2 Interpolation
数据插值方法
数据插值方法
数据插值方法是用于填补数据缺失或缺失值的一种技术。
常用的数据插值方法包括:
1. 线性插值法(Linear Interpolation):通过已知数据点之间
的直线,对缺失值进行估算。
2. 多项式插值法(Polynomial Interpolation):使用多项式函
数来拟合已知数据点,进而求得缺失值。
3. 样条插值法(Spline Interpolation):通过光滑的曲线来插值,可分为线性样条插值、二次样条插值等。
4. K近邻插值法(K-nearest neighbor Interpolation):基于已
知数据点的距离进行插值,找出最近的K个数据点,并计算
插值值。
5. 拉格朗日插值法(Lagrange Interpolation):使用拉格朗日
插值多项式来估算缺失值。
6. 牛顿插值法(Newton Interpolation):使用牛顿插值多项式
来估算缺失值。
7. 分段插值法(Piecewise Interpolation):根据已知数据点的
特征,将数据范围划分为多个区间,并在每个区间内进行插值计算。
以上是常用的数据插值方法,每种方法都有其适用的场景和优缺点,选择适合的插值方法需要考虑数据的特点以及具体需求。
02Cubic Spline Interpolation
Cubic Spline InterpolationMAE 5093Charles O’Neill28 May 2002AbstractA cubic spline routine was developed for unequally spaced sequential data points. Cubic spline theory is reviewed. A Visual Basic computer program in Excel was created to fit a spline to input data points. Three testcases are used to validate the routine. Conclusions regarding the cubic spline routine are made.IntroductionThe objective is to fit a cubic spline to data points. A typical curve fit involves forming one equation through all n points. In contrast, a spline allowing each segment to have a unique equation while still constraining the curve fit to the data properties.This paper will develop the governing equations for a cubic spline. A computer implementation using Visual Basic will be presented. Three testcases will validate the spline method and the computer code. Finally, conclusions will be discussed.TheorySpline theory is simple. Over n intervals, the routine fits n equations subject to the boundary conditions of n+1 data points. The derivations of Lilley[1] and Wheatly[2] are used. The derivation assumes a functional form for the curve fit. This equation form is simplified and then solved for the curve fit equation.The assumed form for the cubic polynomial curve fit for each segment is,()()()i i i 2i i 3i i d x x c x x b x x a y +−+−+−= where the spacing between successive data points isi i i x x h −=+1The cubic spline constrains the function value, 1st derivative and 2nd derivative. The routine must ensure that )x (y , )x (y ′ and )x (y ′′are equal at the interior node points for adjacent segments. Substituting a variable S for the polynomial’s second derivative reduces the number of equations from a, b, c, d for each segment to only S for each segment.For the i th segment, the S governing equation is,()−−−=+++−−++−−−1i 1i i i i 1i 1i i i i 1i 1i 1i h y y h y y 6S h S h 2h 2S hIn matrix form, the governing equations reduce to a tri-diagonal form.()()() −−−−−−= +++−−−−−−−−−−221111122231212223222216222n n n n n n n i n n n n h y y h y y h y y h y y S S S h h h h h h h h h h M M O O OS 1 and S n are zero for the natural spline boundary condition. If different boundary conditions are needed, the appropriate changes can be made to the governing equations.Finally, the cubic spline properties are found by substituting into the following equations. These a, b, c and d values correspond to the polynomial definition for each segment.()ii i i i i i i i i i i ii i i y d S h S h h y y c S b h S S a =+−−==−=+++622/6/111 Solution MethodA Visual Basic program was written in Excel to fit a cubic spline as described in the Theory section. The program is listed in the Appendix. The general program steps are given below.1. Problem Initialization The program initializes the variables.2. Read in Data Values The data values are read and the individual intervals are calculated.3. Determine S matrices The influence coefficient values for the S matrix are determinedfor a natural spline. The constant matrix, C , is determined.4. Matrix Solver A generic Tri-Diagonal-Matrix-Algorithm (TDMA) solver determines theS value at each interval.5. Calculate Cubic Parameters The cubic parameters a, b, c and d are calculated at eachinterval from S and h .6. Write out The program writes out the polynomial specification terms a, b, c and d . ResultsThe cubic spline curve fit routine was validated with three testcases. The first is an equally spaced polynomial function. Next, an unequally spaced exponential function is fit. Finally, the cubic spline routine is tested on a bump function. The results are compared with known examples where possible.Equal Data SpacingThis testcase fits a cubic spline to 8x )x (f 3−= along the x interval from 0 to 4. This problem is solved as an example in Lilley’s[1] notes. The cubic spline routine determines the same S values as the example. Figure 1 shows a plot of the function and the cubic spline.Figure 1. Equal SpacingThe spline was fit to 5 data points. The spline is natural , S equals zero at the ends. Overall fit is good except between x values of 3 and 4. This difference is caused by the natural splineboundary conditions at x=0 and 4. Changing the spline to reflect the correct 2nd derivative at x=4 would help the fit. Also, the a, b, c and d parameters would exactly recover the polynomial function.Unequal Data SpacingThis testcase fits a cubic spline to 2x x e 2)x (f −= with unequal data spacing. Gerald andWheatly[2] solve the problem in Example 3.6. The cubic spline routine finds the same S, a, b, c and d parameters as Gerald and Wheatly. Figure 2 shows a plot of the function and the cubic spline.Notice that the spline creates a good fit between for segments with 2nd derivatives near zero. The third segment (x= 1.5 to 2.25) has the worst fit because of the natural spline boundary condition at point 4. This is the same 2nd derivative problem as discussed in the equal spacing testcase.Figure 2. Unequal SpacingBump FunctionThe bump testcase fits a cubic to10)x)x(f= with seven data points. Gerald[2] used thiscos(function to illustrate problems with other interpolation methods. Figure 3 shows the function andthe cubic spline fit.Figure 3. Bump TestcaseVisually, the cubic spline dips below into negative values between x= –2 to –1 and x= 1 to 2.The actual function remains positive. It appears that the best fit occurs in the middle. This makessense because the end points are less constrained to the actual function when compared to themiddle points.ConclusionsA cubic spline curve fit routine was successfully implemented. A curve fit program was written with Visual Basic inside Excel. Three testcases were used to validate the curve fit routine.The results show that the cubic spline provides an adequate curve fit for most data sets. Problems occurred at the end segments because of differences between the natural spline boundary condition and the function’s actual 2nd derivative. Including 2nd derivative information for the endpoints would doubtlessly improve the curve fit.Additionally, the spline method also allows for harmonic solutions by forcing the same function properties onto the end points. Variations on this harmonic method would be needed for unknown period oscillations or simultaneous multi-mode data points. Far from the end points, even the current code would yield good curve fits for harmonic data points.The cubic spline is an easy to implement curve fit routine. Because the method involves connecting individual segments, the cubic spline avoids oscillation problems in the curve fit. Overall, the cubic spline provides a good curve fit for arbitrary data points.References[1] Lilley, D. G., Numerical Methods, Stillwater, OK, 2002. NOT AVAILABLE[2] Gerald, C., and Wheatley, P., Applied Numerical Analysis, Addison-Wesley, 1994. Comments and Thanks (July 2008)Special thanks to C. Selover and Dr. M. Maixner for finding and correcting typos and bugs.For a forgotten project in a long-ago summer numerical method course, this project has attracted a surprising number of comments.Please invest in a good numerical methods book. The Lilley[1] reference was a series of class notes which are not currently available. I suggest that you either use the Gerald reference or buy Lilley’s forthcoming book. Hamming’s Numerical Methods published by Dover is nice. Another reasonable reference is the Numerical Recipes series by Press, et al.Visual Basic defines the array S(10) with elements from 0 to 10. For S, I was only using elements 1 to 10, which accounts for the “Shift to TDMA coordinate system” code (The TDMA matrix inversion starts at element 0). This indexing method is sub-optimal.Appendix: Computer CodeOption Explicit' Cubic Spline' Project 1 MAE 5093' 5-28-02' Copyright (c) 2002 Charles O'Neill'' Permission is hereby granted, free of charge, to any person' obtaining a copy of this software and associated documentation' files (the "Software"), to deal in the Software without' restriction, including without limitation the rights to use,' copy, modify, merge, publish, distribute, sublicense, and/or sell' copies of the Software, and to permit persons to whom the' Software is furnished to do so, subject to the following' conditions:'' The above copyright notice and this permission notice shall be' included in all copies or substantial portions of the Software.'' THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,' EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES' OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND' NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT' HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,' WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING' FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR' OTHER DEALINGS IN THE SOFTWARE.Sub Main()'Data sizingDim x(10) As Double, y(10) As Double, norder As IntegerDim h(10) As DoubleDim i As Integer, j As Integer'Cubic sizingDim S(10) As Double'TDMA sizing (share A,B,C,D with cubic)Dim B(10) As Double, D(10) As Double, A(10) As Double, C(10) As Double, R As Double Dim ntdma As Integer'Setup Lagrange polynomial --------------------------------------------'Read in data-point ordernorder = ActiveSheet.Cells(3, 3)'Read in Data ValuesFor i = 1 To norderx(i) = ActiveSheet.Cells(4 + i, 3)y(i) = ActiveSheet.Cells(4 + i, 4)Next i'Determine the width of the ith intervalFor i = 1 To (norder - 1)h(i) = x(i + 1) - x(i)ActiveSheet.Cells(4 + i, 5) = h(i)Next i'Set S matrix influence coefficients for natural splineFor i = 2 To (norder - 1)j = i - 1 'Shift to TDMA coordinate systemD(j) = 2 * (h(i - 1) + h(i))A(j) = h(i) 'Ignore A(norder)B(j) = h(i - 1) 'Ignore B(0)Next i'Set Constant Matrix CFor i = 2 To (norder - 1)j = i - 1 'Shift to TDMA coordinate systemC(j) = 6 * ((y(i + 1) - y(i)) / h(i) - (y(i) - y(i - 1)) / h(i - 1))Next i' Max tdma lengthntdma = norder - 2'TDMA -------------------------------------' Upper TriangularizationFor i = 2 To ntdmaR = B(i) / D(i - 1)D(i) = D(i) - R * A(i - 1)C(i) = C(i) - R * C(i - 1)Next i' Directly set the last CC(ntdma) = C(ntdma) / D(ntdma)' Back SubstituteFor i = (ntdma - 1) To 1 Step (-1)C(i) = (C(i) - A(i) * C(i + 1)) / D(i)Next i'End of TDMA -------------------------------'Switch from C to SFor i = 2 To (norder - 1)j = i - 1 'Shift from TDMA coordinate systemS(i) = C(j)Next i'End conditionsS(1) = 0S(norder) = 0'Calculate cubic ai,bi,ci and di from S and hFor i = 1 To (norder - 1)A(i) = (S(i + 1) - S(i)) / (6 * h(i))B(i) = S(i) / 2C(i) = (y(i + 1) - y(i)) / h(i) - (2 * h(i) * S(i) + h(i) * S(i + 1)) / 6 D(i) = y(i)Next i'Write out S,a,b,c,d ValuesFor i = 1 To norderActiveSheet.Cells(4 + i, 7) = S(i)ActiveSheet.Cells(4 + i, 8) = A(i)ActiveSheet.Cells(4 + i, 9) = B(i)ActiveSheet.Cells(4 + i, 10) = C(i)ActiveSheet.Cells(4 + i, 11) = D(i)Next iEnd SubSub plotter()'Data sizingDim x(10) As Double, y(10) As Double, norder As Integer, nstep As IntegerDim h(10) As DoubleDim i As Integer, j As Integer, step As IntegerDim B(10) As Double, D(10) As Double, A(10) As Double, C(10) As DoubleDim xs As Double, ys As Double'Read in data-point ordernorder = ActiveSheet.Cells(3, 3)'Read in Cubic propertiesFor i = 1 To norderx(i) = ActiveSheet.Cells(4 + i, 3)h(i) = ActiveSheet.Cells(4 + i, 5)A(i) = ActiveSheet.Cells(4 + i, 8)B(i) = ActiveSheet.Cells(4 + i, 9)C(i) = ActiveSheet.Cells(4 + i, 10)D(i) = ActiveSheet.Cells(4 + i, 11)Next i'Read in stepsnstep = ActiveSheet.Cells(18, 3)'Determine and write out x,Ystep = 0For i = 1 To (norder - 1) 'Discrete function stepFor j = 1 To nstepstep = step + 1xs = x(i) + (h(i) / nstep) * (j - 1)ys = A(i) * (xs - x(i)) ^ 3 + B(i) * (xs - x(i)) ^ 2 + C(i) * (xs - x(i)) + D(i)ActiveSheet.Cells(step, 15) = xsActiveSheet.Cells(step, 16) = ysNext jNext iEnd Sub。
interp2
% Copyright 1984-2009 The MathWorks, Inc.
