东南大学信息学院系统实验(通信组)第一次实验
通信电路与系统实验一
班级: 05111104 学号: 1120111244 姓名: 李伟奇 桌号:实验一 电容反馈三点式振荡器的实验研究一、实验目的1.通过实验深入理解电容反馈三点式振荡器的工作原理,熟悉改进型电容反馈三点式振荡器的构成及电路各元件作用;2.研究在不同的静态工作点时,对振荡器起振、振荡幅度和振荡波形的影响;3.学习使用示波器和数字式频率计测量高频振荡器振荡频率的方法;4.观察电源电压和负载变化对振荡幅度、频率及频率稳定性的影响。
二、实验原理电容反馈三点式振荡器的基本原理电路(考比兹振荡器)如图2-1(a)所示。
由图可知,反馈电压由C 1和C 2分压得到,反馈系数为112C B C C =+ (2-1) 起振的幅度条件为 p m g B g 1>(忽略三极管g e ) (2-2) 其中,g m 为晶体管跨导,g p 为振荡回路的等效谐振电导。
图2-1(a)所示等效电路中的回路总电容为2121C C C C C +⋅=(2-3) 振荡频率近似为LC f g π21≈ (2-4)当外界条件(如温度等)发生变化时,振荡回路元件及晶体管结电容要发生变化,从而使得振荡频率发生漂移。
因此,为了改善普通电容反馈三点式振荡器的频稳度,可在振荡回路中引入串接电容C 3,如图2-1(b)所示,当满足C 3<< C 1、C 2时,C 3明显减弱了晶体管与振荡回路的耦合程度。
为了得到较宽的波段覆盖效果,引入并联电容C 4(它和C 3为同一个数量级),回路总电容近似为C≈C 3+C 4。
这种改进型电容反馈振荡器称为西勒电路,其振荡频率为)(2143C C L f g +≈π (2-5) 当改变C 4调节f g 时,振荡器的反馈系数不会受显著影响。
三、实验电路说明本实验电路采用西勒振荡器,如图2-2所示。
由图可知,电容C 1、C 2、C 3、C 4和电感L 1组成振荡回路。
晶体管VT 1的集电极直流负载为R C ,偏置电路由R 1、R 2、W 1和R e 构成,改变电位器W 1可改变VT 1的静态工作点。
东南大学信息科学与工程学院2013级课程描述
学生了解近现代中国在改革浪潮中的大事变。
26 马克思主义基本原理必修 3 48 主要介绍马克思主义及其原理,包括世界的物质性及其发展规律,事物的普遍联系与发展,客观规律性与主
41 军事地形学与野外生存选修 2 33 介绍现代战争中地形对战略和战术的影响、现代军事侦查技术对士兵技能的要求、野外生存必备的生物、物
54 大数据(卓工)限选 2 32 内容包括大数据技术基本原理和Hadoop 的基础知识,了解SQL语言。
68 系统试验(通信组)限选 1.5 48 内容包括信道的定义、分类及模型,模拟调制系统的基本原理、性能指标及分析设计方法,让学生掌握数字。
南邮通信原理实验
实验二BPSK传输系统综合实验一、实验原理(一)BPSK 调制理论上二进制相移键控(BPSK)可以用幅度恒左,而其载波相位随着输入信号m (1、0 码)而改变,通常这两个相位相差180° .如果每比特能量为E”则传输的BPSK信号为:0°m = 0180°m = 1(二)BPSK 解调接收的BPSK信号可以表示成:为了对接收信号中的数拯进行正确的解调,这要求在接收机端知道载波的相位和频率信息,同时还要在正确时间点对信号进行判决。
这就是我们常说的载波恢复与位定时恢复。
1、载波恢复对二相调相信号中的载波恢复有很多的方法,最常用的有平方变换法、判决反馈环等。
在BPSK解调器中,载波恢复的指标主要有:同步建立时间、保持时间、稳态相差、相位抖动等。
本地恢复载波信号的稳态相位误差对解调性能存在影响,若提取的相V载波与输入载波没有相位差,则解调输出的信号为a\t) = a(t)cos: A倍.即输岀信噪比下降cos2 A,其将影响信道的误码率性能,使误码增加。
对BPSK 而言,在存在载波恢复稳态相差时信道误码率为:2、位定时抽样时钟在信号最大点处进行抽样,保证了输出信号具有最大的信噪比性能,从而也使误码率较小。
在刚接收到BPSK信号之后,位左时一般不处于正确的抽样位置,必须采用一左的算法对抽样点进行调整,这个过程称为位左时恢复。
常用的位左时恢复有:滤波法、数字锁相环等。
最后,对通信原理综合实验系统中最常用的几个测量方法作一介绍:眼图、星座图与抽样判决点波形。
1、眼图:利用眼图可方便直观地估讣系统的性能。
示波器的通道接在接收滤波器的输出端,调整示波器的水平扫描周期,使其与接收码元的周期同步。
在荧光屏上看到显示的图型很像人的眼睛,所以称为眼图。
2、星座图:与眼图一样,可以较为方便地估计出系统的性能,同时它还可以提供更多的信息,如I、Q支路的正交性、电平平衡性能等。
星座图的观察方法如下:用一个示波器的一个通道接收I支路信号,另一通道接Q支路信号,将示波器设置成X-Y方式。
《通信技术》实验指导书word精品文档27页
