数的几分之几是多少 .用一个数×几分之几,也就是 :单位“1”的量 ×分率=分率对应量 2、求一个数是另一个数的几分之几.用一个数÷另一个数,也就是:对应量÷单位“1”的量=对应分率 3、已知一个数的几分之几是多少,求这个数.用一个数÷几分之几,也就是:对应量÷对应分率=单位“1”的量二、同步题型分析题型1:稍复杂的分数除法应用题例1、(1)希望小学四年级的人数比三年级多29 ,四年级是三年级的几分之几?(2)希望小学四年级有学生 286 人,是三年级911,三年级有多少人?(3)希望小学四年级有学生 286 人,比三年级多29 ,三年级有学生多少人?例2、(1)一种节能灯,现在每盏的成本比原来降低了53。

现在每盏的成本是原来的几分之几?(2)一种节能灯,现在每盏的成本是 4.6元,是原来的52。

原来每盏的成 本是多少元?(3)一种节能灯,现在每盏的成本是 4.6元,比原来降低了53。

原来每盏的成本是多少元?例3、冰融化成水后体积减少111,现有10立方分米的水,结成冰后体积是多少? 分析:“冰融化成水后体积减少111”是说“水比冰体积减少111”,所以冰是单位“1”。

练习:1、某果园今年植树棵树比去年多29 ,今年植树 220 棵,去年植树多少棵?2、商店运进苹果 280 箱,比运进的梨多25 。

运进的莉有多少箱?3、某机械厂现在生产一种零件成本是28元,比过去降低了51,过去生产这种零件成本是多少元?三、课堂达标检测(一)填空1、根据算式补充条件。

小明看一本故事书,已经看了60页, ,未看的有多少页? 60÷35 。

60×35 。

60×(1+35) 。

60×(1-35) 。

60÷(1+35) 。

60÷(1-35) 。

2、27吨的31是( )吨,( )千克的51是20千克,( )千克比16千克多43,25千克比( )千克少61。

小学数学八种应用题分类

小学数学八种应用题分类

小学数学八种应用题一、平均问题.(1)五年级两个班拾废铁,一班64人,共拾600千克;二班50人,共拾490千克.平均每人拾废铁多少千克?(2)那霍中学有三个年级,初一有320人,初二有400人,初三人数比初二多25%,平均每个年级有多少人?二、归一问题.(1)某车间3名工人生产5天完成7500个零件,7个工人要完成3500个同样零件需几天完成?(2)8台织布机9小时织布1224米,照这样计算,15台织布机2小时织布多少米?(1) 载重汽车每小时行40千米,小汽车的速度是载重汽车的2倍.它们从相距180千米的两地同时出发,相向而行。

如果出发时间是10小时10分,相遇时为几时几分?(2)在比例尺1:4000000的地图上,量得甲乙两地距离为20厘米.两列火车同时从甲乙两地相对开出,甲车每小时行45千米,乙车每小时行35千米,几小时两车相遇?(3)甲,乙两列火车从相距1050千米的两地同时相对开出,甲车每小时行80千米,2.8小时后两车相距全程的60%.乙车每小时行多少千米?(4)一条公路,一辆汽车行完全程要10小时,另一辆汽车要14小时.现在两辆汽车分别从公路两端相对开出,当快车行完全程时,慢车正好超过中点255千米,这条公路全长多少千米?(1)六(1)班同学至少参加了电脑和数学兴趣小组活动中的一项.参加电脑兴趣小组的有30人,参加数学兴趣小组的有35人,两项都参加的有20人.这个班有多少人?(2)在26名同学中会打乒乓球的有13人,会打网球的有12人,会打羽毛球的有9人,既会打乒乓球又会打羽毛球的有2人,既会打羽毛球又会打网球的有3人。

但没有人这三种球都会打,也没有人这三种球都不会打。

有多少人既会打乒乓球又会打网球?五、植树问题.(1)在一条全长2km的街道两旁安装路灯(两边也要安装),每隔50m安装一座,一共要安装多少座路灯?(2)同学们植树,8棵树之间的距离是14米,照这样计算,16棵树间的距离是多少米?(1)笼子里有鸡兔若干只,已知头28个,腿86只,问鸡兔各有多少只?(2) 笼子里有鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只七、工程问题.(1)修一段公路,甲队12天可以完成全长的1/3,乙队9天可以完成全长的1/3.两队合修几天可以完成全长的1/12?(2)一件工作,甲单独做要用6小时,乙单独做要用4小时.甲做完1/3后,两人合做,还要几小时才能完成?八、抽屉原理.(1)8只鸽子飞回3个鸽舍,至少有3 只鸽子要飞进同一个鸽舍里.为什么?(2)张叔叔参加飞镖比赛,投了5镖,成绩是41环.张叔叔至少有一镖不低于9环.为什么?。

小学所有应用题类型100道附答案(完整版)

小学所有应用题类型100道附答案(完整版)

小学所有应用题类型100道附答案(完整版)类型一:加法应用题题目1:小明有5 个苹果,小红有3 个苹果,他们一共有几个苹果?答案:5 + 3 = 8(个)解析:将小明和小红的苹果数相加。