% $Revision: 5.33.4.19 $
error(nargchk(1,7,nargin,'struct')); % allowing for an ExtrapVal
bypass = false;
% 'cubic' - bicubic interpolation as long as the data is
% uniformly spaced, otherwise the same as 'spline'
%
% For faster interpolation when X and Y are equally spaced and monotonic,
index = 0;
end
if strncmpi(method,'*',1) % Direct call bypass.
if (narg ==5 || narg ==3)
xitemp = varargin{end-index - 1};
% use the syntax ZI = INTERP2(...,*METHOD).
%
% ZI = INTERP2(...,METHOD,EXTRAPVAL) specificies a method and a scalar
% value for ZI outside of the domain created by X and Y. Thus, ZI will
varargin{end-index} = repmat(yitemp', [1, size(xitemp,1)]);
图像放大算法
一、图像放大算法图像放大有许多算法,其关键在于对未知像素使用何种插值方式。
以下我们将具体分析几种常见的算法,然后从放大后的图像是否存在色彩失真,图像的细节是否得到较好的保存,放大过程所需时间是否分配合理等多方面来比较它们的优劣。
当把一个小图像放大的时候,比如放大400%,我们可以首先依据原来的相邻4个像素点的色彩值,按照放大倍数找到新的ABCD像素点的位置并进行对应的填充,但是它们之间存在的大量的像素点,比如p点的色彩值却是不可知的,需要进行估算。
图1-原始图像的相邻4个像素点分布图图2-图像放大4倍后已知像素分布图1、最临近点插值算法(Nearest Neighbor)最邻近点插值算法是最简单也是速度最快的一种算法,其做法是將放大后未知的像素点P,將其位置换算到原始影像上,与原始的邻近的4周像素点A,B,C,D做比较,令P点的像素值等于最靠近的邻近点像素值即可。
如上图中的P点,由于最接近D点,所以就直接取P=D。
这种方法会带来明显的失真。
在A,B中点处的像素值会突然出现一个跳跃,这就是出现马赛克和锯齿等明显走样的原因。
最临近插值法唯一的优点就是速度快。
2、双线性插值算法(Bilinear Interpolation)其做法是將放大后未知的像素点P,將其位置换算到原始影像上,计算的四個像素点A,B,C,D对P点的影响(越靠近P点取值越大,表明影响也越大),其示意图如下。
图3-双线性插值算法示意图其具体的算法分三步:第一步插值计算出AB两点对P点的影响得到e点的值。
图4-线性插值算法求值示意图对线性插值的理解是这样的,对于AB两像素点之间的其它像素点的色彩值,认定为直线变化的,要求e点处的值,只需要找到对应位置直线上的点即可。
换句话说,A,B间任意一点的值只跟A,B有关。
第二步,插值计算出CD两点对P点的影响得到f点的值。
第三步,插值计算出ef两点对P点的影响值。
双线性插值算法由于插值的结果是连续的,所以视觉上会比最邻近点插值算法要好一些,不过运算速度稍微要慢一点,如果讲究速度,是一个不错的折衷。
光电英语词汇(I2)
光电英语词汇(I2)光电英语词汇(I2)光电英语词汇(I2)integrating capaciotor 积分电官integrating circuit 积分电路integrating detector 积分探测器integrating exposure meter 积分曝光计integrating filter 积分滤波器integrating motor 积分电动机integrating photmeter 积分光度计integrating photometer 积分光度计integrating sphere 积分球integrating spheres 积分球integration circuit 积分电路integration constant 积分常数integration filter 积分滤波器integrator (1)积分器(2)积累器intelligence (1)智能(2)情报,信息intenisty of spectral line 谱线强度intense colour 强色intense laser radiation 强激光辐射intense light pulse 强光脉冲intense light source 强光源intense tunable ir source 强可调红外源intensification 增强,强光intensified vidicon 增强视像摄影管intensifier 增强器intensifying foil 箔制增光屏intensity 强度intensity control 强度控制intensity convolution integral 强度卷积积分intensity diffration pattern 强度衍射图样intensity distriubtion 强度分布intensity fluctuation 强度起伏intensity impulse response 强度脉冲响应intensity interferometer 光强干涉仪intensity level 强度级intensity modulation 强度调制intensity of color 色强度intensity of ilumination 照明强度,照度intensity of pressure 压强intensity scale esneitometer 光强感光度计intensity spectrum 强度谱intensity transfer function 强度传递函数intensive reflector 强光反射镜inter-frame redundancy 帧间多余信息inter-image effect 像界效应inter-relation 相互关系interactive 交互作用的interacvity (1)内共振腔,内腔(2)腔内interatomic collisions 原子间碰撞interaxial angle 轴间角interaxial mode beat frequency 轴间模拍频interband transition 带间跃迁intercalibration 相互校准intercept ground-based optical recorder 监听地面光记录仪interchangable lens 可换镜头interchangeability 交换性,互换性interchangeable lens 可互换透镜interchangeable mirror 可换反射镜interconersion 相互转化intercorrelation 相互关intercoupling 寄生耦合intercrystalline 晶粒间的intercrystalline barrier 晶间势垒interdiffusion 相互扩散interelectrode 极间的interelectrode capacitance 极际电容interelectronic 电子间的interface (1)界面(2)相互关系interface energy 分界面能interface scattering 界面散射interfacial angle 晶面角interfacial film 界面膜interference (1)千涉(2)干扰interference absorber 干涉吸收体interference color 干涉色interference colors 干扰色interference condition 干涉条件interference contrast 干涉对比interference contrast microscopy 干涉对比显微术interference drag 干涉曳力,干涉阻力interference figure 干涉图形interference filter 干涉滤光器interference filters 干涉滤光镜interference fit 干涉配合interference fringe 干涉条纹interference function 干涉函数interference grating 干涉光栅interference inverter 干涉反演器interference microscope 干涉显微镜interference microscopy 干涉显微术interference modulation 千涉调制interference of equal inclination 等倾干涉interference of equal thickness 等厚干涉interference of light 光的干涉interference of overlapping of orders 叠级干涉interference order 千涉级interference path difference 干程程差interference pattern 干涉图形interference reflector 干涉反射镜interference ring 干涉环,干涉圈interference spectrometer 干涉光谱计interference spectroscope 干涉分光镜interference spectroscopy 干涉分光光谱学interference spectrum 干涉光谱interference surface micrscope 表面干涉显微镜interference tube 干涉管interference wave 干涉波interference-free (1)无干涉的(2)无干扰的interferences/differential interference contrast microscopes 干涉显微镜,微分干涉对interferend refractometer 干涉折射计interfermetric micrscopy 干涉测量显微术interfermetric radiometer 干涉辐射计interferogram 干涉图interferogram technique 干涉图技术interferography 干涉像术interferometer 干涉仪interferometer modes 干涉仪类型interferometer optics 干涉仪光学interferometer spectroadimeter 干涉分光辐射计interferometric calorimetry 干涉测热术interferometric filter 干涉滤光片interferometric null method 干涉测量零点法interferometry 干涉量度学interferoscope 干涉镜interfringe 条纹间的intergalactic space 星系际空间intergating gyroscope 积分回旋器,积分陀螺interior focusing 内调焦interior screw 内螺旋interior sub-multiple angles 内等分角interiror focusing telescope 内调焦望远镜interlaced scanning 隔行扫描interlayer 界层,隔层interlayer effect 界层效层interleave scanning 隔行扫描interlock (1)联锁,闭锁(2)连接interlocking device 联锁装置intermediary image 中间像intermediate axle 中间轴intermediate fequency 中频intermediate frequency (if)中频intermediate frequency transformer 中频变压器intermediate gear 中速齿轮,二档齿轮intermediate herschek effect 中度赫谢效应intermediate image 中间成像intermediate infrared region 中红外区intermediate level 中间能级intermediate wae 中波intermediate-index layer 中间折射率层intermeshed scannning 隔行扫描intermetallic compound semiconductor 金属间化合物半导体intermittency effect 断续效应intermittent camer 断续式摄影机intermittent exposure 断续曝光intermittent illumination 断续照明intermittent noise 断续噪声intermittent sprocket 断续链轮intermode beats 模间拍intermode spacing frequecny 模间间隔频率intermodulation 互调intermodulation distortion 互调变失真,模间失真intermodulation effect 互调制效应intermodulation interference 互调干扰internal 内部的internal absorptance 内吸收比internal absorption factor 内吸收因数internal adjustment scope 内调式瞄准镜internal calibration 内校准internal caliper gage 内径卡规internal conical refraction 内锥形折射internal conversion 内转换internal defocusing 内散焦internal dial gage 内径千分表internal diamteter 内径internal exposure (1)内曝光(2)内照射internal field 内场internal focusing 内调焦internal focusing telescope 内调焦望远镜internal gating 内选通,内开关作用internal gauge 内径规internal measuring instrument 内径测量仪器internal photoeffect 内部效应internal photoelectric effect 内部光电效应internal photolectric effect 内光电效应internal quanntum efficiency 内量子效率internal reflection 内反射internal reflective cavity 内反射腔internal reflector 内反射镜internal scanned laser 内扫描激光器internal self-defocusing 内自散焦internal self-focusing 内自聚焦internal standard 内标准internal standard line 内标准线internal stress 内胁强,内应力internal surface 内表面internal transmittance 内透射比internal-standard line 内标线internally loss modulated laser 内损耗调制激光器internally modulated gas laser 内调制气体激光器internally phase modulated laser 内相位调制激光器internation standard 国际标准international bureau of weights and measures 国际计量局international coulomb 国际库仑international organization for standardization (iso)国际标准化组织international organization of legal metrology 国际法制计量组织international prototype 国际原型international standard atmosphere 国际标准大气压international standardization association (i.s.a)国际标准化协会international system of units (si system)国际单位制international telecommunication satellite consortium (intelsat)国际通信卫星组织internnational candle 国际烛光interocular distance 瞳孔间距离interocular kistance 眼珠间距interorder distance 干涉带间距interphako interference microscopy 显微剪切干涉术interphase transformer 相间变压器interplanar distance 晶面间距interplanetary 行星际的interplanetary communication 行星际通interplanetary navigtion 行星际导航interplanetary space 太空interplanetrary flight 行星际航行interplay 相互作用interpolating coding area 插值编码区域interpolation 插值法,插值,内插法interpolation error 插值误仪interpolation formula 插值公式interpolation function 插值函数interpole 间极interpretation (1)解释,翻译(2)译码interpreter 直译程式,转译程式interpreter code 伪码interpretoscope 判读机interpupillary adjustment 光瞳间距调节interpupillary distance 瞳间距离interpupillary distance (ipd)光瞳间距调节interpupillometer 光瞳间距仪interrupt 中断,岔断interrupt flip-flop 中断触发器interrupted wae 间歇波interrupter (1)断续器(2)斩波器interrupter disk 斩光盘interruption (1)中断(2)阻挡interscan 中间扫描intersecting axle 交叉轴intersecting line 交叉线intersection (1)交叉(2)交叉intersection point 交点interspace (1)间隙(2)星际interstage 级际的,级间的interstellar absorption lines 星际吸收线interstellar gas 星际气体interstellar line 星际谱线interstellar spectrum 星际谱interstellar vehicle 星际飞船interstital site 填隙座interstitial fibre 隙间光纤intersymobl interference 码间干扰intersystem crossing tansition 系际交叉跃迁interval (1)间隔(2)区间intervalometer 曝光控制器intesifying cscreen 增光屏intraacvity loss modulation 腔内损失制intraband photoconductivity 带内光电导性intrabeam viewing 光束内视intracavity acoustic modulation 腔内声调制intracavity diffraction grating 腔内衍射光栅intracavity electroptic modulator 内腔式电光调解制器intracavity gas laser 内腔式气体激光器intracavity laser modulation 腔内激光调制intracavity prism 内腔式棱镜intracity dye-laser 内腔式染料激光器intracvavity resonantor 内腔式共振器intracvity image converter 内腔式变像管intralens reflection 透镜内反射intramodal distortion 模内畸变intramode 模内intraocular 眼内的intraocular fluid 眼内充填用液体intraocular gas 眼内充填用气体intraocular lens 人工水晶体intraocular lens guide 人工水晶体导引器intraocular pressure measuring device 眼内压测试装置intraretional 视网膜内的intravity phase modulation 腔内相调制intrinsic 本徵的,固有的,内禀的intrinsic brighness 固有亮度intrinsic carrier 本徵载流子intrinsic crystal 本徵晶体intrinsic defect 内在缺陕intrinsic detector 本微探测器intrinsic error 固有误差intrinsic flux density 本质通量密度intrinsic germanjum photodiode 本徵锗光电二极管intrinsic impedance 固有阻抗intrinsic linewidth 本徵线宽intrinsic loss 本徵损失intrinsic photoconductior 本徵光电导体intrinsic photoconductivity 内禀光电导性intrinsic photoemission 内禀光电发射intrinsic scattering 本徵散射intrinsic semiconductor 本徵半导体intrinsic transistor 本征晶体管introscope 内窥镜,内视镜intrusion detector 插入式探测器invar 殷钢invar tape 殷钢带invariance (1)不变性(2)不变式invariance of liner systemm 线性系统不变性invariant 不变量invariant scalar 不变标量inverse 倒逆,反向,倒置inverse bremsstrahlung 逆轫致辐射inverse compton effect 倒康普顿效应inverse correlation 逆相关inverse feedback 贫反馈inverse fllter 逆滤波器inverse fourier transform 傅里叶逆变换inverse matrix 逆矩阵inverse peak voltage 逆向峰值电压inverse piezoelectric effect 光电逆效应inverse problem 可逆问题,倒问题inverse proportion 反比例inverse raman effect 倒喇曼效应inverse raman scattering 反转喇曼散射inverse ratio 反比inverse relaxation 反弛豫inverse square law 平方反比率inverse stark effect 倒斯塔克效应inverse transform 逆变换inverse trigonometrical function 反三角函数inverse voltage 反转电压inverse zeeman effect 侧塞曼效应inverse-frequency spectrum 反转频谱inversion level 反转能级inversion mechanism 反转机制inversion prism 倒像棱镜inversion pump rate 反转抽运速率inversion symmetry (1)反向对称(2)镜面对称invert unit 倒相器inverted image 倒像棱镜inverted lamb dip 倒兰姆凹陷inverted microscope 倒显微镜inverted population density 反转粒子数密度inverted spectral term 倒光谱项inverted t-slot 倒丁字槽inverted telectphoto objective 倒远摄物镜inverted telphoto lens 倒远距照相镜inverter (1)变换器(2)倒相器(3)转换开关invertibility 可逆性invertible matrix 可泄矩阵inverting eyepiece 倒像目镜inverting parametric device 倒反参变装置inverting prism 倒像棱镜inverting range finder 倒像测距仪invesrsion spectrum 反转谱invisible chromatogram 不可见色谱图invisible light filter 不可见光滤波器invisible light filters 不可见的光滤器invisible line (1)隐线,虚线(2)不可见谱线invisible radiation 不可见辐射invisible ray 不可见射线invisible spectrum 不可见辐射谱involute 渐开线,渐伸线involute curfe 渐开线齿轮involute gear 渐开线齿条involute rack 渐开线齿条involute tester 渐开线检查仪involute worm 渐开线蜗杆involution (1)乘方(2)对立inwall 内壁inward curving field 向内弯曲场iodide 碘化物iodine (i)碘iodine cycle 碘循环iodine laser 碘激光器iodine photodissociation laser 碘光解激光器iodine stabilized laser 碘稳频激光器iodine tungste filament lamp 碘钨灯ion 离子ion activity electrode 离子活性电极ion avalanche 离子雪崩ion beam 离子束ion bombardment 离子虫击ion chamber 离子室ion choncentration 离子浓度ion contamination 离子污染ion emission 离子发射ion exchange 离子交换ion exchange chromatorgraphy 离子交换色谱法ion exchange resion 离子交换脂ion exchange technique 离子交换技术ion focujsing 离子聚焦ion gas laser 离子气体激光器ion grid theory 离子栅极说ion image 离子像ion implantation 离子注入ion implantation equipment 离子植入机ion laser 离子激光器ion microprobe mass spectrometer 离子探针质谱仪ion microscope 离子显微镜ion mobility 离子迁移率ion pair 离子对ion polishing 离子抛光ion tarnsition 离子跃迁ion-acoustic fluctuation 离子声起伏ion-acoustic turblence 离子声湍流ion-diple bond 离子偶极键ion-exchange electrolyte cell 离子交换电解电池ion-heated cathode 离子加热阴极ionic birefringence 离子双折射ionic bonding force 离子链合力ionic crystal 离子晶体ionic focusing 离子聚焦ionic link 离子键ionic polarizaton 离子极化ionium (io)锾ionization 