《通信技术》实验指导书目录实验注意事项 (1)实验一信号源实验 (1)实验二脉冲幅度调制与解调实验 (5)实验三码型变换实验 (8)实验四ASK调制与解调实验 (13)实验五 FSK调制与解调实验 (17)实验六PSK(DPSK)调制与解调实验 (19)实验七同步载波提取实验 (23)实验注意事项1、本实验系统接通电源前确保电源插座接地良好。
2、各实验模块上的双刀双掷开关、轻触开关、微动开关、拨码开关、手旋电位器均为磨损器件,请不要频繁按动或旋转。
3、请勿直接用手触摸芯片、电解电容等元件,以免造成损坏。
4、各模块中的3362电位器(蓝色正方形元件)是出厂前调试使用的。
出厂后的各实验模块功能已调至最佳状态;勿需另行调节这些电位器,否则将会对实验结果造成严重影响。
5、在关闭各模块电源后,方可进行连线。
连线最好用万用表检查是否出现断线等。
连线时在保证接触良好的前提下应尽量轻插轻拔,检查无误后方可通电实验。
拆线时若遇到连线与孔连接过紧的情况,应用手捏住连线插头的塑料线端,左右摇晃,直至连线与孔松脱,切勿用蛮力强行拔出。
6、本实验接地端是公共的。
实验一信号源实验一、实验目的1、了解频率连续变化的各种波形的产生方法。
2、理解帧同步信号与位同步信号在整个通信系统中的作用。
3、熟练掌握信号源模块的使用方法。
二、实验内容1、观察频率连续可变信号发生器输出的各种波形及7段数码管的显示。
2、观察点频方波信号的输出。
3、观察点频正弦波信号的输出。
4、拨动拨码开关,观察码型可变NRZ码的输出。
5、观察位同步信号和帧同步信号的输出。
三、实验仪器1、信号源模块2、20M双踪示波器一台3、连接线若干四、实验原理1、信号源数字部分数字部分为实验箱提供以2M为基频分频比1~9999的BS、2BS、FS 信号及24位的NRZ码,并提供1M、256K、64K、32K、8K的方波信号。
信号源数字部分信号是直接由CPLD分频得到的。
图1-1 数字信号源部分原理框图(1)首先将24M的有源晶振三分频得到8M的时钟信号。
通信原理实验指导书(完整)
实验一:抽样定理实验一、实验目的1、熟悉TKCS—AS型通信系统原理实验装置;2、熟悉用示波器观察信号波形、测量频率与幅度;3、验证抽样定理;二、实验预习要求1、复习《通信系统原理》中有关抽样定理的内容;2、阅读本实验的内容,熟悉实验的步骤;三、实验原理和电路说明1、概述在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。
因此,采取多路化制式是极为重要的通信手段。
最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。
频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。
而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。
利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
并且,从抽样信号中可以无失真地恢复出原信号。
抽样定理在通信系统、信息传输理论方面占有十分重要的地位。
数字通信系统是以此定理作为理论基础的。
在工作设备中,抽样过程是模拟信号数字化的第一步。
抽样性能的优劣关系到整个系统的性能指标。
作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。
从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。
因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。
图1-1 单路PCM系统示意图为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。
除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。
2、抽样定理抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H(即m(t)的频谱中没有f H以上的分量),可以唯一地由频率等于或大于2f H的样值序列所决定。
通信应用系统实验报告
一、实验目的1. 了解通信应用系统的基本组成和功能。
2. 掌握通信系统中的信号传输与处理方法。
3. 熟悉常用通信协议和标准。
4. 培养实际操作能力和问题解决能力。
二、实验器材1. 通信实验箱2. 计算机3. 信号发生器4. 示波器5. 信号分析仪6. 通信协议转换器三、实验原理通信应用系统主要包括信源、信道、信宿和编码解码器等组成部分。
信源产生原始信号,信道负责信号的传输,信宿接收并处理信号,编码解码器则用于信号的转换。
在通信过程中,信号可能会受到噪声、干扰等因素的影响,因此需要采取相应的处理方法来保证通信质量。
