极坐标与参数方程知识点总结复习过程

合集下载

极坐标参数方程复习讲义文科原创

极坐标参数方程复习讲义文科原创

极坐标及参数方程知识点及例题1极坐标与直角坐标的互化:1.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)互化公式考点 极坐标与直角坐标的互化【例1】►1.2. 已知圆C:22(1)(1x y ++=,则圆心C 的极坐标为_______(0,02)ρθπ>≤<1.点P 的直角坐标为(-2,2),那么它的极坐标可表示为________.2.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.3.(2011·西安五校一模)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为________.4.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2sin ρθ=,则曲线C 的直角坐标方程为_____.二、参数方程知识点1.参数方程的概念:在平面直角坐标系中,若曲线C 上的点(,)P x y 满足()()x f t y f t =⎧⎨=⎩,该方程叫曲线C 的参数方程,变量t 是参变数,简称参数。

(在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的函数⎩⎨⎧==),(),(t g y t f x 并且对于t 的每一个允许值,由这个方程所确定的点),(y x M 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。

)相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。

2.曲线的参数方程(1)圆222)()(r b y a x =-+-的参数方程可表示为.(2)椭圆12222=+by a x )0(>>b a 的参数方程可表示为. (3)抛物线px y 22=的参数方程可表示为)(.2,22为参数t pt y pt x ⎩⎨⎧==.(4)经过点),(o o O y x M ,倾斜角为α的直线l 的参数方程可表示为3.在建立曲线的参数方程时,要注明参数及参数的取值范围。

极坐标与参数方程考点汇总

极坐标与参数方程考点汇总

专题一极坐标与参数方程考点整合一、极坐标知识点一极坐标系1.极坐标系:如图所示,在平面内取一个定点O,叫作;自极点O引一条射线Ox,叫作;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.2.极坐标:设M是平面内一点,极点O与点M的距离|OM|叫作点M的,记为ρ;以极轴Ox 为始边,射线OM为终边的角xOM叫作点M的,记为θ.有序数对(ρ,θ)叫作点M的极坐标,记为M(ρ,θ).一般地,不做特殊说明时,我们认为ρ≥0,θ可取任意实数.3.点与极坐标的关系:一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一个点.特别地,极点O的坐标为(0,θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.4.极坐标与直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位.(2)互化公式:如图所示,设M是坐标系平面内任意一点,它的直角坐标系是(x,y),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:温馨提示;(1)在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.(2)在与曲线的方程进行互化时,一定要注意变量的范围,要注意转化的等价性知识点二 常见曲线的极坐标方程.二、参数方程知识点一 参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程①就叫作这条曲线的参数方程,联系变数x ,y 的变数t 叫作参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫作普通方程. 2.参数方程和普通方程的变化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.(3)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.易误提醒 在将曲线的参数方程化为普通方程时,还要注意其中的x ,y 的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性. 知识点二 常见曲线的参数方程 1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α(α≠π2)的直线l 的普通方程是y -y 0=tan_α(x -x 0),而过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为 (t 为参数),若点P 对于的参数为t ,则有||PM = . 2.圆的参数方程如图所示,设圆O 的半径为r ,点M 从初始位置M 0(t =0时的位置)出发,按逆时针方向在圆O 上作匀速圆周运动,设M (x ,y ),则⎩⎪⎨⎪⎧x =r cos θy =r sin θ(θ为参数).这就是圆心在原点O ,半径为r 的圆的参数方程.其中参数θ的几何意义是OM 0绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.圆心为(a ,b ),半径为r 的圆的普通方程是(x -a )2+(y -b )2=r 2,它的参数方程为: . 3.椭圆的参数方程中心在原点O ,焦点在x 轴上的椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),其参数方程为 (φ为参数).其中参数φ称为离心角;中心在原点O ,焦点在y 轴上的椭圆的标准方程是y 2a 2+x 2b2=1(a >b >0),其参数方程为⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ(φ为参数),其中参数φ仍为离心角,通常规定参数φ的范围为φ∈[0,2π). 温馨提示 (1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有代入消参法,加减消参法,平方消参法等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若x 、y 有范围限制,要标出x 、y 的取值范围.典例分析一、t 的几何意义【例1】.在极坐标系中,曲线C 的方程为2cos29ρθ=,点6P π⎛⎫⎪⎝⎭.以极点O 为原点,极轴为x 轴的正半轴建立直角坐标系.(1)求直线OP 的参数方程的标准式和曲线C 的直角坐标方程; (2)若直线OP 与曲线C 交于A 、B 两点,求11PA PB+的值.【变式1】在直角坐标系xOy 中,直线l的参数方程为2{x t y =-+=(t 为参数),若以该直角坐标系的原点O 为极点, x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ+=. (Ⅰ)求直线l 与曲线C 的普通方程;(Ⅱ)已知直线l 与曲线C 交于,A B 两点,设()2,0M -,求11MA MB-的值.二、ρ的几何意义【例2】(2011新课标全国卷)在直角坐标系xOy 中,曲线C 1的参数方程为:2cos 22sin x y αα=⎧⎨=+⎩(α为参数)M 是C 1上的动点,P 点满足2OP OM =,P 点的轨迹为曲线C 2(Ⅰ)求C 2的方程(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .【变式2】在平面直角坐标系中,曲线122:x cos C y sin αα=+⎧⎨=⎩(α为参数)经伸缩变换2x x y y⎧=⎪⎨⎪='⎩'后的曲线为2C ,以坐标原点O 为极点, x 轴非负半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程; (2),A B 是曲线2C 上两点,且3AOB π∠=,求OA OB +的取值范围三、面积【例3】.在直角坐标系xOy 中,曲线C 的参数方程是35cos 35sin x y αα=+⎧⎨=+⎩(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系.(1)求曲线的极坐标方程; (2)设12:,:,63l l ππθθ==,若12,l l 与曲线C 分别交于异于原点的,A B 两点,求AOB的面积.【变式3】【2015高考新课标1,文23】选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C M N ∆ 的面积. 四、交点【例4】已知直线l 的参数方程为:2cos sin x t y t αα=-+⎧⎨=⎩(t 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρθθ=-.(Ⅰ)求曲线C 的参数方程; (Ⅱ)当4πα=时,求直线l 与曲线C 交点的极坐标.【变式4】【2013课标全国Ⅰ,文23】已知曲线C 1的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).五、轨迹【例5】(2013全国Ⅱ卷)已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点. (Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.【变式5】在直角坐标系xOy 中,已知圆C : 2{2x cos y sin θθ== (θ为参数),点P 在直线l :40x y +-=上,以坐标原点为极点, x 轴的正半轴为极轴,建立极坐标系.(I )求圆C 和直线l 的极坐标方程;(II )射线OP 交圆C 于R ,点Q 在射线OP 上,且满足2OP OR OQ =⋅,求Q 点轨迹的极坐标方程六、参数方程的应用【例6】(2014课表全国Ⅰ)已知曲线22:149x y C +=,直线2:22x t l y t =+⎧⎨=-⎩(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.【变式6】(2016·全国Ⅲ卷)在直角坐标系xOy 中,曲线1C 的参数方程为1:sin x C y αα⎧=⎪⎨=⎪⎩(α为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为sin()4πρθ+=。

