压力溶气气浮系统的设计共45页文档

合集下载

溶气气浮设计要点

溶气气浮设计要点

溶气气浮设计要点溶气气浮设计要点用途:气浮法净水新工艺及机理是七十年代同济大学的科研成果,已列为国家城建总局科研项目,该机是多种废水固液分离,达到净化的理想设备。

1、电镀废水中含多种重金属离子的混合废水,Cr+6、Cu+2、Fe+3、Zn+2等。

去除率均在90%以上,经处理后达到排放标准,总含量不超过50%毫克/升。

2、造纸白水的纸浆纤维回收利用,回收率可达90%,COD去除80%,经处理后的水,可循环回用,节省工业用水。

3、印染、漂染、毛纺废水的处理、色度去除率可达70-90%,COD去除55-88%,BOD去除50%。

4、制革废水的大量有机杂质去除,COD去除率60-70%,悬浮固体去除率80-90%。

5、对屠宰废水的大量有机杂质去除,COD去除率65-80%,悬浮固体去除率80-90%。

6、各类含油废水分离(包括乳化油、植物油),炼油废水的油脂可降至10以下。

7、对化工废水如颜料油漆等,COD去除率60-70%,橡胶废水处理,COD去除率70-80%。

8、对大池淋浴水浊度稳定在10度以下,水中的细菌、大肠菌有较大的幅度的下降。

9、生活饮用水及工业用水的浊度可净化到5度以下,同时对色度耗氧量降低有较好的效果。

二、原理与特征气浮法净水是在高压情况下,使水溶入大量的气体为工作液体,在骤然减压时,释放出无数微细气泡与经过混和反应后的水中杂质粘附在一起,使其絮体的比重小于1,从而浮于液面之上,形成泡沫(即气、水、颗粒)三相混合体,从而使污染物质得到以从废水中分离出来,达到净化效果。

加入混凝剂的废水和溶气罐高压输出的溶气水同时在气浮池内反应凝聚,从原始胶体凝聚成絮凝体的过程就是该机的工作过程,整个反应原理为药剂扩散、混凝水解、杂质胶体稳胶体聚集,微絮粒碰聚,使胶体颗粒径从0.001微粒凝聚成2毫米絮凝体迅速上浮,沉渣用刮渣机定时刮排,经过反应浮后的排放从集水槽内自动流出。

该机是经过许多高等院校,上海同济的多次总结修改后的第三代新产品,已受到广大用户的欢迎。

压力溶气气浮系统的设计共页文档课件 (一)

压力溶气气浮系统的设计共页文档课件 (一)

压力溶气气浮系统的设计共页文档课件 (一)压力溶气气浮系统是水处理领域广泛应用的一种先进技术,它能够高效地去除水中难以处理的悬浮物质、沉积物及其他污染源。

本文将介绍压力溶气气浮系统的设计方案及其工作原理。

一、设计方案1.基本原理压力溶气气浮系统采用空气压力将水中气体和固体颗粒溶解,进而快速释放出来,形成大量的气泡,从而使悬浮物质、污染物质和沉积物质抬升到水面,并被集中到水面上进行排放。

设计方案的基本原理就是根据系统容量、设备尺寸、控制方式、排放标准等因素,用最优的技术和材料组成一个合理的系统,实现水质的目标排放。

2.系统结构压力溶气气浮系统主要包括溶气器、气浮池、隔油器、污泥收集器、控制系统等组成。

其中,溶气器是气浮系统中最核心的部分,它负责将空气与水混合,经过高压罐压缩后喷出溶解的气体,实现气泡的生成。

3.设计参数压力溶气气浮系统的设计参数包括水质处理流量、气泡发生器订购数量、压力罐体积、气泡尺寸、气泡产生频率、水力停留时间等。

根据压力溶气气浮系统的实际使用情况和需求来选择相应的设计参数,以保证系统的高效性、稳定性和可靠性。

二、工作原理1.水质处理当水经过压力溶气器时,经过气密的装置形成了众多的细小气泡,将难以处理的悬浮物质、沉积物等粒子浮到水面上,形成一个密集的污染物层。

2.气泡产生在气泡发生器内,由压缩机压缩后的空气与水进行混合,形成气泡。

这些气泡由于密度小、体积大,能够吸附目标污染物和颗粒,使其由浅到深、由大到小逐渐聚集到水面。

3.沉积分离污染物经过气泡发生器后,浮在水面上形成泡沫,在气浮池内形成压缩气体层,使其随气体升降进一步沉积、浮出。

隔油器将油水分离,污泥收集器收集气泡和沉积物质,再通过污泥管道进行排放。

综上所述,压力溶气气浮系统是一种高效处理水质的先进技术,具有良好的应用前景。

通过优化设计方案、合理选择参数和改进工作原理,可以进一步提高压力溶气气浮系统的运行效率和处理水质的能力,满足不同场景的需求。

实验8压力溶气气浮

实验8压力溶气气浮

气浮法是进行固液分离的一种方法。

它常被用来分离密度小于或接近于“1”、难以用重力自然沉降法去除的悬浮颗粒。

是一种很重要的水质净化单元过程。

例如,从天然水中去除藻、细小的胶体杂质,从工业污水中分离短纤维、石油微滴等。

有时还用以去除溶解性污染物,如表面活性物质、放射性物质等。

由于悬浮颗粒的性质如浓度、微气泡的数量和直径等多种因素都对气浮效率有影响,因此,气浮处理系统的设计运行参数常要通过试验确定。

按产生气泡的方式分溶气气浮、充气气浮、电解气浮等。

8.1 实验目的1. 进一步了解和掌握气浮净水方法的原理及其工艺流程;2. 掌握气浮实验系统及设备,掌握压力溶气气浮的实验方法,通过实施气浮实验认识从废水中去除悬浮物的方法;3. 学习参数“气固比”及“释气量”的基本概念,实验技术和计算方法。

4. 考察在设计中需要确定哪些工艺装置参数和工艺运行参数,认识参数对去除效果的影响; 5. 认识实施“共聚气浮”时混凝剂添加对去除效果的影响,掌握根据技术经济要求,确定适宜的混凝剂投加剂量。

8.2 实验原理压力溶气气浮法是指用水泵将清水(或气浮处理的水)抽送到压力为0.2~0.4MPa 的溶气罐中,同时注入加压空气。

空气在罐内溶解于加压的水中,然后使经过溶气的水通过减压阀进入气浮池,此时由于压力突然降低至0.1MPa (常压),溶解于污水中的空气便以微气泡形式从水中释放出来。

微细的气泡在上升的过程中附着于悬浮颗粒上,使颗粒密度减小,上浮到气浮表面与液体分离。

压力溶气气浮工艺通常有三种形式:(a )全部废水加压溶气气浮,(b )部分废水加压溶气气浮,(c )部分处理过的废水加压溶气回流气浮,如图8-1所示 (a )全溶气流程,全部入流废水进入溶气罐加压溶气。