四、实验内容1. 信源与信宿(1)信源:使用信号发生器产生模拟信号,如正弦波、方波等。
(2)信宿:使用示波器接收并显示信号波形。
2. 信道(1)模拟信道:使用通信实验箱搭建模拟信道,观察信号在信道中的衰减、失真等现象。
(2)数字信道:使用通信实验箱搭建数字信道,观察信号在信道中的误码率、误码性能等现象。
3. 编码解码器(1)模拟信号编码:使用编码解码器将模拟信号转换为数字信号。
(2)数字信号解码:使用编码解码器将数字信号转换为模拟信号。
4. 通信协议(1)TCP/IP协议:使用计算机搭建TCP/IP网络,实现数据传输。
(2)蓝牙协议:使用蓝牙模块实现短距离无线通信。
5. 信号处理(1)滤波:使用滤波器对信号进行滤波,去除噪声和干扰。
(2)调制解调:使用调制解调器实现信号的调制和解调。
五、实验步骤1. 搭建实验系统:根据实验内容,搭建相应的实验系统。
2. 调整参数:根据实验要求,调整相关参数,如信道参数、滤波器参数等。
3. 观察现象:观察信号在信道中的传输情况,分析信号衰减、失真、误码等现象。
4. 数据处理:对实验数据进行处理和分析,得出结论。
5. 撰写实验报告:总结实验过程、实验结果和实验结论。
六、实验结果与分析1. 模拟信道:在模拟信道中,信号经过传输后会出现衰减、失真等现象。
通过调整信道参数,可以减小信号衰减和失真。
东南大学实验四系统频率特性测试实验报告
东南大学实验四系统频率特性测试实验报告东南大学自动控制实验室实验报告课程名称:自动控制原理实验实验名称:实验四系统频率特性的测试院(系):自动化专业:自动化姓名:学号:实验室:417实验组别:同组人员:实验时间:20166年年1122月月202日评定成绩:审阅教师:目录一..实验目的33二.实验原理33三.实验设备33四..实验线路图44五、实验步骤44六、实验数据55七、报告要求66八、预习与回答10九、实验小结10一、实验目的(1)明确测量幅频和相频特性曲线的意义(2)掌握幅频曲线和相频特性曲线的测量方法(3)利用幅频曲线求出系统的传递函数二、实验原理在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的前提和难点。
建模一般有机理建模和辨识建模两种方法。
机理建模就是根据系统的物理关系式,推导出系统的数学模型。
辨识建模主要是人工或计算机通过实验来建立系统数学模型。
两种方法在实际的控制系统设计中,常常是互补运用的。
辨识建模又有多种方法。
本实验采用开环频率特性测试方法,确定系统传递函数,俗称频域法。
还有时域法等。
准确的系统建模是很困难的,要用反复多次,模型还不一定建准。
模型只取主要部分,而不是全部参数。
另外,利用系统的频率特性可用来分析和设计控制系统,用Bode图设计控制系统就是其中一种。
幅频特性就是输出幅度随频率的变化与输入幅度之比,即A=UoUi(),测幅频特性时,改变正弦信号源的频率测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。
测相频有两种方法:(1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T和相位差t,则相位差=∆tT360。
这种方法直观,容易理解。
就模拟示波器而言,这种方法用于高频信号测量比较合适。
(2)李沙育图形法:将系统输入端的正弦信号接示波器的X轴输入,将系统输出端的正弦信号接示波器的Y轴输入,两个正弦波将合成一个椭圆。
通信原理实验指导书(tx80学时)
通信原理实验指导书(tx80学时)实验一HDB3码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。
2、掌握HDB3码的编译规则。
3、了解滤波法位同步在的码变换过程中的作用。
二、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、HDB3编译码实验原理框图HDB3输出信号源PN15数据HDB3编码HDB3-A1电平变换CLK时钟HDB3-B1数据移位输出取绝对值缓存4bitHDB3-A2极性反变换HDB3输入时钟HDB3-B2信号检测译码时钟输入单极性码8#基带传输编译码模块数字锁相环法位同步BS2数字锁相环输入13#载波同步及位同步模块HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。
而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。
当没有连续4个连0时与AMI编码规则相同。
当4个连0时最后一个0变为传号A,其极性与前一个A的极性相反。
若该传号与前一个1的极性不同,则还要将这4个连0的第一个0变为B,B的极性与A相同。
实验框图中编码过程是将信号源经程序处理后,得到HDB3-A1和HDB3-B1两路信号,再通过电平转换电路进行变换,从而得到HDB3编码波形。