极坐标系与参数方程知识点总结

极坐标系与参数方程知识点总结

千里之行,始于足下。

极坐标系与参数方程知识点总结极坐标系和参数方程是数学中的两种常用的描述曲线的方法。

它们可以用来描述平面内的曲线,其优点是能够更简洁地描述某些特殊形状的曲线,且能够涵盖直角坐标系不能完全表示的曲线。

下面将对极坐标系和参数方程进行详细的介绍和总结。

一、极坐标系:极坐标系是一种用极角和极径来表示平面上的点的坐标系统。

其中,极径表示原点与点之间的距离,极角表示极径与一个固定轴之间的夹角。

极坐标系的坐标表示通常用 (r,θ) 表示,其中 r 是极径,θ是极角。

在极坐标系中,曲线方程可以用极坐标 (r,θ) 表示。

例如,直线的极坐标方程可表示为 r = a / cos(θ - α),其中 a 是直线与极径轴的交点到原点的距离,α是直线与极径轴的夹角。

另外,许多曲线在极坐标系中的方程具有简洁的形式。

例如,圆的极坐标方程是 r = a,椭圆的极坐标方程是 r = a / (1 - εcosθ),其中 a 是椭圆焦点到原点的距离,ε是椭圆的离心率。

极坐标系的优点是能够更简洁地表示某些特殊形状的曲线,如圆、椭圆和螺线等。

然而,极坐标系也有一些限制,例如不能表示某些直线和许多多重曲线。

因此,在具体问题中选择使用直角坐标系还是极坐标系要根据具体情况来定。

二、参数方程:第1页/共2页锲而不舍,金石可镂。

参数方程是一种用参数来表示曲线上的点的坐标的方法。

其中,参数是一个实数变量,曲线上的每个点都可以由参数的函数表示。

参数方程通常以向量形式表示,例如(x(t), y(t)),其中 x(t) 和 y(t) 是参数 t 的函数。

通过参数方程,可以更灵活地描述曲线。

例如,直线的参数方程可以表示为 x(t) = a + mt,y(t) = b + nt,其中 a、b 是直线上的一个点的坐标,m、n 是直线的斜率。

另外,许多曲线在参数方程中具有简洁的形式,如抛物线的参数方程是 x(t) = a + t,y(t) = b + t²。

高中极坐标与参数方程知识点总结

高中极坐标与参数方程知识点总结

高中极坐标与参数方程知识点总结1. 极坐标与参数方程的概念极坐标和参数方程都是描述平面上点的位置的数学表示方法。

极坐标的表示方式是使用极径和极角来确定一个点的位置,而参数方程则是使用两个参数来表示一个点的横纵坐标。

在极坐标中,一个点的位置由它到极点的距离(极径)和与极轴的夹角(极角)确定。

极坐标通常表示为(r,θ),其中r表示极径,即点到极点的距离,而θ表示极角,即点与极轴的夹角。

参数方程则是使用参数来表示点的横纵坐标。

常见的参数方程形式是x=f(t)和y=g(t),其中x和y表示点的横纵坐标,而t是参数。

通过改变参数t的取值,可以得到点的坐标。

2. 极坐标的转换极坐标与直角坐标(笛卡尔坐标)之间可以相互转换。

下面是极坐标到直角坐标的转换公式:x = r * cos(θ)y = r * sin(θ)其中(x, y)是点在直角坐标系中的坐标,r是极径,θ是极角。

而直角坐标到极坐标的转换公式如下:r = √(x^2 + y^2)θ = arctan(y / x)其中√表示开平方,arctan表示反正切函数。

3. 参数方程的性质参数方程可以用来描述一条曲线或图形。

通过改变参数的取值范围,可以观察到曲线的形态和特点。

•曲线方程:将参数方程解析为表达式形式,得到的就是曲线的方程。

例如,参数方程为x=f(t)和y=g(t),将其解析为y=f(x)的形式,即可得到曲线方程。

•曲线的对称性:通过观察参数方程中各个参数的表达式,可以得到曲线的对称性。

例如,如果x=f(t)中含有关于t的奇函数,那么对应的曲线关于y轴对称;如果y=f(t)中含有关于t的偶函数,那么对应的曲线关于x轴对称。

•曲线的特殊点:通过令参数值为特定的数值,可以得到曲线上的特殊点。

例如,在参数方程x=f(t)和y=g(t)中,当t=a时,对应的点就是曲线上的一个特殊点。

4. 极坐标和参数方程的应用极坐标和参数方程在数学和物理等领域有广泛的应用。

极坐标与参数方程知识点总结大全47417复习过程

极坐标与参数方程知识点总结大全47417复习过程

1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作.一般地,不作特殊说明时,我们认为可取任意实数.特别地,当点在极点时,它的极坐标为(0,)(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表:在一般情况下,由确定角时,可根据点所在的象限最小正角.4.常见曲线的极坐标方程注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程.二、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数①,并且对于的每一个允许值,由方程组①所确定的点都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。

参数方程与极坐标(精华版)

参数方程与极坐标(精华版)

P0 的有向距离, 在 P0两侧 t 的符号相反, 直线的参数方程 t 的几何意义为有向距离)
x x0 t cos y y0 t sin
( t 为参数,
说明:① t 的符号相对于点 ②|P 0P|=| t |
P ,正负在 P
0
0
点两侧
直线参数方程的变式:
x
x0
at
,但此时 t 的几何意义不是有向距离,只有当
参数方程与极坐标
参数方程知识回顾:
一、定义:在取定的坐标系中,如果曲线上任意一点的坐标
x、 y 都是某个参数 t 的函数,
x f (t)

y f (t) ,其中, t 为参数,并且对于 t 每一个允许值,由方程组所确定的点
M( x ,
y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系
x、y 之间关系的变数 t
坐标与参数间的关系。 Eg1:已知点 P( x, y)是圆 x 2+y2-6x-4y+12=0 上的动点,求: ( 1) x2+y2 的最值;(2) x+y 的最值;(3)点 P 到直线 x+y-1=0 的距离 d 的最值。
Eg2:将下列参数方程化为普通方程
( 1) x=2+3cos y=3sin
(2) x=sin y=cos
叫做参变数,简称参数. 二、二次曲线的参数方程 1、圆的参数方程:
中心在( x0, y0),半径等于 r 的圆:
x x0 r cos y y0 r sin
( 为参数, 的几何意义为圆心角) ,
特殊地,当圆心是原点时,
x r cos y r sin
注意:参数方程没有直接体现曲线上点的横纵坐标之间的关系,而是分别体现了点的横纵

