重庆中考专题训练二含参的方程和不等式的计算 -

合集下载

重庆中考专题训练二含参的方程和不等式的计算-

重庆中考专题训练二含参的方程和不等式的计算-

重庆中考专题训练二含参的方程和不等式的计算-中考专题训练二一、含参数方程组和不等式的结合1.若整式a 使得关于x 的不等式组20113x a x ì->?í-至少有一个整数解,且使得关于x 的方程415ax x =-有整数解,那么所有满足条件的整数a 的值之和是() A.12 B.1 C.52D.3 2.从22,1,,0,13---这五个数字中,随机抽取一个记为a ,则使得关于x 的方程213ax x +=-的解为非负数,且满足关于y 的不等式组0321x a x ì->?í-+恰有三个整数解,那么这5个数中所有满足条件的a 的值有() A.0个 B.1个 C.2个 D.3个二、含参数的函数和方程、不等式的结合3. 一直一个口袋中装有5个完全相同的小球,小球上分别标有2,6,9,12,15五个数字,搅匀后从中摸出一个小球,将小球上的数字记为a ,若使得一次函数6y ax a =+-不经过第四象限且关于x 的分式方程6466ax x x x =+--的解为整数,则这5个数中所有满足条件的a 的值之和是()A.21B.27C.29D.44 4. 从2,1,0,1,2,4--这六个数中,任取一个数作为a 的值,恰好使得关于x,y 的二元一次方程组2x y a x y ì-=?í+=??有整数解,且函数242y ax x =++的图象与x 轴有公共点,那么这6个数所有满足条件的a 的值之积是()A. 16-B.4-C.0D.8练习:1. 有五张正面分别标有数组12,0,,1,32-的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗均匀后从中任取一张,将该卡片上的数字记为a ,若使得关于x 的分式方程11222ax x x-+=--有整数解,则这5个数中满足条件的a 的值之和是() B.0 B.3 C.4 D.322. 使关于x 的分式方程122k x -=-的解为非负数,且使反比例函数3k y x -=的图象过第一、三象限时满足条件的所有整数k 的和为()C. 1 B.2 C.3D.53. 在平面直角坐标系中,抛物线223y x x =--与x 轴交于B,C 两点,(点B 在点的左侧),点A 在抛物线上,且横坐标为-2,连接AB ,AC ,现将背面完全相同,正面分别标有2,1,0,1,2--的五张卡片洗均匀后,背面朝上,从中任取一张,将该卡片上的数作为P 的横坐标,将该数加1作为点P 的纵坐标,点P 落在△ABC 内(不含边界),则满足条件的点P 的个数为()D. 1 B.2 C.3 D.44.已知一个口袋装有七个完全相同的小球,小球上分别标有3,2,1,0,1,2,3---七个数,搅匀后一次从中摸出一个小球,将小球上的数用a 表示,将a 的值分别带入函数(3)y a x =-和方程311x a x x --=-,恰好使得函数的图像经过第二、四象限,切方程有整数解,那么这七个数中所有满足条件的a 的值之和是()A. 1B.2-C.3-D.4-5.在5张正面分别写有数字31,1,,0,124---的卡片,它们除数字不同外其余全部相同,将他们背面朝上,洗均匀后从中随机抽取一张,记卡片上的数字为a ,若使以x 为自变量的反比例函数1a y x -=经过第二、四象限,且关于x 的不等式组122x a a x ì+??í-有解,则这5个数中所有满足条件的a 的值之和是()A. 114- B.52- C.54- D.1- 6.若整数a 使关于x 的不等式组31220x a x x a ì++-??í?-A. 28B.30C.32D.347.如果关于x 的方程2322ax x x x ++=--有整数解,且使关于y 的不等式组2()64915y a y y y ì+??í->-??的解集为4y <-,则符合条件的所有整数a 的和为()A. 10B.8C.5D.38.若关于x 的方程3333ax a x x x x +=----的解为整数,且关于y 的不等式组2370y y a ì->?í-无解,则所有满足条件的非负整数a 的和为()A. 2B.3C.7D.109.若关于x 的不等式组212213147x a x ì+A. 2B.3C.4D.510.有6张正面分别标有数字2,1,0,1,2,3--的卡片,他们除了数字不同其余都相同,现将背面朝上,洗匀后随即抽一张,记卡片上数字为a ,若使关于x 的方程22(1)(3)0x a x a a --+-=有两个不相等的实数根,且以x 为自变量的函数22(1)21y x a x a =-+-+的图像经过点(-1,6),则6个数中所有满足条件的a 的值之和是()A. 2B.3C.5D.6。

重庆中考不等式组与分式方程专题训练(培优)

重庆中考不等式组与分式方程专题训练(培优)

重庆中考不等式组与分式方程专题训练(共计38个小题,每小题4分,总分:150分)姓名: 得分:1、 (重庆巴蜀中学初2016届三下三诊)若a 为整数,关于x 的不等式组2(1)43x40x x a +≤+⎧⎨-<⎩有且只有3个非正整数解,且关于x 的分式方程11222ax x x-+=--有负整数解,则整数a 的个数为(C )个.A .4B .3C .2D 12、(重庆初2016届六校发展共同体适应性考试 ) 如果关于x 的不等式组⎪⎩⎪⎨⎧->-<-)1(2303x x mx 的解集为m x <,且关于x 的分式方程3323=--+-xxx m 有非负整数解,所有符合条件的m 的个数是( C )A.1个B.2个C.3个D.4个 3、(重庆八中初2016届九下强化训练三)已知关于x 的分式方程2332=-++-xa x x 有增根,且关于x 的不等式组⎩⎨⎧≤>b x ax 只有4个整数解,那么b 的取值范围是( D )A. 31≤<-bB. 32≤<bC. 98<≤bD. 43<≤b4、(重庆一中初2016级15—16学年度下期第二次定时作业) 能使分式方程1321-=+-x x k 有非负实数解且使二次函数122--+=k x x y 的图像与x 轴无交点的所有整数k 的积为( B )A .-20B .20C .-60D .605、(重庆八中初2016届九下强化训练二)已知a 为实数,关于x 、y 的方程组组235212x y a x y a-=⎧⎨+=-⎩的解的积小于零,且关于x 的分式方程32122x ax x =---有非负解,则下列a 的值全都符合条件的是( B )A .-2、-1、1B .-1、1、2C .-1、23、1 D .-1、0、2 6、(重庆市初2016级毕业暨高中招生适应性考试)如果关于x 的不等式组⎪⎩⎪⎨⎧-<->-)2(34,02x x mx 的解集为1>x ,且关于x 的分式方程3221=-+--x mx x 有非负整数解,则符合条件的m 的值是( ) A .5-,3- B .3-,1 C .5-,3-,1 D .5-,3-,1-,17、(重庆实验外国语学校2015-2016学年度下期第一次诊断性考试)关于x 的方程2222x mx x ++=--的解为正数,且关于y 的不等式组22(2)y m y m m -≥⎧⎨-≤+⎩有解,则符合题意的整数m 有( )个A .4B .5C .6D .78、 (重庆巴蜀中学初2016级初三下保送生考试)若关于x 的分式方程13444ax x x -+=---有正整数解,关于x 的不等式组⎪⎩⎪⎨⎧>+<--x x a x x 22)2(3有解,则a 的值可以是(D )A 、0B 、1C 、2D 、39、(重庆八中2016级九下全真三模)如果关于x 的方程2420ax x +-=有两个不相等的实数根,且关于x 的分式方程11222ax x x --=--有正数解,则符合条件的整数a 的值是( A ) A .-1B .0C .1D .210、(2016重庆中考A 卷)从-3,-1,21,1,3这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组⎪⎩⎪⎨⎧<-≥+03)72(31a x x 无解,且使关于x 的分式方程1323-=----x a x x 有整数解,那么这5个数中所有满足条件的a 的值之和为( B )A.-3B. -2C. 23-D. 2111、(2016重庆中考A 卷改编)从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的一元二次方程2(12)210a x x ---=有实数解,且使关于x 的分式方程2133x a x x--=---有整数解,那么这5个数中所有满足条件的a 的值之和是( B ) A .﹣3 B .﹣2 C .32- D .1212、(2016重庆中考B 卷)如果关于x 的分式方程1131+-=-+x x x a 有负分数解,且关于x 的不等式组⎪⎩⎪⎨⎧+<+--≥-1243,4)(2x x x x a 的解集为x<-2,那么符合条件的所有整数a 的积是 ( D )A.-3B.0C.3D.913、(重庆市初2016级毕业暨高中招生适应性考试改编)如果关于x 的2210mx x -+=有实数解,且关于x 的分式方程3221=-+--x mx x 有非负整数解,则符合条件的m 的值是(C )A .5-,3-B .3-,1C .5-,3-,1D .5-,3-,1-,1 14、(2016重庆中考B 卷改编)如果关于x 的分式方程1131+-=-+x xx a 有负分数解,且关于x 的方程2(2)210a x x ++-=有实数解,那么符合条件的所有整数a 的积是 ( D )A.-3B.0C.3D.915、(2016•重庆一中三模)使得关于x 的不等式组⎩⎨⎧-≥+-->14122m x m x 有解,且使分式方程2221=----xxm x 有非负整数解的所有的m 的和是( C ) A.-1 B. 2 C. -7 D. 016、(重庆南开中初2017届九上入学)从-4、﹣3、1、3、4这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组1(9)230x x a ⎧-≤-⎪⎨⎪-<⎩的解集是x a <,且使关于x 的分式方程3122x a x x --=--有整数解,那么这5个数中所有满足条件的a 的值之和为( ) A .﹣3B .﹣2C .0D .117、(重庆南开中初2017届九上阶段测试一)要使关于x 的方程2210ax x --=有两个实数解,且关于x 的分式方程2233x a x x ++=--的解为非负数的所有整数a 的个数为(B ) A .3个 B .4个 C .5个 D .6个18、(重庆实验外国语学校2016-2017学年度上期第一次月考)如果关于x 的分式方程222x m x x =---的解为正数,且关于x 的不等式组1(21)130x x m ⎧+≤-⎪⎨⎪-≥⎩无解,那么符合条件的所有整数m 的和为(B )A.5B.3C. 1D.019、 (重庆巴蜀中学2016-2017学年度上期第一次月考)使得关于x 的不等式组⎩⎨⎧-≥+-->14122m x m x 有解,且使分式方程2221=----x xm x 有非负整数解的所有m 的和是(A ) A.-7 B.-2 C.-1 D.020、(重庆一中初2017级初三上半期) 若关于x 的分式方程24341-=-+--x x ax 有正整数解,关于x 的不等式组3(2)2322x x a x x --<⎧⎪⎨+>-⎪⎩有解,则a 的值可以是 (B )A 、-4B 、0C 、1D 、2 21、(重庆一中初2017级初三上半期改编)若关于x 的分式方程24341-=-+--x x ax 有正整数解,关于x 的不等式组3(2)22x x a x x -+<⎧⎪⎨+>⎪⎩有解,则a 的值可以是 (B )A 、-4B 、0C 、1D 、222、(重庆双福育才中学初2017级初三上半期)从-6,﹣3,﹣1,0, 1,3,6这七个数中,随机抽取一个数,记为m ,若数m 使关于x 的分式方程1244x m x x++=--有整数解,且使得一次函数y x m =--的图像不过第一象限,那么这六个数中所有满足条件的m 值的个数是 ( B ) A .2 B .3 C .4 D .523、(重庆实验外国语学校2016-2017学年度上期半期)已知二次函数2(2)3y x a x =-+-+,当2x >时,y 随x 的增大而减小,且关于x 的分式方程2133a x x x-=---的解是自然数,则符合条件的整数a 的和是(A )A .3B .8C .15D .1624、(重庆南开中初2017届九上半期)已知有9张卡片,分别写有1到9这就个数字,将它们的背面朝上洗匀后,任意抽出一张,记卡片上的数字为a ,若数a 使关于x 不等式组有解,且使函数在的范围内y 随着x 的增大而增大,则这9个数中满足条件的a的值之和为( B ) A .10B .13C .17D .1825、如果关于x 的不等式组⎪⎩⎪⎨⎧-<->-)2(34,02x x mx 的解集为1>x ,且关于x 的分式方程3221=-+--x mx x 有非负整数解,则符合条件的m 的所有值的和是( C ) A .-2 B .-4 C .-7 D .-826、已知关于x 的方程1545-=+++x x a 的解为负数,且一次函数y=(a+5)x+(2-2a)的图象不经过第四象限,则下列各数都满足上述条件a 的值的是( )A 、-9,-4,1B 、-8,-4,1C 、32-,0,31 D 、0,1,2.27、在– 3、– 2、– 1、0、1、2这六个数中,随机取出一个数记为a ,那么使得关于x 的一元二次方程2250x ax -+=无解,且使得关于x 的方程1311x a x x+-=--有整数解的所有a 的值之和为( )A .1-B .0C .1D .228、已知关于x 的方程1333=+-+x x a 的解为负数,且关于x 、y 的二元一次方程组⎩⎨⎧+=+=-85372a y x y x 的解之和为正数,则下列各数都满足上述条件a 的值的是( ) A 、32,2,5 B 、0,3,5 C 、3,4,5 D 、4,5,6. 29、已知关于x 的方程24442=+-+x x a 的解为负数,且关于x 的不等式组⎩⎨⎧-≥≤+a x x 3352有解,则满足上述条件的a 的所有整数之和是( )A 、-10B 、-8C 、-6D 、0. 30、已知关于x 的方程1334=---x ax 的解为正数,且二次函数y=x 2-(2a+6)x+12a 与x 轴两个交点的横坐标之和为正数,则满足上述条件的a 的所有整数之和是( )A 、9B 、10C 、11D 、14. 31、使关于x 的分式方程121k x -=-的解为非负数,且使反比例函数3ky x-=图象过第一、三象限时满足条件的所有整数k 的和为( )A .0B .1C .2D .332、如果关于x 的分式方程1131+-=-+x x x a 有负分数解,且关于x 的不等式组⎪⎩⎪⎨⎧+<+--≥-1243,4)(2x x x x a 的解集为x<-2,那么符合条件的所有整数a 的积是 ( )A.-3B.0C.3D.933、关于x 的分式方程121a a x -=-+有实数解,且使关于x 的不等式组62123x a x x a x a -⎧->⎪⎪⎨-+⎪+≤⎪⎩无解的自然数a 的和是( )A .3B .4C .5D .634、(2017年重庆中考B 卷)若数a 使关于x 的不等式组有且仅有四个整数解,且使关于y 的分式方程+=2有非负数解,则所以满足条件的整数a 的值之和是( )A .3B .1C .0D .﹣3 35、(2018年重庆中考A 卷)若数a 使关于x 的不等式组有且只有四个整数解,且使关于y 的方程=2的解为非负数,则符合条件的所有整数a 的和为( )A .﹣3B .﹣2C .1D .236、(2018年重庆中考B 卷)若数a 使关于x 的不等式组,有且仅有三个整数解,且使关于y 的分式方程+=1有整数解,则满足条件的所有a 的值之和是( )A .﹣10B .﹣12C .﹣16D .﹣1837、(2020年重庆八中12月考试题)从-6,-4,-3,-2,-l ,O 这六个数中,随机抽取一个数记作a ,使得关于x 的分式方程2122-=---x xx ax 有整数解,且关于r 的不等式组⎪⎩⎪⎨⎧--≤-+-1)41(2210151 y y ya y 恰有2个整数解,则符合条件的所有a 之积为( )A. 0B.24C.-72D. 1238、(2020年重庆南开中学九年级下册半期试题)若关于x 的不等式组⎪⎩⎪⎨⎧≥+73141-x 2a21x 2<无解,且关于y 的分式方程y-2y-63-2-y a =有正整数解,则满足条件的所有整数a 的个数为( ) A.2 B.3 C.4 D.5。

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用
3
③若分式方程的解为正数,则 a 的取值范围为 aa>>--4 且4且a a≠≠11;
yy--33≠≠00,,
【 分 层 分 析 】 若 分 式 方 程 的 解 为 正 数 , 则 yy>>00 , 即
3533aaa+5++5513112a22-+->3130≠2≠00,,
, >0
解得 aa>>--4 且4且a a≠≠1.1
A.1 B.2 C.3 D.4
3.(2022·普宁月考)若分式方程2xx--1a-4=-x2+x+1 a的解为整数,则整
数 a 的值为
(D )
A.±2
B.±1 或±2
C.1 或 2
D.±1
4.(2022·富川县模拟)关于 x 的分式方程2m-+xx+x-3 2=1 有解,则实数
m 应满足的条件是 A.m=-1
1.(2022·鼓楼区期末)关于 x 的分式方程x+m 3=1,下列说法中正确的