电离,离子化ionization chamber 电离室,游离室ionization energy 电离能ionization gauge 电离规ionization potential 电离电位ionization spectrometer 游离分光计ionization time 电离时间ionization vacuum gauge 游离真空计ionization voltage 电离电压ionized acceptor 离子化受主ionized argon laser 氩离子激光器ionized gas 电离气体,离子化气体ionized laser plasma 电离激光等离子体ionized layer 电离层ionized stratum 电离层ionizing radiation 致电离辐射ionogam 电离圆ionography 离子摄影ionosphere 电离层ionospheric storm 电离层风暴ionospheric wave 电离层波iontegration (1)积分法(2)集成iosotope mixture 同位素混合物ir airglow 红外大气光辉光ir camouflage-dectection camera 假目标红外探测相机ir detector 红外探测器ir diode laser 红外二极管激光器ir filter 红外滤光片ir fringe computer 红外条纹计算机ir guided warhead 红外制导弹头ir horizon sensor 红外地平传感器ir imaging senor 红外热像仪ir laser tracker ranger 红外激跟踪测距仪ir modulated ellipsometry 红外调制椭圆测量术ir optical component 红外光学部件ir phosphor 红外磷光体ir picture 红外图像ir recording equipment 红外记录仪ir response 红外响应ir scanning camera 红外扫描照相机ir seeker 红外寻的器,红外搜索器ir senor 红外传感器ir window 红外窗ir-aimed lidar 红外瞄准激光雷达ir-radiometer 红外辐射计ir-transmission glass 透红外玻璃iraser (1)红外激射(2)红外激射器irdome 红外整流罩iridescence 虹彩iridescent color 彩虹色iridium (ir)铱irirs change mechmaism 可变光阑变化机制iris (1)虹膜(2)可变光阑iris aperture 可变光阑孔径iris blade 可变光阑片iris diaphragm 可变光阑iris diaphrams (stops),apertures 虹膜光阑,孔径iris mount 可变光阑套iris photometer 可变光阑光度计iris ring 可变光阑环iron (fe)铁iron arc 铁电弧iron oxidfe 氧化铁iron sulfide film 硫化铁膜irradiance 辐照度irradiant (1)光照的(2)光亮的irradiated gas 受辐照气体irradiated surface 受辐照表面irradiation (1)发光(2)辐照(3)光渗irradiation bomb 照明弹irradiator 辐照器irradome 红外整流罩irrationa dispesion 无理色散,不规则色散irrational (1)无理数(2)无理的irreducible matricx 不可约阵irreflexive 漫反射的irregar array irrelevant image 不相关像irreqularity 不规则性irreueible componet 不可射成分irreversibility 不可逆性irreversible circulation 不可逆循环irreversible laser damage 不可逆激光损伤irreversible reaction 不可逆反应irrgular movement 不规则运动irrgular reflection 不规则反射irrgular refraction 不规院折射irrgular spiking 不规则尖峰irrgularity of inter-ference fringe 干涉条纹不规则性irrotational (1)无旋的,非旋转的(2)非旋光的irrotational vector 无旋矢量irtran-i 艾尔特兰-i irtran-ii 艾尔特兰-ii irtron 红外光雷管ischromtic stimuli 等色剌激iscolinic 等倾线isentropic (1)等熵线(2)等熵的isis wave-beam device 可变光阑波束装置islometer (1)同分异构体(2)同质累能素iso code 国际标准码iso speed standard 国际感光度标准isobar (1)等压线(2)同量异位素isobric line 等压线isocandela diagram 等烛光图isocandla diagram 等烛光图isochromatic 等色的isochromatic (orthochromatic)等色的isochromatic line 等色线isochromatic lines 等色线isochromatics 等色性isochromatics-isopachices patern 等色-等厚线图样isochronis, 等时性isochronous scanning 同步扫描isocmetric projection 等角投影isodiffusion surface 等漫射面isodivs 等布图isoelastic 等弹性的isoelcectronic transition 等电子跃迁isoelectronic sequence 等电子数序isogonic mapping 等角测绘isogonic tranformation 等角变换isogyre 同消色线isohedral 等面的isolation (1)绝绿(2)隔离isolation mounting 隔离装置isolator (1)绝缘体(2)隔离器isoline 等值器isomeride 同分异构体isomerism 同质异能性isometric (1)等轴的,立方的(2)等量的isometric system 立方晶系isometrics 等体积线,等容线isometropia 同等视觉isomrorphis 同晶性,同构性isomrphic substance 同晶型物质isopach 等厚线isopache measurment 等厚测量isopanchromatic film 等全色胶片isophase 等相线isophlanatic image formation 等晕成像isophote 等照度线isophotometer 等光度计isoplanatic 等平面的isoplanatic condition 等晕条件isoplanatic patch 等晕面元isoplanatic region 等晕区isoplanatism 等晕现象isopreference curves 等如曲线isorotation 等旋光度isorphous crystal 同形晶体isospace 同空间isosrbs 等吸收isostaic ajdusment 均衡调整isotemperature line 等温线isotherm 等温线isothermal solid region 等温固态区isotojpic abundance 同位素丰度isotope 同位素isotope enrichment 同位素浓缩isotope excitation 同位素激发isotope lamp 同位素灯isotope separation 同位素分离isotope shift 同位素移动isotrocpic material 各向同性材料isotropic 各自同性的isotropic crystal 各向同性晶体isotropic material 各向同性材料isotropic medium 各向同性媒质isotropic radiator 各自同性辐射体isotropic resolution 各向同性分解isotropic scatterning 各向同性散射isotropism 各向同性现像isotropy 各向同性itensified image 增强像iteration correction 迭代校正iterative method 迭代法itercnnection 互连iterfermetry 干涉量度学itermolecvular 分子间的itersatllite communication 卫星间通信itnersection height 交点高度ito glass substrate 导电膜玻璃基板itracavity modulation 腔内调制itv 工业电视iversion density 反转密度ivory 象牙色光电英语词汇(I2) 相关内容:。
插值的基本概念
插值的基本概念插值(interpolation)是指在已知有限个数据点的情况下,通过某种数学方法构造出一个函数,使得这个函数在这些数据点上的函数值都与已知的数据相符合。
插值方法常被用于曲线拟合,图像处理,计算机辅助设计,地图制作等领域。
插值方法主要分为三类:多项式插值法、样条插值法和分段线性插值法。
以下分别介绍这三种方法的基本概念。
1. 多项式插值法多项式插值法是指用一个n次多项式来逼近已知的n+1个数据点,从而得到一个插值函数。
插值函数的形式为:f(x) = a0 + a1x + a2x^2 + ... + anxn其中a0, a1, a2, ... , an是n+1个待求系数,取决于已知数据点的值。
为了求得这些系数,需要使用某种算法,如拉格朗日插值法或牛顿插值法。
这两种方法都能够精确地通过已知点,并可方便地计算任意点的函数值。
但是,随着数据点的数量增加,多项式插值方法的计算量将急剧增加,可能导致算法不稳定或数值不可信。
2. 样条插值法样条插值法是一种更为复杂的插值方法,它将插值函数分为若干个小区间,并在每个区间内用一个低次多项式来逼近已知的数据点。
这些局部多项式的系数由已知数据点的值和导数共同决定,使得插值函数在各区间内的函数值和导数连续。
这种连续性和光滑性可以使得插值函数更加符合实际情况,尤其是较大的数据集。
3. 分段线性插值法分段线性插值法是一种简单而有效的插值方法,它在每两个连续的已知数据点间构造一条直线来逼近数据点,并用这些直线段拼接起来形成一个分段线性函数。
虽然这种方法没有样条插值法那么精确,但它计算简单,不需要过多的计算资源。
在实际应用中,分段线性插值法与其他插值方法搭配使用,以提高算法的效率和精度。
总之,插值方法是数学计算和图像处理等领域中不可或缺的工具之一。
通过使用适当方法的插值,可以更加准确和高效地处理数据和图像,从而得到更加可靠的结果。
常用三种图像插值算法
常见图像插值算法只有3种么?电脑摄像头最高只有130万像素的,800万是通过软件修改的。
何为数码插值(软件插值)插值(Interpolation),有时也称为“重置样本”,是在不生成像素的情况下增加图像像素大小的一种方法,在周围像素色彩的基础上用数学公式计算丢失像素的色彩。
简单地说,插值是根据中心像素点的颜色参数模拟出周边像素值的方法,是数码相机特有的放大数码照片的软件手段。
一、认识插值的算法“插值”最初是电脑术语,后来引用到数码图像上来。
图像放大时,像素也相应地增加,但这些增加的像素从何而来?这时插值就派上用场了。
插值就是在不生成像素的情况下增加图像像素大小的一种方法,在周围像素色彩的基础上用数学公式计算丢失像素的色彩(也有些相机使用插值,人为地增加图像的分辨率)。
所以在放大图像时,图像看上去会比较平滑、干净。
但必须注意的是插值并不能增加图像信息。
以图1为原图(见图1),以下是经过不同插值算法处理的图片。
1.最近像素插值算法最近像素插值算法(Nearest Neighbour Interpolation)是最简单的一种插值算法,当图片放大时,缺少的像素通过直接使用与之最接近的原有像素的颜色生成,也就是说照搬旁边的像素,这样做的结果是产生了明显可见的锯齿(见图2)。
2.双线性插值算法双线性插值算法(Bilinear Interpolation)输出的图像的每个像素都是原图中四个像素(2×2)运算的结果,这种算法极大程度上消除了锯齿现象(见图3)。
3.双三次插值算法双三次插值算法(Bicubic Interpolation)是上一种算法的改进算法,它输出图像的每个像素都是原图16个像素(4×4)运算的结果(见图4)。
这种算法是一种很常见的算法,普遍用在图像编辑软件、打印机驱动和数码相机上。
4.分形算法分形算法(Fractal Interpolation)是Altamira Group提出的一种算法,这种算法得到的图像跟其他算法相比更清晰、更锐利(见图5)。
第二章:插值法
满足(2.1)式的 l i(x) 是否存在?若存在,具有什么形式呢?
先考虑 l0(x)。因 l0(x)是以 x1, x2 为零点的二次多项式,
所以它可写成 l0(x)= 0(x -x1)(x -x2), 其中0 是待定系 数。 又因为 l0( x0)=1,所以0(x0-x1)(x0-x2)=1,则可有
n
| x - xi |
i=0
作为误差估计上限。
当 f(x) 为任一个次数 n 的多项式时, f (n1)( x) 0,
可知 Rn ( x) 0 ,即插值多项式对于次数 n 的多项式 是精确的。
例1 求经过A(0,1),B(1,2),C(2,3)三个插值点的插值多项式. 解:三个插值节点及对应的函数值为
-
3
);
1 2
cos x
3 2
0.00044
R2
5
18
0.00077
sin 50 = 0.7660444…
2次插值的实际误差 0.00061
高次插值通常优于 低次插值
但绝对不是次数越 高就越好,嘿 嘿……
例3 考虑下述的插值法问题:求二次多项式P(x),满足 P(x0) = y0, P(x1) = y1,P(x2 ) = y2, 其中 x0 x2,y0、y1、y2 是已给的数据并给出使这一问题的解存在且唯一的条件.