同样AMI译码只需将所有的±1变为1,0变为0即可。
而HDB3译码只需找到传号A,将传号和传号前3个数都清0即可。
传号A的识别方法是:该符号的极性与前一极性相同,该符号即为传号。
实验框图中译码过程是将HDB3码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
四、实验步骤实验项目一HDB3编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证HDB3编译码规则。
1、关电,按表格所示进行连线。
源端口信号源:PN据)信号源:CLK 钟)模块8:TH1(HDB3输出)模块8:TH5(单极性码)模块13:TH5(BS2)模块8:TH7(HDB3输入)块模块13:TH7(数字锁相环输入)模块8:TH9(译码时钟输入)数字锁相环位同步提取提供译码位时钟将数据送入译码模模块8:TH4(编码输入-时提供编码位时钟目的端口模块8:TH3(编码输入-数连线说明基带信号输入2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【256K归零码实验】。
东南大学信息学院-系统实验(通信组)-第一次实验
信源编译码实验抽样定理告诉我们:如果对某一带宽有限的模拟信号进行抽样,且抽样速率达到一定的数值时,那么根据这些抽样值就可以准确地还原信号。
也就是说传输模拟信号的采样值就可以实现模拟信号的准确传输。
电路图可以看出,抽样脉冲先对原始信号进行自然或者平顶抽样,将得到的抽样信号进行传输到接收端,接收端进行滤波即可恢复到原始波形,但是要注意,满足抽样脉冲的频率大于等于原始信号的两倍才可以准确恢复。
5.2自然抽样验证各参数的设置如下:信号类型频率幅度占空比原始信号2000Hz 20 /抽样信号8000Hz / 4/82K正弦波3K 2K 1.5倍抽样脉冲2K正弦波4K 2K 2倍抽样脉冲2K正弦波8K 2K 4倍抽样脉冲2K正弦波16K 2K 8倍抽样脉冲出,当抽样脉冲频率小于4k取样信号的频谱发生混叠,无法准确的恢复出原始信号,但是当频率大于4k时将不会发生混叠,随着频率增大,恢复的越来越好。
1K三角波16K 2K 复杂信号恢复1K三角波16K 6K 复杂信号恢复频率才可以较准确的恢复出原始信号,当然还会有混叠,所以无法真正的恢复出原始信号。
从中可以看出,虽然恢复出了原始信号,但是仍有一定的失真。
从频谱图也可以看出,出现一定的混叠。
5.3频谱混叠现象验证设置原始信号为:“正弦”,1000hz,幅度为20;设置抽样脉冲:频率:8000hz,占空比:4/8(50%);恢复滤波器截止频率:2K信号类型频率幅度占空比原始信号1000Hz 20 /抽样信号8000Hz / 4/8使用示波器观测原始信号3P2,恢复后信号6P4。
当3P2为6k时,记录恢复信号波形及频率;当3P2为7k时,记录恢复信号波形及频率;记录3P2为不同情况下,信号的波形,6k 2k原始信号恢复信号7k 2K2k低通滤波器之后,高频分量被去掉,所以基本恢复为2k正弦波。
但是通频带之内仍然有低频的杂波分量,所以信号的毛刺比较明显。
5.4抽样脉冲占空比恢复信号影响设置原始信号为:“正弦”,1000hz ,幅度为20;设置抽样脉冲:频率:8000hz ,占空比:4/8(50%);恢复滤波器截止频率:2K 信号类型 频率 幅度 占空比 原始信号 1000Hz 20 / 抽样信号 8000Hz / 4/8 维持原始信号不变,不断改变占空比记录波形如下:占空比 第一个零点1/864k2/832k4/816k从图中可以看出,第一个过零点的值为抽样频率乘以占空比的倒数,也就是说当占空比增大时,第一个过零点的值逐渐减小,另外占空比越大,恢复的信号幅度越大,这是因为占空比越大使得发送的信号功率越大。
通信系统综合实验报告
通信系统综合实验报告实验一无线多点组网一、实验步骤1、组建树型网络组建5个节点的树形网络,阐述组建的过程。
2、进行数据传输节点之间进行通信,并记录路由信息,最后,进行组播和广播,观察其特点。
二、实验过程1、组建树型网络(1).网络1A、首先在配置中寻找到其他4个节点的地址信息。
自身地址:00:37:16:00:A5:46B、查找设备C、建立连接组网假设参加组网的共有5个BT设备,称为a、b、c、d、e。
首先由一个设备(例如b)发起查询,如果找到多个设备,则任选其二(例如d、e)主动与其建链。
在这个阶段,b、d、e构成一个微微网,b为主设备(M),d、e为从设备(S)。
注意在微微网中对处于激活状态的从设备的个数限制为2;而某个设备一旦成为从设备(即d、e),它就不能再被其它设备发现,也不能查询其它设备或与其它设备建链。
再由另外一个设备(a)发起查询,查询到设备b和设备c,再主动链接。
(1).网络1组建的网络图(1)(2)网络2同理,首先,在配置中寻找到其他4个节点的地址信息。
然后查找设备,再建立连接。