( B)
A.方程的解是 x=m-3
B.当 m>3 时,方程的解是正数
C.当 m<3 时,方程的解为负数
D.当 m=3 时,方程无解
2.(2022·荷塘区模拟)分式方程2x+x-a 1=2 的解为 x=2,则 a 的值为 ( A)
④若分式方程有负分数解,则 a 的值可以为 --5(5答(答案不案唯不一唯) ;
【分层分析】若分式方程有负分数解,则 3a+一12)=--1,1,-2-,-2,3,--34,,
4-,6 -…,解得 6…
a=3-133,-134,-153,-136或-6…-,∴a
的值可以为
-55.
⑤若分式方程有非负整数解,则 a 的值可以为 --44(答(答案不案唯不唯一) . 【解分得层a=分3-析4】,若-分73式,方-程23,1有383非,负133整或数…解,则,3a∴+5a一1的2=)值00或可,,1以…,1为2,,--42,,454.4或,…5,

重庆市中考数学一轮复习第二章方程组与不等式组第3节分式方程及其应用配套巩固训练题级答案24.doc

重庆市中考数学一轮复习第二章方程组与不等式组第3节分式方程及其应用配套巩固训练题级答案24.doc

学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】第3节 分式方程及其应用(建议答题时间:45分钟)基础过关1. (2017河南)解分式方程1x -1-2=31-x,去分母得( ) A. 1-2(x -1)=-3 B. 1-2(x -1)=3C. 1-2x -2=-3D. 1-2x +2=32. (2017哈尔滨)方程2x +3=1x -1的解为( ) A. x =3 B. x =4 C. x =5 D. x =-53. (2017黔东南州)分式方程3x (x +1)=1-3x +1的根为( ) A. -1或3 B. -1 C. 3 D. 1或-34. (2017成都)已知x =3是分式方程kx x -1-2k -1x=2的解,那么实数k 的值为( ) A. -1 B. 0 C. 1 D. 25. (2017龙东)已知关于x 的分式方程3x -a x -3=13的解是非负数,那么a 的取值范围是( ) A. a >1 B. a ≥1 C. a ≥1且a ≠9 D. a ≤16. (2017聊城)如果解关于x 的分式方程mx -2-2x 2-x =1时出现增根,那么m 的值为( ) A. -2 B. 2 C. 4 D. -47. (2017广西四市联考)一艘轮船在静水中的最大航速为35 km /h ,它以最大航速沿江顺流航行120 km 所用时间,与以最大航速逆流航行90 km 所用时间相等,设江水的流速为v km /h ,则可列方程为( )A. 120v +35=90v -35B. 12035-v =9035+vC. 120v -35=90v +35D. 12035+v =9035-v8. (2017重庆八中一模)从-4,-3,1,3,4这五个数中,随机抽取一个数,记为m ,若m使得关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =2mx -2y =-3有解,且使关于x 的分式方程1-m x -1-1=21-x 有正数解,那么这五个数中所有满足条件的m 的值之和是( )A. 1B. 2C. -1D. -29. (2017重庆大渡口区二模)在-3,-2,-1,0,1,2这六个数中,随机取出一个数记为a ,那么使得关于x 的一元二次方程x 2-2ax +5=0无解,且使得关于x 的方程x +a x -1-3=11-x有整数解,那么这6个数中所有满足条件的a 的值之和是( )A. -3B. 0C. 2D. 310. (2017南充)如果1m -1=1,那么m =________. 11. (2017常德)分式方程2x +1=4x的解为________. 12. (2017六盘水)方程2x 2-1-1x -1=1的解为x =________. 13. (2017黄石)分式方程x x -1=32(x -1)-2的解为________. 14. (2017泰安)分式7x -2与x 2-x的和为4,则x 的值为________. 15. (2017攀枝花)若关于x 的分式方程7x -1+3=mx x -1无解,则实数m =________. 16. (2017随州)解分式方程:3x 2-x +1=x x -1.17. (2017陕西)解方程x +3x -3-2x +3=1.18. 关注国家政策(2017淄博)某内陆城市为了落实国家“一带一路”倡议,促进经济发展,增强对外贸易的竞争力,把距离港口420 km 的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2 h .求汽车原来的平均速度.19. (2017广州)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5∶8,求乙队平均每天筑路多少公里.满分冲关1. (2017凉山州)若关于x 的方程x 2+2x -3=0与2x +3=1x -a 有一个解相同,则a 的值为( )A. 1B. 1或-3C. -1D. -1或32. (2017杭州)若m -3m -1·|m |=m -3m -1,则m =________. 3. 关注国家政策(2017遵义)为厉行节能减排,倡导绿色出行,今年3月以来,“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A 、B 两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A 、B 两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A 型车高10元,A 、B 两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a 辆“小黄车”,乙街区每1000人投放8a +240a辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a 的值.答案基础过关1. A2. C3. C 【解析】方程两边同时乘以x (x +1),得3=x (x +1)-3x ,整理得x 2-2x -3=0,∴(x -3)(x +1)=0,∴x 1=3,x 2=-1,当x =3时,x (x +1)=12≠0,当x =-1时,x (x +1)=0,∴原分式方程的根为x =3.4. D 【解析】把x =3代入分式方程,得3k 2-2k -13=2,解得k =2. 5. C 【解析】原方程去分母得3(3x -a )=x -3,去括号得9x -3a =x -3,移项合并同类项得8x =3a -3,解得x =3a -38,∵原方程的解是非负数且x ≠3,∴3a -38≥0,3a -38≠3,∴a ≥1且a ≠9.6. D 【解析】原方程去分母得m +2x =x -2,解得x =-m -2,因为原方程出现增根,所以x =2,把x =2代入得m =-4.7. D 【解析】分析题设可得:轮船顺流的速度为(35+v )km /h ,逆流的速度为(35-v )km /h ,顺流航行120 km 所用的时间为 12035+v h ,逆流航行90 km 所用的时间为9035-vh ,根据题意可列出分式方程12035+v =9035-v. 8. D 【解析】将方程组⎩⎪⎨⎪⎧2x +y =2mx -2y =-3 变形得:⎩⎪⎨⎪⎧y =-2x +2y =12mx +32,若方程组有解,则12m ≠-2,即m ≠-4,解分式方程1-m x -1-1=21-x ,得x =4-m ≠1,即m ≠3且4-m >0,解得m <4,∴m 的值为:-3,1,所以满足条件的m 的值的和为-2.9. C 【解析】方程x 2-2ax +5=0无解,∴Δ=4a 2-20<0,即a 2<5,∴a ≠-3,解分式方程x +a x -1-3=11-x ,得x =12a +2,且x ≠1,解得a ≠-2,∵分式方程有整数解,∴a ≠-1,1,∴a 的值为0、2,所以满足条件的a 的值的和为2.10. 2 【解析】方程左右两边同时乘以最简公分母m -1,得1=m -1,m =2.且当m =2时,m -1≠0,∴m =2.11. x =2 【解析】去分母得2+x =4,得x =2,经检验x =2是原分式方程的根,∴原分式方程的解为x =2.12. -2 【解析】去分母得:2-(x +1)=x 2-1 ,化简整理得:x 2+x -2=0,解得x 1=1,x 2=-2,经检验:x 1=1是增根,x 2=-2是原方程的解.13. x =76 【解析】去分母得2x =3-4(x -1),解得x =76,经检验x =76是原分式方程的解. 14. 3 【解析】根据题意得7x -2+x 2-x=4,去分母得7-x =4(x -2),解得x =3,经检验x =3是原分式方程的解.15. 7或3 【解析】将分式方程化为整式方程得7+3(x -1)=mx ,整理得(m -3)x =4,∵分式方程无解分为整式方程无解和整式方程的解为分式方程的增根,∴当整式方程无解时,m -3=0,即m =3;当整式方程的解为增根时,x =1,∴m -3=4,即m =7,∴实数m 的值为7或3.16. 解:方程两边同乘x (x -1)得:3+x (x -1)=x 2,解得x =3,经检验,x =3是原分式方程的解,∴此分式方程的解是x =3.17. 解:方程两边同乘(x +3)(x -3)得:(x +3)2-2(x -3)=(x +3)(x -3), x 2+9+6x -2x +6=x 2-9,解得x =-6,经检验x =-6是原分式方程的解,∴x =-6是原分式方程的解.18. 解:设原来的平均速度为x km /h ,提高速度后的是(1+50%)x km /h ,由题意得420x-420(1+50%)x=2, 解得x =70,经检验x =70是原方式方程的根,答:汽车原来的平均速度为70 km /h .19. 解:(1)∵先由甲队筑路60公里,再由乙队完成剩下的筑路工程,乙队筑路的总公里数是甲队筑路总公里数的43倍, ∴乙队筑路的总公里数为60×43=80(公里). 答:乙队筑路的总公里数为80公里.(2) 设乙队平均每天筑路8x 公里.∵甲、乙两队平均每天筑路公里数之比为5∶8,∴甲队平均每天筑路5x 公里,又由(1)知甲队筑路60公里,乙队筑路80公里,∴甲队筑路605x 天,乙队筑路808x天, 又∵甲队比乙队多筑路20天,∴可列分式方程605x -808x=20, 解得:x =0.1,经检验, x =0.1是原分式方程的根,∴8x =0.8,答:乙队平均每天筑路0.8公里.满分冲关1. C 【解析】解方程x 2+2x -3=0,解得x 1=1,x 2=-3,∵x =-3是方程2x +3=1x -a的增根,∴当x =1时,代入方程2x +3=1x -a ,得21+3=11-a,解得a =-1. 2. -1或3 【解析】m -3m -1·|m |=m -3m -1,去分母得(m -3)·|m |=m -3,即(m -3)(|m |-1)=0,所以m =3或m =±1,经检验m =1是方程的增根,所以m =3或m =-1.3. 解:(1)设A 型自行车单价为x 元,B 型自行车单价为y 元,则⎩⎪⎨⎪⎧y -x =1050x +50y =7500,解得⎩⎪⎨⎪⎧x =70y =80 答:A 型自行车单价为70元,B 型自行车单价为80元.(2)由题意得:1000a ×1500+1000a 8a +240×1200=150000. 解得a =15,经检验a =15是原方程的解,∴a =15.答:a 的值为15.中考数学知识点代数式一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