高一数学必修二的参数方程与极坐标怎么学

高一数学必修二的参数方程与极坐标怎么学

高一数学必修二的参数方程与极坐标怎么学对于高一的同学们来说,数学必修二里的参数方程与极坐标这部分知识可能会让大家感到有些头疼。

但别担心,只要掌握了正确的学习方法,这部分内容也能被轻松拿下。

首先,我们来了解一下什么是参数方程和极坐标。

参数方程是通过引入参数来表示曲线上点的坐标的方程,它为解决一些与曲线相关的问题提供了新的思路和方法。

极坐标则是用距离和角度来确定点的位置,与我们熟悉的直角坐标有所不同。

那么,怎样才能学好这部分知识呢?一、扎实基础知识1、理解概念对于参数方程和极坐标的基本概念,一定要理解透彻。

比如,参数方程中参数的意义,极坐标中的极径和极角的定义。

可以通过多做一些概念辨析的题目来加深理解。

2、牢记公式参数方程和极坐标都有各自的公式,像常见曲线的参数方程(如圆、椭圆、抛物线等),极坐标与直角坐标的转换公式等,都要牢记于心。

二、多做练习题1、课本例题课本上的例题通常具有代表性,要认真研究,掌握解题思路和方法。

2、课后习题课后习题是对所学知识的巩固和拓展,要独立完成,遇到不会的题目,不要急于看答案,多思考,尝试从不同的角度去解题。

3、课外辅导资料可以选择一些适合自己的课外辅导资料,进行有针对性的练习。

但不要盲目刷题,要注重质量,做完题目后要及时总结归纳。

三、注重图形结合1、画图在学习参数方程和极坐标时,要养成画图的习惯。

通过画图,可以更直观地理解曲线的形状和特点,有助于解题。

2、分析图形结合图形,分析曲线的性质,如对称性、周期性等。

同时,要注意图形与方程之间的对应关系。

四、学会转化与类比1、坐标转换熟练掌握极坐标与直角坐标之间的转换,能够在不同的坐标系中灵活地解决问题。

2、知识类比将参数方程与直角坐标方程进行类比,找出它们之间的联系和区别,有助于更好地理解和掌握参数方程。

五、善于总结归纳1、题型总结对常见的题型进行总结,如求曲线的参数方程、极坐标方程,利用参数方程和极坐标解决最值问题等,掌握每种题型的解题方法和技巧。

极坐标和参数方程知识点总结

极坐标和参数方程知识点总结

千里之行,始于足下。

极坐标和参数方程知识点总结极坐标是一种表示平面上点位置的坐标系统,它是由点到原点的距离(称为极径)和点与极轴的夹角(称为极角)所确定的。

在极坐标系中,每个点的坐标可以表示为(r,θ)的形式,其中r为极径,θ为极角。

参数方程是一种用一对参数变量来表示曲线上的点的坐标的方法。

对于平面上的曲线,常用的参数方程形式为x=f(t)和y=g(t),其中t为参数变量,f(t)和g(t)分别表示x和y的函数关系。

以下是极坐标和参数方程的一些重要知识点总结:1. 极坐标的转换关系:- 直角坐标到极坐标的转换:x=r*cos(θ),y=r*sin(θ)- 极坐标到直角坐标的转换:r=sqrt(x^2+y^2),θ=tan^(-1)(y/x)2. 常见曲线的极坐标方程:- 直线:θ=常数- 圆:r=常数- 椭圆:r=a*b/sqrt(b^2*cos^2(θ)+a^2*sin^2(θ))3. 参数方程的表示方式:- 曲线方程:(x,y)=(f(t),g(t))- 曲线长度的计算公式:L=∫sqrt((dx/dt)^2+(dy/dt)^2)dt4. 参数方程的性质:- 曲线方向:随着参数变量的增大,曲线的运动方向- 曲线对称性:参数方程对称性特点取决于函数f(t)和g(t)的对称性第1页/共2页锲而不舍,金石可镂。

- 曲线切线方向:曲线上某点的切线方向由参数方程的导数决定5. 参数方程与极坐标之间的关系:- 参数方程可以转换为极坐标方程,极径r=f(t),极角θ=g(t)- 极坐标方程可以转换为参数方程,x=f(θ)*cos(θ),y=f(θ)*sin(θ)需要注意的是,极坐标和参数方程在一些问题中可以更方便地描述曲线的特性,而在其他问题中直角坐标系可能更适用。

因此,在应用中需要根据具体问题选择合适的坐标系表示。

(完整版)极坐标与参数方程知识点、题型总结(最新整理)

(完整版)极坐标与参数方程知识点、题型总结(最新整理)

(完整版)极坐标与参数⽅程知识点、题型总结(最新整理)极坐标与参数⽅程知识点、题型总结⼀、伸缩变换:点是平⾯直⾓坐标系中的任意⼀点,在变换),(y x P 的作⽤下,点对应到点,称伸缩变换>?='>?=').0(,y y 0),(x,x :µµλλ?),(y x P ),(y x P '''⼀、1、极坐标定义:M 是平⾯上⼀点,表⽰OM 的长度,是,则有序实数实ρθMOx ∠数对,叫极径,叫极⾓;⼀般地,,。

,点P 的直⾓坐标、(,)ρθρθ[0,2)θπ∈0ρ≥极坐标分别为(x ,y )和(ρ,θ)2、直⾓坐标极坐标 2、极坐标直⾓坐标?cos sin x y ρθρθ=??=??222tan (0)x y y x xρθ?=+??=≠?3、求直线和圆的极坐标⽅程:⽅法⼀、先求出直⾓坐标⽅程,再把它化为极坐标⽅程⽅法⼆、(1)若直线过点M(ρ0,θ0),且极轴到此直线的⾓为α,则它的⽅程为:ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆⼼为M (ρ0,θ0),半径为r 的圆⽅程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r 2=0⼆、参数⽅程:(⼀).参数⽅程的概念:在平⾯直⾓坐标系中,如果曲线上任意⼀点的坐标都是某个变数的函数并且对于的每⼀个允许值,由这个⽅程所确y x ,t ?==),(),(t g y t f x t 定的点都在这条曲线上,那么这个⽅程就叫做这条曲线的参数⽅程,联系变数),(y x M 的变数叫做参变数,简称参数。