题目2:学校图书馆有20 本故事书,15 本科技书,一共有多少本书?答案:20 + 15 = 35(本)解析:故事书和科技书的数量相加。

类型二:减法应用题题目3:妈妈买了10 个梨,小明吃了3 个,还剩下几个梨?答案:10 - 3 = 7(个)解析:用总数减去吃掉的数量。

题目4:盒子里有18 颗糖,拿走了5 颗,盒子里还剩几颗糖?答案:18 - 5 = 13(颗)解析:原有的糖数量减去拿走的。

类型三:乘法应用题题目5:每个文具盒5 元,买3 个文具盒需要多少钱?答案:5 ×3 = 15(元)解析:单价乘以数量。

题目6:一行有6 个同学,5 行一共有多少个同学?答案:6 ×5 = 30(个)解析:每行的同学数乘以行数。

类型四:除法应用题题目7:把12 个苹果平均分成3 份,每份有几个苹果?答案:12 ÷ 3 = 4(个)解析:总数除以份数。

题目8:20 元钱可以买4 个笔记本,每个笔记本多少钱?答案:20 ÷ 4 = 5(元)解析:总价除以数量得到单价。

类型五:比较多少应用题题目9:小明有8 支铅笔,小红有12 支铅笔,小红比小明多几支铅笔?答案:12 - 8 = 4(支)解析:大数减小数。

题目10:果园里有15 棵苹果树,20 棵梨树,苹果树比梨树少几棵?答案:20 - 15 = 5(棵)解析:梨树数量减去苹果树数量。

类型六:倍数应用题题目11:小白兔有6 只,小灰兔的数量是小白兔的3 倍,小灰兔有几只?答案:6 ×3 = 18(只)解析:小白兔数量乘以倍数。

题目12:爸爸的年龄是小明的4 倍,小明8 岁,爸爸多少岁?答案:8 ×4 = 32(岁)解析:小明年龄乘以倍数。

小学数学应用题题型

小学数学应用题题型

小学数学应用题型汇总1、归一问题:在解题时先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的量。

【数量关系】总量÷份数=1份数量 1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

2、归总问题:解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题。

【数量关系】 1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

3、和差问题:已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷ 2 小数=(和-差)÷ 2【解题思路和方法】把大小两个数的和转化成两个大数(或两小数)的和,然后再求另一个数。

4、和倍问题:已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

【数量关系】和÷倍数和=标准数标准数×倍数=另一个数【解题思路和方法】找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。

求出倍数和之后,再求出标准的数量是多少。

再根据倍数关系求另一个数。

5、差倍问题:已知两个数的差及两个数的倍数关系,求两个数各是多少的应用题。

【数量关系】两个数的差÷(倍数-1)=标准数标准数×倍数=另一个数【解题思路和方法】找准标准数。

6、倍比问题:有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。

7、相遇问题:两个运动的物体同时由两地出发相向而行,在途中相遇。

小学数学应用题类型

小学数学应用题类型

小学数学应用题类型小学数学应用题类型导语:应用题是指将所学知识应用到实际生活实践的题目。

在数学上,应用题分两大类:一个是数学应用。

另一个是实际应用。

数学应用就是指单独的数量关系,构成的题目,没有涉及到真正实量的存在及关系。

实际应用也就是有关于数学与生活题目。

以下是小编整理小学数学应用题类型汇总,以供参考。

小学数学应用题类型篇1一、简单应用题只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

1、加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

2、减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

c求比一个数少几的数的应用题:已知甲数是多少,乙数比甲数少多少,求乙数是多少。

3、乘法应用题:a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。

b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

4、除法应用题:a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。

b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。

C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。

d已知一个数的几倍是多少,求这个数的应用题。

5、常见的数量关系:总价 = 单价×数量路程 = 速度×时间工作总量=工作时间×工效总产量=单产量×数量二、复合应用题有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。

1、含有三个已知条件的两步计算的应用题。

求比两个数的和多(少)几个数的应用题。

完整版)小学数学典型应用题归纳汇总30种题型

完整版)小学数学典型应用题归纳汇总30种题型

完整版)小学数学典型应用题归纳汇总30种题型小学数学典型应用题归纳汇总30种题型1.归一问题归一问题是指在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

解决这类问题需要掌握以下数量关系:总量÷份数=1份数量,1份数量×所占份数=所求几份的数量,另一总量÷(总量÷份数)=所求份数。

例如,如果买5支铅笔需要0.6元钱,那么买同样的铅笔16支需要多少钱呢?我们可以先求出买1支铅笔多少钱,即0.6÷5=0.12(元),再用该单价乘以16支铅笔的数量,即0.12×16=1.92(元),得出需要1.92元。

2.归总问题归总问题是指解题时,常常先找出“总数量”,然后再根据其他条件算出所求的问题。

这里的“总数量”可以是货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

解决这类问题需要掌握以下数量关系:1份数量×份数=总量,总量÷1份数量=份数,总量÷另一份数=另一每份数量。

例如,如果服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套呢?我们可以先求出这批布总共有多少米,即3.2×791=2531.2(米),再用每套衣服用布的米数除以总米数,即2531.2÷2.8=904(套),得出现在可以做904套。

