《位置与坐标》全章复习与巩固(知识讲解)八年级数学上册基础知识讲与练(北师大版)
北师大版八年级上册数学《平面直角坐标系》位置与坐标教学说课复习课件巩固
关于y轴对称的点,横坐标互为相反数,纵坐标相等. 3.第一、三象限内坐标轴夹角平分线上的点,横坐标与
纵坐标相等;第二、四象限内坐标轴夹角平分线上的 点,横坐标与纵坐标互为相反数.
(来自《典中点》)
必做:
1.完成教材P66-P67 习题T1-T5 2.补充: 请完成《典中点》剩余部分习题
么特点?线段EC上其他点的坐标呢? (3)点F和点G的横坐标有什么共同特点?线段FG与y轴有
怎样的位置关系?
知1-导
解:连接起来的图形像“房子” (如图). (1)线段AG上的点都在x轴 上,它们的纵坐标都等 于0;线段AB上的点、 线段CD与y轴的交点, 它们都在y轴上,它们的横坐标都等于0. (2)线段EC平行于x轴,点E和点C的纵坐标相同.线 段EC上其他点的纵坐标也相同,都是3. (3)点F和点G的横坐标相同,线段FG与y轴平行.
(来自教材)
知1-导
议一议 在平面直角坐标系中,坐标轴上的点的坐标有什么特点? 做一做 如图是一个笑脸. (1)在“笑脸”上找出几个位于第
一象限的点,指出它们的坐标, 说说这些点的坐标有什么特点. (2)在其他象限内分别找几个点, 看看其他各个象限内的点的坐 标有什么特点. (3)不描出点,分别判断A(1, 2),B(-1, -3), C(2, -1), D(-3, 4)所在的象限.
(1)D(-3,5), E(-7, 3), C(l,3), D(-3,5);
(2)F(-6,3), G(-6,0), A(0,0), B(0,3); 观察所描出的图形,它像什么?根据图形回答下列问题:
(1)图形中哪些点在坐标轴上,它们的坐标有什么特点? (2)线段EC与x轴有什么位置关系?点E和点C的坐标有什
北师大版数学八年级上册第三章位置与坐标知识归纳(含练习)
2020年~2021年最新第三章 位置与坐标知识点1 坐标确定位置知识链接平面内特殊位置的点的坐标特征(1)各象限内点P (a ,b )的坐标特征:①第一象限:a >0,b >0; ②第二象限:a <0,b >0;③第三象限:a <0,b <0; ④第四象限:a >0,b <0.(2)坐标轴上点P (a ,b )的坐标特征:①x 轴上:a 为任意实数,b=0;②y 轴上:b 为任意实数,a=0;③坐标原点:a=0,b=0.(3)两坐标轴夹角平分线上点P (a ,b )的坐标特征:①一、三象限:b a =; ②二、四象限:b a -=.同步练习1.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A .2 B .3 C .4 D .5考点:点到直线的距离;坐标确定位置;平行线之间的距离.解答:如图,∵到直线l 1的距离是1的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离是2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上, ∴“距离坐标”是(1,2)的点是M 1、M 2、M 3、M 4,一共4个.故选C .2.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A 点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A .黑(3,3),白(3,1)B .黑(3,1),白(3,3)C .黑(1,5),白(5,5)D .黑(3,2),白(3,3)考点:利用旋转设计图案;坐标确定位置;利用轴对称设计图案.解答:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形但不是中心对称图形,故此选项错误;B、当摆放黑(3,3),白(3,1)时,此时是轴对称图形也是中心对称图形,故此选项正确;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:B.3.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺考点:坐标确定位置.解答:依题意,OA=OC=400=AE,AB=CD=300,DE=400-300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700公尺,再向西直走DE=100公尺.故选:A.4.如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(-2,-1)D.(-2,1)考点:坐标确定位置.解答:建立平面直角坐标系如图,城市南山的位置为(-2,-1).故选C.5.(2014•怀化模拟)小军从点O向东走了3千米后,再向西走了8千米,如果要使小军沿东西方向回到点O的位置,那么小明需要()A.向东走5千米B.向西走5千米C.向东走8千米D.向西走8千米考点:坐标确定位置.解答:小军从点O向东走了3千米,再向西走了8千米后在点O的西边5千米,所以,要回到点O的位置,小明需要向东走5千米.故选A.6.(2014•遵义二模)在一次寻宝游戏中,寻宝人找到了如图所示的两个标志点A(2,1)、B(4,-1),这两个标志点到“宝藏”点的距离都是10,则“宝藏”点的坐标是.考点:勾股定理的应用;坐标确定位置;线段垂直平分线的性质.解答:首先确定坐标轴,则“宝藏”点是C和D,坐标是:(5,2)和(1,-2).故答案是:(5,2)和(1,-2).7.(2014•曲靖模拟)在一次“寻宝”游戏中,“寻宝”人找到了如图所标示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都相等,则“宝藏”点的可能坐标是.考点:坐标确定位置.解答:如图,“宝藏”的可能坐标是(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).故答案为:(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).8.(2014•赤峰)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标.考点:坐标确定位置.解答:建立平面直角坐标系如图,兵的坐标为(-2,3).故答案为:(-2,3).9.如图1,是由方向线一组同心、等距圆组成的点的位置记录图.包括8个方向:东、南、西、北、东南、东北、西南、西北,方向线交点为O,以O为圆心、等距的圆由内向外分别称作1、2、3、…n.将点所处的圆和方向称作点的位置,例如M(2,西北),N(5,南),则P点位置为.如图2,若将(1,东)标记为点A1,在圆1上按逆时针方向旋转交点依次标记为A2、A3、…、A8;到A8后进入圆2,将(2,东)标记为A9,继续在圆2上按逆时针方向旋转交点依次标记为A10、A11、…、A16;到A16后进入圆3,之后重复以上操作过程.则点A25的位置为,点A2013的位置为,点A16n+2(n为正整数)的位置为.考点:规律型:点的坐标;坐标确定位置.