再经过减压释放进入气浮池;特点是:溶气量大,电耗大,气浮池小,溶气罐大,脆弱絮体易破碎。

(b )部分溶气流程,废水进行分流,取部分入流加压溶气,其余部分直接进入气浮池;特点是:比(a )节能,絮体打碎情况较少,溶气罐小,但溶气量少。

实验六压力溶气气浮实验

实验六压力溶气气浮实验

实验六压⼒溶⽓⽓浮实验实验六压⼒溶⽓⽓浮实验⽓浮实验是研究⽐重近于1或⼩于1的悬浮颗粒与⽓泡黏附上升,从⽽起到⽔质净化作⽤的规律,测定⼯程中所需的某些有关设计参数,选择药剂种类、数量等,以便为设计运⾏提供⼀定的理论依据。

(⼀)实验原理⽓浮净化⽅法是⽬前给排⽔⼯程中⽇益⼴泛应⽤的⼀种⽔处理⽅法。

该法主要⽤于处理⽔中⽐重⼩于1或接近1的悬浮杂质,如乳化油、⽺⽑脂、纤维以及其他各种有机或⽆机的悬浮絮体等。

因此⽓浮法在⾃来⽔⼚、城市污⽔处理⼚以及炼油⼚、⾷品加⼯⼚、造纸⼚、⽑纺⼚、印染⼚、化⼯⼚等的⽔处理中都有所应⽤。

⽓浮法具有处理效果好、周期短、占地⾯积⼩以及处理后的浮渣中固体物质含量较⾼等优点。

但也存在设备多、操作复杂、动⼒消耗⼤的缺点。

⽓浮法就是使空⽓以微⼩⽓泡的形式出现在⽔中并慢慢⾃下⽽上地上升,在上升过程中,⽓泡与⽔中污染物质接触,并把污染物质黏附于⽓泡上(或⽓泡黏附于污染物上)从⽽形成⽐重⼩于⽔的⽓⽔结合物升到⽔⾯,使污染物质从⽔中分离出去。

产⽣⽐重⼩于⽔的⽓、⽔结合物的主要条件是:1.⽔中污染物质具有⾜够的憎⽔性。

2.加⼊⽔中的空⽓所形成的⽓泡的平均直径不宜⼤于70微⽶3.⽓泡与⽔中污染物质应有⾜够的接触时间⽓浮法按⽔中⽓泡产⽣的⽅法可分为布⽓⽓浮、溶⽓⽓浮和电⽓浮⼏种。

由于布⽓⽓浮⼀般⽓泡直径较⼤,⽓浮效果较差,⽽电⽓浮⽓泡直径虽不⼤但耗电较多,因此在⽬前应⽤⽓浮法的⼯程中,以加压溶⽓⽓浮法最多。

加压溶⽓⽓浮法就是使空⽓在⼀定压⼒的作⽤溶解于⽔,并达到饱和状态,然后使加压⽔表⾯压⼒突然减到常压,此时溶解于⽔中的空⽓便以微⼩⽓泡的形式从⽔中逸出来。

这样就产⽣了供⽓浮⽤的合格的微⼩⽓泡。

影响加压溶⽓⽓浮的因素很多,如空⽓在⽔中溶解量,⽓泡直径的⼤⼩,⽓浮时间、⽔质、药剂种类与加药量,表⾯活性物质种类、数量等。

因此,采⽤⽓浮法进⾏⽔质处理时,常需通过实验测定⼀些有关的设计运⾏参数。

(⼆)实验⽬的1.掌握压⼒溶⽓⽓浮实验⽅法和释⽓量测定⽅法2.了解悬浮颗粒浓度、操作压⼒、⽓固⽐、澄清分离效率之间的关系,加深对基本概念的理解(三)实验装置及设备1.测定⽓固⽐的实验装置和设备1)实验装置测定⽓固⽐的实验装置由吸⽔池、⽔泵、空⽓压缩机、溶⽓罐、溶⽓释放器、⽓浮池等部分组成2)实验设备和仪器仪表(1)吸⽔池(2)⽔泵(3)溶⽓罐(4)精密压⼒表(5)空⽓压缩机(6)释放器(7)⽓浮池(8)玻璃转⼦流量计(9)烘箱(10)分析天平(11)量筒100ml(12)三⾓烧杯200ml(13)称量瓶(14)温度计2.测定释⽓量的实验装置和设备1)实验装置测定释⽓量的实验装置由释⽓瓶、量筒、量⽓管、⽔准瓶等组成。

溶气气浮作业指导用书

溶气气浮作业指导用书

溶气气浮系统作业指导书部编制1、处理工艺流程及说明1.1改造后整个污水处理系统的流程:油剂废水、短纤清洗废水加药装置生活污水集水井废水收集池气浮装置浮渣池原污水处理系统清水池城市管网1.2 气浮工艺流程图(附图)2、反应原理该气浮净水法是在高压情况下,使水溶入大量的气体为工作液体,在骤然减压时,释放出无数微细气泡与经过混合反应的水中杂质粘附在一起,使其絮凝体的比重小于1,从而浮于液面上,形成泡沫(即气、水、颗粒)三相混合体,从而使污染物得以从废水分离出来,达到净化的目的。

加入混凝剂的废水和溶气罐高压输出的溶气水同时在气浮池内反应凝聚,从原始胶体凝聚成絮凝体的过程就是该机的工作过程。

整个反应原理为药剂扩散、混凝水解、杂质胶体脱稳胶体聚集,微絮粒碰聚,使胶体颗粒径从0.001微米凝聚成2毫米絮凝体迅速上浮,排出用刮渣机定时刮排,经过反应浮选后的排放水从集水槽内自动流出。

气浮净水法与一般沉淀相比,有如下优点:a、单位面积产量提高3~5倍;b、池中停留时间缩短70~85%;c、占地面积小,可减少60~75%;d、操作简单,废渣排放方便,泥渣体积减小50~80%;e、造价低,混凝剂的投加量少,可随意开停,管理方便。

3、加药聚凝部分3.1装置材质:Q235-A碳钢防腐。

絮凝剂加药装置由二只搅拌箱,二只溶液箱及4台进口计量泵(二用二备),二套SS304不锈钢材质的搅拌装置以及辅助设备、管路、阀门(ABS)等组成;整套设备的电控柜、管道、阀门等全部都固定在一个碳钢底盘上,并配有平台、扶梯。