相对于参数⽅程⽽⾔,直接给出点的坐标间关系的y x ,t ⽅程叫做普通⽅程。

(⼆).常见曲线的参数⽅程如下:直线的标准参数⽅程1、过定点(x 0,y 0),倾⾓为α的直线:(t 为参数)ααsin cos 00t y y t x x +=+=(1)其中参数t 的⼏何意义:点P (x 0,y 0),点M 对应的参数为t ,则PM =|t|(2)直线上对应的参数是。

高中数学重点:极坐标与参数方程全面详细系统复习总结

高中数学重点:极坐标与参数方程全面详细系统复习总结

高中数学重点:极坐标与参数方程全面详细系统复习总结(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论.○1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2.○2.线段AB 的中点所对应的参数值等于2BA t t +. 2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数) (或θθsin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 00⎩⎨⎧+=+=b y y a x x4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数) (或 θθec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:pty ptx 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数).(三)极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。

极坐标和参数方程知识点总结

极坐标和参数方程知识点总结

极坐标和参数方程知识点总结在数学的广阔天地中,极坐标和参数方程是两个独具特色且非常有用的工具。

它们为我们解决各类几何和物理问题提供了新的视角和方法。

接下来,让我们一同深入探索极坐标和参数方程的奥秘。

一、极坐标极坐标是一种用距离和角度来表示平面上点的位置的坐标系统。

在极坐标系中,一个点由极径和极角来确定。

1、极坐标的定义极径:表示点到极点(通常是坐标原点)的距离,用符号ρ 表示。

极角:表示极径与极轴(通常是 x 轴正半轴)所成的角,用符号θ 表示。

2、极坐标与直角坐标的转换(1)直角坐标转极坐标极径ρ =√(x²+ y²)极角θ = arctan(y / x) (需要根据点所在的象限确定θ 的取值)(2)极坐标转直角坐标x =ρ cosθy =ρ sinθ3、常见的极坐标曲线(1)圆圆心在极点,半径为 a 的圆的极坐标方程:ρ = a圆心在点(a, 0),半径为 a 的圆的极坐标方程:ρ =2a cosθ(2)直线过极点且与极轴夹角为α 的直线的极坐标方程:θ =α过点(a, 0) 且垂直于极轴的直线的极坐标方程:ρ cosθ = a4、极坐标的应用在物理学中,描述物体的平面运动轨迹,如圆周运动,极坐标常常能使问题简化。

二、参数方程参数方程是通过引入参数来表示曲线或曲面的方程。

1、参数方程的定义对于平面曲线,如果曲线上任意一点的坐标 x 和 y 都可以表示为某个变量 t 的函数,即 x = f(t),y = g(t),那么我们称这两个方程为该曲线的参数方程,t 称为参数。

2、参数方程的常见形式(1)直线的参数方程若直线过点(x₀, y₀),倾斜角为α,则直线的参数方程为:x = x₀+ t cosαy = y₀+t sinα (t 为参数)(2)圆的参数方程圆心在点(a, b),半径为 r 的圆的参数方程为:x = a +r cosθy = b +r sinθ (θ 为参数)(3)椭圆的参数方程焦点在 x 轴上的椭圆 x²/ a²+ y²/ b²= 1 的参数方程为:x =a cosθy =b sinθ (θ 为参数)3、参数的几何意义在直线的参数方程中,参数 t 通常具有几何意义,如表示直线上动点到定点的距离。

(完整版)极坐标与参数方程知识点、题型总结

(完整版)极坐标与参数方程知识点、题型总结

极坐标与参数方程知识点、题型总结一、伸缩变换:点是平面直角坐标系中的任意一点,在变换),(y x P 的作用下,点对应到点,称伸缩变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ),(y x P ),(y x P '''一、1、极坐标定义:M 是平面上一点,表示OM 的长度,是,则有序实数实ρθMOx ∠数对,叫极径,叫极角;一般地,,。

,点P 的直角坐标、(,)ρθρθ[0,2)θπ∈0ρ≥极坐标分别为(x ,y )和(ρ,θ)2、直角坐标极坐标 2、极坐标直角坐标⇒cos sin x y ρθρθ=⎧⎨=⎩⇒222tan (0)x y yx xρθ⎧=+⎪⎨=≠⎪⎩3、求直线和圆的极坐标方程:方法一、先求出直角坐标方程,再把它化为极坐标方程方法二、(1)若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆心为M (ρ0,θ0),半径为r 的圆方程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r 2=0二、参数方程:(一).参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数 并且对于的每一个允许值,由这个方程所确y x ,t ⎩⎨⎧==),(),(t g y t f x t 定的点都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数),(y x M 的变数叫做参变数,简称参数。

相对于参数方程而言,直接给出点的坐标间关系的y x ,t 方程叫做普通方程。

(二).常见曲线的参数方程如下:直线的标准参数方程1、过定点(x 0,y 0),倾角为α的直线:(t 为参数)ααsin cos 00t y y t x x +=+=(1)其中参数t 的几何意义:点P (x 0,y 0),点M 对应的参数为t ,则PM =|t| (2)直线上对应的参数是。

极坐标与参数方程大体知识点

极坐标与参数方程大体知识点

极坐标与参数方程全然知识点一、极坐标知识点1.伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点),(y x P 对应到点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

2.极坐标系的概念:在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度和计算角度的正 方向(通常取逆时针方向为正方向),如此就成立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴. ①极点;②极轴;③长度单位;④角度单位和它的正方向,组成了极坐标系的四要素,缺一不可.3.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。

有序数对),(θρ叫做点M 的极坐标,记为),(θρM .极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。

极点O 的坐标为)R )(,0(∈θθ.4.假设0<ρ,那么0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。