x0 )(x -
x1 ),
[ x0 , x1 ]
当n = 2时 , 抛 物 插 值 的 余 项 为
R2 ( x) =
1 6
f ( )( x -
x0 )(x -
x1 )(x -
x2 ),
[x0 , x2 ]
注: 通常不能确定 x , 而是估计 f (n1)( x) Mn1 , x(a,b)
quadratic_interpolation_method_概述及解释说明
quadratic interpolation method 概述及解释说明1. 引言1.1 概述在数学和计算机科学领域中,quadratic interpolation method(二次插值法)是一种通过已知的数据点来估算未知数据点的方法。
它是在给定三个已知数据点之间构建一个二次方程,并使用该方程来预测其他位置的数值。
1.2 文章结构本文将首先介绍quadratic interpolation method的定义和原理,然后探讨它在实际应用中的优势和限制。
最后,我们将总结文章并得出结论。
1.3 目的本文的目的是向读者介绍quadratic interpolation method这一重要的插值方法。
通过了解其定义、原理以及实际应用中所面临的挑战,读者可以更好地理解二次插值法在解决实际问题中的作用和局限性。
期待您在撰写文章过程中能够充分展示quadratic interpolation method这一主题,并为读者提供足够清晰和详细的信息。
2. 正文在数学和计算机科学领域,插值是一种通过已知数据点推断未知数据点的方法。
其中,二次插值方法是一种常用且有效的插值技术,奠定了许多其他高级插值算法的基础。
二次插值方法主要基于二次多项式函数,在已知三个数据点的情况下,通过构造一个二次多项式来逼近这些数据点之间的曲线。
这里所说的二次多项式是指具有二次阶数(degree)的多项式,其表达形式为:```f(x) = ax^2 + bx + c```其中,a、b和c是未知系数。
为了通过这些系数来确定唯一的二次函数,需要求解一个包含三个等式的方程组。
具体而言,给定三个已知数据点`(x1, y1)`、`(x2, y2)` 和`(x3, y3)` ,根据这些数据点构建以下方程组:```y1 = a*x1^2 + b*x1 + cy2 = a*x2^2 + b*x2 + cy3 = a*x3^2 + b*x3 + c```利用这个方程组,可以求解出未知系数`a`、`b` 和`c` 的值,并得到由这些系数确定的二次函数。
matlab 差值算法
matlab 差值算法MATLAB 中提供了多种插值算法,用于估计在给定的离散数据点之间未知的值。
以下是一些常用的插值方法及其MATLAB 实现:1.线性插值(Linear Interpolation)线性插值假设两个已知数据点之间的函数是线性的。
在MATLAB 中,你可以使用interp1函数进行线性插值。
matlabx = [1, 2, 3, 4, 5];y = [2, 4, 5, 4, 5];xq = 1.5:4.5; % 查询点yq = interp1(x, y, xq, 'linear'); % 线性插值plot(x, y, 'o', xq, yq, '-');legend('原始数据', '线性插值');2.最近邻插值(Nearest Neighbor Interpolation)最近邻插值是最简单的插值方法,它取查询点最近的已知数据点的值。
matlabyq = interp1(x, y, xq, 'nearest'); % 最近邻插值3.多项式插值(Polynomial Interpolation)多项式插值使用多项式来拟合已知的数据点。
MATLAB 的polyfit和polyval函数可以用于多项式插值。
matlabp = polyfit(x, y, n); % n 是多项式的阶数yq = polyval(p, xq); % 在查询点 xq 上评估多项式4.样条插值(Spline Interpolation)样条插值是一种通过一系列多项式片段连接已知数据点的方法,这些多项式在数据点处是连续的,且具有一定的平滑性。
在MATLAB 中,可以使用spline或interp1函数的'spline' 选项进行样条插值。
matlabyq = interp1(x, y, xq, 'spline'); % 样条插值5.三维插值对于三维数据,可以使用interp2 (对于二维数据网格) 或interp3 (对于三维数据网格) 函数。
数值分析常用的插值方法
数值分析常用的插值方法数值分析中常用的插值方法有线性插值、拉格朗日插值、分段线性插值、Newton插值、Hermite插值、样条插值等。
下面将对这些插值方法进行详细介绍。
一、线性插值(linear interpolation)线性插值是最简单的插值方法之一、假设已知函数在两个点上的函数值,通过这两个点之间的直线来估计中间点的函数值。
线性插值公式为:f(x)=f(x0)+(x-x0)*(f(x1)-f(x0))/(x1-x0)其中,f(x)表示要求的插值点的函数值,f(x0)和f(x1)是已知的两个点上的函数值,x0和x1是已知的两个点的横坐标。
二、拉格朗日插值(Lagrange interpolation)拉格朗日插值是一种基于多项式的插值方法。
它通过多个已知点的函数值构造一个多项式,并利用这个多项式来估计其他点的函数值。
拉格朗日插值多项式的一般形式为:f(x) = Σ[f(xi) * Li(x)] (i=0,1,2,...,n)其中,f(x)表示要求的插值点的函数值,f(xi)是已知的多个点的函数值,Li(x)是拉格朗日基函数。
拉格朗日基函数的表达式为:Li(x) = Π[(x-xj)/(xi-xj)] (i≠j,i,j=0,1,2,...,n)三、分段线性插值(piecewise linear interpolation)分段线性插值是一种逐段线性近似函数的方法。
通过将整个插值区间分成多个小段,在每个小段上使用线性插值来估计函数的值。
分段线性插值的过程分为两步:首先确定要插值的点所在的小段,在小段上进行线性插值来估计函数值。
四、Newton插值(Newton interpolation)Newton插值也是一种基于多项式的插值方法。
利用差商的概念来构造插值多项式。
Newton插值多项式的一般形式为:f(x)=f(x0)+(x-x0)*f[x0,x1]+(x-x0)*(x-x1)*f[x0,x1,x2]+...其中,f(x)表示要求的插值点的函数值,f(x0)是已知的一个点的函数值,f[xi,xi+1,...,xi+k]是k阶差商。
李庆扬数值分析——插值法
li (xi ) = 1
Ci
=
ji
( xi
1 - xj)
j=0
多项式
li ( x) =
n ji
(x- xj) (xi - x j )
j=0
n
Ln ( x) = li ( x) yi i=0
定理 (唯一性) 满足 P( xi ) = yi , i = 0, ... , n 的 n 阶插值多
项式是唯一存在的。【P14】
n
证明: ( 存在性可利用Vandermonde 行列Ln式( x论) =证i=)0 li ( x) yi
反证:若不唯一,则除了Ln(x) 外还有另一 n 阶多项 式 Pn(x) 满足 Pn(xi) = yi 。
考察 Qn( x) = Pn( x) - Ln( x) , 则 Qn 的阶数 n 而 Qn 有 n + 1 个不同的根 x0 … xn
-
3
);
1 2
cos x
3 2
0.00044
R2
5
18
0.00077
sin 50 = 0.7660444…
2次插值的实际误差 0.00061
高次插值通常优于 低次插值
但绝对不是次数越 高就越好,嘿 嘿……
例3 考虑下述的插值法问题:求二次多项式P(x),满足 P(x0) = y0, P(x1) = y1,P(x2 ) = y问题的解存在且唯一的条件.
求 n 次多项式 Pn ( x) = a0 a1 x an xn 使得
Pn ( xi ) = yi , i = 0, ... , n
条件:无重合节点,即 i j xi x j
1.1 线性插值
n= 1
已知 x0 , x1 ; y0 , y1 ,求 P1( x) = a0 a1 x 使得
excel interpolation函数 -回复
excel interpolation函数-回复Excel的INTERPOLATION函数,它是一种在Excel中进行定量数据分析和预测的强大工具。
这个函数能够通过已知数据点之间的线性插值,来估计给定自变量的因变量值。
在本篇文章中,我们将一步一步回答关于Excel 中INTERPOLATION函数的问题。
第一步:了解INTERPOLATION函数INTERPOLATION函数在Excel中是一个数组函数,它需要至少两个参数:已知沿自变量轴的数据点数组和相应的因变量数据点数组。
该函数还可以选择性地接受一个或多个额外的参数,例如需要估计的自变量值的数组。
INTERPOLATION函数通过根据已知数据点的线性插值来估计给定自变量值的因变量值。
第二步:创建数据点在使用INTERPOLATION函数之前,我们需要先创建一些数据点。
假设我们要估计在某一时间点的销售数量。
我们可以使用已知的时间点和相应的销售数量来创建数据点。
为了方便起见,我们可以将这些数据点输入到Excel的两列中,例如将时间点输入到A列,销售数量输入到B列。
第三步:使用INTERPOLATION函数在Excel中打开一个新的工作表,然后在单元格中输入INTERPOLATION 函数。
该函数的基本语法如下:=INTERPOLATION(known_x's, known_y's, x_values)其中,known_x's和known_y's是已知的自变量和因变量数据点数组,x_values是你想要估计因变量值的自变量值数组。
这些参数都应该是相同大小的范围(数组)。
在Excel中,你可以直接选择已知数据点数组或手动输入数组的引用。
第四步:插入数据点范围接下来,我们需要为INTERPOLATION函数输入已知数据点数组和想要估计的自变量值数组的引用。
我们可以使用鼠标选择已知数据点数组,或手动输入数组的引用。
请确保你输入的数组大小是相同的,并且与函数语法中的参数相匹配。
interpolation syntax error in section
interpolation syntax error in section(最新版6篇)目录(篇1)1.概述2.插值语法错误3.解决方法正文(篇1)1.概述在使用计算机编程时,我们经常需要处理数据和文本。
有时,我们需要使用插值方法来处理这些数据。
然而,在某些情况下,我们可能会遇到插值语法错误。
本文将讨论这种错误的原因以及解决方法。
2.插值语法错误插值语法错误通常发生在尝试使用插值方法处理数据时。
这种错误可能是由于以下原因导致的:- 输入数据格式不正确- 插值函数选择不当- 代码中存在拼写错误或其他语法错误当遇到插值语法错误时,程序通常会停止运行或产生错误的结果。
因此,我们需要找到错误的根源并采取相应的解决措施。
3.解决方法要解决插值语法错误,可以尝试以下方法:- 检查输入数据:确保输入数据格式正确且符合插值方法的要求。
如果需要,可以对数据进行预处理,例如清理、格式转换等。
- 选择合适的插值函数:根据数据特点和需求选择合适的插值函数。
例如,对于线性数据,可以选择线性插值函数;对于非线性数据,可以选择多项式插值函数等。
- 检查代码语法:仔细检查代码中是否存在拼写错误或其他语法错误,并及时进行修正。
总之,遇到插值语法错误时,需要耐心分析问题原因并采取相应的解决措施。
目录(篇2)1.概述2.插值语法错误3.解决方法正文(篇2)1.概述在使用编程语言进行数据分析或数据可视化时,我们常常需要对数据进行插值以获得更精确的结果。
然而,在处理插值时,可能会遇到一种名为“插值语法错误”的问题。
本文将探讨这种错误的原因及其解决方法。
2.插值语法错误插值语法错误通常发生在尝试对数据进行线性插值或其他类型的插值时。
这种错误可能是由于以下原因导致的:- 输入的数据格式不正确。
- 插值函数的选择不正确。
- 编程语言或库的版本不兼容。
3.解决方法为了解决插值语法错误,可以尝试以下方法:- 检查输入数据的格式,确保其符合插值函数的要求。
python中插值方法
python中插值方法
Python中的插值方法有多种,以下是其中一些常见的方法:
1. 线性插值(Linear Interpolation):在已知两个点的情况下,通过线性关系估计其他点的值。
2. 拉格朗日插值(Lagrange Interpolation):通过已知的一系
列点,在每个点上构造一个基本插值多项式,再将这些多项式相加得到插值函数。
3. 牛顿插值(Newton Interpolation):通过已知的一系列点,
构造一个插值多项式,利用差分的概念来推导插值多项式的系数。
4. 分段线性插值(Piecewise Linear Interpolation):将插值区
间划分为多个子区间,每个子区间内使用线性插值。
5. 样条插值(Spline Interpolation):通过一系列点和控制节点,构造一条光滑的曲线,利用多项式、分段线性函数或三次函数等方式进行插值。
6. 最近邻插值(Nearest Neighbor Interpolation):在已知的一
系列点中,找到距离目标点最近的点,将目标点的值设为该点的值。
以上仅列举了一些常见的插值方法,实际上还有其他更复杂的插值方法,如样条样本插值、高斯插值等。
不同的插值方法适
用于不同的问题和数据类型,选择合适的插值方法可以获得更准确的结果。
excel interpolation函数 -回复
excel interpolation函数-回复excel interpolation函数是一种强大的工具,用于在给定一组数据点的情况下估算未知数据点的值。
这个函数广泛应用于各种领域,包括工程、统计学和金融等,可帮助分析师和研究人员预测和插值数据。
在本文中,我们将深入探讨excel interpolation函数的使用、原理和应用。
在excel中,interpolation函数主要用于计算连续函数中两个已知数据点之间未知数据点的值。
它基于插值法的思想,通过已知数据点之间的形状和分布趋势,来推测未知数据点的可能位置和数值。
首先,我们来介绍一些常见的插值方法。
在excel中,有三种常见的插值方法:线性插值、多项式插值和样条插值。
线性插值是最简单的插值方法,它假设两个已知数据点之间的数值变化是线性的。
多项式插值则假设已知数据点之间的数值变化可以用一个多项式函数来逼近。
样条插值是一种更精确的插值方法,它通过在每个小区间内使用不同的多项式函数来逼近数据。
在excel中,使用interpolation函数非常简单。
首先,我们需要将已知数据点的横坐标和纵坐标分别放在两个列中。
然后,在合适的位置输入interpolation函数,指定待插值的横坐标,并引用已知数据点的横坐标和纵坐标列。
按下回车键后,excel将自动计算出待插值点的纵坐标值。
举例来说,假设我们有一组已知数据点的横坐标和纵坐标如下:横坐标:1, 2, 3, 4, 5纵坐标:10, 15, 20, 25, 30现在,我们想要估算横坐标为2.5的待插值点的纵坐标值。
我们可以选择使用线性插值方法来计算。
首先,在excel中创建两个列,分别输入已知数据点的横坐标和纵坐标。
然后,在合适的位置输入interpolation函数,如下所示:=INTERPOLATION(2.5, A1:A5, B1:B5)在这个函数中,2.5是待插值点的横坐标,A1:A5是已知数据点的横坐标列,B1:B5是已知数据点的纵坐标列。
timm中randomresizedcropandinterpolation解释 -回复
timm中randomresizedcropandinterpolation解释-回复timm中的randomresizedcropandinterpolation是一个用于图像处理的功能,它提供了对图像进行随机裁剪和插值的方法。
在本文中,我们将详细解释这个功能,并一步一步回答中括号内的问题。
首先,让我们来了解一下randomresizedcropandinterpolation的基本概念。
在计算机视觉领域中,图像预处理是非常重要的一部分,它可以对图像进行增强、格式转换和调整等操作,以提高模型的性能和准确率。
randomresizedcropandinterpolation正是其中一个关键步骤,它用于随机裁剪和插值。
随机裁剪是指从原始图像中随机选择一个区域,然后将其裁剪为指定的大小。
这个过程可以增加模型的鲁棒性,因为它可以在模型训练期间模拟不同的尺寸和位置变化。
这种随机性可以让模型更好地适应不同大小和位置的输入图像,从而提高其泛化能力。
插值是指通过已知数据点的数值,在两个已知数据点之间插入一个新的数据点的过程。
在图像处理中,常用的插值方法有最近邻插值、双线性插值和双三次插值等。
这些插值方法可以帮助更好地保留图像细节和纹理,从而提高图像的质量。
接下来,让我们来回答问题并一步一步解释randomresizedcropandinterpolation的具体实现:1. 它是如何进行随机裁剪的?randomresizedcropandinterpolation会首先确定裁剪区域的大小,这个大小是根据给定的参数进行随机选择的。
然后,它会从原始图像中随机选择一个位置,并将该区域裁剪出来。
2. 它是如何进行插值的?在裁剪完成后,randomresizedcropandinterpolation会对裁剪后的图像进行插值操作。
它会根据给定的插值方法,例如最近邻插值或双线性插值,来生成新的图像。
3. 这个功能有什么实际应用场景?randomresizedcropandinterpolation在许多计算机视觉任务中都有广泛的应用。
matlab样条函数拟合 -回复
matlab样条函数拟合-回复在Matlab中,样条函数拟合是一种常用的数学工具,用于拟合数据集合。
样条函数拟合可以通过一系列已知的插值点来找到一个平滑的曲线,使得曲线经过这些点,并且在其他点处也具有良好的近似性。
首先,我们需要明确数据集合,即确定插值点和相应的函数值。
在Matlab 中,我们可以通过创建两个向量来表示插值点的x坐标和对应的y坐标。
以一个简单的例子开始。
假设我们有以下设置数据集合:x = [1, 2, 3, 4, 5];y = [1, 4, 9, 16, 25];接下来,我们需要使用Matlab中的splinetool打开样条拟合工具。
在命令窗口中输入`splinetool`,这将会打开一个交互式界面,用于设置拟合的参数和观察结果。
在打开的交互式界面中,我们需要进行以下设置:- 选择样条拟合选项:在主菜单中选择Interpolation,然后选择Spline Interpolation。
- 添加数据点:点击界面中的"Add Points"按钮,将我们的数据点(x, y)添加到图形窗口中。
- 选择样条插值类型:在主菜单中选择Spline Interpolation,然后选择适当的样条插值类型,例如分段线性插值或分段立方插值。
- 设置插值参数:根据需要,可以在界面上调整插值参数,如节点数量、插值类型等。
- 进行样条拟合:点击界面中的"Fit"按钮,样条拟合函数会自动根据设置的参数和数据点来生成拟合曲线。
进行样条拟合后,我们可以在图形窗口中看到拟合的曲线,并且可以通过右键单击曲线来检查曲线的性质,如切线、曲率等。
除了使用splinetool交互式工具进行样条拟合外,Matlab还提供了一些函数来进行样条拟合。
其中最常用的是spline函数和csape函数。
spline函数适用于一维数据集合的插值。