(2)搅拌箱带有搅拌机、SS304搅拌轴和叶轮、液位计、必要的连接管道及附件;搅拌箱的有效容积为0.60m3。

(3)溶液箱设有进药液口、出药液口、排污口、溢流口、液位计等组成,溶液箱的有效容积为1.50m3。

3.2、回流水溶气释放部分气浮效果的好坏,主要取决于回流水溶气及释放的效果。

本气浮采用高效节能的溶气和释放设备。

使空压机的压缩空气和处理后通过水泵加压的回流水在溶气罐中充分混合溶解,形成溶气水。

气浮法

气浮法
变小,利于气粒结合。
对σ水-气影响较大的主要是物质表面的亲水基团,亲水基 越多,则σ水-气越小,越不易被气浮处理(如乳化油及洗涤
废水等);同时亲水基越多,污染粒子乳化严重,表面电 位增高也影响粘附。
泡沫的稳定性
由上面的讨论可知,水中表面活性剂的存 在对气浮处理有不利影响。 但是,气浮处理时,一般又要求水中含有 一定量的表面活性剂,以保证气泡具有足 够的稳定性。如果表面活性剂含量过低, 则应投加一定量的起泡剂。 为什么?
水-粒 水-气 cos(180 ) 粒-气
式中:θ——接触角(也称湿润角)。
由此可得:
E 水-气(1 cos )
上式表明,并不是水中所有的污染物质都能与气 泡粘附,是否能产生较好的粘附,与该类物质的接触
角θ 、水的表面张力σ水-气有关。
当θ>900时,颗粒为疏水表面。θ→180°时, cosθ→ -1,ΔE→2σ水-气,这类物质憎水性强(称憎
污水处理技术中,浮上法固-液或液-液分离技术应 用的几方面:
石油、化工及机械制造业中的含油污水的油水分离;
工业废水处理;
污水中有用物质的回收;
取代二次沉淀池,特别是用于易产生活性污泥膨胀的 情况;
剩余活性污泥的浓缩。
水中颗粒与气泡的粘附条件
悬浮颗粒能否与气泡粘附主要
取决于颗粒表面的性质。颗粒
b
B H1
L
3 2 1
5
8
8
7
4
6
i
L2
L2
图 8-5 双室平流式电解气浮池
1-入流室;2-整流栅;3-电极组;4-出口水位调节器; 5-刮渣机;6-浮渣室;7-排渣阀;8-污泥排除口
分散空气浮上法

气浮法设计计算

气浮法设计计算

气浮法设计计算一.气浮法分类及原理二.气浮法设计参数全溶气气浮法 部分回流溶气气浮法1流 程示 意 图2进水水质pH=6.5~8.5含油量<100mg/lpH=6.5~8.5含油量<100mg/l 3投加药剂(品种和数量根据实际水质筛选决定)聚合铝25~35mg/l或硫酸铝60~80mg/l或聚合铁15~30mg/l或有机高分子凝聚剂1~10mg/l聚合铝15~25mg/l 或硫酸铝40~60mg/l 或聚合铁10~20mg/l 或有机高分子凝聚剂1~8mg/l 4混凝反应管道和水泵混合无反应室管道混合,阻力损失≥0.3m或机械混合,搅拌浆叶线速度0.5m/s 左右,混合时间 4混凝反应管道和水泵混合无反应室2~3min ;机械反应室(一级机械搅拌)或平流反应室或旋流反应室或涡流 反应室,水流线速度从方 式参数序 号三.气浮法设计计算四.不同温度下的K T值和736K T值例:2×75m3 / h气浮池气浮池设置在絮凝池侧旁,沉淀池上方。

气浮类型较多,有全部压力溶气气浮、分散空气气浮、电解凝聚气浮、内循环射流气浮等,这里选择适用于城镇给水处理的部分回流压力溶气气浮。

气浮适用于含藻类及有机杂质、水温较低、常年浊度低于100NTU的原水;它依靠微气泡粘附絮粒,实现絮粒强制性上浮,达到固、液分离,由于气泡的重度远小于水,浮力很大,促使絮粒迅速上浮,提高固、液分离速度。

气浮依靠无数微气泡去粘附絮粒,对絮粒的重度、大小要求不高,能减少絮凝时间,节约混凝剂量;带气絮粒与水的分离速度快,单位面积产水量高,池容及占地减少,造价降低;气泡捕足絮粒的机率很高,跑矾花现象很少,有利于后级滤池延长冲洗周期,节约水耗;排渣方便,浮渣含水率低,耗水量小;池深浅,构造简单,可随时开、停,而不影响出水水质,管理方便。

●结构尺寸:取回流比R=20%,气浮池处理水量:Q3=(1+R)Q2=1.2×75=90m3/h 接触区底部上升段纵截面为矩形,上升流速10~20mm/s,取U J1=18mm/s=64.8m/h接触区底部通水平面面积:F J1=90/64.8=1.389≈1.4m2接触区宽与絮凝池相同,B=2m,接触区底部平面池长方向尺寸:L J1=1.4/2=0.7m接触区上端扩散段纵截面为倒直角梯形,出口流速5~10mm/s,取U J2=7.5mm/s=27m/h接触区上端扩散出口通水平面面积:F J2=90/27=3.333m2接触区宽与絮凝池相同,B=2m,接触区上端扩散出口平面池长方向尺寸:L J2=3.333/2=1.6665≈1.7m扩散段水平倾角α=35°,扩散段高:h K=(1.7-0.7)tan35°=0.7m 扩散段容积:V K=〔(1.7+0.7)/2〕×0.7×2=1.68m3接触区停留时间需大于60s,取t J=90s=1.5min,接触区容积:V J=90×1.5/60=2.25m3接触区底部上升段高:h D=(V J-V K)/F J1=(2.25-1.68)/1.4=0.4m 分离区清水下降流速1.5~2.5mm,取U3=2.5mm/s=9m/h分离区平面面积:F F=Q3/U3=90/9=10m2分离区平面池长方向尺寸:L F=10/2=5m(<沉淀池长5.5m)气浮池长度方向尺寸:L=5.5m取分离区液深h Y=1.5m,分离区容积:V F=5.5×2×1.5=16.5m3分离区清水下降时间:t F=h Y/U3=1.5/9=0.167h=10min取分离区安全超高h A=0.5m,气浮池高H F=1.5+0.5=2m复核分离停留时间:t F′=V F/Q3=16.5/90=0.183h=11min,满足停留10~15min的要求,并能满足清水到达池底所需时间。

融气气浮设计要点

融气气浮设计要点

四、溶气浮法的主要设备的设计(一)溶气释放器1、溶气释放器主要特点(1)释气完全,在0.15MPa以上能释放溶气量的99%左右;(2)能在较低压力下工作,在0.2MPa以上时能取得良好的净水效果,节约电耗:(3)释出的气泡微细,气泡平均直径为20-40微米,气泡密集,附着性能良好。

2、不同型溶气释放器(二)压力溶气罐2.溶气罐溶气罐的作用是在一定的压力(一般0.2~0.6MPa)下,保证空气能充分地溶于废水中,并使水、气良好混合;混合时间一般为1~3min,混合时间与进气方式有关、即泵前进气混合时间可短些,泵后进气混合时间要长些溶气罐的顶部没有排气阀,以便定期将积存在罐顶部未溶解的空气排掉,以免减少罐容,另外多余的空气如不排出,由于游离气泡的搅动会影响气浮池的气浮效果。

罐底设放空阀,以便清洗时放空溶气罐。

为了防止溶气罐内短流。

增大紊流程度促进水气充分接触,加快气体扩散,常在罐内设隔套、挡板或填料。

溶气罐的形式可分为静态型和动态型两大类。

静态型包括花板式、纵隔板式、横隔板式等,这种溶气罐多用于泵前进气。

动态型分为填充式、涡轮式等,多用于泵后进气。

国内多采用花板式和填充式。

压力溶气罐有多种形式,比较好形式是空压机供气的喷淋式填料罐。

该设备特点是:(1)该种压力溶气罐用普通钢板卷焊而成。

但因属压力容器范畴,故其设计、制作需按一类压力容器要求考虑;(2)该种压力溶气罐的溶气效率与不加填料的溶气罐相比高30%,在水温20-30℃范围内,释气量约为理论饱和溶气量的90%-99%;(3)可应用的填料种类很多,如瓷质拉西环、塑料斜交错淋水板、不锈钢圈填料、塑料阶梯环等。