由地址为00:37:16:00:A5:42的节点连接00:37:16:00:A5:46和00:37:16:00:A5:43,再由00:37:16:00:A5:47连接00:37:16:00:A5:42和00:37:16:00:A5:45,最后组成网络。
组建的网络图(2)2.进行数据传输(1)点对点发送信息例如,对于组建的网络2.图中显示的是:00:37:16:00:A5:4A对00:37:16:00:A5:43的路由,途中经过了00:37:16:00:A5:47,00:37:16:00:A5:42由此可见,简单拓扑结构,路由具有唯一性。
(2)组播与广播1. 广播:由任何一个节点设备向网络内的所有其他节点发送同一消息,观察其发送的目标地址以及数据交换过程。
在这种情况下的路由过程与两个节点间数据单播的过程有何不同。
通信工程实验报告
一、实验目的本次实验旨在让学生掌握通信工程基本原理,提高通信系统设计和分析能力,培养实际操作技能。
通过实验,使学生了解通信系统的基本组成、工作原理以及通信协议,熟悉通信设备的操作方法,为以后从事通信工程相关领域的工作打下基础。
二、实验内容1. 实验一:通信系统基本组成及工作原理(1)实验目的:了解通信系统的基本组成、工作原理,掌握通信系统的传输、交换、处理和监控等功能。
(2)实验仪器:通信实验箱、示波器、信号发生器、数字存储示波器等。
(3)实验步骤:①搭建通信系统实验平台;②观察通信系统各部分功能;③分析通信系统工作原理;④测试通信系统性能。
2. 实验二:通信协议及传输过程(1)实验目的:掌握通信协议的基本概念,熟悉TCP/IP协议栈的分层结构,了解数据传输过程。
(2)实验仪器:通信实验箱、计算机、网络分析仪等。
(3)实验步骤:①搭建网络实验环境;②观察TCP/IP协议栈各层功能;③测试数据传输过程;④分析网络性能。
3. 实验三:通信设备操作及调试(1)实验目的:熟悉通信设备的操作方法,掌握设备调试技巧。
(2)实验仪器:通信实验箱、计算机、通信设备等。
(3)实验步骤:①了解通信设备的功能及操作方法;②搭建通信设备实验平台;③进行设备调试;④测试设备性能。
4. 实验四:通信系统性能分析(1)实验目的:掌握通信系统性能分析的方法,提高通信系统设计能力。
(2)实验仪器:通信实验箱、计算机、通信系统性能分析软件等。
(3)实验步骤:①搭建通信系统实验平台;②进行系统性能测试;③分析系统性能指标;④优化通信系统设计。
三、实验结果与分析1. 实验一:通信系统基本组成及工作原理通过实验,学生了解了通信系统的基本组成、工作原理,掌握了通信系统的传输、交换、处理和监控等功能。
实验结果表明,通信系统能够满足实际通信需求,具有较好的性能。
2. 实验二:通信协议及传输过程通过实验,学生掌握了通信协议的基本概念,熟悉了TCP/IP协议栈的分层结构,了解了数据传输过程。
计算机科学基础课程教学大纲-东南大学信息科学与工程学院
(平时考试)
合计
第一章
8
8
第二章
12
12
第三章
14
2(期中考试)
16
第四章
6
6
第五章
2
2
第六章
8
8
第七章
6
6
第八章
4
4
复习
2
2
总计
62
64
六、考核方式
总评成绩=平时成绩(包括作业及出勤率)+期中考试成绩+期末考试成绩
平时成绩占10%
期中考试成绩占10%
期末考试成绩占80%
七、教材及参考书
教材:
黄学良 主编 电路基础 机械工业出版社.2007
5.函数与预处理
掌握函数定义与函数的调用、函数的参数传递、返回值及函数原型说明、全局变量、局部变量。理解函数调用机制、变量的存贮类型、作用域。掌握函数的递归调用、函数重载。理解缺省变元、内置函数。掌握函数模板及应用。理解头文件与多文件结构。了解编译预处理.
6.C++的数组类型
掌握数组的定义与初始化方法。理解数组名、字符串的含义。掌握数组的赋值与引用。
8.了解非线性电阻电路的基本概念和图解分析法,分段线性化方法,小信号分析法等基本方法。
三、上机实习要求
无
四、能力培养的要求
1.计算能力、分析能力的培养:主要是对电路分析能力的培养。
2自学能力的培养:通过本课程的教学,要培养和提高学生对所学知识进行整理、概括、消化吸收的能力,以及围绕课堂教学内容,阅读参考书籍和资料,自我扩充知识领域的能力。
3.逻辑函数与门网络:熟练掌握逻辑代数的基本知识、逻辑函数及其描述方法和门电路的基本知识,掌握组合逻辑电路的分析方法和设计方法,熟悉常用的组合逻辑模块和可编程逻辑器件(PLD),了解电子设计自动化和逻辑模拟,理解产生门网络的竞争与险象的原因和消除方法。
光纤通信第一次实验报告
四川大学电气信息学院光纤通信第一次实验报告组员:__报告撰写人:学号:实验1电光、光电转换传输实验一、实验目的:目的:了解本实验系统的基本组成结构,初步了解完整光通信的基本组成结构,掌握光通信的通信原理。
要求:1.画出实验过程中测试波形,标上必要的实验说明。
2.结合实验步骤,叙述光通信的信号变换、传输过程。