重庆市初中数学方程与不等式之一元二次方程专项训练答案

重庆市初中数学方程与不等式之一元二次方程专项训练答案

重庆市初中数学方程与不等式之一元二次方程专项训练答案一、选择题1.以3和4为根的一元二次方程是( )A .27120x x -+=B .27120x x ++=C .27120x x +-=D .27120x x --=【答案】A【解析】【分析】分别求出各个选项中一元二次方程的两根之和与两根之积,进行判断即可.【详解】A 、在x 2﹣7x+12=0中,x 1+x 2=7,x 1x 2=12,此选项正确;B 、在x 2+7x+12=0中,x 1+x 2=﹣7,x 1x 2=12,此选项不正确;C 、在x 2+7x ﹣12=0中,x 1+x 2=7,x 1x 2=﹣12,此选项不正确;D 、在x 2﹣7x ﹣12=0中,x 1+x 2=﹣7,x 1x 2=﹣12,此选项不正确;故选:A .【点睛】本题主要考查了根与系数的关系的知识,解答本题的关键是要掌握一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=b a ,x 1•x 2=c a .2.对于一元二次方程ax 2+bx +c =0(a ≠0),下列说法:①若b =ax 2+bx +c =0一定有两个相等的实数根;②若方程ax 2+bx +c =0有两个不等的实数根,则方程x 2﹣bx +ac =0也一定有两个不等的实数根;③若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立;④若x 0是一元二次方程ax 2+bx +c =0的根,则b 2﹣4ac =(2ax 0+b )2,其中正确的( )A .只有①②③B .只有①②④C .①②③④D .只有③④【答案】B【解析】【分析】判断上述方程的根的情况,只要看根的判别式△=-24b ac 的值的符号就可以了.④难度较大,用到了求根公式表示0x .【详解】解:①若b =,方程两边平方得b 2=4ac ,即b 2﹣4ac =0,所以方程ax 2+bx +c =0一定有两个相等的实数根;②若方程ax 2+bx +c =0有两个不等的实数根,则b 2﹣4ac >0方程x 2﹣bx +ac =0中根的判别式也是b 2﹣4ac >0,所以也一定有两个不等的实数根; ③若c 是方程ax 2+bx +c =0的一个根,则一定有ac 2+bc +c =0成立,当c ≠0时ac +b +1=0成立;当c =0时ac +b +1=0不成立;④若x 0是一元二次方程ax 2+bx +c =0的根,可得0x , 把x 0的值代入(2ax 0+b )2,可得b 2﹣4ac =(2ax 0+b )2,综上所述其中正确的①②④.故选:B .【点睛】此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示0x ,整体代入求2204(2)b ac ax b -=+.总结:一元二次方程根的情况与判别式△的关系:(1)△0>⇔方程有两个不相等的实数根;(2)△0=⇔方程有两个相等的实数根;(3)△0<⇔方程没有实数根.3.设O e 的半径为3,圆心O 到直线l 的距离OP m =,且m 使得关于x 的方程2610x m -+-=没有实数根,则直线l 与O e 的位置关系为( )A .相离B .相切C .相交D .无法确定【答案】A【解析】【分析】欲求圆与AB 的位置关系,关键是求出点C 到AB 的距离d ,再与半径r=2进行比较,即可求解.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.【详解】∵关于x 的方程6x 2x+m-1=0没有实数根,∴△=b 2-4ac <0,即48-4×6×(m-1)<0,解这个不等式得m >3,又因为⊙O 的半径为3,所以直线与圆相离.故选:A .【点睛】此题考查直线与圆的位置关系,一元二次方程根的判别式.解题关键在于通过比较圆心到直线距离d 与圆半径大小关系完成判断.4.方程250x x -=的解是( )A .5x =-B .5x =C .10x =,25x =-D .10x =,25x =【答案】D【解析】【分析】提取公因式x 进行计算.【详解】提取公因式x 得:x·(x −5)=0,所以10x =,25x =. 故本题答案选D .【点睛】本题考查了一元二次方程的计算,掌握提取公因式这一知识点是解题的关键.5.若关于x 的一元二次方程240x x k -+=有两个不相等的实数根,那么k 的取值范围是( )A .k ≠0B .k >4C .k <4D .k <4且k ≠0【答案】C【解析】【分析】根据判别式的意义得到△=(-4)2-4k >0,然后解不等式即可.【详解】∵关于x 的一元二次方程2x 4x k 0-+=有两个不相等的实数根,∴2=(-4)40k ∆->解得:k <4.故答案为:C .【点睛】本题考查的知识点是一元二次方程根的情况与判别式△的关系,解题关键是熟记一元二次方程根的情况与判别式△的关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.6.方程22310x x +-=的两根之和为( )A .32-B .23-C .3-D .12【答案】A【解析】【分析】据一元二次方程的根与系数的关系即可判断.根据一元二次方程的根与系数的关系可得:两个根的和是:32-. 故选:A .【点睛】此题考查根与系数的关系,解题关键在于掌握若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-12b c x x a a =,. .7.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠ 【答案】A【解析】【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a 的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14; 当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a 的取值范围为a≥1.故选A .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.8.李师傅去年开了一家商店,将每个月的盈亏情况都作了记录.今年1月份开始盈利,2月份盈利2000元,4月份盈利恰好2880元,若每月盈利的平均增长率都相同,这个平均增长率是( )A .20%B .22%C .25%D .44%【答案】A【解析】【分析】设这个平均增长率为x ,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.设这个平均增长率为x ,根据题意得:2000(1+x )2=2880,解得:x 1=20%,x 2=-2.2(舍去).答:这个平均增长率为20%.故选A .【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x )2=后来的量,其中增长用+,减少用-,难度一般.9.若代数式226(3)1x x m x ++=+-,则m =( )A .-8B .9C .8D .-9【答案】C【解析】【分析】已知等式右边利用完全平方公式化简,利用多项式相等的条件求出m 的值即可.【详解】 226(3)1x x m x ++=+-=x 2+6x+8,可得m=8,故选:C.【点睛】此题考查配方法的应用,解题关键在于掌握计算公式.10.下列方程中,有实数根的方程是( )A .x 4+16=0B .x 2+2x +3=0C .2402x x -=-D 0=【答案】C【解析】【分析】利用在实数范围内,一个数的偶数次幂不能为负数对A 进行判断;利用判别式的意义对B 进行判断;利用分子为0且分母不为0对C 进行判断;利用非负数的性质对D 进行判断.【详解】解:A 、因为x 4=﹣16<0,所以原方程没有实数解,所以A 选项错误;B 、因为△=22﹣4×3=﹣8<0,所以原方程没有实数解,所以B 选项错误;C 、x 2﹣4=0且x ﹣2≠0,解得x =﹣2,所以C 选项正确;D 、由于x =0且x ﹣1=0,所以原方程无解,所以D 选项错误.故选:C .【点睛】此题考查判别式的意义,分式有意义的条件,二次根式,解题关键在于掌握运算法则11.某商品原售价225元,经过连续两次降价后售价为196元,设平均每次降价的百分率为x ,则下面所列方程中正确的是( )A .22251196x (﹣)=B .21961225x (﹣)=C .22251196x (﹣)= D .21961225x (﹣)=【答案】A【解析】【分析】 可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=225,把相应数值代入即可求解.【详解】第一次降价后的价格为225×(1﹣x ),第二次降价后的价格为225×(1﹣x )×(1﹣x ),则225(1﹣x )2=196.故选A .【点睛】本题考查了一元二次方程的应用-增长率问题.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .12.设α,β是方程2x 9x 10++=的两根,则()()22α2009α1β2009β1++++的值是( )A .0B .1C .2000D .4000000 【答案】D【解析】【分析】由已知方程的系数可得两根的关系(根据韦达定理或者叫根与系数的关系),再将所求代数式变形可求得代数式结果.【详解】解:∵α,β是方程2x 9x 10++=的两个实数根 ∴2211,910,9101αβααββ==++=++=g ∴()()()()2222α2009α1β2009β1α9α12000β9β120002000200040000004000000αβαβαβ++++=++++++===g 故选D.【点睛】(1)将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.(2)二次函数为2ax x 0(0)b c a ++=不等于的两个不同实数根:α,β满足=,b c a aαβαβ+-=g . 13.聪聪、明明、伶伶、俐俐四人共同探究代数式2235x x -+的值的情况他们做了如下分工,聪聪负责找值为0时x 的值,明明负责找值为4时x 的值,伶伶负责找最小值,俐俐负责找最大值,几分钟,各自通报探究的结论,其中正确的是( )(1)聪聪认为找不到实数x ,使2235x x -+的值为0;(2)明明认为只有当1x =时,2235x x -+的值为4;(3)伶伶发现2235x x -+有最小值;(4)俐俐发现2235x x -+有最大值 A .(1)(2)B .(1)(3)C .(1)(4)D .(1)(2)(4) 【答案】B【解析】【分析】解一元二次方程,根据判别式即可判断(1)(2),将式子2x 2﹣3x +5配方为2(x ﹣34)2+318,根据平方的非负性即可判断(3)(4). 【详解】 解:(1)2x 2﹣3x +5=0,△=32﹣4×2×5<0,方程无实数根,故聪聪找不到实数x ,使2x 2﹣3x +5的值为0正确,符合题意,(2)2x 2﹣3x +5=4,解得x 1=1,x 2=12,方程有两个不相等的实数根,故明明认为只有当x =1时,2x 2﹣3x +5的值为4错误,不符合题意, (3)∵2x 2﹣3x +5=2(x ﹣34)2+318, 又∵(x ﹣34)2≥0, ∴2(x ﹣34)2+318≥318, ∴2x 2﹣3x +5有最小值,故伶伶发现2x 2﹣3x +5有最小值正确,符合题意,(4)由(3)可知2x 2﹣3x +5没有最大值,故俐俐发现2x 2﹣3x +5有最大值错误,不符合题意,故选:B .【点睛】本题考查解一元二次方程和配方法的应用,掌握一元二次方程求根公式和配方法是解决本题的关键.14.设x 1,x 2是方程220160x x --=的两实数根,则31220172016x x +-的值是( )A .2015B .2016C .2017D .2018【答案】C【解析】【分析】 采用“降次”思想,将31x 转化为120172016+x ,再利用根与系数的关系可得答案.【详解】∵x 1,x 2是方程220160x x --=的两实数根∴x 1+x 2=1,21120160--=x x ∴211=2016+x x32111111=2016=20162016=20172016++++x x x x x x∴31220172016x x +-=122017201620172016++-x x=()122017+x x=2017故选C .【点睛】 本题考查一元二次方程根与系数的关系,熟记公式12=b x x a+-,以及采用降次思想进行转化是解题的关键.15.已知x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,下列结论一定正确的是( ) A .x 1≠x 2B .x 1+x 2>0C .x 1•x 2>0D .x 1<0,x 2<0【答案】A【解析】分析:A 、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x 1≠x 2,结论A 正确;B 、根据根与系数的关系可得出x 1+x 2=a ,结合a 的值不确定,可得出B 结论不一定正确;C 、根据根与系数的关系可得出x 1•x 2=﹣2,结论C 错误;D 、由x 1•x 2=﹣2,可得出x 1<0,x 2>0,结论D 错误.综上即可得出结论.详解:A ∵△=(﹣a )2﹣4×1×(﹣2)=a 2+8>0,∴x 1≠x 2,结论A 正确;B 、∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,∴x 1+x 2=a ,∵a 的值不确定,∴B 结论不一定正确;C 、∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,∴x 1•x 2=﹣2,结论C 错误;D 、∵x 1•x 2=﹣2,∴x 1<0,x 2>0,结论D 错误.故选A .点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.16.如图,幼儿园计划用30m 的围栏靠墙围成一个面积为100m 2的矩形小花园(墙长为15m ),则与墙垂直的边x 为( )A .10m 或5mB .5m 或8mC .10mD .5m 【答案】C【解析】【分析】设与墙垂直的边长x 米,则与墙平行的边长为(30﹣2x )米,根据矩形的面积公式结合矩形小花园的面积为100m 2,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】设与墙垂直的边长x 米,则与墙平行的边长为(30﹣2x )米,根据题意得:(30﹣2x )x =100,整理得:x 2﹣15x +50=0,解得:x 1=5,x 2=10.当x =5时,30﹣2x =20>15,∴x =5舍去.故选:C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 【答案】D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】 2890x x ++=,289x x +=-,222++=-+,x x8494x+=,所以()247故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.18.深圳沙井某服装厂2017年销售额为8亿元,受中美贸易战影响,估计2019年销售额降为5.12亿元,设平均每年下降的百分比为x,可列方程为()A.8(1﹣x)=5.12 B.8(1+x)2=5.12C.8(1﹣x)2=5.12 D.5.12(1+x)2=8【答案】C【解析】【分析】一般用降低后的量=降低前的量×(1-降低率),降低前的价格设为1,则第一次降价后的价格是(1-x),第二次降价后的价格是(1-x)2,可得出方程.【详解】设平均每次降价的百分比为x,则根据题意可得出方程为:8(1﹣x)2=5.12;故选C.【点睛】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“-”).19.方程x2﹣9x+14=0的两个根分别是等腰三角形的底和腰,则这个三角形的周长为()A.11 B.16 C.11或16 D.不能确定【答案】B【解析】【分析】先利用因式分解法解方程求出x的值,再分情况讨论求解可得.【详解】∵x2﹣9x+14=0,∴(x﹣2)(x﹣7)=0,则x﹣2=0或x﹣7=0,解得x=2或x=7,当等腰三角形的腰长为2,底边长为7,此时2+2<7,不能构成三角形,舍去;当等腰三角形的腰长为7,底边长为2,此时周长为7+7+2=16,故选:B.【点睛】此题考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.在解方程(x+2)(x﹣2)=5时,甲同学说:由于5=1×5,可令x+2=1,x﹣2=5,得方程的根x1=﹣1,x2=7;乙同学说:应把方程右边化为0,得x2﹣9=0,再分解因式,即(x+3)(x﹣3)=0,得方程的根x1=﹣3,x2=3.对于甲、乙两名同学的说法,下列判断正确的是..()A.甲错误,乙正确 B.甲正确,乙错误C.甲、乙都正确 D.甲、乙都错误【答案】A【解析】(x+2)(x﹣2)=5,x2-4=5,x2-9=0,(x+3)(x-3)=0,x+3=0或x-3=0,x1=-3,x2=3,所以甲错误,乙正确,故选A.。

重庆市中考数学一轮复习 第二章 方程(组)与不等式(组)第4节 不等式(组)的解法及不等式的应用练习

重庆市中考数学一轮复习 第二章 方程(组)与不等式(组)第4节 不等式(组)的解法及不等式的应用练习

第4节 不等式(组)的解法及不等式的应用(必考,1~2道,近3年每年考查1道,4~14分)玩转某某10年中考真题(2008~2017年)命题点1 一元一次不等式的解法及解集表示(10年4考,与分式化简求值结合考查1次) 1. (2008某某3题4分)不等式2x -4≥0的解集在数轴上表示正确的是( )2. (2013某某A 卷14题4分)不等式2x -3≥x 的解集是________.3. (2011某某18题6分)解不等式2x -3<x +13,并把解集在数轴上表示出来.第3题图命题点2 一元一次不等式组的解法(10年11考,与概率结合考查4次)4. (2010某某3题4分)不等式组⎩⎪⎨⎪⎧x -1≤32x >6的解集为( )A . x >3B . x ≤4C . 3<x <4D . 3<x ≤45. (2009某某18题6分)解不等式组:⎩⎪⎨⎪⎧x +3>0 ①3(x -1)≤2x-1 ②.命题点3 一元一次不等式组的解的应用(10年8考,与解分式方程结合和与概率结合考查各4次)6. (2017某某A 卷12题4分)若数a 使关于x 的分式方程2x -1+a1-x =4的解为正数,且使关于y 的不等式组⎩⎪⎨⎪⎧y +23-y 2>12(y -a )≤0的解集为y <-2,则符合条件的所有整数a 的和为( )A . 10B . 12C . 14D . 167. (2017某某B 卷12题4分)若数a 使关于x 的不等式组⎩⎪⎨⎪⎧x -22≤-12x +2,7x +4>-a 有且仅有四个整数解,且使关于y 的分式方程a y -2+22-y =2有非负数解,则所有满足条件的整数a 的值之和是( )A . 3B . 1C . 0D . -38. (2016某某A 卷12题4分)从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a .若数a 使关于x 的不等式组⎩⎪⎨⎪⎧13(2x +7)≥3x -a <0无解,且使关于x 的分式方程 x x -3-a -23-x=-1有整数解,那么这5个数中所有满足条件的a 的值之和是( )A . -3B . -2C . -23D . 129. (2016某某B 卷12题4分)如果关于x 的分式方程a x +1-3=1-xx +1有负分数解,且关于x 的不等式组⎩⎪⎨⎪⎧2(a -x )≥-x -43x +42<x +1的解集为x <-2,那么符合条件的所有整数a 的积是( )A . -3B . 0C . 3D . 9拓展训练1. 从-2,-1,0,2,5这五个数中,随机抽取一个数,记为m ,若数m 使关于x 的不等式组⎩⎪⎨⎪⎧x>m +2-2x -1≥4m+1无解,且使关于x 的分式方程x x -2+m -22-x=-1有非负整数解,那么这五个数中所有满足条件的m 的个数是( )A . 1B . 2C . 3D . 4命题点4 一次不等式的实际应用(10年7考,近2年均与一元二次方程应用结合) 类型一 不含百分率的实际应用10. (2017某某A卷23题节选4分)某地大力发展经济作物,其中果树种植已初具规模.今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?11. (2016某某A卷23题节选5分)近期猪肉价格不断走高,引起了民众与政府的高度关注,当市场猪肉的平均价格达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.从今年年初至5月20日,猪肉价格不断走高,5月20日,那么今年年初猪肉的最低价格为每千克多少元?12. (2014某某A卷23题节选5分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.筹委会计划购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?13. (2013某某A卷23题节选4分)随着铁路客运量的不断增长,某某火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站从去年开始启动了扩建工程.若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)类型二含百分率的实际应用14. (2014某某B卷23题10分)某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季,为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%.预计这种青椒在市区、园区的销售量将在今年5月份的基础上分别增长30%、20%.要使得6月份该青椒的总销售额不低于18360元,则a的最大值是多少?拓展训练2. 某文具店今年1月份购进一批笔记本,共2290本,每本进价为10元,该文具店决定从2月份开始进行销售,若每本售价为11元,,销量就减少15本.(1)若该种笔记本在2月份的销售量不低于2200本,则2月份售价应不高于多少元? (2)由于生产商提高造纸工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销量,进行了销售调价整理,售价比2月份在(1)的条件下的最高售价减少了17m %,结果3月份的销量比2月份在(1)的条件下的最低销量增加了m %,3月份的销售利润达到6600元,求m 的值.答案1. C2. x ≥33. 解:去分母得,3(2x -3)<x +1,(1分) 去括号得,6x -9<x +1,(2分) 移项,合并同类项得:5x <10,(3分) 系数化为1得:x <2.∴原不等式的解集是x <2.(4分) 在数轴上表示如解图:第3题解图(6分)4. D5. 解:将①移项得:x >-3,(1分)将②去括号得:3x -3≤2x -1,(2分) 移项、合并同类项得:x ≤2,(4分) ∴不等式组的解集为-3<x ≤2.(6分)6.A 【解析】解方程2x -1+a 1-x =4得,x =6-a 4且x ≠1,又∵分式方程的解为正数,∴6-a4>0,解得a <6,∵x ≠1,即a ≠2,∴a <6且a ≠2;解不等式组⎩⎪⎨⎪⎧y +23-y 2>1①2(y -a )≤0 ② ,解不等式①得,y <-2,解不等式②得,y ≤a ,∵不等式组的解集为y <-2,∴a ≥-2,∴-2≤a <6,且a ≠2,∴整数a 有-2,-1,0,1,3,4,5,∴-2-1+0+1+3+4+5=10.7.B 【解析】解不等式组得,⎩⎪⎨⎪⎧x ≤3x>-a +47,∵原不等式组有且仅有四个整数解,∴-1≤-a +47<0,∴-4<a ≤3;解分式方程得y =a +22,∵原分式方程有非负数解,∴y =a +22≥0,且y =a +22≠2,解得a ≥-2且a ≠2;综上所述,-2≤a ≤3,且a ≠2,∴所有的整数a 为:-2,-1,0,1,3,其和为:-2-1+0+1+3=1.8. B 【解析】解不等式组得,⎩⎪⎨⎪⎧x ≥1x<a,∵原不等式组无解,∴a ≤1,则a 不能取这五个数中的3;解分式方程得x =5-a 2,又∵分式方程有整数解,则5-a 2为整数,且5-a2≠3,∴a只能从-3,-1,12,1中取-3,1,∴满足条件的a 的值的和为-3+1=-2.9. D 【解析】解分式方程得,x =12a -2,∵方程有负分数解,a 为整数,∴12a -2<0,且12a -2为分数,a 为整数,∴a <4,且a 为奇数;解不等式组得,⎩⎪⎨⎪⎧x ≤2a +4x<-2,∵原不等式组的解集为x <-2,∴2a +4≥-2,∴a ≥-3,综上可知a =-3或-1或1或3,则其积为(-3)×(-1)×1×3=9.拓展训练1 B 【解析】不等式组整理得:⎩⎪⎨⎪⎧x>m +2x≤-2m -1,由不等式组无解,得到m +2≥-2m -1,解得m ≥-1,即m =-1,0,2,5,分式方程去分母得:x -m +2=-x +2,即x =12m ,∵x 有非负整数解,∴12m ≥0且m 为偶数,∴m =0,2,则所有满足条件的m 的个数是2.10. 解:设该果农今年收获樱桃x 千克,根据题意得 400-x ≤7x ,(3分) 解不等式得x ≥50,答:该果农今年收获樱桃至少50 kg .(4分)11. 解:设今年年初猪肉的价格为每千克x 元,由题意得, (1+60%)x ·2.5≥100,(2分) 解得x ≥25,(4分)答:今年年初猪肉的最低价格为每千克25元.(5分)12. 解:设用于购买书桌、书架等设施的资金为x 元,则用于购买书刊的资金为(30000-x )元,由题意得:30000-x ≥3x ,(3分) 解得x ≤7500.答:最多花7500元购买书桌、书架等设施.(5分)13. 解:设在完成这项工程中,甲队施工m 个月,则乙队施工m2个月,根据题意得:100m +(100+50)·m2≤1500,(2分)解得m ≤847,∵m 为整数,∴m 的最大整数值为8.(3分)答:在完成这项工程中,甲队最多施工8个月才能使工程款不超过1500万元.(4分) 14. 解:(1)设今年5月份该青椒在市区销售了x 千克,在园区销售了y 千克.根据题意得:⎩⎪⎨⎪⎧x +y =30006x +4y =16000,解得:⎩⎪⎨⎪⎧x =2000y =1000.答:今年5月份该青椒在市区销售了2000千克,在园区销售了1000千克.(5分) (2)根据题意,列不等式得:6(1-a %)×2000×(1+30%)+4(1-a %)×1000×(1+20%)≥18360, 15600(1- a %)+4800(1- a %)≥18360, 20400(1- a %)≥18360, 解得a ≤10,∴a 的最大值是10.(10分)拓展训练2 解:(1)设2月份售价应为x 元,依题意得: 2290-15(x -11)0.5≥2200,解得x ≤14.答:2月份售价应不高于14元;(2)[14(1-17m %)-10(1+10%)]×2200(1+m %)=6600,令m %=t ,化简得2t 2-t =0, 解得t 1=0(舍去),t 2, ∴m =50. 答:m 的值是50.。

中考数学选填题压轴题突破 重难点突破二 含参数的方程(组)与不等式(组)

中考数学选填题压轴题突破 重难点突破二 含参数的方程(组)与不等式(组)

有解且至
mx-2 3 多有3个整数解,且使关于x的分式方程 x-1 +1-x=2有整数解,则满
足条件的所有整数m的个数是
(C )
A.5个 B.4个
C.3个 D.2个
A.5
B.8
C.12
D.15
一、解不等式(组)含参问题: 1.根据未知数的解集或解的情况求参数范围:先对不等式(组)进行求 解,用含参数的式子表示出未知数,然后借助题中给定的解集、或解的 情况,列出不等式或将解集用含参数的式子表示出来进行计算,即可得 到参数范围或参数值; 注:检验端点是否满足条件.
重难点突破二 含参数的 方程(组)与不等式(组) (省卷2020~2019T14)
3x-2≥2(x+2), (2021·重庆A卷)若关于x的一元一次不等式组 a-2x<-5
的解集为x≥6,且关于y的分式方程
y+2a y-1

3y-8 1-y
=2的解是正整数,则
所有满足条件的整数a的值之和是
(B )
所有满足条件的整数 a 的值之和是
( D)
A.-26 B.-24
C.-15 D.-13
2 3.★(2022·玉溪一中模拟)若关于x的一元一次不等式组3x>x-1,恰
4x+1≥a
有3个整数解,且一次函数y=(a-2)x+a+1不经过第三象限,则所有
满足条件的整数a的值之和是 A.-2
( C)B.-1源自二、分式方程解的情况及其满足的条件(设分式方程的解为x=b): 1.解为正数,即为b>0;解为负数,即b<0; 2.解为正整数,即b>0,且b为整数;解为负整数,即b<0,且b为整 数; 3.解为非负数,即b≥0. 注:对于含参数a的值,要检验此时分式方程的解是否是分式方程的增 根.