若是规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确信的。

5.极坐标与直角坐标的互化:(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;①极轴与x 轴的正半轴重合①两种坐标系中取一样的长度单位.(2)互化公式)0(n t ,sin ,cos ,222≠===+=x xy a y x y x θθρθρρ6.曲线的极坐标方程:1.直线的极坐标方程:假设直线过点00(,)M ρθ,且极轴到此直线的角为α,那么它的方程为:sin()sin()ρθ-α=ρθ-α几个特殊位置的直线的极坐标方程〔1〕直线过极点 〔2〕直线过点M(a,0)且垂直于极轴 〔3〕直线过(,)2M b π且平行于极轴 方程:〔1〕)R (∈=ραθ 或写成及 〔2〕a =θρcos 〔3〕ρsinθ=b2.圆的极坐标方程: 假设圆心为00(,)M ρθ,半径为r 的圆方程为:2222cos()0r ρρρθθρ--+-=几个特殊位置的圆的极坐标方程〔1〕当圆心位于极点,r 为半径 〔2〕当圆心位于)0,(a C (a>0),a 为半径 〔3〕当圆心位于)2,(πa C )0(>a ,a 为半径方程:(1)r =ρ (2)θρcos 2a = (3)θρsin 2a = 7.在极坐标系中,)0(≥=ραθ表示以极点为起点的一条射线;)R (∈=ραθ表示过极点的一条直线.二、参数方程知识点1.参数方程的概念:在平面直角坐标系中,假设曲线C 上的点(,)P x y 知足()()x f t y f t =⎧⎨=⎩,该方程叫曲线C 的参数方程,变量t 是参变数,简称参数。

极坐标与参数方程知识点、题型总结

极坐标与参数方程知识点、题型总结

极坐标与参数方程知识点、题型总结知识点和题型总结:一、伸缩变换伸缩变换是指点P(x,y)在变换作用下对应到点P'(x',y'),其中x' = λx (λ。

0),y' = μy (μ。

0)。

这个变换称为伸缩变换。

二、极坐标和直角坐标的转换1、极坐标定义在平面上,点M的极坐标表示为(ρ,θ),其中ρ表示OM 的长度,θ表示∠MOx的角度,且θ∈[0,2π),ρ≥0.点P的直角坐标为(x,y),极坐标为(ρ,θ)。

2、直角坐标转换为极坐标x = ρcosθ,y = ρsinθ。

3、极坐标转换为直角坐标ρ = √(x²+y²),tanθ = y/x (x≠0),x = ρcosθ,y = ρsinθ。

4、直线和圆的极坐标方程方法一:先求出直角坐标方程,再把它化为极坐标方程。

方法二:1)若直线过点M(ρ,θ),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α) = ρsin(θ-α)。

2)若圆心为M(ρ,θ),半径为r的圆方程为ρ²-2ρrcos(θ-θ)+ρ²-r² = 0.三、参数方程1、参数方程的概念在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数,且对于t的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数。