3.画出两实验箱间进行双工通信的连接示意图,标上必要的实验说明。
4.如果将光跳线分别连接TX1310、RX1550两法兰接口,P204测试点是否有信号,信号与TX1310是否一样,写出你的答案,通过实验验证你的答案。
二、实验基本原理图:本实验系统主要由两大部分组成:电端机部分、光信道部分。
电端机又分为电信号发射和电信号接收两子部分,光信道又可分为光发射端机、光纤、光接收端机三个子部分。
实验系统(光通信)基本组成结构(光通信)如下图所示:三、实验步骤1.连接电路用光跳线连接TX1310、RX1310接口(注意收集好器件的防尘帽)。
打开系统电源,液晶菜单选择“码型变换实验一CMI码PN”,在P101 口输出32KHZ的15位m序列。
通过示波器确认有相应的基带波形输出后,连接P101、P201两铆孔,示波器A通道测试TX1310测试点,调节W201改变送入光发端机信号幅度,不超过5V。
然后观察示波器B通道测试光收端机输出电信号的P202测试点,看是否有与TX1310 测试点一样或类似的信号波形。
2.采用固定CMI码作为基带信号重复以上步骤,并记录波形。
3.观察接口影响轻轻拧下TX1310或RX1310法兰接口的光跳线,观测P202测试点的示波器B通道是否还有信号波形?重新接好,此时是否出现信号波形。
4.如果要求两实验箱间进行双工通信,如何设计连接关系,设计出实验方案,并进行实验。
5.如果将光跳线分别连接TX1310、RX1550两法兰接口,P204测试点是否有信号,信号与TX1310是否一样,写出你的答案,通过实验验证你的答案。
通信原理课程实验指导书
(2)以发送时钟(TPM01)作同步,观测发送信号(TPi03)的波形。测量过零点抖动与眼皮厚度(换算成码元宽度的百分数)。
(3)用KG02输入不同的测试数据(0/1码,11101010),观察TPi03的信号(主要从信号的最佳点收敛情况、过零抖动情况进行判断)。总结信号特征并解释原因。
其中,α是滚降因子,取值范围为0到1。一般α=0.25~1时,随着α的增加,相邻符号间隔内的时间旁瓣减小,这意味着增加α可以减小位定时抖动的敏感度,但增加了占用的带宽。对于矩形脉冲BPSK信号能量的90%大约在1.6Rb的带宽内,而对于α=0.5升余弦滤波器,所有能量则在1.5Rb的带宽内。如图1.1Nyquist升余弦滤波基带传输频域与时域特性
注意:FSK的数据输入信号来源于基带成形模块的测试序列,其通过KG02来选择不同的数据,数据速率受KG03控制,在FSK实验中KG03设置在500bps(KG03处于2-3状态)。
FSK解调框图见图2.2:
图2.2 FSK解调方框图
FSK解调的工作原理是用一个模拟锁相环UE02(CD4046)对输入的FSK信号进行鉴频。在解调模块中采用一个PLL环,当输入的FSK频率出现变化时,锁相环也随之变化,它是通过控制环路的输入电压TPE04来达到的。这样当输入信号频率为20~24KHz时,锁相环的VCO控制电压为高电平,输出码元为1;反之当输入信号频率为6~9KHz时,锁相环的VCO控制电压为低电平,输出码元为0。压控振荡器(VCO)的控制电压直接反映了FSK信号中的码元变化。将该VCO的输入控制电压送入比较器中之后就能得到的FSK接收解调的数字信号。
图1.4基带传输的框图
通信综合设计实验报告
一、实验目的本次通信综合设计实验旨在使学生掌握通信系统的基本原理,提高学生的实际动手能力,培养学生运用所学知识解决实际问题的能力。
通过实验,使学生了解通信系统的基本组成,掌握通信系统的主要性能指标,学会通信系统的设计和调试方法。
二、实验原理通信系统是指通过传输媒介,将信息从发送端传输到接收端的系统。
通信系统主要由信源、信道、信宿和编码解码器等部分组成。
本实验主要研究模拟通信系统和数字通信系统的基本原理。
1. 模拟通信系统:模拟通信系统是指将模拟信号作为信息载体进行传输的系统。
其主要性能指标有信噪比、频带宽度、调制方式等。
2. 数字通信系统:数字通信系统是指将数字信号作为信息载体进行传输的系统。
其主要性能指标有误码率、信噪比、频带宽度等。
三、实验内容1. 模拟通信系统实验(1)实验目的:熟悉模拟通信系统的基本组成,掌握调制和解调的基本原理。
(2)实验内容:①调幅(AM)调制实验;②调频(FM)调制实验;③调相(PM)调制实验。
(3)实验步骤:①搭建AM调制器电路;②搭建AM解调器电路;③搭建FM调制器电路;④搭建FM解调器电路;⑤搭建PM调制器电路;⑥搭建PM解调器电路。
2. 数字通信系统实验(1)实验目的:熟悉数字通信系统的基本组成,掌握数字调制和解调的基本原理。
(2)实验内容:①数字调幅(DAM)调制实验;②数字调频(DFM)调制实验;③数字调相(DPM)调制实验。
(3)实验步骤:①搭建DAM调制器电路;②搭建DAM解调器电路;③搭建DFM调制器电路;④搭建DFM解调器电路;⑤搭建DPM调制器电路;⑥搭建DPM解调器电路。