它接受插值点和对应函数值的向量作为输入,并返回一个拟合的样条函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter 2 InterpolationConsider a family of functions of a single variable x , 0(;,,),nx a a φ having n +1 parameters 0,,n a a ,whose values characterize the individual functions in this family. The interpolation problem for φ consists of determining these parameters i a so that for n +1 given real or complex pairs of numbers(,),0,,,i i x f i n = with i k x x ≠ for i k ≠,0(;,,)n x a a φ =i f , 0,,,i n =holds. We will call the pairs (,)i i x f support points, the locations i x support abscissas, and the values i f support ordinates. Occasionally, the values of derivatives of φ are also prescribed.The above is a linear interpolation problem if φ depends linearly on the parameters i a :0(;,,)n x a a φ ≡0011()()()n n a x a x a x φφφ+++ ,This class of problems includes the classical one of polynomial interpolation,0(;,,)n x a a φ ≡2012nn a a x a x a x ++++ ,as well as trigonometric interpolation,0(;,,)n x a a φ ≡2012 xi xi nxi n a a e a ea e ++++ (21i =-). In the past, polynomial interpolation was frequently used to interpolate function values gathered from tables. The availability of modern computing machinery has reduced the need for extensive table lookups. However, polynomial interpolation is also important as the basis of several types of numerical integration formulas in general use. In a more modern development, polynomial and rational interpolation are employed in the construc tion of “extrapolation methods” for integration, differential equations,and related problems .Trigonometric interpolation is used extensively for the numerical Fourier analysis of time series and cyclic phenomena in general. In this context, the so-cal led “fast Fourier transforms” are particularly important and successful.The class of linear interpolation problems also contains spline interpolation. In the special case of cubic splines, the functions φ are assumed to be twice continuously differentiable for 0[,]n x x x ∈and to coincide with some cubic polynomial on every subinterval 1[,]i i x x + of a given partition 01n x x x <<< .Spline interpolation is a fairly new development growing importance. It provides a valuable tool for representing empirical curves and for approximating complicated mathematical functions. It is increasingly used when dealing with ordinary or partial differential equations.Two nonlinear interpolation schemes are of importance: rational interpolation,00(;,,,,,)n m x a a b b φ ≡0101n n mm a a x a x b b x b x++++++ ,and exponential interpolation,00(;,,,,,)n n x a a φλλ ≡0101 n xxxn a ea ea eλλλ+++ .Rational interpolation plays a role in the process of best approximating a given function by one which is readily evaluated on a digital computer. Exponential interpolation is used, for instance, in the analysis of radioactive decay .Interpolation is a basic tool for the approximation of given function. For a comprehensive discussion of these and related topics consult Davis(1965).2.1 Interpolation by polynomials2.1.1 Theoretical Foundation: The interpolation Formula of LagrangeIn what follows, we denote by n ∏ the set of all real or complex polynomials p whose degrees do not exceed n:P(x )= 2012n n a a x a x a x ++++ ,(2.1.1.1) Theorem For n +1 arbitrary support points(,),0,,,i i x f i n =i k x x ≠ for i k ≠There exists a unique polynomial n P ∈∏ with()i i P x f =, i =0, 1, …, n .PROOF . Uniqueness: For any two polynomials P 1, P 2∈n ∏ with12()()i i i P x P x f ==, i =0, 1, …, n .the polynomial P :=P 1-P 2∈n ∏ has degree at most n , and it has at least n +1 different zeros, namely x i , i =0,1,…,n . P must therefore vanish identically, and P 1=P 2.Existence: We will construct the interpolating polynomial P explicitly with the help of polynomials L i ∈n ∏, i =0, 1, …, n , for which (2.1.1.2)1()0i k ik if i kL x if i k δ⋅⋅=⎧==⎨⋅⋅≠⎩The following Lagrange polynomials satisfy the above conditions: (2.1.1.3) 011011()()()()():()()()()i i n i i i i i i i n x x x x x x x x L x x x x x x x x x -+-+----≡----≡()()'()i i x x x x ωω- with 0():()ni i x x x ω=≡-∏.Note that our proof so far shows that the Lagrange polynomials are uniquely determined by (2.1.1.2).The solution P of the interpolation problem can now be expressed directly in terms of the polynomials L i , leading to the Lagrange interpolation formula:(2.1.1.4) 0()()nnnk i i i i i k i i kk x x P x f L x f x x ==≠=-≡≡-∑∑∏The above interpolation formula shows that that the coefficients of P depend linearly on the support ordinates f i .While theoretically important, Lagrange’s formulais ,in general, not as suitable for actual calculations as some other methods to be described below, particularly for large numbers n of support points. Lagrange’s formula may , however, be useful in some situations in which many interpolation problems are to be solved for the same support abscissas x i , i =0,1,…, n , but different sets of support ordinates f i , i =0,1,…, n .EXAMPLE . Give for n =2:Wanted: P (2),where P ∈2∏, P (x i )=f i for i =0, 1, 2. Solution: 0(1)(3)()(01)(03)x x L x --≡-- , 1(1)(3)()(01)(03)x x L x --≡--, 2(0)(1)()(30)(31)x x L x --≡--.0121110(2)1(2)3(2)2(2)1312333P L L L -=⋅+⋅+⋅=⋅+⋅+⋅=.2.1.3 Newton’s Interpolation Formula: Divided DifferencesNeville’s algor ithm is geared towards determining interpolating values rather than polynomials. If the interpolating polynomial itself is needed, or if one wants to find interpolating values for several arguments j ξ simultaneously , then Newton’s interpolation formula is to be preferred. Here we write the interpolating polynomial P ∈n ∏, P (x i )=f i , i =0,1, …, n , in the form (2.1.3.1)010********()()()()()()()()n n n P x P x a a x x a x x x x a x x x x x x -≡≡+-+--++---Note that the evaluation of [2.1.3] for x =ξ may be done recursively as indicated by the following expression:112100()((())())()n n n n P a x a x a x a ξξξξ---=-+-++-+ .This requires fewer operations than evaluating (2.1.3.1) term by term. It correspondsto the so-called Horner scheme for evaluating polynomials which are given in the usual form, i.e. in the representation (2.1.3.1) is well suited for evaluation.It remains to determine the coefficients are in (2.1.3.1).In principle, they can be calculated successively from000()f P x a ==,110110()()f P x a a x x ==+-,22012022021()()()()f P x a a x x a x x x x ==+-+--,This can be done with n divisions and n(n-1) multiplications. These is, however, a better way , which requires only n(n+1)/2 divisions and which produces useful intermediate results.Observe that the two polynomials 01()ki i i P x and 011()k i i i P x - differ by apolynomial of degree k with k zeros 0i x ,1i x , ,1k ix -,since cot h polynomialsinterpolate the corresponding support points. Therefore there exists a unique coefficient(2.1.3.2) 01ki i i f , k =0, 1, …,n ,such that(2.1.3.3) 010110101()()()()()kkk kii ii i iiii ii i P x P x fxx x x x x --≡+---From this and from the identity 0()i i P x f ≡ it follows immediately that (2.1.3.4) is aNewton representation of the partially interpolating polynomial 011()k i i i P x - . Thecoefficients (2.1.3.2) are called k th divided differences.The recursion (2.1.2.1) for the partially interpolating polynomials translates into the recursion(2.1.3.5) 0101101kk kk i i i i i i i i i i i f f f x x --=-for the divided differences, since by (2.1.3.3), 1ki i f and 011k i i i f - are the coefficientsof the highest terms of the polynomials 0i f and 011k i i i P - ,respectively . The aboverecursion starts for k =0 with the given support ordinates i f , i =0, …, n . It can be used in various ways for calculating divided differences 0i f ,01ki i i p , ,01ni i i f , which thencharacterize the desired interpolating polynomial 0101kkjj j i i i f f = .Because the polynomial 01ki i i p is uniquely determined by the support points it interpolates [Theorem(2.1.1.1)],the polynomial is invariant to any permutation of the indices 0i ,1i , ,k i ,and so is its coefficient 01ki i i f of k x .Thus:(2.1.3.6) The divided differences 01ki i i f are invariant to permutations of the indices0i , 1i , , k i : If(0j ,1j , k j )=(0s i ,sk i , ,sk i )is a permutation of the indices 0i ,1i , ,k i ,then0101k kj j j i i i f f =If we choose to calculate the divided differences in analogy to Neville’s method —instead of, say , Aitken’s method --then we are led to the following tableau, called the divided-difference scheme: (2.1.3.7)The entries in the second column are of the form100110f f f x x -=- , 211221f f f x x -=- ,Those in the third column,120101220f f f x x -=- , 231212331f f f x x -=- ,Clearly ,010********()()()()()()n n n P x P x f f x x f x x x x x x -≡≡+-++---is the desired solution to the interpolation problem at hand. The coefficients of the above expansion are found in the top descending diagonal of the divided-difference scheme (2.1.3.7).EXAMPLE . With the numbers of the example in section 