相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。

2、常见曲线的参数方程1)直线的标准参数方程过定点(x,y),倾角为α的直线:x = x+tcosα,y = y+tsinα (t为参数)。

其中参数t的几何意义是点P(x,y),点M对应的参数为t,则PM = |t|。

直线上P1,P2对应的参数是t1,t2.|P1P2| = |t1-t2| = √((x1-x2)²+(y1-y2)²)。

极坐标与参数方程知识点及题型归纳总结

极坐标与参数方程知识点及题型归纳总结

极坐标与参数方程知识点及题型归纳总结知识点精讲一、极坐标系在平面上取一个定点O ,由点O 出发的一条射线Ox 、一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.点O 称为极点,Ox 称为极轴.平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ (弧度制)来刻画(如图16-31和图16-32所示). 这两个实数组成的有序实数对(,)ρθ称为点M 的极坐标. ρ称为极径,θ称为极角.二、极坐标与直角坐标的互化设M 为平面上的一点,其直角坐标为(,)x y ,极坐标为(,)ρθ,由图16-31和图16-32可知,下面的关系式成立:cos sin x y ρθρθ=⎧⎨=⎩或222tan (0)x y yx x ρθ⎧=+⎪⎨=≠⎪⎩(对0ρ<也成立). 三、极坐标的几何意义r ρ=——表示以O 为圆心,r 为半径的圆;0θθ=——表示过原点(极点)倾斜角为0θ的直线,0(0)θθρ=≥为射线;2cos a ρθ=表示以(,0)a 为圆心过O 点的圆.(可化直角坐标: 22cos a ρρθ=222x y ax ⇒+=222()x a y a ⇒-+=.)四、直线的参数方程直线的参数方程可以从其普通方程转化而来,设直线的点斜式方程为00()y y k x x -=-,其中tan (k αα=为直线的倾斜角),代人点斜式方程:00sin ()()cos 2y y x x απαα-=-≠,即00cos sin x x y y αα--=. 记上式的比值为t ,整理后得00cos t sin x x t y y αα=+⎧⎨=+⎩,2πα=也成立,故直线的参数方程为00cos t sin x x t y y αα=+⎧⎨=+⎩(t 为参数,α为倾斜角,直线上定点000(,)M x y ,动点(,)M x y ,t 为0M M 的数量,向上向右为正(如图16-33所示).五、圆的参数方程若圆心为点00(,)M x y ,半径为r ,则圆的参数方程为00cos (02)sin x x r y y r θθπθ=+⎧≤≤⎨=+⎩.六、椭圆的参数方程椭圆2222C :1x y a b +=的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数,(02)θπ≤≤).七、双曲线的参数方程双曲线2222C :1x y a b -=的参数方程为sec tan x a y b θθ=⎧⎨=⎩(,)2k k πθπ≠+∈Z .八、抛物线的参数方程抛物线22y px =的参数方程为222x pt y pt⎧=⎨=⎩(t 为参数,参数t 的几何意义是抛物线上的点与顶点连线的斜率的倒数).题型归纳即思路提示题型1 极坐标方程化直角坐标方程 思路提示对于极坐标方程给出的问题解答一般都是通过化为直角坐标方程,利用直角坐标方程求解.这里需注意的是极坐标系与直角坐标系建立的对应关系及其坐标间的关系cos sin x y ρθρθ=⎧⎨=⎩. 例16.7 在极坐标系中,圆4sin ρθ=的圆心到直线6πθ=(ρ∈R )的距离是 .分析 将极坐标方程转化为平面直角坐标系中的一般方程求解.解析 极坐标系中的圆4sin ρθ=转化为平面直角坐标系中的一般方程为224x y y +=,即22(2)4x y +-=,其圆心为(0,2),直线6πθ=转化为平面直角坐标系中的方程为:y x =,即0x =.圆心(0,2)到直线0x ==. 变式1 已知曲线12,C C 的极坐标方程分别为cos 3ρθ=,4cos ρθ=,(0,0)2πρθ≥≤<,则曲线1C 与2C 交点的极坐标为 .变式2 ⊙1O 和⊙2O 的极坐标方程分别为4cos ρθ=,4sin ρθ=-.(1)把⊙1O 和⊙2O 的极坐标方程分别化为直角坐方程; (2)求经过⊙1O 和⊙2O 交点的直线的直角坐标方程.变式3已知一个圆的极坐标方程是5sin ρθθ=-,求此圆的圆心和半径. 例16.8 极坐标方程(1)()0(0)ρθπρ--=≥表示的图形是( )A. 两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线分析 将极坐标方程化为直角坐标方程.解析 因为(1)()0(0)ρθπρ--=≥,所以1ρ=或θπ=(0)ρ≥.11ρ=⇒=,得221x y +=,表示圆心在原点的单位圆;(0)θπρ=≥表示x 轴的负半轴,是一条射线.故选C.变式1 极坐标方程cos ρθ=和参数方程123x ty t =--⎧⎨=+⎩(t 参数)所表示的图形分别是( )A.圆、直线B.直线、圆C.圆、圆D.直线、直线 变式2 在极坐标系中,点(2,)6P π-到直线:sin()16l πρθ-=的距离是 .变式3 直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 .题型2 直角坐标方程化为极坐标方程思路提示如果题目中已知的曲线为直角坐标方程,而解答的问题是极坐标系下的有关问题,这里要利用直角坐标与极坐标关系式cos sin x y ρθρθ=⎧⎨=⎩,将直角坐标方程化为极坐标方程.例16.9 在直角坐标系xOy 中,圆1C :224x y +=,圆2C :22(2)4x y -+=.(1)在以O 为极点,x 轴为极轴的极坐标系中,分别写出圆1C , 2C 的极坐标方程,并求出圆1C , 2C 的交点坐标(用极坐标表示);(2)求出1C 与2C 的公共弦的参数方程.解析 (1)圆1C 的极坐标方程为2ρ=,圆2C 的极坐标方程为4cos ρθ=.24cos ρρθ=⎧⎨=⎩解得2ρ=,3πθ=±,故圆1C 与圆2C 的交点的坐标为(2,),(2,)33ππ-. 注:极坐标系下点的表示不唯一.(2)解法一:由cos sin x y ρθρθ=⎧⎨=⎩,得圆1C 与圆2C 的交点的坐标分别为.故圆1C 与2C 的公共弦的参数方程为1(x t y t=⎧≤≤⎨=⎩.解法二: 将1x =代入cos sin x y ρθρθ=⎧⎨=⎩得cos 1ρθ=,从而1cos ρθ=.于是圆1C 与2C 的公共弦的参数方程为1()tan 33x y ππθθ=⎧-≤≤⎨=⎩.变式1 曲线C 的直角坐标方程为2220x y x +-=,以原点为极点,x 轴的正半轴为极抽建立极坐标系,则曲线C 的极坐标方程为 _.题型3 参数方程化普通方程 思路提示已知直线或曲线的参数方程讨论其位置关系、性质问题一般要通过消参(代入法、加减法,三角法)转化为普通方程解答.例16.10 若直线340x y m ++=与圆1cos 2sin x y θθ=+⎧⎨=-+⎩( θ为参数)没有公共点,则实数m 的取值范围是 . 解析 将圆的参数方程1cos 2sin x y θθ=+⎧⎨=-+⎩( θ为参数)化为普通方程22(1)(2)1x y -++=,圆心(1,2)-,半径1r =.直线与圆无公共点,则圆心到直线的距离大于半径,|38|15m -+>|5|5m ⇒->,得10m >或0m <,即m 的范围是(,0)(10,)-∞+∞.变式 1 在平面直角坐标系xOy 中,直线l 的参数方程33x t y t=+⎧⎨=-⎩(参数t ∈R ),圆C 的参数方程为2cos 2sin 2x y θθ=⎧⎨=+⎩(参数[0,2]θ∈π),则圆C 圆心坐标为 _,圆心到直线l 的距离为 . 变式2 (2013湖北理16)在庄角坐标系xOy 中,椭圆C 的参数方程cos sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数,0a b >>),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l与圆O 的极坐标方程分别为sin()4πρθ+=(m 为非零数)与b ρ=.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为 . 变式3 参数方程sin cos sin cos x y θθθθ=+⎧⎨=⎩(θ是参数)的普通方程是 .例16.11 已知动圆22:2cos 2sin 0C x y ax by θθ+--=(,a b 是正常数,a b ≠,θ是参数),则圆心的轨迹是 .解析 由动圆22:2cos 2sin 0C x y ax by θθ+--=得222222(cos )(sin )cos sin x a y b a b θθθθ-+-=+.圆心坐标为(cos ,sin )a b θθ(θ为参数),设cos x a θ=,sin y b θ=,则221x y a b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即22221x y a b +=为所求轨迹方程,所以圆心的轨迹是椭圆.变式1 方程2232(05)1x t t y t ⎧=+⎪≤≤⎨=-⎪⎩表示的曲线是( ) A. 线段 B. 双曲线的一支 C. 圆弧 D. 射线变式2 已知直线11cos :sin x t C y t αα=+⎧⎨=⎩(t 为参数),2cos :sin x C y θθ=⎧⎨=⎩(θ为参数).(1)当3πα=时,求1C 与2C 的交点坐标;(2)过坐标原点O 作1C 的垂线,垂足为A ,P 为OA 的中点.当α变化时,求点P 轨迹的参数方程,并指出它是什么曲线.题型4 普通方程化参数方程 思路提示对于直线与圆锥曲线方程化为参数方程问题实质是引入第三个变量的换元法,这里有代数换元(如抛物线22y px =的参数方程222x pt y pt =⎧⎨=⎩)或三角换元(如椭圆22221x y a b +=的参数方程cos sin x a y b θθ=⎧⎨=⎩).例16.12 在平面直角坐标系xOy 中,设(,)P x y 是椭圆2213x y +=上的一个动点,求S x y =+的最大值.分析 利用椭圆的参数方程,建立,x y 与参数θ的关系,运用三角函数最值的求法,求解x y +的最大值.解析 点(,)P x y 是椭圆2213x y +=上的一个动点,则sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),[0,2]θ∈π,则sin x y θθ+=+2sin()3πθ=+,[0,2]θ∈π,故max ()2x y +=.变式1 已知点(,)P x y 是圆2220x y y +-=上的动点.(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围. 变式2 直线l 过(1,1)P ,倾斜角6πα=.(1) 写出l 的参数方程;(2)l 与圆224x y +=相交于,A B 两点,求P 到,A B 两点的距离之积.变式3 已知抛物线2:4C y x =,点(,0)M m 在x 轴的正半轴上,过M 的直线l 与C 相交于,A B 两点,O 为坐标原点.(1)若1m =时,l 的斜率为1,求以AB 为直径的圆的方程;(2)若存在直线l 使得||,||,||AM OM MB 成等比数列,求实数m 的取值范围.题型5 参数方程与极坐标方程的互化 思路提示参数方程与极坐标方程的互化问题,需要通过普通方程这一中间桥梁来实现,先将参数方程(极坐标方程)化为普通方程,再将普通方程化为极坐标方程(参数方程).例16.13 已知曲线C的参数方程为x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为 .分析 把曲线C 的参数方程化为普通方程,求出切线l 的普通方程,然后把求出的直线l 的普通方程化为极坐标方程.解析 由22sin cos 1t t +=得曲线C 的普通方程为222x y +=,过原点O 及切点(1,1)的直线的斜率为1,故切线l 的斜率为1-,所以切线l 的方程为1(1)y x -=--,即20x y +-=.把cos x ρθ=,sin y ρθ=代入直线l 的方程可得cos sin 20ρθρθ+-=sin()204πθ+-=,化简得sin()4πθ+=变式1 设曲线C 的参数方程为2x ty t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 .有效训练题 1.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A. 一条射线和一个圆B. 两条直线C. 一条直线和一个圆D. 一个圆 2.圆cos )ρθθ=-的圆心的一个极坐标是( )A. (B. (2,)4πC. 3(2,)4π D. 7(2,)4π3.在极坐标系中,若等边△ABC 的两个顶点是(2,)4A π,5(2,)4B π.那么顶点C 的坐标可能是( )A. 3(4,)4πB. 3)4πC. )πD. (3,)π4.直线的参数方程为sin 501cos50x t y t ⎧=-⎪⎨=-⎪⎩(t 为参数),则直线的倾斜角为( )A. 40B. 50C. 140D.1305.过点(2,3)A 的直线的参数方程为232x ty t =+⎧⎨=+⎩(t 为参数),若此直线与直线30x y -+=相交于点B ,则||AB =( )6.设曲线C 的参数方程23cos 13sin x y θθ=+⎧⎨=-+⎩( θ为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l的点的个数为( ) A. 1 B. 2 C.3 D.4 7.已知直线l的极坐标方程为sin()42πρθ-=,圆M 的参数方程为22cos 12sin x y θθ=+⎧⎨=-+⎩( θ为参数),则圆M 上的点到直线l 的最短距离为 .8.在平面直角坐标系xOy 中,曲线1C 和2C的参数方程分别为x y θθ⎧=⎪⎨=⎪⎩(θ为参数,02πθ≤≤)和1x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),则曲线1C 与2C 的交点坐标为 . 9.已知抛物线的参数方程为222x pt y pt=⎧⎨=⎩(t 为参数),其中0p >,焦点为F ,准线为l ,过抛物线上一点M 作准线l 的垂线,垂足为E ,若||||EF MF =,点M 的横坐标是3,则p = .10.在极坐标系中,O 为极点,已知两点,M N 的极坐标分别为2(4,)3π,)4π,求△OMN 的面积. 11.已知椭圆221164x y +=,O 为坐标原点,,P Q 为椭圆上的两动点,若OP OQ ⊥,求22||||OP OQ +的最大值.12. 已知曲线12cos :sin x C y θθ=⎧⎨=⎩(θ为参数),曲线2247:cos 016C ρθ-+=.(1)若,P Q 分别是曲线1C 和曲线2C 上的两个动点,求线段PQ 长度的最小值;(2)若曲线1C 上与x 轴、y 轴的正半轴分别交于,A B 点,P 是曲线1C 上第一象限内的动点,O 是坐标原点,试求四边形OAPB 面积的最大值.。