由于阶梯环具有较高的溶气效率,故可优先考虑。

不同直径的溶气罐,需配置不同尺寸的填料,其填料的充填高度一般取1m左右。

当溶气罐直径超过500mm时,考虑到布水均匀性,可适当增加填料高度。

(4)由于布气方式、气流流向变化等因素对填料罐溶气效率几乎无影响,因此进气的位置及形式一般无需过多考虑;(5)为自动控制罐内最佳液位,采用了浮球液位传感器,当液位达到了浮球传感器下限时,即指令关闭进气管上的电磁阀,反之,当液位达到上限时,则指令开启电磁阀;(6)溶气水的过流密度(溶气水流量与罐的截面积之比)有一个优化的范围。

气浮池设计

气浮池设计

2.1 压力溶气系统包括压力溶气罐、空压机、水泵及其附属设备2.1.1 溶气系统占整个气浮过程能量消耗的50%,溶气罐价值占工厂总基建投资的12%,因此优化溶气系统的设计对缩小气浮操作费用是很重要的;溶气罐多为园筒形,立式布置,容积按废水停留时间25~3min计算,罐中可装设有隔板,瓷环之类,也有用空罐的;因为溶气罐内水、气相混合,所以一般按压力容器进行设计,罐顶设自动排气阀或罐底设自动减压阀平衡压力,罐内压力一般控制在0.45MPa左右为宜,据此可以确定提升泵、回流泵和空压机的参数;在国外的设计资料和文献中,认为气水停留时间越长,溶气效率越高;这样就使得溶气罐的体积显得庞大,停留时间有时长达3~5min;国内的研究证实了液膜阻力控制着溶气速率,认为停留时间越长,溶气效果越好的观念不符合实际,因此国内设计参数不同于国外,是以预定的溶气效率为设计指标,以液相过流密度和液相总容量传质系数为参数;所有研究都表明有填充床的溶气罐比没有填充床的有效,其效率最高可达到99%,但在实际运行中,经常需对溶气罐进行内部检查,因而在很多溶气气浮工艺中常选用没有填充床的系统,而且大部分无填充床的溶气罐常配有内部的或外部的喷射器以提高溶气效率;第一种是泵前进气,流程图见图3;当空气吸入量小于空气在该温度下水中的饱和度时,由水泵压水管引出一支管返回吸水管,在支管上安装水力喷射器,废水经过水力喷射器时造成负压,将空气吸入与废水混合后,经吸水管、水泵送入溶气罐;这种方式省去了空压机,气水混合效果好,但水泵必须采用自引方式进水,而且要保持lm以上的水头,其最大吸气量不能大于水泵吸水量的10%,否则,水泵工作不稳定,破坏了水泵应当具有的真空度,会产生气蚀现象;第二种是泵后进气,流程图见图4;当空气吸入量大于空气在该温度下水中的饱和度时,空气通过空压机在水泵的出水管压入,但也不宜大于水泵吸水量的25% ;这种方法使水泵工作稳定,而且不必要求在正压下工作,但需要由空气压缩机供给空气;为了保证良好的溶气效果,溶气罐的容积也比较大,一般需采用较复杂的填充式溶气罐; 2.1.3 空气注入量的调节是浮选操作的另一关键因素,一般随选择的溶气压力或回流比而变;实验也表明出水质量仅依赖于引入系统的空气总量气泡尺寸一致时,而与单独压力或回流比无关;要根据污水水质、浮选混凝剂和减压释放器的类型经反复实践而定;2.1.4溶气罐内水位高低是影响气浮效果的重要因素;水们南宁市,缩小了水气接触部分的窖,溶气效果不好;水位太低则缺乏必要的缓冲水深,气体会穿过水层进入气浮设备形成大气泡,气浮效果也不佳;推荐水位控制在罐内1/3~1/4左右;2.1.5 溶气罐内的压力是影响气量的重要因素;一般情况下,压力高,则溶气多,在空压机加气方式中,溶气罐内的压力是由空压机气压和水泵共同决定的;在正运转时,首先要保证足够的水压,但水压和气压又要基本相当;在采用水射器加气的方式中,保证溶气罐压力的关键是采用合适的水泵,一般水泵压力应在保证额定流量的前提下大于0.3Mpa,溶气罐压力调整可通过调节溶气罐出水阀、水泵出水阀、回流控制阀进行;2.1.6根据中华人民共和国国家标准室外排水设计规范第8.2.7条溶气罐的设计应符合下列要求:一、溶气罐工作压力宜采用300~500kPa约为3~5kgf/cm2;二、空气量以体积计,可按污水量5~10%计算;三、污水在溶气罐内停留时间应根据罐的型式确定,一般宜为1~4min,罐内应有促进气水充分混合的措施;四、采用部分回流的溶气罐宜选用动态式,并应有水位控制措施;2.1.7有应用中提到,增加一个精密空气稳流器,它的作用是使空气在进入溶气罐的喷头前,确保压力平稳、均一;回流比是指,当采用部分回流溶气气浮法时,进入溶气罐加压溶气的回流水量与处理水量的比值;回流比一般为废水的25%~50%;但当污水水质较差,且污水水量不大时,可适当加大回流比,以保证出水水质;2.2 溶气释放系统主要是释放头释放器是该系统的关键装置,它对气泡形成的大小、分布以及对气浮净水效果和运行费用均有明显影响;目前被采用的释放器的释气效率可达99.2%;2.2.1 以前的研究认为,释气泡的大小与溶气压力有关,低压时形成大气泡居多,不利于气浮;国内最新研究认为:溶气水在减压消能时气泡的释放规律与气泡在静水中的状况不同;低压时大气泡的出现归咎于释放器不良所致;除了要释放出大量稳定的微小气泡,关键是要如何防止堵塞;目前国内外采用不同类型的释放器,有简单阀门式、针型阀式以及专用释放器专利;溶气释放器的专利产品很多,其中效果较好的一般都有以下特点:在喷嘴处有一个瞬间的压降;在释放器的入口处水流方向会突然改变常为90°;释放器口径不超过2.5mm,水在释放器中的停留时间<1.5ms;离开释放器的水流速度逐渐变小;离开释放器的水体会与其前面一挡板发生撞击;任何释放器都不可能只产生微气泡,而一般是产生直径在40~70μm之间的气泡,一些大气泡的产生是不可避免的,尽管这些大气泡的存在会降低系统的运行效率;2.2.2 根据中华人民共和国国家标准室外排水设计规范第8.2.8条溶气释放器的选用应根据含油污水水质、处理流程和释放器性能确定;2.3 气浮分离系统气浮池构件气浮分离系统的功能是确保一定容积来完成微气泡群与水中杂质的充分混合、接触、粘附以及带气絮粒与清水的分离;2.3.1为了提高气浮的处理效果,往往向废水中加入混凝剂或气浮剂,投加量因水质不同而异,一般由试验确定;对于铝类絮凝剂,通过提高搅拌强度均可使出水浊度进一步降低;为保证浮选混凝剂的混凝作用,浮选池进水端宜设静态管道混合器和反应室,反应室有效容积约按废水进水量与回流量的和停留时间10分钟计算,一般分为三间,迷宫式布置,且每间设搅拌机提高混凝效果,每间中的速度梯度常常是相同的;絮凝池也即反应室设计最好提供活塞流状态紊流堆动状态,可以确保较好的气浮效果;2.3.2 溶气气浮池的最大建议尺寸可达145m2,相应的产水能力为2900~4350m3/ h,单位面积的产水能力至少提高了一倍;溶气气浮池的深度从1.5m增加到5.0m,且池型由长方形向正方形发展,长宽比在1.2~2:1之间;目前运行良好的溶气气浮池的长度最大可达12m,但宽度被限制为8.5m,这主要是因为机械刮渣机的最大跨度为8.5m;污水在气浮池内的停留时间一般取30~40min,工作水深为15~25m,长宽比不小于4,表面负荷5~10m3/m2•h;若停留时间太短,水流的冲击力大,浮选罐中的污水牌较强的紊流状态,这样不但不利于气泡与絮体的粘附,反而会将部分已粘附在气泡上的絮体打碎;另外,由于紊流和较短的反应时间,而使投加的部分混凝剂未反应完全时就随出水流出,致使出水中悬浮固体的去除率降低,甚至出现负增长的趋势;2.3.3 气浮池分2个区:接触区和分离区;2.3.3.1 设计接触区时,要注意控制絮凝水的上升流速,避免短流、偏流,不致在上浮过程中被水流剪脱已粘附的气泡而影响后续分离效果;通常情况下接触区的上升流速以控制在10~20mm/s为宜,高度以1.5~2.0m为宜,在这种流速和高度下,既保证了絮粒和微气泡的接触时间,又不会造成絮粒因上浮时间过长而破坏或下沉;合理地布置释放器,使释放水的作用范围遍及全区,能充分、及时地使微气泡下絮粒接触;2.3.3.2 分离区选择分离速度时,应有利于带气絮粒上浮;对于絮粒大、密度小、不易破碎的带气絮粒一般采取较大的分离速度,反之取较小值;分离区的流速宜在1~3mm/s,流速过小会造成大絮粒因拥挤而沉淀,流速过大会造成带气絮粒和清水的分界面向下延伸,从而造成絮粒随水流出、水质下降;对浓度大、浮渣多,在固液分离时形成拥挤上浮现象的应减小上浮速度,否则浮渣层太厚会造成落渣,或因分离区容积过小而影响分离效果;选取集水系统时,尽可能做到集水均匀,不让上浮较慢的细小带气絮粒流出池外;为此,应避免短流、快部滞流、碰壁回流等不良现象出现;当溶气气浮池的水力负荷>10 m3/m2•h时,很容易出现气浮出水携带气泡进入后续滤池的情况,气泡会存在于滤池的上层;虽然有人发现滤池中气泡的存在会有利于水中颗粒的去除,但是它会导致滤池水头损失的急剧升高,从而使滤池运行周期显著缩短,因此应该避免滤池进水中气泡的存在,所以在大幅度提高溶气气浮池水力负荷的同时,必须设置脱气系统具体内容见附录2以保证工艺的正常运行;安装简易,灵巧的刮渣设备,以便刮渣时不致扰动浮渣层而产生落渣,影响出水水质; 2.3.4 国内外气浮池的设计参数变化范围很大,我国主要采用以下参数:接触区:停留时间> 2.0min表面负荷率36~72 m3/m2•h分离区:表面负荷率7.2~10.8 m3/m2•h 2.3.5 根据中华人民共和国国家标准室外排水设计规范第8.2.9条气浮池可采用矩形或圆形;矩形气浮池的设计应符合下列要求:一、气浮池应设置反应段,反应时间宜为10~15min;二、每格池宽不应大于4.5m,长宽比宜为3~4;三、有效水深宜为2.0~2.5m,超高不应小于0.4m;四、污水在气浮池分离段停留时间不宜大于1.0h;五、污水在池内的水平流速不宜大于10mm/s;六、气浮池端部应设置集沫槽;七.池内应设刮沫机,刮沫机的移动速度宜为1~5m/min;正交试验分析得出:回流比、混凝剂投加量和浮选罐池的有效停留时间这三个主要参数对气浮效果影响大小的主次关系是:回流比>混凝剂投加量>浮选罐池的有效停留时间;溶气罐与气浮池之间的回流水输送管道要短,压力损失要小,从而防止空气从超饱和的水中逸出;水温降低对溶气气浮效果有不利的影响;。