2021年重庆年中考24题不等式一元二次方程应用题专题训练(3)

2021年重庆年中考24题不等式一元二次方程应用题专题训练(3)

2021重庆年中考24题不等式一元二次方程应用题专题训练(3) 1(巴蜀2021级初三上定时训练二)温润有度,为爱加温,近年来涉及精巧、物美价廉的暖风机逐渐成为人们冬天宝贝的取暖神器,2019年11月下旬某商场计划购进A 、B 两种型号的暖风机共900台,每台A 型号暖风机售价为600元,每台B 型暖风机售价为900元.(1)若使A 、B 两种型号暖风机的销售额不低于69万元,则至少购进多少台A 型号的暖风机?(2)由于质量超群、品质卓越,11月下旬购进的A 、B 两种型号的暖风机全部售完,该商场在12月上旬又购进A 、B 两种型号的暖风机若干台,并且进行“双12”促销活动,每台A 型号暖风机的售价比其11月下旬的而售价优惠1%2a ,A 型号暖风机12月上旬的销售量比其在(1)问条件下的 最高购进量增加1%4a ,每台B 型号暖风机的售价比其11月下旬的售价优惠1%5a ,B 型号暖风机12月上旬的销量比在(1)问中最低购进量增加%a ,A 、B 两种型号的暖风机在12月上旬的销售额比(1)问中最低销售额增加了19%46a ,求a 的值。

2(重庆一外2021级九上第四次周考)我市广柑品种丰富,有锦橙,先锋橙,冰糖柑,津华橙,春橙,五月红等等,11月份时,某果园柑橘开始售卖,如果由果农采摘后直接销售,售价为4元/斤,如果由顾客自行入园采摘,售价6元/斤,11月份累计售出2100斤.(1)若果园11月份销售额不低于10000元,则入园采摘至少售出多少斤?(2)12月份,柑橘大量成熟,为了增加销量,该果园将直接出售的售价降低3%8a ,入园采摘的售价降低%a ,结果该月直接出售的销量1600斤,入园采摘的销量比(1)中入园采摘的最低销量增加了2%a ,最终12月份的总销售额比(1)中最低销售额多1200元,求a 的值。

3(重庆一中2021级九上第三次周考)某大型文具超市销售的A 型画笔和B 型画笔都很瘦消费者喜欢,其中A 型画笔售价24元/支,B 型画笔售价16元/支,第一周A 型画笔的销量比B 型画笔多200支,且两种画笔的总销售额为12800元.(1)第一周A 型画笔、B 兴华比的销量为多少支?(2)该文具超市第二周继续销售这两种画笔,第二周A 型画笔售价降低1%3a ,销量比第一周增加了4%3a ,B 型画笔售价不变,销量比第一周增加了1%5a ,结果这两种画笔第二周的总销售额比第一周的总销售额增加了3%5a ,求a 的值.4(重庆育才2021级九上第一次月考复习)螺蛳粉是柳州知名小吃,某分店经理发现:当每碗米粉的售价为6元是,每天能卖出450碗;当每碗米粉的售价没增加0.5元是,每天就会少买15碗。

含参分式方程与不等式组有答案

含参分式方程与不等式组有答案

含参数的分式方程与不等式(组)例(2019·重庆市毕业生学业水平考试)若关于x 的不等式组⎩⎨⎧13(2x +1)≤-1,x -m >0无解,且关于x 的分式方程x x -2=2-m 2-x的解为正数,那么符合条件的所有整数m 的和为( )A .5B .4C .3D .1 答案 D解析 解分式方程x x -2=2-m2-x,得x =4-m ,且x ≠2,∵解为正数,x -2≠0,∴4-m >0且4-m ≠2,∴m <4且m ≠2,解不等式组⎩⎨⎧ 13(2x +1)≤-1,x -m >0,①②解①得x ≤-2,解②得x >m , ∵不等式组无解,∴m ≥-2.综上m 的取值范围为-2≤m <4且m ≠2. ∵m 为整数,∴m =-2,-1,0,1,3, ∴符合条件的所有整数m 的和为1. 故答案选D.此类题考查分式方程的解以及解一元一次不等式组,通过题目中对分式方程的解及一元一次不等式组的解集的限制条件,正确找出m 的取值范围是解题的关键.其中,隐含限制条件“分式的分母不能为0”不可忽视.1.(2019·大渡口区二诊)如果关于x 的不等式组⎩⎨⎧x -m ≤3,4x -76>x -32的解集为x <1,且关于x 的分式方程21-x +mxx -1=3有非负数解,则所有符合条件的整数m 的值之和是( )A .-2B .-1C .0D .2 答案 A解析解不等式组⎩⎨⎧ x -m ≤3,4x -76>x -32,①②解①得x ≤m +3,解②得x <1,∵不等式的解集为x <1,∴m +3≥1,∴m ≥-2. 解分式方程21-x +mx x -1=3,得x =13-m .∵方程有非负数解,且分母不为0, ∴3-m >0,且13-m≠1,∴m <3且m ≠2, 综上-2≤m <3且m ≠2,∴所有符合条件的整数m 为-2,-1,0,1,其和为-2. 故答案为A.2.(2019·重庆市巴蜀中学九年级二模)使得关于x 的不等式组⎩⎨⎧x >m -2,-2x +1≥4m -1有解,且使分式方程1x -2-m -x 2-x=2有非负整数解的所有m 的和是( )A .-1B .2C .-7D .0 答案 C解析 解不等式组⎩⎨⎧ x >m -2,-2x +1≥4m -1,①②由①得x >m -2,由②得x ≤-2m +1, ∵不等式组有解,∴m -2<1-2m ,得m <1. 解分式方程1x -2-m -x 2-x =2,得x =m +53, ∵分式方程有非负整数解且x ≠2, ∴m +53≥0且m +53≠2,解得m ≥-5且m ≠1,综上-5≤m <1.又m +53为非负整数,∴m =-5,-2,∴所有m 的和为-7.故答案为C.3.若关于x 的分式方程2a x -1-3=3-x 1-x的解为整数,且关于x 的不等式组⎩⎨⎧x +43-1>x -32,2(x -a )>x +6的解为正数,则符合条件的整数a 有( )A .2个B .3个C .4个D .5个 答案 A解析解不等式组⎩⎨⎧ x +43-1>x -32,2(x -a )>x +6,①②解①得x <11,解②得x >2a +6, ∴不等式组的解集为2a +6<x <11, 又不等式组的解为正数,∴⎩⎨⎧2a +6≥0,2a +6<11,解得-3≤a <2.5,解分式方程2a x -1-3=3-x 1-x ,解得x =a +32,∵分母不为零,∴a +32≠1,∴a ≠-1.又a +32为整数且-3≤a <2.5,∴a =-3,1,∴符合条件的整数a 有2个. 故答案为A.4.(2019·重庆市东岸区中考一模)使得关于x 的不等式组⎩⎨⎧6x -a ≥-10,-1+12x <-18x +32有且只有4个整数解,且关于x 的分式方程ax -14-x +27x -4=-8的解为正数的所有整数a 的值之和为( )A .11B .15C .18D .19 答案 A解析由不等式组⎩⎨⎧ 6x -a ≥-10,-1+12x <-18x +32,①②解①得x ≥a -106,解②得x <4.所以不等式组的解集为a -106≤x <4.∵x 有且只有4个整数解, ∴其整数解为0,1,2,3,则-1<a -106≤0,即4<a ≤10,解分式方程ax -14-x +27x -4=-8,得x =48-a, ∵解为正数,∴8-a >0,a <8, 又x ≠4即48-a≠4,a ≠7,∴a 取值范围为4<a <8且a ≠7,∴a =5,6, ∴所有整数a 的值之和为5+6=11. 故答案为A.5.(2019·重庆三校九年级一诊)若整数a 使关于x 的不等式组⎩⎪⎨⎪⎧a +x 2≥x -2,x3-(x -2)>23的解为x <2,且使关于x 的分式方程x -14-x +a +5x -4=-4的解为正整数,则满足条件a 的值之和为( )A .12B .11C .10D .9 答案 A解析解不等式组⎩⎪⎨⎪⎧a +x 2≥x -2,①x 3-(x -2)>23, ②解①得x ≤a +4,解②得x <2,∵不等式组的解为x <2,∴2≤a +4,∴a ≥-2, 解分式方程x -14-x +a +5x -4=-4,得x =10-a 3. ∵分母不能为0,∴10-a3≠4,∴a ≠-2,综上a >-2. 又x =10-a3为正整数,∴a =1,4,7, ∴满足条件a 的值之和为1+4+7=12. 故答案为A.6.(2019·重庆市南岸区九年级中考一诊)若数k 使关于x 的不等式组⎩⎨⎧3x +k ≤0,x 3-x -12≤1只有四个整数解,且使关于y 的分式方程k y -1+1=y +ky +1的解为正数,则符合条件的所有整数k 的积为( )A .2B .0C .-3D .-6 答案 A解析解不等式组⎩⎨⎧3x +k ≤0, ①x 3-x -12≤1, ②解①得x ≤-k3,解②得x ≥-3,∴不等式组的解集为-3≤x ≤-k3,∵不等式组有四个整数解, ∴0≤-k3<1,∴-3<k ≤0,解分式方程k y -1+1=y +ky +1得y =-2k +1, ∵分式方程的解为正数,∴-2k +1>0且-2k +1≠-1,-2k +1≠1, 解得k <12且k ≠0,k ≠1,综上,k 的取值范围为-3<k <0,则符合条件的所有整数k 的积为-2×(-1)=2. 故答案为A.7.(2019·育才中学九年级下二诊)若整数m 使得关于x 的分式方程xx -2+m +12-x=2有非负整数解,关于y 的不等式组⎩⎨⎧y 2+1≥y +23,5(y -1)<y -(m +3)有且只有3个整数解,则所有符合条件的m 的和是( )A .-3B .-2C .0D .2 答案 A解析解不等式组⎩⎨⎧y 2+1≥y +23, ①5(y -1)<y -(m +3), ②解①得y ≥-2,解②得y <2-m4, ∴不等式组的解集为-2≤y <2-m4, ∵不等式组只有3个整数解,∴0<2-m4≤1, 解得-2≤m <2, 解分式方程xx -2+m +12-x=2,得x =-m +3且x -2≠0, 即-m +3-2≠0得m ≠1,要使x =-m +3为非负整数,则m =-2,-1,0, ∴所有符合条件的m 的和是-2+(-1)+0=-3. 故答案为A.8.(2019·重庆一中下学期定时作业)实数a 使关于x 的不等式组⎩⎪⎨⎪⎧13x -1≤x -12,12a -3x >0有且只有4个整数解,且使关于x 的分式方程2x -1+5-a1-x=-2的解为正数,则符合条件的所有整数a 的和为( )A .7B .10C .12D .1 答案 A解析解不等式组⎩⎪⎨⎪⎧13x -1≤x -12,①12a -3x >0, ②解①得x ≥-3,解②得x <16a ,∴不等式组解集为-3≤x <16a ,∵不等式组有四个整数解,∴0<16a ≤1,∴0<a ≤6,解分式方程2x -1+5-a 1-x =-2得x =5-a 2, ∵分式方程解为正数且分母不为0,5-a 2>0且5-a2≠1, 解得a <5且a ≠3,综上,0<a <5且a ≠3, 则符合条件的所有整数a 为1,2,4,∴符合条件的所有整数a 的和为1+2+4=7. 故答案为A.9.(2019·重庆八中九年级月考)若数m 关于x 的不等式组⎩⎨⎧3-5x2≤9-x ,x <m至少有3个整数解且所有解都是2x -5≤1的解,且使关于x 的分式方程4x -2x -1+3m -11-x=2有整数解,则满足条件的所有整数m 的个数是( )A .5B .4C .3D .2 答案 D解析解不等式组⎩⎨⎧3-5x 2≤9-x ,①x <m , ②解①得x ≥-5,解②得x <m ,∴不等式组的解为-5≤x <m , ∵方程组至少有3个整数解且所有解都是2x -5≤1的解, 得-3<m ≤3,∴m =-2,-1,0,1,2,3, 解4x -2x -1+3m -11-x =2得x =3m -12, ∵x 为整数且x ≠1,∴m =-1,3,∴答案为D.10.(2019·巴蜀一诊)如果关于x的不等式组⎩⎨⎧m -4x >4,x -112<3⎝ ⎛⎭⎪⎫x +12有且仅有三个奇数解,且关于x 的分式方程2-mx 2-x -30x -2=13有非负数解,则符合条件的所有整数m 的和是( )A .15B .27C .29D .45 答案 C解析解不等式组⎩⎨⎧m -4x >4, ①x -112<3⎝⎛⎭⎪⎫x +12, ②解①得x <m -44,解②得x >-72, ∴不等式组的解集为-72<x <m -44,∵不等式组有且只有三个奇数解, ∴1<m -44≤3,∴8<m ≤16,解分式方程2-mx 2-x -30x -2=13,解得x =6m -13, ∵分式方程有非负数解,∴m -13>0,∴m >13, 又6m -13≠2,∴m ≠16,综上所述13<m <16,∴所有整数m的和为14+15=29. 故答案为C.。

2021年重庆年中考复习11题含参不等式组与分式方程综合专题(重庆育才试题集)

2021年重庆年中考复习11题含参不等式组与分式方程综合专题(重庆育才试题集)