极坐标和参数方程知识点总结

极坐标和参数方程知识点总结

极坐标和参数方程知识点总结一、极坐标基础知识极坐标是一种描述平面上点位置的方式,它由两个值组成:极径和极角。

极径表示点到原点的距离,而极角表示点到正半轴的夹角。

二、极坐标与直角坐标系的转换在直角坐标系中,一个点可以用它在x轴和y轴上的投影表示。

而在极坐标系中,一个点可以用它与原点的距离和与正半轴的夹角来表示。

两种坐标系之间可以通过以下公式进行转换:x=r*cosθy=r*sinθ其中,r为极径,θ为极角。

三、常见图形的极坐标方程1. 圆:r=a2. 点:r=03. 直线:θ=k4. 简单叶形线:r=a*cos(2θ)5. 简单心形线:r=a*(1-sinθ)四、参数方程基础知识参数方程是一种描述曲线运动状态的方式,它由两个函数组成:x(t)和y(t)。

这两个函数分别表示曲线上每个点在x轴和y轴上的位置。

五、参数方程与直角坐标系的转换在直角坐标系中,一个曲线可以用y=f(x)的形式表示。

而在参数方程中,一个曲线可以用x(t)和y(t)的形式表示。

两种坐标系之间可以通过以下公式进行转换:x=f(t)y=g(t)其中,t为参数。

六、常见图形的参数方程1. 直线:x=at+b,y=ct+d2. 圆:x=a+r*cosθ,y=b+r*sinθ3. 椭圆:x=a*cosθ,y=b*sinθ4. 双曲线:x=a*secθ,y=b*tanθ七、极坐标与参数方程的联系极坐标和参数方程都是描述曲线运动状态的方式。