3.和差问题和差问题是指已知两个数量的和与差,求这两个数量各是多少。

解决这类问题需要掌握以下数量关系:大数=(和+差)÷2,小数=(和-差)÷2.例如,如果甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?我们可以先用公式求出甲班人数,即(98+6)÷2=52(人),再用公式求出乙班人数,即(98-6)÷2=46(人),得出甲班有52人,乙班有46人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学典型应用题1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1:买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?_________________(2)买16支铅笔需要多少钱? ____________________列成综合算式________________________________(元)答:需要______元。

2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1:服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做91套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? _______________________(米)(2)现在可以做多少套?_______________________(套)列成综合算式_______________________________(套)答:现在可以做______套。

3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷ 2小数=(和-差)÷ 2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=_________________________(人)乙班人数=_________________________(人)答:甲班有52人,乙班有46人。

【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

【数量关系】总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵? _____________________(棵)(2)桃树有多少棵?______________________(棵)答:杏树有_____棵,桃树有______棵。

5 差倍问题【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

【数量关系】两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。

求杏树、桃树各多少棵?解(1)杏树有多少棵? ___________________(棵)(2)桃树有多少棵?____________________(棵)答:果园里杏树是______棵,桃树是_____棵。

6 倍比问题【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。

例1: 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?解(1)3700千克是100千克的多少倍? ____________________(倍)(2)可以榨油多少千克?___________________(千克)列成综合算式: __________________________(千克)答:可以榨油_________千克。

7 相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。

这类应用题叫做相遇问题。

【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解_________________________(小时)答:经过_____小时两船相遇。

【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。

这类应用题就叫做追及问题。

【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解(1)劣马先走12天能走多少千米? 75×12=900(千米)(2)好马几天追上劣马? 900÷(120-75)=20(天)列成综合算式 75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马。

9 植树问题【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。

【数量关系】线形植树棵数=距离÷棵距+1环形植树棵数=距离÷棵距方形植树棵数=距离÷棵距-4三角形植树棵数=距离÷棵距-3面积植树棵数=面积÷(棵距×行距)【解题思路和方法】先弄清楚植树问题的类型,然后可以利用公式。

例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?解 136÷2+1=68+1=69(棵)答:一共要栽69棵垂柳。

10 年龄问题【含义】这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。

【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。

【解题思路和方法】可以利用“差倍问题”的解题思路和方法。

例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?解 35÷5=7(倍)(35+1)÷(5+1)=6(倍)答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。

11 行船问题【含义】行船问题也就是与航行有关的问题。

解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。

【数量关系】(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速顺水速=船速×2-逆水速=逆水速+水速×2逆水速=船速×2-顺水速=顺水速-水速×2【解题思路和方法】大多数情况可以直接利用数量关系的公式。

例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?解由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时 320÷8-15=25(千米)船的逆水速为 25-15=10(千米)船逆水行这段路程的时间为 320÷10=32(小时)答:这只船逆水行这段路程需用32小时。

12 列车问题【含义】这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。

【数量关系】火车过桥:过桥时间=(车长+桥长)÷车速火车追及:追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速)火车相遇:相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)【解题思路和方法】大多数情况可以直接利用数量关系的公式。

例1 一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。

这列火车长多少米?解火车3分钟所行的路程,就是桥长与火车车身长度的和。

(1)火车3分钟行多少米? 900×3=2700(米)(2)这列火车长多少米? 2700-2400=300(米)列成综合算式 900×3-2400=300(米)答:这列火车长300米。

13 时钟问题【含义】就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。

时钟问题可与追及问题相类比。

【数量关系】分针的速度是时针的12倍,二者的速度差为11/12。

通常按追及问题来对待,也可以按差倍问题来计算。

【解题思路和方法】变通为“追及问题”后可以直接利用公式。

例1 从时针指向4点开始,再经过多少分钟时针正好与分针重合?解钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格。

每分钟分针比时针多走(1-1/12)=11/12格。

4点整,时针在前,分针在后,两针相距20格。

所以分针追上时针的时间为 20÷(1-1/12)≈ 22(分)答:再经过22分钟时针正好与分针重合。

14 盈亏问题【含义】根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。

【数量关系】一般地说,在两次分配中,如果一次盈,一次亏,则有:参加分配总人数=(盈+亏)÷分配差如果两次都盈或都亏,则有:参加分配总人数=(大盈-小盈)÷分配差参加分配总人数=(大亏-小亏)÷分配差【解题思路和方法】大多数情况可以直接利用数量关系的公式。

例1 给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。

问有多少小朋友?有多少个苹果?解按照“参加分配的总人数=(盈+亏)÷分配差”的数量关系:(1)有小朋友多少人?(11+1)÷(4-3)=12(人)(2)有多少个苹果? 3×12+11=47(个)答:有小朋友12人,有47个苹果。

相关文档
最新文档