加压溶气气浮工程方案

加压溶气气浮工程方案

加压溶气气浮工程方案一、前言随着工业化进程的不断推进和人们对环境保护的日益重视,水处理工程也成为了一个备受关注的问题。

其中,气浮工程是一种常见的水处理方法,通过向水中注气,使悬浮物浮在水面上,然后进行分离处理。

而加压溶气气浮工程则是对传统气浮工程的升级和优化,其能够更高效地去除水中目标物质,达到更好的处理效果。

本文将就加压溶气气浮工程进行详细介绍,包括工程原理、设计方案、设备选型等内容。

二、加压溶气气浮工程原理1. 加压溶气气浮的原理加压溶气气浮是利用气体的溶解性与压力成正比关系的基本物理特性,通过向水中注气、将气体在高压情况下溶解到水中,使得水中的气体浓度增加,然后通过突然减压的方式释放气体,从而产生微小气泡,水和目标物质则一定程度地被吸附在气泡表面,使得它们一起浮到水表,最后通过物理和化学方法进一步分离处理。

2. 加压溶气气浮的优势(1)高效:相较于传统气浮工程,加压溶气气浮利用高浓度的气体使得气泡更加微小,能够更好地吸附水中的悬浮物质,从而更高效地进行处理。

(2)节能:加压溶气气浮能够在较低的气体用量下达到较好的处理效果,节约了能源成本。

(3)生产成本低:通过减少处理时间、提高效率和节约成本,加压溶气气浮工程使得生产成本得到了较大的降低。

(4)适用范围广:加压溶气气浮不受水质、水量等因素的限制,可广泛应用于污水处理、环保工程等领域。

三、加压溶气气浮工程设计方案1. 工程概述加压溶气气浮工程主要包括水处理厂房选址、工艺流程设计和设备选型等。

根据水质情况、处理量等,需要综合考虑工程的实际情况进行设计。

2. 厂房选址厂房选址应根据水处理工程的实际需求,选择离水源近、周围无臭味、噪音的场地,且保证排放和处理的安全性。

3. 工艺流程设计加压溶气气浮工程的工艺流程包括预处理、溶气、气浮、沉淀过程等。

通过对原水的预处理,将水中的杂质去除,再在高压条件下注气、释放气体,最后进行气浮与沉淀的过程,达到处理水的目的。

气浮法工艺原理及参数设计

气浮法工艺原理及参数设计

水处理气浮工艺分类及参数设计pH=6.5~8.5含油量<100mg/500.014511.70L J2=3.333/2=1.6665≈1.7m扩散段水平倾角α=35°,扩散段高:h K=(1.7-0.7)tan35°=0.7m扩散段容积:V K=〔(1.7+0.7)/2〕×0.7×2=1.68m3接触区停留时间需大于60s,取t J=90s=1.5min,接触区容积:V J=90×1.5/60=2.25m3接触区底部上升段高:h D=(V J-V K)/F J1=(2.25-1.68)/1.4=0.4m 分离区清水下降流速1.5~2.5mm,取U3=2.5mm/s=9m/h分离区平面面积:F F=Q3/U3=90/9=10m2分离区平面池长方向尺寸:L F=10/2=5m(<沉淀池长5.5m)气浮池长度方向尺寸:L=5.5m取分离区液深h Y=1.5m,分离区容积:V F=5.5×2×1.5=16.5m3分离区清水下降时间:t F=h Y/U3=1.5/9=0.167h=10min取分离区安全超高h A=0.5m,气浮池高H F=1.5+0.5=2m复核分离停留时间:t F′=V F/Q3=16.5/90=0.183h=11min,满足停留10~15min的要求,并能满足清水到达池底所需时间。