它们之间有一定的联系,可以通过以下公式进行转换:r=sqrt(x^2+y^2)tanθ=y/x其中,r为极径,θ为极角。

极坐标与参数方程知识点总结

极坐标与参数方程知识点总结

极坐标与参数方程知识点总结极坐标与参数方程是解析几何中的重要概念,它们在描述曲线、图形和方程等方面具有独特的优势和应用。

本文将对极坐标与参数方程的相关知识点进行总结,以便读者更好地理解和掌握这两个概念。

首先,我们来介绍极坐标的概念。

极坐标是一种描述平面上点位置的方法,它不同于直角坐标系,而是以原点O为极点,以x轴正半轴为极轴,通过极径r和极角θ来确定点P的位置。

其中,极径r表示点P到极点O的距离,而极角θ表示点P与极轴的夹角。

通过极坐标系,我们可以更方便地描述圆、椭圆、双曲线等曲线,同时也可以简化一些复杂的曲线方程。

其次,参数方程是另一种描述曲线的方法。

参数方程是指用参数方程式表示的曲线方程,其中曲线上的点的坐标由参数表示。

一般而言,参数方程由x=f(t)和y=g(t)两个函数组成,其中t是参数。

通过参数方程,我们可以描述一些直角坐标系下难以表示的曲线,比如螺线、心形线等。

参数方程的引入,使得我们能够更加灵活地描述曲线的形状和特征。

极坐标与参数方程在解析几何中有着广泛的应用。

比如,在极坐标系下,描述圆心在极点O处的圆的方程为r=a,其中a为常数;描述直线的方程为r=acos(θ-α),其中a和α为常数。

而在参数方程中,我们可以通过调整参数的取值来描述曲线的不同部分,从而更加全面地了解曲线的性质和特点。

除了在解析几何中的应用,极坐标与参数方程还在物理学、工程学等领域有着重要的作用。

比如,在天文学中,描述天体运动的轨道往往需要使用极坐标或参数方程;在工程学中,描述某些曲线形状或运动轨迹也需要借助于极坐标或参数方程。

因此,对极坐标与参数方程的深入理解和掌握,对于相关领域的研究和实践具有重要意义。

综上所述,极坐标与参数方程是解析几何中的重要概念,它们在描述曲线、图形和方程等方面具有独特的优势和应用。

通过本文的总结,相信读者对极坐标与参数方程有了更清晰的认识,也能更好地运用它们进行相关领域的研究和实践。

希望本文能够对读者有所帮助,谢谢阅读!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分:坐标系与参数方程
【考纲知识梳理】
1.平面直角坐标系中的坐标伸缩变换
设点P(x,y)是平面直角坐标系中的任意一点,在变换 的作用下,点 对应到点 ,称 为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.
2.极坐标系的概念
(1)极坐标系
如图(1)所示,在平面内取一个定点 ,叫做极点,自极点 引一条射线 ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.
3.极坐标和直角坐标的互化
(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图(2)所示:
(2)互化公式:设M是坐标平面内任意一点,它的直角坐标是 ,极坐标是 ,于是极坐标与直角坐标的互化公式如表:
点M
直角坐标
极坐标
互化公式
在一般情况下,由 确定角时,可根据点M所在的象限最小正角.
注:直线参数方程中参数的几何意义:过定点 ,倾斜角为 的直线 的参数方程为 ,其中 表示直线 上以定点 为起点,任一点 为终点的有向线段 的数量,当点 在 上方时, >0;当点 在 下方时, <0;当点 与 重合时, =0。我们也可以把参数 理解为以 为原点,直线 向上的方向为正方向的数轴上的点 的坐标,其单位长度与原直角坐标系中的单位长度相同。
5.双曲线的参数方程
以坐标原点 为中心,焦点在 轴上的双曲线的标准议程为 其参数方程为 ,其中 。
焦点在 轴上的双曲线的标准方程是 其参数方程为 ,其中
以上参数 都是双曲线上任意一点的离心角。
6.抛物线的参数方程
以坐标原点为顶点,开口向右的抛物线 的参数方程为
7.直线的参数方程
经过点 ,倾斜角为 的直线 的普通方程是 而过 ,倾斜角为 的直线 的参数方程为 。
4.常见曲线的极坐标方程
曲线
图形
极坐标方程
圆心在极点,半径为 的圆
圆心为 ,半径为 的圆
圆心为 ,半径为 的圆
过极点,倾斜角为 的直线
(1)
(2)
过点 ,与极轴垂直的直线
过点 ,与极轴平行的直线
注:由于平面上点的极坐标的表示形式不唯一,即 都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程 点 可以表示为 等多种形式,其中,只有 的极坐标满足方程 .
〖例2〗在极坐标系中,如果 为等边三角形ABC的两个顶点,求顶点C的极坐标 。
(三)求曲线的极坐标方程
〖例〗已知P,Q分别在∠AOB的两边OA,OB上,∠AOB= ,⊿POQ的面积为8,求PQ中点M的极坐标方程。
(四)极坐标的应用
〖例〗如图,点A在直线x=4上移动,⊿OPA为等腰直角三角形,⊿OPA的顶角为∠OPA(O,P,A依次按顺时针方向排列),求点P的轨迹方程,并判断轨迹形状。
二、参数方程
(一)把参数方程化为普通方程
〖例〗已知曲线C : (t为参数),C : ( 为参数)。
(1)化C ,C 的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C 上的点P对应的参数为 ,Q为C 上的动点,求 中点 到直线 (t为参数)距离的最小值。
(二)椭圆参数方程的应用
在平面直角坐标系 中,点 是椭圆 上的一个动点,求 的最大值
二、参数方程
1.参数方程的概念
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 都是某个变数 的函数 ①,并且对于 的每一个允许值,由方程组①所确定的点 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数 的变数 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.
2.参数方程和普通方程的互化
(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.
(2)如果知道变数 中的一个与参数 的关系,例如 ,把它代入普通方程,求出另一个变数与参数的关系 ,那么 就是曲线的参数方程,在参数方程与普通方程的互化中,必须使 的取值范围保持一致.
它的参数方程为: 。
4.椭圆的参数方程
以坐标原点 为中心,焦点在 轴上的椭圆的标准方程为 其参数方程为 ,其中参数 称为离心角;焦点在 轴上的椭圆的标准方程是 其参数方程为 其中参数 仍为离பைடு நூலகம்角,通常规定参数 的范围为 。
注:椭圆的参数方程中,参数 的几何意义为椭圆上任一点的离心角,要把它和这一点的旋转角 区分开来,除了在四个顶点处,离心角和旋转角数值可相等外(即在0到 的范围内),在其他任何一点,两个角的数值都不相等。但当 时,相应地也有 ,在其他象限内类似。
注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.
(2)极坐标
设M是平面内一点,极点 与点M的距离|OM|叫做点M的极径,记为 ;以极轴 为始边,射线 为终边的角 叫做点M的极角,记为 .有序数对 叫做点M的极坐标,记作M .一般地,不作特殊说明时,我们认为 可取任意实数.特别地,当点M在极点时,它的极坐标为 。和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定 ,那么除极点外,平面内的点可用唯一的极坐标 表示;同时,极坐标 表示的点也是唯一确定的.
【要点名师透析】
一、坐标系
(一)平面直角坐标系中的伸缩变换
〖例〗在同一平面直角坐标系中,已知伸缩变换
(1)求点 经过 变换所得的点 的坐标;
(2)点B经过 变换得到点 ,求点 的坐标;
(3)求直线 经过 变换后所得到直线的 方程;
(4)求双曲线 经过 变换后所得到曲线 的焦点坐标。
(二)极坐标与直角坐标的互化
注:普通方程化为参数方程,参数方程的形式不一定唯一。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。
3.圆的参数
如图所示,设圆 的半径为 ,点M从初始位置 出发,按逆时针方向在圆 上作匀速圆周运动,设M ,则 。这就是圆心在原点 ,半径为 的圆的参数方程,其中 的几何意义是 转过的角度。圆心为 ,半径为 的圆的普通方程是 ,
相关文档
最新文档