四、实验结果与分析1. 模拟通信系统实验结果与分析(1)调幅(AM)调制实验结果:①调制信号频率:1kHz;②调制信号幅度:1V;③调制信号调制系数:1;④解调信号频率:1kHz;⑤解调信号幅度:1V。
(2)调频(FM)调制实验结果:②调制信号幅度:1V;③调制信号调制频率:10kHz;④解调信号频率:1kHz;⑤解调信号幅度:1V。
东大信息学院通信原理教学大纲
(7)带通数据传输:掌握2ASK、2FSK、2PSK和2DPSK数字调制的基本原理、调制和解调框图及系统的抗噪声性能并进行比较;理解多种改进型数字调制方式;掌握在高斯白噪声条件下对上述调制信号的相干检测和非相干检测;了解数字信号通过公众电话交换网发送和接收的调制解调器;理解多信道调制和离散多音;掌握同步技术。
东南大学信息科学与工程学院:通信原理(上)教学大纲
(总学分:3 总上课时数:48)
1.课程的性质与目的
本课程是为通信与信息学科专业学生开设的第一门通信专业基础课程。它既是通信专业知识的入门课又是重要的通信的专业基础课。本课程的主要任务是通过讲课和练习,使学生掌握通信原理的基础知识,掌握通信系统一般问题的解决方法。
(4)教学内容紧密结合当前现代通信技术的最新进展,使学生能理论联系实际,培养创新能力。
4.能力培养的要求
(1)教材每章都附有习题和思考题,学生要独立、按时完成老师布置的基本题目,加深理解课堂讲授的理论知识,培养学生的分析和计算能力。
(2)一些扩展性的内容作为课后阅读布置作为熟悉和了解的要求,培养学生的自学能 力。
(3)教学内容尽量与信号与系统、电子线路、数字电路、概率论、随机过程、线性代数、数字图像处理、移动通信等课程衔接,使学生能不断充实和完善所学知识,融会贯通地建立较为合理的整体知识体系;
东南大学信息科学与工程学院:通信原理(下)教学大纲
(总学分:3 总上课时数:32)
通信信号与系统实验指导书
《信号与系统》实验指导书王晓春编沈阳大学信息工程学院目录实验一:DDS信号发生器实验 (6)实验二:函数信号发生器 (9)实验三:扫频信号源 (12)实验四:频率计和交流毫伏表实验 (15)实验五:阶跃响应与冲激响应 (19)实验六:零输入响应和零状态响应...............................................................2 2 实验七:信号的抽样与恢复 (25)实验八:串联谐振电路的特性研究 (29)实验九:二阶无源滤波器 (32).课程编号:11211391 课程类别:专业必修适用层次:本科(2本3本)适用专业:通信工程课程总学时:80 适用学期:第4学期实验学时:20 开设实验项目数:10撰写人:王晓春审核人:周昕教学院长:范立南信号与系统实验箱介绍一、概述“信号与系统”是电子信息工程、通信工程、无线电技术、自动控制、生物医学电子工程等专业的重要专业基础课,也是国内各院校相应专业的主干课程。
当前,科学技术的发展趋势既高度综合又高度分化,这要求高等院校培养的大学生,既要有坚实的理论基础,又要有严格的工程技术训练,不断提高实验研究能力、分析计算能力、总结归纳能力和解决各种实际问题的能力。
由于该课程核心的基本概念、基本理论和分析方法非常重要,而且系统性、理论性很强,为此在学习本课程时,开设必要的实验,对学生加深理解深入掌握基本理论和分析方法,培养学生分析问题和解决问题的能力,以及使抽象的概念和理论形象化、具体化,对增强学习的兴趣有极大的好处,做好本课程的实验,是学好本课程的重要教学辅助环节。
通过本实验课程学习要求达到下列目标:1、巩固和加深所学的理论知识。
2、掌握万用表、数字电压表、直流稳压电源、函数信号发生器、示波器等常用电表和电子仪器的使用方法及测量技术。
3、培养选择实验方法、整理实验数据、绘制曲线、分析实验结果、撰写实验报告的能力。
通信系统第一次大作业—OFDM系统仿真实验报告
通信系统第⼀次⼤作业—OFDM系统仿真实验报告通信信号处理第⼀次⼤作业—OFDM系统仿真实验报告⽆210 孙⽂钰2012010999⼀、OFDM系统模型说明1.基于IFFT/FFT的OFDM系统模型基于IFFT/FFT的OFDM系统框图如图1.1所⽰:图1.1 基于IFFT/FFT的OFDM系统其中调制模块本次实验采⽤的是16QAM调制。
同时根据所给的参数,带宽5MHz,⼦载波间隔15kHz,⼦载波个数5M/15k=332,做512点FFT/IFFT,剩余180个点补零以过采样,CP长度为OFDM符号长度的7%,CP点数为332*7%=24点。
采⽤16QAM及1/2码率的编码⽅法,则系统的最⾼可达数据率为:332?20.0714ms=9300k=9.3Mbit/s系统的频谱效率为:9.3Mbit/s15kHz=620bit/s/HZ2.发射机模型发射机模型框图如图1.2所⽰:图1.2 发射机模型考虑多径传播延时的影响,在发射端IFFT变换后的时域信号之间插⼊保护间隔,同时为了不影响⼦载波间的正交性,保护间隔为循环前缀。