2.1.1 and 2.1.2 , we have000111012122201251316232x f f x f f f x f ======-=-==0120125()12(0)(0)(1),6510(2)((21)2)(20)1.63P x x x x P =+----=--+-+=Instead of building the divided-difference scheme column by column, one might want to start with the upper left corner and add successive ascending diagonal rows. This amounts to adding new support points one at a time after having interpolated the previous ones. In the following ALGOL procedure, the entries in an ascending diagonal of (2.1.3.7) are found ,after each increase of i ,in the top portion of array t , and the first i coefficients 01i f are found in array a. for i:=0 step 1 until n do begin t[i]:=f[i];for j:=i-1 step -1 until 0 do t[j]:=(t[j+1]-t[j])/(x[i]-x[j]); a[i]:=t[0] end ;Afterwards, the interpolating polynomial (2.1.3.1) may be evaluated for any desiredargument z : p:=a[n];for i:=n-1 step -1 until 0 do p:=p×(z-x[i])+a[i];Some Newton representations of the same polynomial are numerically more trustworthy to evaluate than others. Choosing the permutation so that1,0,1,,1,ik ik x x k n ξξ--≥-=-Dampens the error (see section 1.3) during the Horner evaluation of (2.1.3.8) 0001000()()()()().nn ni i ii iiiii i p x p x f f xx fx x x x -≡≡+-++--All Newton representations of the above kind can be found in the single divided-difference scheme which arises if the support arguments x i , i =0, …, n , are ordered by size:1i i x x +< for i =0, …, n -1. Then the preferred sequence of indices01,,,k i i iis such that each index k i is “adjacent” to some previous index. Moreprecisely, either k i =min{l i |0≤l<k }-1 or k i =max{l i |0≤l<k }+1. Therefore the coefficients of (2.1.3.8) are found along a zigzag path —instead of the upper descending diagonal —of the divided-difference scheme. Starting with 0i f ,the pathproceeds to the upper right neighbor if 1k k i i -<, or to the lower right neighbor if1k k i i ->.EXAMPLE . In the previous example, a preferred sequence for 2ξ= is0121,2,0i i i ===.The corresponding path in the divided difference scheme is indicated below:000111012122201251316232x f f x f f f x f ======-=-==The desired Newton representation is :12015()3(1)(1)(3),26p x x x x ≡-----1205110(2)((23))(21)3.623p =----+=Frequently , the support ordinates i f are the values ()i i f x f = of a given function f (x ), which one wants to approximate by interpolation. In this case, the decided differences may be considered as multivariate functions of the support arguments i x , and are historically written as0[,,].k i i f x xThese functions satisfy (2.1.3.5). For instance, 00[](),f x f x ≡1010011010[][]()()[,]f x f x f x f x f x x x x x x --≡≡--,120121012002101220102021[,][,]()()()()()()[,,]()()()f x x f x x f x x x f x x x f x x x f x x x x x x x x x x x ----+-≡≡----1011010[,,][,,,][,,,]k k k k f x x f x x x f x x x x x --≡-Also, (2.1.3.6) gives immediately:(2.1.3.9)Theorem , The divided differences 0,,ki i x x are symmetric functions oftheir arguments, i.e., they are invariant to permutations of the 0,,ki i x x .If the function f(x) is itself a polynomial, then we have (2.1.3.10) Theorem , if f (x ) is a polynomial of degree N , then01[,,,]0k f x x x =for k >N .PROOF . Because of the unique solvability of the interpolation problem (Theorem 2.1.1.1),,,()()o k p x f x ≡ for k N ≥.The coefficient of k x in ,,()o k p x musttherefore vanish for k N >. This coefficient, however, is given by 01[,,,]k f x x x according to (2.1.3.3).EXAMPLE . 2()f x x =.If the function f(x) is sufficiently often differentiable, then its divided differences0[,,]k f x x can also be defined if some of the arguments ix coincide. for instance,if f(x) has a derivative at 0x , then it makes sense for certain purposes to define000[,]:'().f x x f x =For a corresponding modification of the divided-difference scheme (2.1.3.7) see Section 2.1.5 on Hermite interpolation.2.1.4 The error in Polynomial InterpolationOnce again we consider a given function f(x) and certain of its values (),0,1,,i i f f x i n==which are to be interpolated. We wish to ask how well the interpolating polynomial0()()n p x p x ≡with(),0,1,,i i p x f i n ==Reproduces ()f x for arguments different from the support arguments i x . The error()()f x p x -,Where ,0,1,i x x i ≠=can clearly become arbitrarily large for suitable functions f unless some restrictions are imposed on f .Under certain conditions, however, it is possible to bound the error. We have, for instance:(2.1.4.1) Theorem . If the function f has an (n +1)st derivative, then for every argument x there exists a number ξ in the smallest interval 0[,,,]n I x x x which contains x and all support abscissas i x ,satisfying(1)01()()()(),(1)!n n x ff x p x n ωξ+-=+where01()()()().n x x x x x x x ω≡---PROOF . Let 01():()n p x p x ≡ be the polynomial which interpolates the function ati x , i =0, 1, …, n, and suppose i x x ≠(for i x x = there is nothing to show ). We canfind a constant K such that the function():()()()F x f x p x K x ω≡--vanishes for x x =:()0.F x =Consequently , F (x ) has at least the n +2 zeros0,,,n x x xin the interval 0[,,,]n I x x x . By Rolle’s theorem, applied repeatedly , F ’(x ) has at least n +1 zeros in the above interval, F ’’(x) at least n zeros, and finally (1)()n F x + at least one zero 0[,,,].n I x x x ξ∈ Since (1)()0.n p x +≡(1)(1)()()(1)!0n n FfK n ξξ++=-+=or (1)()(1)!n fK n ξ+=+.This proves the proposition(1)()()()()().(1)!n x f x p x K x fn ωωξ+-==+A different error term can be derived from Newton’s interpolation formula (see Section 2.1.3):010*******()()[][,]()[,,,]()().n n n p x p x f x f x x x x f x x x x x x x -≡≡+-++--Here 01[,,,]k f x x x are the divided differences of the given function f . If in addition to the n +1 support points(,):(),i i i i x f f f x =0,1,,,i n = we introduce an (n +2)nd support point1111(,)::,:(),n n n n x f x x f f x ++++==where ,0,,,i x x i n ≠= then by Newton’s formula0100()()()[,,,](),n n n f x p x p x f x x x x ω+==+or(2.1.4.2) 00()()()[,,,].n n f x p x x f x x x ω-=The difference on the left-hand side appears in Theorem (2.1.4.1), and since()0x ω≠, we must have(1)0()[,,,](1)!n n ff x x x n ξ+=+ for some 0[,,,].n I x x x ξ∈This also yields(2.1.4.3) ()0()[,,]!n n ff x x n ξ=for some 0[,,,].n I x x x ξ∈which relates derivatives and divided differences.EXAMPLE .()sin f x x =: ,0,1,2,3,4,5,510i ix i n π===015sin sin ()()()(),720x p x x x x x x x ξ--≡---015()1sin ()()()().720720x x p x x x x x x x ω-≤---=We end this section with two brief warnings, one against trusting the interpolating polynomial outside of 0[,,]n I x x and one against expecting too much of polynomial interpolation inside 0[,,]n I x x .In the exterior of the interval 0[,,]n I x x , the value of ()x ω in Theorem (2.1.4.1) grows very fast. The use of the interpolation polynomial p for approximating f at some location outside the interval 0[,,]n I x x --called extrapolation —should be avoided if possible.Within 0[,,]n I x x on the other hand, it should not be assumed that finer and finer and finer samplings of the function f will lead to better and better approximations through interpolation.Consider a real function f which is infinitely often differentiable in a given interval [a,b]. To every interval partition 01{}n a x x x b ==<<<= there exists an interpolating polynomial n p ∈∏ with ()i i p x f = for i x ∈ .A sequence o finterval partitions()()()1{}m m m m m n a x x x b ==<<<=Gives rise to a sequence of interpolating polynomials mp .One might expect the polynomials mp to converge toward f if the fineness()()1:m ax m m m i iix x +=-Of the partitions tends to 0 as .m →∞In general this is not true. For example, it has been shown for the functions21(),[,][5,5],()[.][0,1],1f x a b or f x a b x≡=-≡=+That the polynomials mp do not converge pointwise to f for arbitrarily fineuniform partitions m ,()()/,0,,.m ia ib a m i m x=+-=2.1.5 Hermite InterpolationConsider the real numbers i ξ,()k iy,0,1,,1,0,1,,i k n i m =-= ,with01m ξξξ<<< .The Hermite interpolation problem for these data consists of determining a polynomial P whose degree does not exceed n , wheren +1:=0mi i n =∑,and which satisfies the following interpolation conditions: (2.1.5.1) ()()()k k i ipyξ=, 0,1,,1,0,1,,i k n i m =-= .This problem differs from the usual interpolation problem for polynomials in that it prescribes at each support abscissa i ξ not only the value but also the first1i n -derivatives of the desired polynomial. The polynomial interpolation of Section2.1.1 is the special case 1,0,1,,.i n i m == There are exactly1inn =+∑ conditions (2.1.5.1) for the n +1 coefficients of theinterpolating polynomials, leading us to expect that the Hermit interpolation problem can be solved uniquely:(2.1.5.2) Thoerem . For arbitrary numbers 01m ξξξ<<< ,()k i y ,0,1,,1i k n =- ,0,1,,i m= , there exists precisely one polynomialnp ∈∏, n+1:=0mi i n =∑,which satisfies (2.1.5.1).PROOF . We first show uniqueness. Consider the difference polynomial12():()()Q x p x p x =-of two polynomials 12,n p p ∈∏for which (2.1.5.1) holds.Since()()0,k i Qξ= 0,1,,1,0,1,ik n i m =-=,i ξ is at least an i n --fold root of Q ,so that Q has altogether1inn =+∑ roots, eachcounted according to its multiplicity . Thus Q must vanish identically, since its degree is less than n +1.Existence is a consequence of uniqueness: For (2.1.5.1) is a system of n linear equations for n unknown coefficients j c of 01().n n p x c c x c x =+++ The matrix of this system is not singular, because of the uniqueness of its solutions. Hence the linear system (2.1.5.1) has a unique solution for arbitrary right-hand sides()k iy.Hermite interpolating polynomials can be given explicitly in a form analogo us to the interpolation formula of Lagrange (2.1.1.4) .The polynomial n p ∈∏given by(2.1.5.3) 1()00()()i n mk ik ii k p x L x -===∑∑satisfies (2.1.5.1). The polynomials ik n L ∈∏are generalized Lagrange polynomials. They are defined as follows: Staring with the auxiliary polynomials 01():(),0,0!j k mnji ik i j i jj x x l i m k n k ξξξξ=≠--=≤≤≤<-∏[compare (2.1.1.3)], put.1.1():(),0,1,,.i i i n i n L x l x i m --==and recursively for 2,3,,0,i i k n n =--1()1():()()().i n v ik k i iv ikv k L x l x L x lξ-=+=-∑By induction()1,()0ik j if i j and k L otherw iseσσξ==⎧=⎨⎩Thus P in (2.1.5.3) is indeed the desired Hermite interpolating polynomial.In order to describe alternative methods for determining P , it will be useful to represent the data (),,0,1,,,0,1,,1,k i i i i m k n y ξ==- in a somewhat different formas a sequence 0,,{(,)}n i i i n F x f == of n +1 pairs of numbers. The pairs0000001111(,),(,),,(,),(,),,(,)n n n n n n x f x f x f x f x f -- .of n F denote consecutively the pairs0(1)(1)(0)(1)(0)00000011(,),(,),,(,),(,),,(,).mn n m m y y y y y ξξξξξ--Note that 01n x x x ≤≤≤ and that the number i ξ occurs exactly i n times in the sequence 0,,{}.i i n x =EXAMPLE 1.Suppose 011,2,3m n n === and(0)(1)000,1,2;y y ξ==-=-(0)(1)(2)11111,0,1040;yyyξ====This problem is described by the sequence 40,,4{(,)}i i i F x f == :001122(,)(0,1),(,)(0,2),(,)(1,0),x f x f x f =-=-=3344(,)(1,10),(,)(1,40).x f x f ==Given Hermite interpolation problem, it uniquely determines a sequence n F , as above. Conversely, every sequence 0,,{(,)}n i i i n F x f == of n+1 pairs of numbers with01nx x x ≤≤≤ determines a Hermite interpolation problem, which will be referredto simply as n F .It also will be convenient to denote by0jx x -The polynomials(2.1.5.4) 00:1,x x -=0011:()()()jj x x x x x x x x --=---of degree j .Our next goal is to represent the polynomial P which interpolates n F in Newton form [compare (2.1.3.1)]:(2.1.5.5) 2010200()nn p x a a x x a x x a x x =+-+-+++-And to determine the coefficients i a which the help again of divided differences (2.1.5.6) 01[,,,],k k a f x x x = 0,1,,k n =However, the recursive definition (2.1.3.5) of the divided differences has to be modified because there may be repetitions among the support abscissas01nx x x ≤≤≤ . For instance, if 01x x =,then the divided difference 01[,]f x x canno longer be defined as 0110([][])/()f x f x x x --.The extension of the definition of divided differences to the case of repeats arguments involves transition to a limit .To this end, let 01n ζζζ<<<Be mutually distinct support abscissas, and consider the divided differences[,,]i i k f ζζ+which belong to the function ():()f x p x =,where the polynomial p isthe solution of the Hermite interpolation problem n F .These divided differences are now well defined by the recursion (2.1.3.5),if we let :()i i f p ζ= initially. Therefore, and by (2.1.3.5),(2.1.5.7a) 0010(),:[,,,],njj j j j p x a x a f ζζζζ==-=∑(2.1.5.7b) [](),i i f p ζζ= (2.1.5.7c)12111[,,,][,,,][,,,],i i i k i i i k i i i k i k if f f ζζζζζζζζζζζ+++++-+++-=-for 0,1,,,1,,.i n k n i ==- Since 01n x x x ≤≤≤ , all limits11[,,,]:lim[,,,]j j i i i k i i i k x i j i kf x x x f ζζζζ++++→≤≤+=exist provided they exist for indices i , k with 1i i i k x x x ++=== . The latter follows from (2.1.4.3) , which yields(2.1.5.8) ()11lim [,,,]()!j jk i i i k i x i j i kf px k ζζζζ++→≤≤+=if 1i i i k x x x ++=== . We now denote by ()0r r i =≥ the smallest index such that1r r i x x x +=== .Then due to the interpolation properties of P which respect to n F .()()()()k k i r r kpx px f +==.So that by (2.1.5.8)()1[,,,]!r i k i i i k f f x x x k +++=if 1i i i k x x x ++===In the limit j j x ζ→,(2.1.5.7) becomes(2.1.5.9a) 0010(),:[,,,]njj j j j j p x a x a f x x x ζ==-=∑(2.1.5.9b) ()1[,,,]!r i k i i i k f f x x x k +++=if i i k x x +=(2.1.5.9c) 12111[,,,][,,,][,,,]:,i i i k i i i k i i i k i k if x x x f x x x f x x x x x +++++-+++-=-otherwise. (Note that 01n x x x ≤≤≤ has been assumed.) These formulas now permit a recursive calculation of the divided differences and thereby the coefficients j a of the interpolating polynomial P in Newton form,EXAMPLE 2. We illustrate the calculation of the divided differences with the data ofExample 1(m =1,012,3n n ==):{}4(0,1),(0,2),(1,0),(1,10),(1,40),F =--.The following difference scheme results:00x =01[]f x *-= 012[,]f x x *-=10x =11[]f x *-= 0123[,,]f x x x = 121[,]f x x = 036[,,]f x x =21x =20[]f x *= 1239[,,]f x x x = 045[,,]f x x = 2310[,]f x x *= 1411[,,]f x x =31x =30[]f x *=23420[,,]f x x x *= 3410[,]f x x *=41x =40[]f x *= The entries marked * have been calculated using (2.1.5.9b) rather than (2.1.5.9c) .The coefficients of the Hermite interpolating polynomial can be found in the upper diagonal of the difference scheme:23400002222()123651236(1)5(1).p x x x x x x x x x x x x x x x =---+-+-+-=--++-+-The interpolation error which is incurred by Hermite interpolation can be estimated in the same fashion as for the usual interpolation by polynomials. In particular, the proof of the following theorem is entirely analogous to the proof of Theorem (2.1.4.1):(2.1.5.10) Theorem . Let the real function f be n +1 times differentiable on the interval [a , b ] ,and consider m +1 support abscissas [,],i a b ξ∈01m ξξξ<< .If the polynomial p (x ) is of degree at most n ,1mii nn ==+∑And satisfies the interpolation conditions()()()(),0,1,,1,0,1,,,k k i i i pfk n i m ξξ==-=Then to every [,]x a b ∈ there exists 0[,,,]m I x ξξξ∈ such that(1)()()()(),(1)!n x ff x p x n ωξ+-=+where101():()()()mn n n m x x x x ωξξξ=--- .Hermite interpolation is frequently used to approximate a given real function f by a piecewise polynomial function ϕ .Given a partition01m a bξξξ=<<<=Of an interval [a , b ], the corresponding Hermite function space ()v H is defined as consisting of all functions :[,]a b ϕ→ with the following properties: (2.1.5.11)(a) 1[,]:v C a b ϕ-∈The (v -1)st derivative of ϕ exists and is continuous on [a , b ]. (b) 21|:i v I ϕ-∈∏On each subinterval 1:[,]i i i I ξξ+=, 0,1,,1i m =- , ϕ agrees with a polynomial of degree at most 2v -1.Thus the function ϕ consists of polynomial pieces of degree 2v -1 or less which are v -1 times differentiable at the “Knots” i ξ,in order to approximate a given real function1[,]v f Ca b -∈ by a function ()v H ϕ∈ ,we choose the componentpolynomials |i i p I ϕ= of ϕ so that 21i v p -∈∏ and so that the Hermiteinterpolation conditions()()()()11()(),()(),0,1,,1,k k k k ii i ii i p fp fk v ξξξξ++===-are satisfied.Under the more stringent condition 2[,]v f C a b ∈, Theorem (2.1.5.10) provides a bound to the interpolation error for i x I ∈ which arises if the component polynomiali preplaces f :1(2)21(2)2()()()()m ax ()(2)!)m ax ().2(2)!iivi i v i I vi i v vI x x f x p x fv fv ξξξξξξξξ+∈+∈---≤-≤⋅Combining these results for 0,1,,i m = gives for the function ()v H ϕ∈ , which was defined earlier,(2.1.5.13)2(2)2[,]1:max ()(),2(2)!vv vx a b f f x x fv ϕϕ∞∞∈-=-≤where 101max i i i m ξξ+≤≤-=- i s the “fineness” of the partition .The approximation error goes to zero with the 2v th power of the fineness j if we consider a sequence of partitions j of the interval [a , b ] with 0j → .Contrast this with the case of ordinary polynomial interpolation, where the approximation error not necessarily go to zero as 0j → (Section 2.1.4).Ciarlet, Schultz, and V arga (1967) were able to show that also the first v derivatives of ϕ are good approximations to the corresponding derivatives of f : (2.1.5.14) 1()()(2)1()()()()()m a x ()!(22)!iv ki i k k kv ii iI x x fx p x f k v k ξξξξξξ-++∈---≤-- For all ,0,1,,,0,1,,1,i x I k v i m ∈==- and therefore (2.1.5.15)2()()(2)222!(22)!v kk k v v kf fk v k ϕ--∞∞-≤-For 0,1,,.k v =2.4 Interpolation by Spline Functions。