2021年重庆年中考11题含参不等式组与分式方程综合专题(重庆育才试题集)1(育才2021级初三上定时训练二)若关于x的一元一次不等式组的解集为x<﹣4,且关于y的分式方程﹣=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣2 B.2 C.3 D.62(育才2020级初三下中考模拟5月份)已知关于x的不等式组有且只有四个整数解,又关于x的分式方程﹣2=有正数解,则满足条件的整数k的和为()A.5 B.6 C.7 D.83(育才2020级初三下中考模拟二)如果关于x的分式方程=2有非负整数解,关于y的不等式组有且只有3个整数解,则所有符合条件的m的和是()A.﹣3 B.﹣2 C.0 D.24(育才2020级初三下中考模拟三)若关于x的分式方程=1的解为正数,且关于y的不等式组至少两个整数解,则符合条件的所有整数m的取值之和为()A.﹣7 B.﹣9 C.﹣12 D.﹣145(育才2019级初三下中考模拟一)如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.36(育才2020级初三下中考模拟二练习)若关于x的不等式组无解,且关于y的方程+=1的解为正数,则符合题意的整数a有()个.A.1个B.2个C.3个D.4个7(双福育才2020级初三下中考模拟一)若关于x 的不等式组44111322m x x x ->⎧⎪⎨⎛⎫-<+ ⎪⎪⎝⎭⎩恰有三个整数解,且关于x 的分式方程26122mx x x --=--有非负数解,则符合条件的所有整数m 的个数是( ) A. 1B. 2C. 3D. 48(育才2020级初三下入学测试)若关于x 的不等式组⎪⎩⎪⎨⎧+>+-≤31121x x a x 至少有3个整数解,且关于y 的分式方程 1224=-+-ya y 的解是非负数,则符合条件的所有整数a 的个数是( ). A .3个 B .4个 C .5个 D .6个9(育才2020级初三上第二次月考)若整数a 使关于x 的不等式组⎪⎩⎪⎨⎧>-≤+022)8(31a x x 无解,且使关于x 的分式方程1242-=----xa x x 有非负整数解,那么所有满足条件的a 的值之和是( ) A .4 B .6C .8D .1010(双福育才2020级初三下第二次诊断性测试)如果关于x 的分式方程11222ax x x-+=--有整数解,且关于x 的不等式组43(1)122x x x x a ≥-⎧⎪⎨--<⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是(▲) A .3-B .2-C .7-D .6-11(育才2020级初三下开学试卷)若关于x的不等式组有解,且关于x的分式方程的解为非负数,则满足条件的整数a的值的和为()A.﹣10 B.﹣7 C.﹣9 D.﹣812(育才2020级初三上期末试卷)如果数m使关于x的不等式组有且只有四个整数解,且关于x的分式方程﹣=3有整数解,那么符合条件的所有整数m的和是()A.8 B.9 C.﹣8 D.﹣913(育才2020级初三上开学测试)已知关于x的分式方程+1=0有整数解,且关于x的不等式组的解集为x≤﹣1,则符合条件的所有整数a的个数为()A.2 B.3 C.4 D.514(育才2020级初三上期中试卷)如果关于x的不等式组有且仅有四个整数解,且关于y的分式方程﹣=1有非负数解,则符合条件的所有整数m的和是()A.13 B.15 C.20 D.2215(育才2020级初三下入学测试)关于x 的分式方程3282-=-+--xa x x 的解为非负整数,且一次函数()a x a y ++-=146的图象不经过第三象限,则满足条件的所有整数a 的和为( )A. 22-B. 12-C. 14-D. 8-16(育才2019级初三是哪个期末测试)已知关于x 的分式方程211011ax x x --+=--有整数解,且关于x 的不等式组1322123x x x x a ⎧⎛⎫≤- ⎪⎪⎪⎝⎭⎨-⎪-<⎪⎩的解集为1x ≤-,则符合条件的所有整数a 的个数为( ).A .2B .3C .4D .5答案:1.解:解不等式组得:,由不等式组的解集为x<﹣4,得到a≥﹣4,分式方程去分母得:2y+a﹣3=2﹣y,解得:y=,由分式方程有非负整数解,得到a=5,2,﹣4,之和为3.故选:C.2.解:解不等式﹣(4x+)<0,得:x>,解不等式﹣(x+2)+2≥0,得:x≤2,则不等式组的解集为<x≤2,∵不等式组有且只有四个整数解,∴﹣2≤<﹣1,解得:﹣3≤k<5;解分式方程﹣2=得:x=,∵分式方程有正数解,∴>0,且≠1,解得:k>﹣3且k≠﹣1,所以满足条件的整数k的值为﹣2、0、1、2、3、4,则满足条件的整数k的和为﹣2+0+1+2+3+4=8,故选:D.3.解:解:去分母得:x﹣m﹣1=2x﹣4,解得:x=3﹣m,由解为非负整数解,得到3﹣m≥0,3﹣m≠2,即m≤3且m≠1,不等式组整理得:,由不等式组只有3个整数解,得到y=﹣2,﹣1,0,即0<≤1,解得:﹣2≤m<2,则符合题意m=﹣2,﹣1,0,之和为﹣3,故选:A.4.(解:由方程=1,解得:x=﹣2﹣m,则可得:m<﹣2且m≠﹣5,由①知,y>﹣2,由②知,y≤,∵关于y的不等式组至少两个整数解,∴y=﹣1和0∴5+m≥0,解得:m≥﹣5,所以m的整数值为﹣4,﹣3,﹣4+(﹣3)=﹣7,故选:A.5.解:由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a的和为0.故选:B.6.解:不等式整理得:,由不等式组无解,得到a+3>1,解得:a>﹣2,分式方程去分母得:2﹣y﹣a=y﹣2,解得:y=,由分式方程的解为正数,得到>0且≠2,解得:a<4,且a≠0,∴﹣2<a<4,且a≠0,a为整数,则符合题意整数a的值为﹣1,1,2,3,共4个,故选:D.7.答案C8.答案B9.答案A10.答案:A11.解:不等式组整理得:,由不等式组有解,得到﹣5≤x<a,解得:a>﹣5,,分式方程去分母得:ax﹣x+2=﹣3x,解得:x=,∵关于x的分式方程的解为非负数,∴≥0,解得a≤﹣1,∴﹣5<a≤1,∵a为整数,∴a=﹣4,﹣3,﹣2,﹣1,0,1,当a=﹣1时,x=1;则满足题意的整数a的值的和是﹣2﹣3﹣4+1=﹣8.故选:D.12.解:﹣=3,分式方程去分母得:x+m=3(x﹣1),解得:x=,﹣1≠0,解得m≠﹣1,解不等式组得:≤x<4,由不等式组有且只有四个整数解,得到﹣1<≤0,解得:﹣6<m≤0,由x为整数,且﹣1≠0,解得:m=﹣5或﹣3,则符合条件的所有整数m的和是﹣5﹣3=﹣8.故选:C..13解:去分母得2﹣ax+1+1﹣x=0,解得x=且x≠1,当整数a为0,1,﹣2,﹣3,﹣5时,分式方程的解为整数解,解不等式组为,而不等式组的解集为x≤﹣1,所以>﹣1,解得a>﹣,∴满足条件的整数a的值为0,1.故选:A.14.解:原不等式组的解集为﹣<x≤,因为不等式组有且仅有四个整数解,所以0≤<1,解得2≤m<7.原分式方程的解为y=,因为分式方程有非负数解,所以≥0,解得m>1,且m≠5,因为m=5时y=2是原分式方程的増根.所以符合条件的所有整数m的和是2+3+4+6=15.故选:B..15.答案:A.16.答案:A。

最新重庆中考12题参数方程和不等式

最新重庆中考12题参数方程和不等式

12题参数方程和不等式一.选择题(共40小题)1.关于x的分式方程=2的解为非负数,且使关于x的不等式组有解的所有整数k的和为()A.﹣1 B.0 C.1 D.22.若数a使关于分式方程2﹣的解为正数,且使关于y的不等式组至少有三个整数解,则符合条件的所有整数a的和是()A.5 B.17 C.18 D.203.若数k使关于x的不等式组只有4个整数解,且使关于y的分式方程+1=的解为正数,则符合条件的所有整数k的积为()A.2 B.0 C.﹣3 D.﹣64.关于x的方程的解为正数,且关于y的不等式组有解,则符合题意的整数m有()个.A.4 B.5 C.6 D.75.关于x的方程的解为非正数,且关于x的不等式组无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣96.若关于x的分式方程﹣1=1﹣的解为正数,且关于y的不等式组无解,那么符合条件的所有整数m的和为()A.5 B.3 C.1 D.07.要使关于x的不等式组至少有3个整数解,且使关于y的分式方程﹣=2的解为非正数的所有整数a的和是()A.10 B.9 C.8 D.58.若关于x的不等式组有解,且关于x的分式方程﹣1=的解为整数,则满足条件的整数a的值的和是()A.﹣6 B.﹣1 C.﹣3 D.﹣49.从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣2 B.﹣3 C.D.10.如果关于x的不等式组的解集为x<1,且关于x的分式方程+=3有非负整数解,则符合条件的m的所有值的和是()A.5 B.6 C.8 D.911.如果关于x的不等式组的解集为x>1,且关于x的分式方程+=3有非负整数解,则符合条件的m的所有值的和是()A.﹣2 B.﹣4 C.﹣7 D.﹣812.使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和是()A.﹣2 B.﹣3 C.﹣7 D.013.若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣3有正整数解,则满足条件的a的值之积为()A.28 B.﹣4 C.4 D.﹣214.若关于x的方程=﹣的解为整数,且不等式组无解,则这样的非负整数a有()A.2个 B.3个 C.4个 D.5个15.从﹣2、﹣1、0、2、5这一个数中,随机抽取一个数记为m,若数m使关于x的不等式组无解,且使关于x的分式方程+=﹣1有非负整数解,那么这一个数中所有满足条件的m的个数是()A.1 B.2 C.3 D.416.从﹣3,﹣2,﹣1,1,2,3这六个数中,随机选取一个数,记为a.若数a 使关于x的不等式组无解,且使关于x的分式方程+=3有整数解,那么这六个数中所有满足条件的a的值之和是()A.﹣3 B.﹣2 C.﹣1 D.017.若数a使关于x的不等式组的解为x<2,且使关于x的分式方程+=﹣4有正整数解,则满足条件的a的值之和为()A.12 B.11 C.10 D.918.如果关于x的不等式组的解集为x>﹣2,且关于x的分式方程+=3有正整数解,则所有符合条件的整数a的和是()A.﹣9 B.﹣8 C.﹣7 D.019.若关于y的不等式组有解,且关于x的分式方程=2+有非负整数解,则符合条件的所有整数k的和为()A.﹣5 B.﹣9 C.﹣12 D.﹣1620.从3,﹣1,,1,﹣3这5个数中,随机抽取一个数记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之积是()A.B.3 C.﹣3 D.﹣21.从﹣7,﹣5,﹣3,﹣1,3,4,6这七个数中,随机抽取一个数,记为k ,若数k 使关于x 的不等式组无解,且使关于x 的分式方程+2=有非负实数解,那么这7个数中所有满足条件的k 的值之和是( ) A .﹣12 B .﹣9 C .﹣6 D .﹣322.从﹣6,﹣4,﹣3,﹣2,0,4这六个数中,随机抽取一个数记作m ,使得关于x 的分式方程有整数解,且关于y 的不等式组无解,则符合条件的所有m 之积为( )A .﹣12B .4C .24D .﹣823.如果关于x 的分式方程﹣3=有负分数解,且关于x 的不等式组的解集为x <﹣2,那么符合条件的所有整数a 的和是( )A .9B .﹣3C .0D .324.从﹣3、﹣1、1、3这四个数中,随机抽取一个数记为a ,若数a 使关于x 的不等式组 无解,且使关于x 的分式方程﹣=﹣1有整数解,那么这4个数中所有满足条件的a 的值之和是( )A .﹣2B .﹣3C .﹣D .25.从﹣4,﹣3,1,3,4这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组的解集是x <a ,且使关于x 的分式方程﹣=1有整数解,那么这5个数中所有满足条件的a 的值之和是( )A .﹣3B .﹣2C .0D .126.若关于x 的分式方程+=﹣2有正整数解,关于x 的不等式组有解,则a 的值可以是( )A.﹣2 B.0 C.1 D.227.已知a使得关于x的方程﹣=a的解为正数,且满足关于x的不等式组有解,这样的a的取值范围是()A.1<a≤2 B.a<且a≠﹣1C.1<a≤2或a<且a≠﹣1 D.a<2且a≠﹣128.从﹣2,﹣1,0,1,2,3这六个数中,随机抽取一个数记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣1=有整数解,那么这6个数中所有满足条件的a的值之和是()A.﹣1 B.0 C.1 D.229.如果关于x的不等式组的解集为x<m,且关于x的分式方程+=3有非负整数解,则所有符合条件的m的个数是()A.1个 B.2个 C.3个 D.4个30.从﹣2,﹣1,﹣,1,2这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使分式方程+=﹣1的解为正分数,那么这五个数中所有满足条件的a的值之和是()A.﹣3 B.﹣ C.﹣2 D.﹣31.如果关于x的分式方程﹣5=有正数解,且关于x的不等式组的解集为x>,那么符合条件的所有整数a的和为()A.2 B.3 C.4 D.532.若关于x的不等式组至少有一个整数解,且关于x的方程=的解为整数,则符合条件的整数a的个数为()A.2个 B.3个 C.4个 D.5个33.从﹣4、﹣l、﹣、0、、2、3这七个数中,随机抽取一个数a,若数a使关于x的分式方程的解为整数,且使不等式组有且仅有四个整数解,那么这七个数中满足所有条件的a的值之和为()A.B.﹣2 C.D.234.如果数m使关于x的不等式组有且只有四个整数解,且关于x的分式方程﹣=3有整数解,那么符合条件的所有整数m的和是()A.8 B.9 C.﹣8 D.﹣935.若关于x的不等式组,有且仅有五个整数解,且关于x的分式方程=3有整数解,则所有满足条件的整数a的值之和是()A.﹣4 B.﹣3 C.﹣1 D.036.若关于x的不等式组有且只有三个整数解,且关于x的分式方程﹣=﹣1有整数解,则满足条件的整数a的值为()A.15 B.3 C.﹣1 D.﹣1537.如果关于x的分式方程有整数解,且关于x的不等式组有且只有四个整数解,那么符合条件的所有整数a的个数为()A.0 B.1 C.2 D.338.若关于x的不等式组有三个整数解,且关于x的分式方程有正数解,则所有满足条件的整数a的值之和是()A.﹣3 B.﹣1 C.0 D.239.如果关于x的分式方程﹣=2有正数解,关于x的不等式组有整数解,则符合条件的整数a的值是()A.0 B.1 C.2 D.340.若整数a使关于x的不等式组至少有4个整数解,且使关于x 的分式方程=2有整数解,那么所有满足条件的a的和是()A.﹣20 B.﹣17 C.﹣14 D.﹣23一.选择题(共40小题)1.C;2.B;3.A;4.C;5.C;6.C;7.B;8.B;9.A;10.B;11.C;12.B;13.B;14.B;15.B;16.B;17.A;18.C;19.A;20.C;21.D;22.C;23.C;24.B;25.C;26.B;27.C;28.D;29.C;30.A;31.B;32.B;33.A;34.C;35.A;36.C;37.A;38.B;39.A;40.C;。

专题02 不等式与分式含参运算(选择题)(原卷版)

专题02 不等式与分式含参运算(选择题)(原卷版)