●溶气泵:溶气水量即回流水量,Q R=RQ3=0.2×75=15m3/h,溶气压力P≈0.45MPa 溶气泵选用不锈钢离心泵,数量3台,2用1备;型号:DFHW50-200/2/5.5,流量:8.8~12.5~16.3m3/h,扬程:51~50~48.5m,电机功率:5.5Kw,外形尺寸:长×宽×高=602×400×425mm●空压机:水中空气溶解量与温度和压力有关,水温20°C,压力0.1MPa(1bar)时空气在水中的饱和溶解度C K=0.0187L气/L水,溶气效率与溶气罐结构、气液传质填料、溶气压力和时间有关。

气浮法设计计算

气浮法设计计算

气浮法设计计算Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998气浮法设计计算一.气浮法分类及原理二.气浮法设计参数三.气浮法设计计算四.不同温度下的K T值和736K T值例:2×75m3 / h气浮池气浮池设置在絮凝池侧旁,沉淀池上方。

气浮类型较多,有全部压力溶气气浮、分散空气气浮、电解凝聚气浮、内循环射流气浮等,这里选择适用于城镇给水处理的部分回流压力溶气气浮。

气浮适用于含藻类及有机杂质、水温较低、常年浊度低于100NTU的原水;它依靠微气泡粘附絮粒,实现絮粒强制性上浮,达到固、液分离,由于气泡的重度远小于水,浮力很大,促使絮粒迅速上浮,提高固、液分离速度。

气浮依靠无数微气泡去粘附絮粒,对絮粒的重度、大小要求不高,能减少絮凝时间,节约混凝剂量;带气絮粒与水的分离速度快,单位面积产水量高,池容及占地减少,造价降低;气泡捕足絮粒的机率很高,跑矾花现象很少,有利于后级滤池延长冲洗周期,节约水耗;排渣方便,浮渣含水率低,耗水量小;池深浅,构造简单,可随时开、停,而不影响出水水质,管理方便。

●结构尺寸:取回流比R=20%,气浮池处理水量:Q3=(1+R)Q2=×75=90m3/h接触区底部上升段纵截面为矩形,上升流速10~20mm/s,取U J1=18mm/s=64.8m/h接触区底部通水平面面积:F J1=90/=≈1.4m2接触区宽与絮凝池相同,B=2m,接触区底部平面池长方向尺寸:L J1=2=0.7m接触区上端扩散段纵截面为倒直角梯形,出口流速5~10mm/s,取U J2=7.5mm/s=27m/h接触区上端扩散出口通水平面面积:F J2=90/27=3.333m2接触区宽与絮凝池相同,B=2m,接触区上端扩散出口平面池长方向尺寸:L J2=2=≈1.7m扩散段水平倾角α=35°,扩散段高:h K=(-)tan35°=0.7m扩散段容积:V K=〔(+)/2〕××2=1.68m3接触区停留时间需大于60s,取t J=90s=,接触区容积:V J=90×60=2.25m3接触区底部上升段高:h D=(V J-V K)/F J1=(-)/=0.4m分离区清水下降流速~2.5mm,取U3=2.5mm/s=9m/h分离区平面面积:F F=Q3/U3=90/9=10m2分离区平面池长方向尺寸:L F=10/2=5m(<沉淀池长5.5m)气浮池长度方向尺寸:L=5.5m取分离区液深h Y=1.5m,分离区容积:V F=×2×=16.5m3分离区清水下降时间:t F=h Y/U3=9==10min取分离区安全超高h A=0.5m,气浮池高H F=+=2m复核分离停留时间:t F′=V F /Q3=90==11min,满足停留10~15min的要求,并能满足清水到达池底所需时间。

气浮池设计[优质文档]

气浮池设计[优质文档]

2.1 压力溶气系统(包括压力溶气罐、空压机、水泵及其附属设备)2.1.1 溶气系统占整个气浮过程能量消耗的50%,溶气罐价值占工厂总基建投资的12%,因此优化溶气系统的设计对缩小气浮操作费用是很重要的。

溶气罐多为园筒形,立式布置,容积按废水停留时间25~3min计算,罐中可装设有隔板,瓷环之类,也有用空罐的。

因为溶气罐内水、气相混合,所以一般按压力容器进行设计,罐顶设自动排气阀或罐底设自动减压阀平衡压力,罐内压力一般控制在0.45MPa左右为宜,据此可以确定提升泵、回流泵和空压机的参数。

在国外的设计资料和文献中,认为气水停留时间越长,溶气效率越高。

这样就使得溶气罐的体积显得庞大,停留时间有时长达3~5min。

国内的研究证实了液膜阻力控制着溶气速率,认为停留时间越长,溶气效果越好的观念不符合实际,因此国内设计参数不同于国外,是以预定的溶气效率为设计指标,以液相过流密度和液相总容量传质系数为参数。

所有研究都表明有填充床的溶气罐比没有填充床的有效,其效率最高可达到99%,但在实际运行中,经常需对溶气罐进行内部检查,因而在很多溶气气浮工艺中常选用没有填充床的系统,而且大部分无填充床的溶气罐常配有内部的或外部的喷射器以提高溶气效率。

第一种是泵前进气,流程图见图3。

当空气吸入量小于空气在该温度下水中的饱和度时,由水泵压水管引出一支管返回吸水管,在支管上安装水力喷射器,废水经过水力喷射器时造成负压,将空气吸入与废水混合后,经吸水管、水泵送入溶气罐。

这种方式省去了空压机,气水混合效果好,但水泵必须采用自引方式进水,而且要保持lm 以上的水头,其最大吸气量不能大于水泵吸水量的10%,否则,水泵工作不稳定,破坏了水泵应当具有的真空度,会产生气蚀现象。

第二种是泵后进气,流程图见图4。

当空气吸入量大于空气在该温度下水中的饱和度时,空气通过空压机在水泵的出水管压入,但也不宜大于水泵吸水量的25% 。

这种方法使水泵工作稳定,而且不必要求在正压下工作,但需要由空气压缩机供给空气。

加压溶气气浮设备设计

加压溶气气浮设备设计

前言气浮法净水式向含杂质污染物的水中通入大量的微小空气泡,使其粘附在杂质污染物絮状颗粒上,从而使整个絮状颗粒的密度小于水的密度,依靠浮力使絮状颗粒上浮至水面,将杂质污染物分离。