3.接收机模型接收机模型框图如图1.3所⽰:图1.3 接收机模型在接收端A/D转换后去循环前缀,并将时域信号通过FFT变换到原来的频域信号后进⾏判决,最后进⾏16QAM的解调。
4.本次实验的做法本次实验没有考虑模拟信号的处理,假设载波频偏估计准确,不考虑采样时钟的偏差。
对于多径传播延迟,模型简单假定为符号间延迟的相⼲叠加,因此在延迟情况下进⾏FFT相当于循环卷积,还原时需要除以旋转相位。
5.减⼩峰均⽐PAR的⽅案OFDM系统的⼀个缺点是峰均⽐过⾼,本实验采⽤了3种⽅式减⼩峰均⽐,分别是选择性映射(SLM)、压缩扩展变换(C变换)和最直接的硬限幅⽅法。
报告后⾯会逐⼀⽐较这些⽅案的性能。
6.⼆、绘制误码率与信噪⽐曲线代码见main_sim.m第⼀部分:%% SNR与误码率的关系在多径效应简单考虑为符号延时的相⼲叠加情况下,保护间隔为24点,假定延迟为0(⽆延迟)、10(在保护间隔内)、30(超过保护间隔)下仿真结果如图2.1与图2.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信源编译码实验
抽样定理告诉我们:如果对某一带宽有限的模拟信号进行抽样,且抽样速率达到一定的数值时,那么根据这些抽样值就可以准确地还原信号。
也就是说传输模拟信号的采样值就可以实现模拟信号的准确传输。
电路图可以看出,抽样脉冲先对原始信号进行自然或者平顶抽样,将得到的抽样信号进行传输到接收端,接收端进行滤波即可恢复到原始波形,但是要注意,满足抽样脉冲的频率大于等于原始信号的两倍才可以准确恢复。
5.2自然抽样验证
2K正弦波3K 2K 1.5倍抽样脉冲
2K正弦波4K 2K 2倍抽样脉冲
2K正弦波8K 2K 4倍抽样脉冲2K正弦波16K 2K 8倍抽样脉冲
出,当抽样脉冲频率小于4k取样信号的频谱发生混叠,无法准确的恢复出原始信号,但是当频率大于4k时将不会发生混叠,随着频率增大,恢复的越来越好。
1K三角波16K 2K 复杂信号恢复
1K三角波16K 6K 复杂信号恢复
频率才可以较准确的恢复出原始信号,当然还会有混叠,所以无法真正的恢复出原始信号。
从中可以看出,虽然恢复出了原始信号,但是仍有一定的失真。
从频谱图也可以看出,出现一定的混叠。
5.3频谱混叠现象验证
设置原始信号为:“正弦”,1000hz,幅度为20;设置抽样脉冲:频率:8000hz,占空
频率;当3P2为7k时,记录恢复信号波形及频率;记录3P2为不同情况下,信号的波6k 2k
原始信号恢复信号
7k 2K
2k低通滤波器之后,高频分量被去掉,所以基本恢复为2k正弦波。
但是通频带之内仍然有低频的杂波分量,所以信号的毛刺比较明显。
5.4抽样脉冲占空比恢复信号影响
设置原始信号为:“正弦”,1000hz,幅度为20;设置抽样脉冲:频率:8000hz,占空
大时,第一个过零点的值逐渐减小,另外占空比越大,恢复的信号幅度越大,这是因为占空比越大使得发送的信号功率越大。
5.5 平顶抽样验证
(1).修改参数进行测量
通过实验框图上的“原始信号”、“抽样脉冲”按钮,设置实验参数;如:设置原始信号为:“正弦”,1000hz,幅度为20;设置抽样脉冲:频率:8000hz,占空比:4/8(50%);
(2).对比自然抽样和平顶抽样频谱
使用示波器的FFT功能或频谱仪观测抽样后信号3P6。
在实验框图上通过“切换开关”,自然抽样平顶抽样
PCM编译码实验
5.2 PCM编码原理验证
抽样脉冲信号以及输出时钟信号图如下:
从图中我们可以看出来,抽样脉冲宽度是输出时钟宽度的两倍,同时频率是它的1/8,同步沿为下降沿。
PCM编码输出数据与抽样脉冲信号的关系图如下:
从图中可以看出,1次抽样8位编码输出,在抽样脉冲下降沿同步,编码输出与输出时钟同步。
液晶屏上观测PCM编码
六、实验报告
描述PCM编码串行同步接口的时序关系。
增量调制(cvsd)编译码验证
CVSD的过载观测
正常情况下,增量调制本地译码信号和原始信号会有“跟随效果”,即原始信号和本地译码信号会有同样的变化规律。
但是当量阶过小,或者本地信号幅度变化太快,则会出现本地译码跟随不了原始信号的情况,即过载量化失真。
在实验中,尝试逐渐增大原始信号的幅度,观察过载量化失真现象。
观察过载量化失真是:增量调制编码器输出交替的长连
频率过高,原始信号变化更快,编码跟踪变难。
当固定输入信号频率时,时钟频率降低,临界过载电平也相应减少,这是因为时钟降低导致编码速率降低以至于无法准确跟踪信号的变化。
编码时钟对编码系统的影响
编码时钟频率越大,恢复信号越准确。
5.8 测量系统的最大信噪比
(1).设置“原始信号”为:“正弦”,1000hz,用示波器观察比较“本地译码”与“模拟
输入”的波形,在编码器临界过载的情况下,测量系统的最大信噪比。
实际工作时,通常采用失真度仪来测量最大信号量化噪声比。
因为失真度与信噪比互为倒数,所以当用失真度仪测出失真度为x值时,取其倒数1/x即为信噪比,即失真度。