二轮复习【中考冲刺】2022-2023年中考数学重要考点名校模拟题分类汇编专题02——不等式与分式含参运算(选择题)(重庆专用)1.(2023春·重庆沙坪坝·九年级重庆八中校考开学考试)若整数a使关于x的分式方程xx2+1=ax22x有整数解,使关于y的不等式组a―(8y+13)<0y―3≤―1有且仅有四个整数解,则符合条件的所有整数a之和为()A.―2B.1C.―6D.―122.(2023春·重庆北碚·九年级西南大学附中校考阶段练习)若关于x的不等式组3x―a>2(1―x) x12≥x23―1的解集为x≥1,关于y的分式方程yy1+ay1=1有整数解,则满足条件的整数a的个数是()A.1个B.2个C.3个D.4个3.(2022秋·重庆沙坪坝·九年级重庆南开中学校考期末)若关于x0 <―4的解集为x>4,关于y的分式方程my14y +3y4=―2有整数解,则符合条件的所有整数m的和为()A.5B.6C.11D.124.(2023秋·重庆九龙坡·九年级重庆市育才中学校考期末)若关于x的一元一次不等式组2(2x+3)―1>3x+63x+4≥―a的解集为x>1,且关于y的分式方程yy2+1=a12y的解是正整数,则所有满足条件的整数a的值之和是()A.-15B.-14C.-8D.-75.(2022秋·重庆九龙坡·九年级重庆市杨家坪中学校考期末)若实数a使关于x的不等式组x1 2<1x37x―2≥x+a ,有且只有四个整数解;关于x的二次函数y=x2﹣3ax+1,当―32≤x≤32时,y随着x的增大而减小,则符合条件的所有整数a的个数为( )A.2B.3C.4D.56.(2023秋·重庆九龙坡·九年级重庆实验外国语学校校考期末)若关于x的一元一次不等式组x―2>3x22 3x―a≤2的解集为x<―2,且关于y的分式方程2yy1=ay1―1的解为负整数,则所有满足条件的整数a的值之和是()A.―15B.―13C.―7D.―57.(2023秋·重庆北碚·九年级西南大学附中校考期末)若关于x的不等式组3x76≤x43x+1>a x2无解,且关于y的分式方程3ay3y ―1=6y3有正整数解,则满足条件的所有整数a的和为()A.11B.14C.16D.98.(2022秋·重庆渝中·九年级重庆巴蜀中学校考期末)若关于y的不等式组y―2≤y234y+1―m≥0有且只有2个奇数解,且关于x的分式方程3―11x =mx1的解为非负数,则符合条件的所有整数m的和为()A.3B.4C.11D.129.(2022秋·重庆·九年级西南大学附中校考阶段练习)若实数a使关于x的分式方程x ax3+2a3x=―1有正整数解,且使关于y的不等式组y+a>172y3≥5无解,则满足条件的所有整数a的和是()A.0B.3C.5D.810.(2022秋·重庆渝中·九年级重庆巴蜀中学校考阶段练习)如果关于x的不等式组x m2≥0x+3<3(x―1)的解集为x>3,且关于y的分式方程3y2y +my2=3有非负整数解,则符合条件的整数m的值的和是()A.―4B.―3C.―1D.011.(2022秋·重庆·九年级重庆一中校考阶段练习)若关于x>x+1的解集为x<―7,且关于y的分式方程3y3y2―ay2=―2有非正整数解,则符合条件的所有整数a的和为()A.―12B.―15C.1D.―2 12.(2022秋·重庆沙坪坝·九年级重庆八中校考阶段练习)已知数m使关于x的不等式组―5⩽6>x―m至少有一个非负整数解,且使关于x的分式方程1x2―3=m x2x有不大于5的整数解,则所有满足条件的整数m的个数是( )A.1B.2C.3D.413.(2022·重庆·重庆八中校考模拟预测)从―7,―5,―1,0,1,3这六个数中,随机抽一个数,记为m,若数m使关于x的不等式组x m2>0x―4<3(x―2)的解集为x>1,且关于x的分式方程1x2x+mx2 =3有非负整数解,则符合条件的m的值的个数是()A.1个B.2个C.3个D.4个14.(2022秋·重庆沙坪坝·九年级重庆八中校考阶段练习)若数a 使关于x 的分式方程1x 3+x a3x =1有非负整数解,且使关于y 的不等式组2y ≥3y ―a 至少有3个整数解,则符合条件的所有整数a的和是( )A .﹣5B .﹣3C .0D .215.(2022秋·重庆·九年级重庆实验外国语学校校考阶段练习)若数a 使关于xx +a1x=3的解为非负数,且使关于y―1≥3y ―2―53a ≤32y ―a的解集为y ≤1,则符合条件的所有整数a 的和为( )A .15B .12C .11D .1016.(2023秋·重庆大渡口·九年级重庆市第九十五初级中学校校考阶段练习)若关于x 的一元一次不等式组3x ―2>2(x +2)a ―2x ≤―5的解集为x >6,且关于y 的分式方程y 2a y 1+3y 81y =2的解是非负整数,则所有满足条件的整数a 的值之和是()A .15B .10C .8D .317.(2022秋·重庆渝中·九年级重庆巴蜀中学校考开学考试)若整数a 使得关于x 的分式方程16x (x 4)+2x =ax 4有正整数解,且使得关于yy 13>13―a有解,那么符合条件的所有整数a 的和为( )A .23B .20C .16D .1018.(2022春·重庆沙坪坝·九年级重庆一中校考阶段练习)若关于x 的方程3―x 1x 1的解为负数,且关于x 的不等式组x a3≥12x ―3≤1 有解但最多有4个整数解,则所有满足条件的整数a 的和是()A .―10B .―9C .―8D.―719.(2022秋·重庆沙坪坝·九年级重庆八中校考开学考试)若关于x 的不等式组x ―2x ―3>a ―2有解且所有的解都是正数,且关于y 的分式方程2yy 1+a 21y=0的解为整数,则符合条件的所有整数a 的个数为()A .1个B .2个C .3个D .4个20.(2022秋·重庆沙坪坝·九年级重庆一中校考开学考试)如果关于x 的分式方程ax x 1=1―31x 的解为整数,且关于y 的不等式组{3y 22≥y +2y +4>2(y +a)有解,则符合条件的所有整数a 的和为()A.-1B.0C.1D.4。

重庆中考数学分式方程与不等式组含参数专题复习(学生修改版)

重庆中考数学分式方程与不等式组含参数专题复习(学生修改版)

重庆中考数学含参数专题复习【热身运动】1.若a 为整数,关于x 的不等式组2(1)43x40x x a +≤+⎧⎨-<⎩有且只有3个非正整数解,且关于x 的分式方程11222ax x x-+=--有负整数解,则整数a 的个数为( )个。

A .4 B .3 C .2 D 12. 已知关于x 的分式方程2332=-++-x ax x 有增根,且关于x 的不等式组⎩⎨⎧≤>b x a x 只有4个整数解,那么b 的取值范围是( )A. 31≤<-bB. 32≤<bC. 98<≤bD. 43<≤b【关键词解读】 非正整数: 非负整数: 增根:两个实数解: 不过第二象限: 【例题精讲】类型一、求满足条件的数字个数例1、如果关于x 的不等式组⎪⎩⎪⎨⎧->-<-)1(2303x x mx 的解集为m x <,且关于x 的分式方程3323=--+-xxx m 有非负整数解,所有符合条件的m 的个数是( )。

A.1个 B.2个 C.3个 D.4个类型二、求满足条件的全部数字例2、已知a 为实数,关于x 、y 的方程组组235212x y ax y a-=⎧⎨+=-⎩的解的积小于零,且关于x的分式方程32122x ax x =---有非负解,则下列a 的值全都符合条件的是( )A .-2、-1、1B .-1、1、2C .-1、23、1 D .-1、0、2类型三、求满足条件的全部数字的和/积1.从﹣3,﹣1,12,1,3这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的一元二次方程2(12)210a x x ---=有实数解,且使关于x 的分式方程2133x a x x--=---有整数解,那么这5个数中所有满足条件的a 的值之和是( )A .﹣3B .﹣2C .32-D .12 2.如果关于x 的分式方程1131+-=-+x x x a 有负分数解,且关于x 的不等式组⎪⎩⎪⎨⎧+<+--≥-1243,4)(2x x x x a 的解集为x<-2,那么符合条件的所有整数a 的积是( ) A.-3 B.0 C.3 D.93.如果关于x 的2210mx x -+=有实数解,且关于x 的分式方程3221=-+--x mx x 有非负整数解,则符合条件的m 的值是( )A .5-,3-B .3-,1C .5-,3-,1D .5-,3-,1-,1 4.如果关于x 的分式方程1131+-=-+x x x a 有负分数解,且关于x 的方程2(2)210a x x ++-=有实数解,那么符合条件的所有整数a 的积是 ( )A.-3B.0C.3D.95.能使分式方程1321-=+-x x k 有非负实数解且使二次函数122--+=k x x y 的图像与x 轴无交点的所有整数k 的积为( )A .-20B .20C .-60D .606. 如果关于x 的不等式组⎪⎩⎪⎨⎧-<->-)2(34,02x x mx 的解集为1>x ,且关于x 的分式方程3221=-+--x mx x 有非负整数解,则符合条件的m 的值是( ) A .5-,3- B .3-,1 C .5-,3-,1 D .5-,3-,1-,17. 关于x 的方程2222x mx x ++=--的解为正数,且关于y 的不等式组22(2)y m y m m -≥⎧⎨-≤+⎩有解,则符合题意的整数m 有( )个 A .4 B .5 C .6 D .78. 若关于x 的分式方程13444ax x x -+=---有正整数解,关于x 的不等式组⎪⎩⎪⎨⎧>+<--x xa x x 22)2(3有解,则a 的值可以是( ) A 、0 B 、1 C 、2 D 、39. 如果关于x 的方程2420ax x +-=有两个不相等的实数根,且关于x 的分式方程11222ax x x --=--有正数解,则符合条件的整数a 的值是( ) A .-1 B .0 C .1 D .2 10.使得关于x 的不等式组⎩⎨⎧-≥+-->14122m x m x 有解,且使分式方程2221=----x xm x 有非负整数解的所有的m 的和是( )A.-1B. 2C. -7D. 0课后练习1.从-4、﹣3、1、3、4这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组1(9)230x x a ⎧-≤-⎪⎨⎪-<⎩的解集是x a <,且使关于x 的分式方程3122x a x x --=--有整数解,那么这5个数中所有满足条件的a 的值之和为( )A .﹣3B .﹣2C .0D .12.要使关于x 的方程2210ax x --=有两个实数解,且关于x 的分式方程2233x a x x++=--的解为非负数的所有整数a 的个数为( )A .3个B .4个C .5个D .6个3.如果关于x 的分式方程222x mx x=---的解为正数,且关于x 的不等式组1(21)130x x m ⎧+≤-⎪⎨⎪-≥⎩无解,那么符合条件的所有整数m 的和为( ) A.5 B.3 C. 1 D.0 4.使得关于x 的不等式组⎩⎨⎧-≥+-->14122m x m x 有解,且使分式方程2221=----x xm x 有非负整数解的所有m 的和是( )A.-7B.-2C.-1D.05.若关于x 的分式方程24341-=-+--x x ax 有正整数解,关于x 的不等式组3(2)2322x x a x x --<⎧⎪⎨+>-⎪⎩有解,则a 的值可以是( )A 、-4B 、0C 、1D 、26.若关于x 的分式方程24341-=-+--x x ax 有正整数解,关于x 的不等式组3(2)22x x a x x -+<⎧⎪⎨+>⎪⎩有解,则a 的值可以是( )A 、-4B 、0C 、1D 、27.从-6,﹣3,﹣1,0, 1,3,6这七个数中,随机抽取一个数,记为m ,若数m 使关于x 的分式方程1244x mx x++=--有整数解,且使得一次函数y x m =--的图像不过第一象限,那么这六个数中所有满足条件的m 值的个数是( )A .2B .3C .4D .58.已知二次函数2(2)3y x a x =-+-+,当2x >时,y 随x 的增大而减小,且关于x 的分式方程2133a x x x-=---的解是自然数,则符合条件的整数a 的和是( ) A .3 B .8 C .15 D .169.已知有9张卡片,分别写有1到9这就个数字,将它们的背面朝上洗匀后,任意抽出一张,记卡片上的数字为a ,若数a 使关于x 不等式组有解,且使函数在的范围内y 随着x 的增大而增大,则这9个数中满足条件的a 的值之和为( ) A .10 B .13 C .17 D .1810.如果关于x 的不等式组⎪⎩⎪⎨⎧-<->-)2(34,02x x mx 的解集为1>x ,且关于x 的分式方程3221=-+--x mx x 有非负整数解,则符合条件的m 的所有值的和是( ) A .-2 B .-4 C .-7 D .-8 11.已知关于x 的方程1545-=+++x x a 的解为负数,且一次函数y=(a+5)x+(2-2a)的图象不经过第四象限,则下列各数都满足上述条件a 的值的是( )A 、-9,-4,1B 、-8,-4,1C 、32-,0,31 D 、0,1,2.12.在– 3、– 2、– 1、0、1、2这六个数中,随机取出一个数记为a ,那么使得关于x 的一元二次方程2250x ax -+=无解,且使得关于x 的方程1311x a x x+-=--有整数解的所有a 的值之和为( )A .1-B .0C .1D .2 13.已知关于x 的方程1333=+-+x x a 的解为负数,且关于x 、y 的二元一次方程组⎩⎨⎧+=+=-85372a y x y x 的解之和为正数,则下列各数都满足上述条件a 的值的是( ) A 、32,2,5 B 、0,3,5 C 、3,4,5 D 、4,5,6.14.已知关于x 的方程24442=+-+x x a 的解为负数,且关于x 的不等式组⎩⎨⎧-≥≤+a x x 3352有解,则满足上述条件的a 的所有整数之和是( )A 、-10B 、-8C 、-6D 、0. 15.已知关于x 的方程1334=---x a x 的解为正数,且二次函数y=x 2-(2a+6)x+12a 与x 轴两个交点的横坐标之和为正数,则满足上述条件的a 的所有整数之和是( ) A 、9 B 、10 C 、11 D 、14.16.使关于的分式方程的解为非负数,且使反比例函数图象过第一、三象限时满足条件的所有整数的和为( )A .B .C .D .17.如果关于x 的分式方程1131+-=-+x xx a 有负分数解,且关于x 的不等式组⎪⎩⎪⎨⎧+<+--≥-1243,4)(2x x x x a 的解集为x<-2,那么符合条件的所有整数a 的积是( ) A.-3 B.0 C.3 D.918.关于x 的分式方程121a a x -=-+有实数解,且使关于x 的不等式组62123x a x x a x a -⎧->⎪⎪⎨-+⎪+≤⎪⎩无解的自然数a 的和是( )A .3B .4C .5D .6x 121k x -=-3ky x-=k 0123。

重庆市中考数学一轮复习第二章方程(组)与不等式(组)第1节一次方程(组)及其应用练习

重庆市中考数学一轮复习第二章方程(组)与不等式(组)第1节一次方程(组)及其应用练习

第1节 一次方程(组)及其应用(10年15卷15考,1~2道,近2年A 、B 卷未考查,4~14分)玩转重庆10年中考真题(2008~2017年)命题点1 解一元一次方程(10年4考,分式化简求值中涉及2次)1. (2012重庆7题4分)已知关于x 的方程2x +a -9=0的解是x =2,则a 的值为( ) A . 2 B . 3 C . 4 D . 52. (2008重庆11题3分)方程2x -6=0的解为________.命题点2 解二元一次方程组(10年4考,结合其他知识考查1次,单独考查3次)3. (2014重庆A 卷13题4分)方程组⎩⎪⎨⎪⎧x =3x +y =5的解是____________. 4. (2015重庆A 卷19题7分)解方程组⎩⎪⎨⎪⎧y =2x -4 ①3x +y =1 ②.5. (2015重庆B 卷19题7分)解二元一次方程组⎩⎪⎨⎪⎧x -2y =1 ①x +3y =6 ②.命题点3 一次方程(组)的实际应用(10年7考,结合其他知识考查3次)6. (2009重庆16题4分)某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加________%.7. (2010重庆16题4分)含有同种果蔬但浓度不同的A ,B 两种饮料,A 种饮料重40千克,B种饮料重60千克.现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同重量是________千克.8. (2011重庆16题4分)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了________朵.9. (2014重庆B卷23题节选5分)某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.今年5月份该青椒在市区、园区各销售了多少千克?10. (2013重庆B卷23题节选5分)“4·20”雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.求大、小货车原计划每辆每次各运送帐篷多少顶?答案1. D2. x =33. ⎩⎪⎨⎪⎧x =3y =2 4. 解:把①代入②,得3x +(2x -4)=1, (2分)解得x =1.(4分)把x =1代入①,得y =-2,(6分)∴原方程组的解为⎩⎪⎨⎪⎧x =1y =-2.(7分) 5. 解:由①得x =2y +1 ③,(1分)把③代入②,得2y +1+3y =6,解得y =1.(3分)把y =1代入③,得x =3,(6分)∴原方程组的解为⎩⎪⎨⎪⎧x =3y =1. (7分) 6. 30 【解析】设今年高新产品C 的销售额应比去年增加x ,则0.4(1+x)+(1-40%)(1-20%)=1,解得x =30%,则应增加30%.7. 24 【解析】设A 种饮料浓度为a ,B 种饮料浓度为b ,倒出的重量均为x 千克,则A 种饮料中剩下(40-x)千克,其中含果蔬(40-x)·a,B 种饮料剩下(60-x)千克,其中含果蔬(60-x)·b,A 种饮料中倒出的x 千克中含果蔬x·a 千克,B 种饮料中倒出的x 千克中含果蔬x·b 千克.根据互相倒入混合后浓度相同,得(40-x )·a+xb 40=(60-x )·b+xa 60,化简得(40-x )·a+xb 2=(60-x )·b+xa 3,即120(a -b)=5x(a -b),∵A 、B 饮料浓度不同,故a≠b,即a -b≠0,∴120=5x ,解得x =24.8. 4380 【解析】设甲种盆景有x 盆,乙种盆景有y 盆,丙种盆景有z 盆,根据题意得:⎩⎪⎨⎪⎧15x +10y +10z =2900,25x +25z =3750,解得⎩⎪⎨⎪⎧x =280-2y z =2y -130,所以一共用了黄花的朵数为24x +12y +18z =6(4x +2y +3z)=6×(1120-8y +2y +6y -390)=6×730=4380.9. 解:设今年5月份该青椒在市区销售了x 千克,在园区销售了y 千克.根据题意得:⎩⎪⎨⎪⎧x +y =30006x +4y =16000,(2分) 解得:⎩⎪⎨⎪⎧x =2000y =1000.(4分) 答:今年5月份该青椒在市区销售了2000千克,在园区销售了1000千克.(5分)10. 解:设大货车原计划每辆每次运送帐篷x 顶.根据题意:2×2x +2×8(x-200)=16800,解得x =1000,(3分)x -200=800.(4分)答:原计划大货车每次每辆运送帐篷1000顶,小货车每次每辆运送帐篷800顶.(5分)。

专题02 方程、不等式中的含参问题-玩转压轴题,争取满分之备战中考数学选填题高端精品(解析版)

专题02 方程、不等式中的含参问题-玩转压轴题,争取满分之备战中考数学选填题高端精品(解析版)