气浮法是一种十分复杂的物理化学过程,它受到污染杂质、净水药剂、气泡状况等多种条件的影响。

黏附了微细气泡的杂质污染物的絮状颗粒上浮时,会受到三种力的作用:重力、浮力、阻力。

絮状颗粒的上浮速度与颗粒的直径、密度及水的流态有关。

絮状颗粒吸附的气泡越多,密度越小,直径越大,则上浮速度越快。

空气密度时说的密度的1/800,杂质及污染物絮状颗粒吸附许多起跑后,密度变的很小,所以上浮速度很快。

采用气浮法时其上浮速度快于沉淀速度,处理同样废水时,气浮池比沉淀池相比,处理后水质要优于沉淀池。

同时,水中溶解氧含量高。

气浮法因其独特的优点而日露锋芒,但仍需进一步研究更好地将固、液分离,使其更加完善。

目录设计说明书 (2)第一节设计任务书 (2)第二节方案选择流程说明 (2)设计计算书 (3)第一节气浮池设计计算 (3)第二节压力溶气罐设计 (4)第三节空压机计算选型 (5)第四节加压水泵 (5)第五节释放器 (6)参考文献 (7)附录流程工艺图 (8)释放器结构及流程图 (8)设计说明书第一节设计任务书一.设计题目:加压溶气气浮设备的设计二.设计资料某工厂污水工程拟采用气浮设备代替二沉池,经气浮实验取得以下参数:溶气水采用净化后处理水进行部分回流,回流比0.2,气浮池内接触时间为5min,容气罐内停留时间为3min,分离时间为15min,容气罐压力为0.4mpa;气固比为0.02;设计水量为:1950m3/d。

三.设计内容(1)确定设计方案(注:气浮设备形式选用平流式);(2)气浮设备的设计计算;(3)系统设备的选型,包括水泵、溶气释放器、压力容器罐、空压机及刮渣机等;(4)计算书编写,计算机绘图。

四.设计成果及要求:(1)设备工艺设计计算说明书,要求参数选择合理,条理清楚,计算准确,并附设计计算示意图,提交电子版和A4打印稿一份;(2)气浮系统图和气浮设备结构详图(包括平面图,剖面图),要求表达准确规范,提交电子版和A3打印稿一份。

溶气气浮机设备方案

溶气气浮机设备方案

溶气气浮机设备方案一、引言溶气气浮(DAF)是一种常见的水处理技术,广泛应用于污水处理、饮用水净化和工业废水处理等领域。

本文将介绍一种高效的溶气气浮机设备方案,旨在提高处理效率和降低运行成本。

二、设备原理溶气气浮机设备通过将气体溶解到水中,利用气泡的浮力将悬浮物团聚成大颗粒,从而实现悬浮物的分离。

其主要工作原理包括以下几个步骤:1. 溶气阶段:将气体通过增压装置注入到水中,并利用溶解气体的能力使气体溶解到水中;2. 络净阶段:在溶气气浮池中加入混合悬浮物的原水,在适当的条件下,利用鳞状气泡将悬浮物与气泡迅速接触并附着,形成浮团;3. 浮升阶段:浮团上升到液面并形成浮泡层,再经过收集装置的收集和排出,达到分离悬浮物的目的。

三、设备配置针对不同的处理需求,溶气气浮机设备的配置可以有所差异。

以下是一种常见的配置方案:1. 溶气系统:包括气体供应装置、增压装置和溶气槽。

气体供应装置一般选择空气压缩机,增压装置用于将气体压力提高至所需压力,而溶气槽则用于将气体溶解到水中。

2. 絮凝剂投加系统:用于投加絮凝剂以促进悬浮物的凝聚作用,一般包括絮凝剂储存装置、投加泵和混合装置。

3. 溶气气浮池:池体一般采用刚性材料构建,具有合理的倾斜角度和尺寸,以便于气泡与悬浮物迅速接触和聚集。

另外,溶气气浮池还应配备气液分离装置和浮渣集中装置。

4. 浮渣收集系统:包括浮渣收集槽和排泥泵。

浮渣收集槽用于收集和存储浮渣,排泥泵用于将浮渣排出系统。

5. 控制系统:用于对整个设备进行监控和自动控制,包括传感器、仪表、控制阀等。

四、设备优势这种溶气气浮机设备方案具有以下优势:1. 高效:通过高效的气泡产生设备和合理的池体设计,能够提高气泡接触到悬浮物的机会,从而提高处理效率。

2. 稳定性好:控制系统的精确控制能够保持设备的稳定运行,避免因处理水质波动而导致的效果下降。

3. 节能:采用能效高的空气压缩机和溶气槽,使得气体的利用率最大化,从而降低运行成本。

加压溶气气浮设备的设计

加压溶气气浮设备的设计

加压溶气气浮设备的设计目录第一章设计任务书 (3)1.1 设计题目 (3)1.2 设计资料 (3)1.3 设计内容 (4)1.4设计成果 (4)第二章设计说明与计算书 (4)2.1 设计原理及方案选择 (4)2.1.1设计原理 (4)2.1.2方案选择 (7)2.2设计工艺计算 (8)2.2.1供气量与空压机选型 (8)2.2.2溶气罐 (9)2.2.3气浮池 (11)2.2.4附属设备 (13)第三章参考文献 (14)第四章设计心得体会 (15)第五章附图 (16)气浮池的设计计算第一章设计任务书1.1 设计题目加压溶气气浮设备的设计(平流式)1.2 设计资料某工厂污水工程拟用气浮设备代替二沉池,经气浮实验取得以下参数:溶气水采用净化后处理水进行部分回流,回流比0.2,气浮池内接触时间为5min,溶气罐内停留时间为3min,分离时间为15min,溶气罐压力为0.4Mpa,气固比0.02,温度30℃。

设计水量850m3/d。

1.3 设计内容(1)确定设计方案;(2)气浮设备的设计计算;(3)系统设备选型,包括水泵、溶气释放器、溶气压力罐、空压机及刮渣机等;(4)计算书编写,计算机绘图。

1.4设计成果(1)设备工艺设计计算说明书;要求参数选择合理,条理清楚,计算准确,并附设计计算示意图;提交电子版和A4打印稿一份。

(2)气浮系统图和气浮设备结构详图(包括平面图、剖面图);要求表达准确规范;提交电子版和A3打印稿一份。

第二章设计说明与计算书2.1 设计原理及方案选择2.1.1设计原理加压气浮法是在加压情况下,将空气溶解在废水中达饱和状态,然后突然减至常压,这时溶解在水中的空气就成了过饱和状态,以极微小的气泡释放出来,乳化油和悬浮颗粒就粘附于气泡周围而随其上浮,在水面上形成泡沫层,然后由刮泡器清除,使废水得到净化。

根据废水中所含悬浮物的种类、性质、处理水净化程度和加压方式的不同,基本流程有以下三种。

1、全部废水溶气气浮法全部废水溶气气浮法是将全部废水用水泵加压,在泵前或泵后注入空气。

实验八加压溶气气浮的运行与控制实验(设计)

实验八加压溶气气浮的运行与控制实验(设计)

实验八加压溶气气浮的运行与控制实验(设计)一、实验目的1.掌握加压溶气气浮实验方法;2.加深对气浮原理的理解;设计性实验,实验时数可安排为0.2周。

二、实验原理气浮是进行固液分离的一种方法,它常被用来分离密度小于或接近于水,且难以用重力自然沉降法去除的悬浮颗粒,其处理废水的实质是:气泡和粒子间进行物理吸附,并形成浮渣体上浮分离。