专题二方程、不等式中的含参问题【考法综述】1.一次方程组的含参问题一是方程组与不等式的联系时,产生的未知数的正数解或解的范围,解决这类问题是把所给的参数作为常数,利用二元一次方程组的解法代入消元法、加减消元法,先求出二元一次方程组的解,再结合所给的条件转化为对应的不等式问题;二是利用整体思想,求代数式的值,结合所给的已知条件和所求问题,找到两者之间的联系,利用整体思想和转化思想加以解决.2.一元二次方程的参数问题主要是含有参数的一元二次方程的解、一元二次方程的解的情况、一元二次方程的公共解,针对一元二次方程的参数,常利用韦达定理、根的判别式来解决,同时注意二次项系数不能为零.若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个根分别为x1、x2,则x1+x2=-b/a,x1x2=c/a.注意运用根与系数关系的前提条件是△≥0.已知一元二次方程,求关于方程两根的代数式的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与系数的关系求解.3.分式方程的参数问题主要是分式方程无解、有正数解或负数解、整数解的问题,解决此类问题的关键是化分式方程为整式方程.在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.4.不等式、不等式组的参数问题主要涉及不等式(组)有解问题、无解问题、解的范围问题,解决此类问题,要掌握不等式组的解法口诀以及在数轴上熟练表示出解集的范围.已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.学+科网【典例剖析】考点一、一次方程组的含参问题例1方程组的解x,y满足x>y,则m的取值范围是()A.m>B.m>C.m>D.m>【答案】﹣.【解析】试题分析:解此题时可以运用代入消元法,解出二元一次方程组中x,y关于m的式子,然后根据x>y解出m的取值范围.试题解析:由①得x=,代入②得,8×﹣3y=m,y=.∵x>y,即>,解得m>.故选D.【点评】此题考查的是二元一次方程组和不等式的性质,先解出x,y关于m的式子,再根据x>y,求出m 的范围即可.&变式训练&变式1.1已知x+2y﹣3z=0,2x+3y+5z=0,则=.【点评】此题需将三元一次方程组中的一个未知数当做已知数来处理,转化为二元一次方程组来解.变式1.2已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b﹣7c,则m的最小值为.【解析】试题分析:解方程组,用含m的式子表示出a,b,c的值,根据a≥0,b≥0,c≥0,求得m的取值范围而求得m的最小值.试题解析:由题意可得,解得a=﹣3,b=7﹣,c=,由于a,b,c是三个非负实数,∴a≥0,b≥0,c≥0,∴﹣≥m≥﹣.﹣.所以m最小值=故本题答案为:﹣.变式1.3已知等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,则A=,B=.【答案】,﹣.【解析】【点评】本题考查了二元一次方程组的解法.解决本题的关键在于转化为关于A、B的二元一次方程组;体现了转化思想的应用.学科+网考点二、一元二次方程的含参问题例2关于x的方程x2+mx﹣9=0和x2﹣3x+m2+6m=0有公共根,则m的值为.【答案】﹣3,0,﹣4.5.【解析】试题分析:设这个公共根为α,那么根据两根之和的表达式,可知方程x2+mx﹣9=0的两根为α、﹣m﹣α;方程x2﹣3x+m2+6m=0的两根为α、3﹣α.再根据两根之积的表达式,可知α(﹣m﹣α)=﹣9,α(3﹣α)=m2+6m,然后对两式整理,用α表示m,再代入其中一个方程消掉α,求解即可得到m的值.试题解析:设这个公共根为α.则方程x2+mx﹣9=0的两根为α、﹣m﹣α;方程x2﹣3x+m2+6m=0的两根为α、3﹣α,由根与系数的关系有:α(﹣m﹣α)=﹣9,α(3﹣α)=m2+6m,整理得,α2+mα=9①,α2﹣3α+m2+6m=0②,②﹣①得,m2+6m﹣3α﹣mα=﹣9,即(m+3)2﹣α(m+3)=0,(m+3)(m+3﹣α)=0,所以m+3=0或m+3﹣α=0,解得m=﹣3或α=m+3,把α=m+3代入①得,(m+3)2+m(m+3)=9,m2+6m+9+m2+3m=9,m(2m+9)=0,所以m=0或2m+9=0,解得m=0或m=﹣4.5,综上所述,m的值为﹣3,0,﹣4.5.故答案为:﹣3,0,﹣4.5.【点评】本题主要考查了公共根的定义,一元二次方程根与系数的关系及由两个二元二次方程组成的方程组的解法.高次方程组的解法在初中教材中不要求掌握,属于竞赛题型,本题有一定难度.&变式训练&变式2.1已知a是一元二次方程x2﹣2008x+1=0的一个根,则代数式的值是.【答案】2007【解析】试题分析:将一个根a代入x2﹣2008x+1=0,可得:a2﹣2008a+1=0,故有a2﹣2007a=a﹣1,和a2+1=2008a;代入要求的代数式,整理化简即可.试题解析:由题意,把根a代入x2﹣2008x+1=0,可得:a2﹣2008a+1=0,∴a2﹣2007a﹣a+1=0,a2+1=2008a;∴a2﹣2007a=a﹣1,∴=a﹣1+=a+﹣1=﹣1=﹣1=2008﹣1,=2007.【点评】本题规律为已知一元二次方程的一个解,则这个解一定满足方程,将其代入方程去推理、判断;将代数式与已知条件联系起来,从两头朝中间寻找关系.变式2.2已知关于x的方程(k2﹣1)x2+(2k﹣1)x+1=0有两个不相等的实数根,那么实数k的取值范围为.【答案】k<且k≠±1【点评】总结:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、一元二次方程的二次项系数不为0.变式2.3已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1B.2C.22D.30【答案】D【解析】试题分析:根据求根公式x=求的α、β的值,然后将其代入所求,并求值.试题解析:方法一:方程x2﹣2x﹣4=0解是x=,即x=1±,∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴①当α=1+,β=1﹣时,α3+8β+6,=(1+)3+8(1﹣)+6,=16+8+8﹣8+6,=30;②当α=1﹣,β=1+时,α3+8β+6,=(1﹣)3+8(1+)+6,=16﹣8+8+8+6,=30.方法二:∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴α+β=2,α2﹣2α﹣4=0,∴α2=2α+4∴α3+8β+6=α•α2+8β+6=α•(2α+4)+8β+6=2α2+4α+8β+6=2(2α+4)+4α+8β+6=8α+8β+14=8(α+β)+14=30,故选D.变式2.4对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若b=2,则方程ax2+bx+c=0一定有两个相等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程x2﹣bx+ac=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax0+b)2,其中正确的()A.只有①②③B.只有①②④C.①②③④D.只有③④【答案】B【解析】试题分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.④难度较大,用到了求根公式表示x0.试题解析:①若b=2,方程两边平方得b2=4ac,即b2﹣4ac=0,所以方程ax2+bx+c=0一定有两个相等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则b2﹣4ac>0方程x2﹣bx+ac=0中根的判别式也是b2﹣4ac=0,所以也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac2+bc+c=0成立,当c≠0时ac+b+1=0成立;当c=0时ac+b+1=0不成立;④若x0是一元二次方程ax2+bx+c=0的根,可得x0=,把x0的值代入(2ax0+b)2,可得b2﹣4ac=(2ax0+b)2,综上所述其中正确的①②④.故选B【点评】此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示x0,整体代入求b2﹣4ac=(2ax0+b)2.考点三、分式方程的含参问题例3.已知方程的两根分别为a,,则方程=a+的根是()A.a,B.,a﹣1C.,a﹣1D.a,【答案】D【解析】试题分析:首先观察已知方程的特点,然后把方程=a+变形成具有已知方程的特点的形式,从而得出所求方程的根.【点评】观察出已知方程的特点是解答本题的前提,把方程=a+变形成具有已知方程的特点的形式是解答本题的关键.&变式训练&变式3.1若关于x的方程=3的解是非负数,则b的取值范围是.【答案】b≤3且b≠2【解析】试题分析:先解关于x的分式方程,求得x的值,然后再依据“解是非负数”建立不等式求b的取值范围.试题解析:去分母得,2x﹣b=3x﹣3∴x=3﹣b∵x≥0∴3﹣b≥0解得,b≤3又∵x﹣1≠0∴x≠1即3﹣b≠1,b≠2则b的取值范围是b≤3且b≠2.【点评】由于我们的目的是求b的取值范围,根据方程的解列出关于b的不等式,另外,解答本题时,易漏掉分母不等于0这个隐含的条件,这应引起足够重视.变式3.2观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x 的方程(n为正整数)的根,你的答案是:.【答案】x=n+3或x=n+4.【解析】试题分析:首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.试题解析:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.【点评】此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b的根为:x=a或x=b是解此题的关键.变式3.3已知关于x的方程只有整数解,则整数a的值为.【答案】﹣2,0或4【解析】试题分析:首先解此分式方程,即可求得x==﹣2﹣,由方程只有整数解,可得1﹣a=3或1或﹣3或﹣1,然后分别分析求解即可求得答案,注意分式方程需检验.试题解析:方程两边同乘以(x﹣1)(x+2),得:2(x+2)﹣(a+1)(x﹣1)=3a,解得:x==﹣2﹣,∵方程只有整数解,∴1﹣a=3或1或﹣3或﹣1,当1﹣a=3,即a=﹣2时,x=﹣2﹣1=﹣3,检验,将x=﹣3代入(x﹣1)(x+2)=4≠0,故x=﹣3是原分式方程的解;当1﹣a=1,即a=0时,x=﹣2﹣3=﹣5,检验,将x=﹣5代入(x﹣1)(x+2)=18≠0,故x=﹣7是原分式方程的解;当1﹣a=﹣3,即a=4时,x=﹣2+1=﹣1,检验,将x=﹣1代入(x﹣1)(x+2)=﹣2≠0,故x=﹣1是原分式方程的解;当1﹣a=﹣1,即a=2时,x=1,检验,将x=1代入(x﹣1)(x+2)=0,故x=1不是原分式方程的解;∴整数a的值为:﹣2,0或4.学*科网故答案为:﹣2,0或4.【点评】此题考查了分式方程的解知识.此题难度较大,注意分类讨论思想的应用是解此题的关键.考点四、不等式(组)的含参问题例4.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[﹣2.1]=﹣3.则下列结论:①[﹣x]=﹣[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.其中正确的结论有(写出所有正确结论的序号).【答案】②③.【解析】试题分析:①举出反例即可求解;②根据[x]表示不超过x的最大整数的定义即可求解;③分两种情况:﹣1<x<0;x=0;0<x<1;进行讨论即可求解;④首先确定x﹣[x]的范围为0~1,依此可得﹣5≤2x<﹣7,即﹣2.5≤x<﹣3.5,再找到满足条件的x值即为所求.④x﹣[x]的范围为0~1,4x﹣2[x]+5=0,﹣5≤2x<﹣7,即﹣2.5≤x<﹣3.5,x=﹣2.75或x=﹣3.25都是方程4x﹣2[x]+5=0,故原来的说法错误.故答案为:②③.【点评】本题考查了不等式的应用,正确理解[x]表示不超过x的最大整数是关键.&变式训练&变式4.1如果关于x的不等式(a+b)x+2a﹣b>0的解集是x<,那么关于x的不等式(b﹣a)x+a+2b≤0的解集是.【答案】x≥﹣.【解析】试题分析:先根据关于x的不等式(a+b)x+2a﹣b>0的解集是x<,得出b=﹣3a以及a的取值范围,进而得到b﹣a=﹣4a<0,再根据b=﹣3a,即可得到关于x的不等式(b﹣a)x+a+2b≤0的解集.试题解析:∵关于x的不等式(a+b)x+2a﹣b>0的解集是x<,∴x<,∴=,且a+b<0,即b=﹣3a,a+b<0,∴a﹣3a<0,即a>0,∴b﹣a=﹣4a<0,∴关于x的不等式(b﹣a)x+a+2b≤0的解集是x≥,∵==﹣,∴关于x的不等式(b﹣a)x+a+2b≤0的解集是x≥﹣,故答案为:x≥﹣.【点评】本题主要考查了解一元一次不等式的应用,解题时注意:根据不等式的基本性质,在去分母和化系数为1时可能需要改变不等号方向.变式4.2若不等式组无解,则m的取值范围是.【答案】m<【解析】试题分析:先求出各个不等式的解集,因为不等式组无解,所以必须是大大小小找不到的情况,由此即可求出答案.试题解析:解不等式组可得,因为不等式组无解,所以m<.【点评】本题主要考查了已知一元一次不等式组的解集,求不等式组中的字母的值,同样也是利用口诀求解.变式4.3按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是.【答案】131或26或5或【解析】试题分析:利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【点评】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.变式4.4若关于x的不等式组解集为x<2,则a的取值范围是.【答案】a≥2【解析】试题分析:求出不等式组的解集,与已知解集x<2比较,可以求出a的取值范围.试题解析:由>+1,得2x+8>3x+6,解得x<2,由x﹣a<0,得x<a,又因关于x的不等式组解集为x<2,所以a≥2.【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出解集与已知解集比较,进而求得另一个未知数.【实战演练】1.(2017重庆A 卷第12题)若数a 使关于x 的分式方程2411y a x x++=--的解为正数,且使关于y 的不等式组12()y 232y a y ⎧+->-≤⎪⎨⎪⎩的解集为y<﹣2,则符合条件的所有整数a 的和为()A.10B.12C.14D.16【答案】B.【解析】试题解析:分式方程2411y a x x ++=--的解为x=6-4a ,∵关于x 的分式方程+=4的解为正数,∴6-4a >0,∴a<6.y 123)02(2①y ②y a ⎧+>≤--⎪⎨⎪⎩,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y 的不等式组12()y 232y a y ⎧+->-≤⎪⎨⎪⎩的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6.∵a 为整数,∴a=﹣2、﹣1、0、1、2、3、4、5,(﹣2)+(﹣1)+0+1+2+3+4+5=12.故选B.学*科网考点:1.分式方程的解;2.解一元一次不等式组.2.(2017甘肃兰州第6题)如果一元二次方程2230x x m ++=有两个相等的实数根,那么是实数m 的取值A.98m >B.89m >C.98m =D.89m =【答案】98m =考点:根的判别式.3.(2017山东烟台第10题)若21,x x 是方程01222=--+-m m mx x 的两个根,且21211x x x x -=+,则m 的值为()A.1-或2B.1或2- C.2-D.1【答案】D.【解析】试题解析:∵x 1,x 2是方程x 2﹣2mx+m 2﹣m﹣1=0的两个根,∴x 1+x 2=2m,x 1•x 2=m 2﹣m﹣1.∵x 1+x 2=1﹣x 1x 2,∴2m=1﹣(m 2﹣m﹣1),即m 2+m﹣2=(m+2)(m﹣1)=0,解得:m 1=﹣2,m 2=1.∵方程x 2﹣2mx+m 2﹣m﹣1=0有实数根,∴△=(﹣2m)2﹣4(m 2﹣m﹣1)=4m+4≥0,解得:m≥﹣1.∴m=1.故选D.考点:根与系数的关系.4.(2017江苏宿迁第5题)已知45m <<,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有A .1个B.2个 C.3个D.4个5.(2017浙江金华第9题)若关于x 的一元一次不等式组()2132,x x x m->-⎧⎪⎨<⎪⎩的解是5x <,则m 的取值范围是()A.5m ≥B.5m > C.5m ≤D.5m <【答案】A.【解析】试题分析:解第一个不等式得:x <5;解第二个不等式得:x <m ;因为不等式组的解是x <5,根据不等式组解集的判定方法即可得m ≥5,故选A.6.(2017甘肃庆阳第15题)若关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,则k 的取值范围是【答案】k≤5且k≠1.考点:根的判别式.7.(2017山东烟台第15题)运行程序如图所示,从“输入实数x ”到“结果是否18<”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是.【答案】x<8.【解析】试题解析:依题意得:3x﹣6<18,解得x<8.考点:一元一次不等式的应用.考点:1.分式方程的解;2.解一元一次不等式9.(2017四川宜宾第13题)若关于x、y的二元一次方程组2m133x yx y⎧-=+⎨+=⎩的解满足x+y>0,则m的取值范围是.【答案】m>﹣2.考点:1.解一元一次不等式;2.二元一次方程组的解.10.(2017四川泸州第15题)关于x的分式方程2322x m mx x++=--的解为正实数,则实数m的取值范围是.【答案】m<6且m≠2.【解析】试题分析:方程两边同乘以x-2可得,x+m-2m=3(x-2),解得x=62m--,因方程的解为正实数,且x-2≠0,所以62m-->0且m≠2,即m<6且m≠2.11.(2017江苏宿迁第14题)若关于x的分式方程1322m xx x-=---有增根,则实数m的值是.【答案】1.【解析】试题分析:方程两边同乘以x-2,可得m=x-1-3(x-2),解得m=-2x+5,因分式方程1322m xx x-=---有增根,可得x=2,所以m=1.12.(2017山东菏泽第10题)关于的一元二次方程的一个根式,则的值是_______.【答案】0.【解析】试题分析:把x=0代入,得,解得k=1(舍去),或k=0;。

专题02 含参不等式与方程(解析版)

专题02 含参不等式与方程(解析版)

二、含参不等式与方程知识点拨含参不等式题型一、给出不等式解的情况,求参数取值范围:总结:给出不等式组解集的情况,只能确定参数的取值范围。

记住:“大小小大有解;大大小小无解。

”注:端点值格外考虑。

二、给出不等式解集,求参数的值总结:给出不等式组确切的解集,可以求出参数的值。

方法:先解出含参的不等式组中每个不等式的解集,再利用已知解集与所求解集之间的对应关系,建立方程。

三、给出方程(组)解的情况,转化成不等式(组)总结:先解含参数的方程组,解用含参数的式子表示出来。

列出题中解满足的不等关系,将含参数的式子代入,转化成关于参数的不等式(组)。

四、给出方程组解的个数,确定参数的范围总结:先解出不含参数的不等式的解集,按题意在解集范围内找出连续的几个整数解,参数的范围就在与最后一个整数解差一个单位长度的范围内(借助数轴解决问题),端点值特殊考虑。

例题演练一.选择题(共20小题)1.如果关于x的不等式组有且只有两个奇数解,且关于y的分式方程﹣=1的解为非负整数,则符合条件的所有整数a的和为( )A.8B.16C.18D.20【解答】解:不等式组整理得:,解得:<x≤6,由不等式组有且只有两个奇数解,得到1≤<3,解得:2≤a<10,即整数a=2,3,4,5,6,7,8,9,分式方程去分母得:3y+a﹣10=y﹣2,解得:y=,由分式方程解为非负整数,得到a=2,6,8,之和为16,故选:B.2.如果关于x的不等式组有且只有四个整数解,且关于x的分式方程=﹣8的解为非负数,则符合条件的所有整数a的个数为( )A.1B.2C.3D.4【解答】解:,不等式组化简为,由不等式组有且只有四个整数解,得到2≤<3,解得:6≤a<10,即整数a=6,7,8,9,,分式方程去分母得:ax﹣28=﹣32+8,解得:x=,由分式方程的解为非负数以及分式有意义的条件,x﹣4≠0,x≠4,a≠7,a﹣8<0,解得:a<8,因为a=7是增根,故a=6.故选:A.3.若关于x的不等式组有且只有五个整数解,且关于y的分式方程=1的解为非负整数,则符合条件的所有整数a的和为( )A.10B.12C.14D.18【解答】解:由①得x≤6,由②得x>.∵方程组有且只有五个整数解,∴<x≤6,即x可取6、5、4、3、2.∵x要取到2,且取不到,∴1≤<2,∴4≤a<10.∵分式方程﹣=1的解为y=4﹣,4﹣是非负整数,∴a≤8,且a是2的整数倍.又∵y≠2,∴a≠4.∴a的取值为6、8.故选:C.4.如果关于x的分式方程+=2有非负整数解,关于y的不等式组有且只有4个整数解,则所有符合条件的a的和是( )A.﹣3B.﹣2C.1D.2【解答】解:解不等式组,得,∵不等式组有且只有4个整数解,∴1<≤2,∴﹣3<a≤1.解式方程+=2,得x=3﹣a,∵x=3﹣a为非负整数,﹣3<a≤1,∴a=﹣2或﹣1或0或1,∵a=1时,x=2,原分式方程无解,故将a=1舍去,∴所有满足条件的a的值之和是﹣2﹣1+0=﹣3,故选:A.5.若m使关于x的分式方程1﹣=的解为非负数,且使关于y的不等式组有且只有三个整数解,则所有满足条件的整数m的和为( )A.3B.2C.1D.﹣3【解答】解:去分母得:1﹣x+m=x+1,解得:x=,由解为非负整数解,得到≥0,且≠1,即m≥0且m≠2,,由①得,y<4,由②得,y4,∴,由不等式组只有3个整数解,∴解得:﹣2≤m<2,∴0≤m<2,则符合题意m有1,0,1+0=1故选:C.6.若数a使关于x的不等式组有且仅有4个整数解,且使关于y的分式方程+=1有正整数解,则满足条件的a的个数是( )A.0个B.1个C.2个D.3个【解答】解:解不等式组,得,∵不等式组有且仅有4个整数解,∴﹣1<≤0,∴﹣8<a≤﹣3.解分式方程+=1,得y=,∵y=≠2为整数,∴a≠﹣6,∴所有满足条件的只有﹣4,故选:B.7.若整数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣3有正整数解,则满足条件的a的值之积为( )A.28B.﹣4C.4D.﹣2【解答】解:不等式组整理得:,由不等式组无解,得到3a﹣2≤a+2,解得:a≤2,分式方程去分母得:ax+5=﹣3x+15,即(a+3)x=10,由分式方程有正整数解,得到x=,即a+3=1,2,5,10,解得:a=﹣2,﹣1,2,7,∵x≠5,即≠5∴a≠﹣1综上,满足条件a的为﹣2,2,之积为,﹣4,故选:B.8.如果关于x的方程=1有正整数解,且关于y的不等式组至少有两个偶数解,则满足条件的整数a有( )个.A.0B.1C.2D.3【解答】解:解方程=1得,x=,∵方程有正整数解,∴整数a=1,3,6,解不等式组得,∵关于y的不等式组至少有两个偶数解,∴a﹣1≤2,∴a≤3,∴满足条件的整数a有两个.故选:C.9.如果关于x的分式方程+=3的解为整数,且关于x的不等式组有且仅有1个正整数解,则符合条件的所有整数a的和是( )A.15B.12C.7D.6【解答】解:分式方程+=3,去分母得:ax﹣5﹣10=3x﹣9,整理得:x=,由分式方程的解为整数,得到a﹣3=±1或a﹣3=﹣2或a﹣3=±3或a﹣3=±6,解得:a=4或2或1或6或0或9或﹣3,不等式组整理得:,解得:﹣2<x≤,由不等式组有且仅有1个正整数解,得到正整数解为1,则有1≤<2,解得:1≤a<6,综上,整数a=1,2,4,这几个整数的和为7.故选:C.10.若实数a使关于x的不等式组至少有3个整数解,且使关于y的分式方程+=1有正整数解,则符合条件的所有整数a的和为( )A.﹣7B.﹣12C.﹣21D.﹣23【解答】解:,解不等式①得:x≥﹣7,解不等式②得:x<a+6,∴﹣7≤x<a+6,∵至少有3个整数解,∴a+6>﹣5,∴a>﹣11;分式方程两边都乘以y﹣3得:4y﹣(y﹣a)=y﹣3,解得:y=﹣,∵y﹣3≠0,∴﹣≠3,∴a≠﹣9,∵分式方程有正整数解,∴﹣>0,∴a<﹣3,∴﹣11<a<﹣3且a≠﹣9,∵a是整数,﹣是正整数,∴a=﹣7,﹣5,∴所有a的和为﹣12.故选:B.11.如果关于x的分式方程有整数解,且关于x的不等式组的解集为x>4,那么符合条件的所有整数a的值之和是( )A.7B.8C.4D.5【解答】解:由分式方程可得1﹣ax+2(x﹣2)=﹣1解得x=∵关于x的分式方程有整数解,且a为整数∴,即a≠1于是a=0、3、4又∵关于x的不等式组整理得而不等式组的解集为x>4∴a≤4于是符合条件的所有整数a的值之和为:0+3+4=7故选:A.12.若关于x的不等式组至少有3个整数解,且关于y的分式方程=1的解是非负数,则符合条件的所有整数a的个数是( )A.3个B.4个C.5个D.6个【解答】解:解不等式组,得,∵不等式组至少有3个整数解,∴a≥2,解分式方程=1,得y=6﹣a,∵y=6﹣a为非负数,a≥2,∴a=2、3、4、5、6,∵a=4时,y=2,原分式方程无解,故将a=4舍去,∴符合条件的所有整数a的个数为4,故选:B.13.若关于x的分式方程=1有正整数解,且关于y的一元一次不等式组的解集为y≤a,则所有满足条件的整数a的和为( )A.8B.7C.3D.2【解答】解:分式方程去分母,得:x﹣a=x﹣2+5﹣2x,解得:x=,由不等式组,解不等式①,得:y<5,解不等式②,得:y≤a,∵不等式组的解集为y≤a,∴a<5,又∵分式方程有正整数解,且x≠2,∴符合题意的整数a的值可以取3;﹣1,它们的和为3+(﹣1)=2,故选:D.14.若关于x的不等式组至少有4个整数解,且关于y的分式方程3﹣=有整数解,则符合条件的所有整数a的和为( )A.4B.9C.11D.12【解答】解:不等式组整理得:,解得:﹣2≤x<a﹣1,由不等式组至少有4个整数解,得到a﹣1>1,即a>2,分式方程去分母得:3(y﹣1)﹣ay=﹣5,去括号得:3y﹣3﹣ay=﹣5,即(3﹣a)y=﹣2,解得:y=,由分式方程有整数解,得到a﹣3=±1,a﹣3=﹣2,解得:a=2(不符合题意,舍去),a=4,a=1(不符合题意,舍去),故符合条件的所有整数a的和为4.故选:A.15.若实数a使关于x的不等式组有且只有4个整数解,且使关于x的方程=﹣2的解为正数,则符合条件的所有整数a的和为( )A.7B.10C.12D.1【解答】解:解不等式组得,,∵不等式组只有4个整数解,∴0,∴0<a≤6,解分式方程得:,∵分式方程的解为正数,∴,且≠1,解得:a<5且a≠3,综上可得,a的取值范围为0<a<5,且a≠3,则符合条件的所有整数a的和为:1+2+4=7.故选:A.16.若关于x的不等式组有且仅有4个整数解,且使得关于y的方式方程有整数解,则满足条件整数a的和为( )A.﹣4B.﹣3C.﹣2D.9【解答】解:,解不等式①,得:x≤3,解不等式②,得:x>﹣,∵该不等式组有且仅有4个整数解,∴﹣1≤﹣<0,解得:﹣4<a≤1,分式方程去分母,得:y﹣(1﹣y)=﹣a,解得:y=,∵分式方程有整数解,且y≠1,∴满足条件的整数a可以取﹣3,1,其和为﹣3+1=﹣2,故选:C.17.若关于x的不等式组无解,且关于y的分式方程=1﹣的解为非负整数,则符合条件的所有整数a的和为( )A.6B.16C.18D.20【解答】解:,解①得,x≥3,解②得,x<a﹣7,∵不等式组无解,∴a﹣7≤3,∴a≤10,=1﹣,去分母,得﹣3y=y﹣2﹣a﹣y,∴y=,∵分式方程=1﹣的解为非负整数,∴y≥0且y﹣2≠0,∴且a≠4,∵a为整数,为非负整数,∴a=﹣2,1,7,10,∴整数a的和为﹣2+1+7+10=16.故选:B.18.如果关于x的分式方程有整数解,且关于x的不等式组的解集为x,那么符合条件的所有整数a的和为( )A.4B.6C.2D.1【解答】解:分式方程去分母得:ax﹣2x+4=﹣x,整理得:x=,由分式方程有整数解,得到1﹣a=1或﹣1或﹣2或4或﹣4,解得:a=0,2,3,﹣3,5,不等式组整理得:,由不等式组的解集为x>,得到a﹣1≤,即a≤,则a的值为0,2,3,﹣3,之和为2,故选:C.19.若整数a使得关于x的不等式组的解集为x<﹣2,且关于y的分式方程=+3的解为负数,则所有符合条件的整数a的和为( )A.0B.﹣3C.﹣5D.﹣8【解答】解:,解不等式①得x<﹣2,解不等式②得,∵不等式组的解集为x<﹣2,∴,解得a≥﹣5,解关于y的分式方程=+3得y=,∵关于y的分式方程=+3的解为负数,∴<0,∴a<5,∵y+1≠0,∴y≠﹣1,即≠﹣1,解得a≠3,∴﹣5≤a<5且a≠3,∵a为整数,∴a=﹣5或±4或﹣3或±2或±1或0,∴﹣5+4﹣4﹣3+2﹣2+1﹣1+0=﹣8,故所有符合条件的整数a的和为﹣8.故选:D.20.若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程=1有正整数解,则所有满足条件的整数a的值之积是( )A.28B.﹣14C.7D.﹣56【解答】解:,解不等式①,得:x≤a,解不等式②,得:x≤7,∵该不等式组的解集为x≤a,∴a≤7,分式方程去分母,得:y﹣a+3y﹣4=y﹣2,,解得:y=,∵分式方程有正整数解,且y≠2,∴满足条件的整数a可以取7,1,其积为7×1=7,,故选:C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考专题训练二
一、含参数方程组和不等式的结合
1.若整式a 使得关于x 的不等式组20
1
1
3
x a x 至少有一个整数解,且使得关于x 的方程415ax x =-有整数解,那
么所有满足条件的整数a 的值之和是( )
A.
12 B.1 C.5
2
D.3 2.从22,1,,0,13这五个数字中,随机抽取一个记为a ,则使得关于x 的方程2
13
ax x 的解为非负数,且满足关
于y 的不等式组
0321
x a x 恰有三个整数解,那么这5个数中所有满足条件的a 的值有( )
A.0个
B.1个
C.2个
D.3个
二、含参数的函数和方程、不等式的结合
3. 一直一个口袋中装有5个完全相同的小球,小球上分别标有2,6,9,12,15五个数字,搅匀后从中摸出一个小球,将小球上的数字记为a ,若使得一次函数6y
ax a 不经过第四象限且关于x 的分式方程
64
6
6
ax x
x x 的解为整数,则这5个数中所有满足条件的a 的值之和是( ) A.21 B.27 C.29 D.44
4. 从2,1,0,1,2,4这六个数中,任取一个数作为a 的值,恰好使得关于x,y 的二元一次方程组
2
x y a x y
有整数
解,且函数242y
ax x 的图象与x 轴有公共点,那么这6个数所有满足条件的a 的值之积是( )
A. 16
B.4
C.0
D.8
练习:
1. 有五张正面分别标有数组12,0,,1,32
的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗均匀后从中任取一张,将该卡片上的数字记为a ,若使得关于x 的分式方程1122
2ax
x x
有整数解,则这5个
数中满足条件的a 的值之和是( )
B. 0 B.3
C.4
D.32 2. 使关于x 的分式方程122
k x 的解为非负数,且使反比例函数3k
y x
的图象过第一、三象限时满足条件的所
有整数k 的和为( )
C. 1 B.2 C.3
D.5 3. 在平面直角坐标系中,抛物线223y
x x 与x 轴交于B,C 两点,(点B 在点的左侧),点A 在抛物线上,且横
坐标为-2,连接AB ,AC ,现将背面完全相同,正面分别标有2,1,0,1,2的五张卡片洗均匀后,背面朝上,从中任取一张,将该卡片上的数作为P 的横坐标,将该数加1作为点P 的纵坐标,点P 落在△ABC 内(不含边界),则
满足条件的点P 的个数为( )
D. 1 B.2 C.3 D.4
4.已知一个口袋装有七个完全相同的小球,小球上分别标有3,2,1,0,1,2,3七个数,搅匀后一次从中摸出一个小球,将小球上的数用a 表示,将a 的值分别带入函数(3)y
a x 和方程
3
11x a x x
,恰好使得函数的图像经过第二、四象限,切方程有整数解,那么这七个数中所有满足条件的a 的值之和是( ) A. 1 B.2 C.3 D.4
5.在5张正面分别写有数字31,1,,0,124
的卡片,它们除数字不同外其余全部相同,将他们背面朝上,洗均匀后从中随机抽取一张,记卡片上的数字为a ,若使以x 为自变量的反比例函数1
a y x
经过第二、四象限,且关于x
的不等式组
122
x a a x
有解,则这5个数中所有满足条件的a 的值之和是( )
A.
114 B.52 C.54
D.1 6.若整数a 使关于x 的不等式组
31220
x a
x x a 有解,且使关于y 的分式方程32
13y a y y
有整数解,则所有满足条件的a 的值之和是( )
A. 28
B.30
C.32
D.34
7.如果关于x 的方程
2322ax x x x
有整数解,且使关于y 的不等式组2()
649
1
5
y a y y y 的解集为4y
,则符合
条件的所有整数a 的和为( )
A. 10
B.8
C.5
D.3
8.若关于x 的方程
33
33ax
a x
x x x 的解为整数,且关于y 的不等式组2370
y y a 无解,则所有满足条件的非负
整数a 的和为( )
A. 2
B.3
C.7
D.10
9.若关于x 的不等式组21221
314
7
x a
x 无解,且关于y 分式方程
6322a y
y y
有整数解,则满足条件的所有整数a 的个数为( )
A. 2
B.3
C.4
D.5
10.有6张正面分别标有数字2,1,0,1,2,3的卡片,他们除了数字不同其余都相同,现将背面朝上,洗匀后随即抽一张,记卡片上数字为a ,若使关于x 的方程2
2(1)(3)0x a x a a 有两个不相等的实数根,且以x 为自变量
的函数22(1)21y
x a x a 的图像经过点(-1,6),则6个数中所有满足条件的a 的值之和是 ( )
A. 2
B.3
C.5
D.6。

相关文档
最新文档