加压溶气气浮是先将空气加压,使其溶于水,形成空气过饱和溶液,然后减至常压便溶气析出,并以微细气泡形式释放出来,从而使水杂质颗粒被粘附而上浮。

本实验采用在溶气转中进行加压溶气,而气则在气浮池中常压析出。

三、实验装置及设备本实验由气浮池、溶气罐、空压机、加压泵、搅拌器、转子流量计、止回阀、减压阀、水箱等组成,见图8-1。

图8-1 气浮实验装置示意图四、实验方法与步骤1.首先检查气浮实验装置是否完好。

2.把自来水加到回流加压水箱与气浮池中至有效水深的90%高度。

3.将含乳化油或其它悬浮物的废水加到废水配水箱中,并投入Al2(SO4)3等混凝剂搅拌混合,投加Al2(SO4)3的量为50~60 mg/L。

4.先开启空压机加压,必须压至溶气罐内压力为0.3 Mpa 左右。

5.开启加压水泵,此时压水量按2~4 L/min 控制。

6.待溶所借中的水位升至液位计中间高度,缓慢地打开溶气罐底部闸阀其流量与压水量相同2-4 L/min 左右。

7.待空气在气浮池中释放并形成大量微小气泡时,再打开原废水配水箱,废水进水量可按4-6 L/min 控制。

8.开启空压机加压至0.3Mpa (并开启加压水泵)后,其空气流可先按0.1-0.2升/分控制。

考虑到加压溶气罐及管道中难以避免的漏气,其空气量可按水面在溶气罐内的液位中间部位控制即可。

多余的空气可以通过其顶部的排气阀排除。

9.出水可排至下水管道,也可回流至回流加压水箱。

10.以重量法铡定原废水与处理的水质变化,以悬浮物表示(每个样品取100mg/L 做两个平行样),结果记于表8-1中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主要用途及效果:
适用于造纸废水处理及纤维回收、印染废水处理、电镀等含各种重 金属离子废水处理、含油废水处理、制革废水处理、化工废水处理、 油漆废水处理、食品废水处理、生物处理的泥和水的分离、低温低浊 地面水处理、含藻地面水处理以及其它多种废水的固、液分离
安徽工程科技学院生化系
Anhui University of Science and Technology
由上式可求得加压溶气用水的需用量Qr,并按下式计算实际 供气量Qa(L/h):
式中 KT--空气在水中的溶解度系数,L/kPa·m3; η--溶气效率(%)。
空压机额定供气量Q‘a (m3/min)为:
式中 ψ--空压机安全系数,一般取l.2~1.5; 1.25--空气过量系数。
按Qa`和溶气压力及输气管路阻力降,即可进行空压机选型。 (二)溶气罐 溶气罐的容积,原则上可按溶气用水量Qr(m3/min)、溶气时间t(min)计算。
气量与处理效果,就必须提高溶气系统的压力 或扩大溶气罐的容积,增大回流比来实现。
安徽工程科技学院生化系
Anhui University of Science and Technology
工业废水污染防治
Prevention & Treatment of Trade Wastewater
1.1 溶气方式的分类
工业废水污染防治
Prevention & Treatment of Trade Wastewater
1.4 压力溶气气浮的主要设备及其设计计算
(一)实际供气量及空压机选型 气浮过程所需释气量取决于废水中的悬浮物性质和浓度。出 气因比A/S的定义可得下式所示的关系:
式中
A/S--气浮过程气固比,L空气/kgSS; Q和Qr--分别为人流废水和溶气用水流量,m3/L; C--98kPa压力和指定温度下空气在水中的平衡溶解量,mL/L; f--溶气水中的空气饱和系数; p--溶气绝对压力,kPa; Sa--入流废水中的SS浓度,mg/L。
安徽工程科技学院生化系
Anhui University of Science and Technology
工业废水污染防治
Prevention & Treatment of Trade Wastewater
安徽工程科技学院生化系
Anhui University of Science and Technology
安徽工程科技学院生化系
Anhui University of Science and Technology
工业废水污染防治
Prevention & Treatment of Trade Wastewater
1.3 影响溶气效率的主要因素
实践证明:温度、过水密度和填料层高度是影响溶气效率的 主要因素
安徽工程科技学院生化系
Anhui University of Science and Technology
工业废水污染防治
Prevention & Treatment of Trade Wastewater
空压机供气的优点是气量、气压稳定,并有较大的调节余地,但噪声大, 投资较高
1.2 溶气罐系统结构图
安徽工程科技学院生化系
Anhui University of Science and Technology
工业废水污染防治
Prevention & Treatment of Trade Wastewater
TR系列高通量压力溶气罐
主要特点 1.耗能低、效率高(溶气效率高达99%)。 2.自动调整溶气罐内气液平衡。 3.低压运行(2.5-3Kgf/cm2压力下即可高效运作)。 4.过水密度大(罐截面负荷率可达5000米3/米2。日)。 5在不排放未溶空气的条件下运行,可节省空压机电 耗,大大缩短连续运行时间,延长空压机寿命。 6.小阻力均匀布水,压力降仅为喷头布水的十分之 一, 因而有效的利用水泵扬程节省电耗,避免喷头 的堵塞。 7.罐体轻巧,安装、使用、维护方便
工业废水污染防治
Prevention & Treatment of Trade Wastewater
1. 压力溶气系统
压力溶气系统:包括(加压)水泵、空压机、压 力溶气罐及其它附属设备。
压缩空气与压力水在压力溶气罐中通过传质﹑ 扩散﹑溶解过程而使水中溶入大量空气。
根据亨利定律,空气在水中的饱和溶解度正比于 溶气罐中的压力,但实际上能否达到的溶解量则与 溶气罐的溶气效率有关,溶气罐的效率越低,实际溶 气量与饱和值的差距越大,此时,为了达到预期的释
安徽工程科技学院生化系
Anhui University of Science and Technology
工业废水污染防治
Prevention & Treatment of Trade Wastewater
射流进气是以加压泵出水的全部或部分作为射流器的动力水,当水 流以30~40m/s的高速紊流束从喷嘴喷出,并穿过吸气室进入混 合管时,便在吸气室内造成负压而将空气吸入。气水混合物在混合 管(喉管)内剧烈紊动、碰撞、剪切,形成乳化状态。进入扩散管后, 动能转化为压力能而使空气溶于水,随后进入溶气罐,这种供气方 式设备简单,操作维修方便,气水混合格解充分;但由于射流器阻 力损失大(一般为加压泵出口压力的30%)而位能耗偏高。
根据溶气方式不同,溶气系统大致可分为三种:
✓水泵吸气式 ✓压水管装水射器挟气式
(又称射流挟气式);
✓空压机供气式。
泵前插管进气,是在加压泵的吸水管上设置一个膨胀的插管管头,在 管头轴线上沿水婉方向插入l~3支900的进气管。水泵运行时,叶轮旋 转产生的负压将空气从进气管吸入,并与水一起在泵内增压、混合和 部分溶解。这种埃气力式简便易行、能耗低,但气水比受到一定限制, 一般为5~8%,最高不能超过10%,而且加压泵叶轮易受气蚀。
采用加压的方式将空气溶解于水,再在减压的条件 下释放出微小气泡粘附于悬浮物上,使其整体比重 小于水而上浮于水面,通过机械装置刮除,实现固 液分离的装置。
安徽工程科技学院生化系
Anhui University of Science and Technology
工业废水污染防治
Prevention & Treatment of Trade Wastewater
相关文档
最新文档