解答:由题意得出:P点在第3个圆上,且在东北方向,故P点位置为:(3,东北),由题意可得出每8个数A点向外移动一次,∵25÷8=3…1,故点A25所在位置与A1方向相同,故点A25的位置为(4,东),∵2013÷8=251…5,故点A2013所在位置与A5方向相同,故点A2013的位置为(252,西),∵(16n+2)÷8=2n…2,故点A16n+2所在位置与A2方向相同,故点A16n+2的位置为(2n+1,东北),故答案为:(3,东北),(4,东),(252,西),(2n+1,东北).10.有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可认,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的位置.解:C点的位置如图.11.如图是某台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的直角坐标系,并写出其余各点的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)现要给台阶铺上地毯,单位长度为1,请你算算要多长的单位长度的地毯?解:以A点为原点,水平方向为x轴,建立平面直角坐标系,所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5);B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;现要给台阶铺上地毯,单位长度为1,要11个单位长度的地毯12.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.解:方法1,用有序实数对(a,b)表示,比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3),方法2,用方向和距离表示,比如:B点位于A点的东北方向(北偏东45°等均可),距离A 3处.点2知识点2 平面直角坐标系知识链接1点的坐标(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).(2)平面直角坐标系的相关概念①建立平面直角坐标系的方法:在同一平面内画两条有公共原点且垂直的数轴.②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.(3)坐标平面的划分建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.(4)坐标平面内的点与有序实数对是一一对应的关系.2 两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=(x1-x2)2+(y1-y2)2.说明:求直角坐标系内任意两点间的距离可直接套用此公式.同步练习1.(2014•台湾)如图的坐标平面上有P 、Q 两点,其坐标分别为(5,a )、(b ,7).根据图中P 、Q 两点的位置,判断点(6-b ,a-10)落在第几象限?( )A .一B .二C .三D .四考点:点的坐标.解答:∵(5,a )、(b ,7),∴a <7,b <5,∴6-b >0,a-10<0,∴点(6-b ,a-10)在第四象限.故选D .2.(2014•萧山区模拟)已知点P (1-2m ,m-1),则不论m 取什么值,该P 点必不在( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:分横坐标是正数和负数两种情况求出m 的值,再求出纵坐标的正负情况,然后根据各象限内点的坐标特征解答.解答:①1-2m >0时,m <21,m-1<0,所以,点P 在第四象限,一定不在第一象限; ②1-2m <0时,m >21,m-1既可以是正数,也可以是负数,点P 可以在第二、三象限, 综上所述,P 点必不在第一象限.故选A .3.(2014•闵行区二模)如果点P (a ,b )在第四象限,那么点Q (-a ,b-4)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:根据第四象限的点的坐标特征确定出a 、b 的正负情况,再确定出点Q 的横坐标与纵坐标的正负情况,然后根据各象限内点的坐标特征判断即可.解答:∵点P (a ,b )在第四象限,∴a >0,b <0,∴-a <0,b-4<0,∴点Q (-a ,b-4)在第三象限.故选C .点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.(2014•北海)在平面直角坐标系中,点M (-2,1)在( )2秒3秒(2)当P点从点O出发10秒,可得到的整数点的个数是______个.(3)当P点从点O出发______秒时,可得到整数点(10,5)考点:点的坐标.分析:(1)在坐标系中全部标出即可;(2)由(1)可探索出规律,推出结果;(3)可将图向右移10各单位,用10秒;再向上移动5个单位用5秒.解答:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0) 22秒(0,2),(2,0),(1,1) 33秒(0,3),(3,0),(2,1),(1,2) 4(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么10秒时,应达到11个整数点;(3)横坐标为10,需要从原点开始沿x轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒.知识点3 坐标与图形性质知识链接1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x 轴的距离与纵坐标有关,到y 轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.同步练习1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为 .考点:勾股定理;坐标与图形性质.分析:首先利用勾股定理求出AB 的长,进而得到AC 的长,因为OC=AC-AO ,所以OC 求出,继而求出点C 的坐标.解答:∵点A ,B 的坐标分别为(-6,0)、(0,8),∴AO=6,BO=8,∴AB=22BO AO =10,∵以点A 为圆心,以AB 长为半径画弧,∴AB=AC=10,∴OC=AC-AO=4,∵交x 正半轴于点C ,∴点C 的坐标为(4,0),故答案为:(4,0).2.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 .解答:C (3,5)3.如图,Rt △OAB 的斜边AO 在x 轴的正半轴上,直角顶点B 在第四象限内,S △OAB =20,OB :AB=1:2,求A 、B 两点的坐标.解答:A (10,0),B (2,-4)4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于21MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=-1C .2a-b=1D .2a+b=1 考点:作图—基本作图;坐标与图形性质;角平分线的性质.分析:根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 与b 的数量关系.解答:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=-1,故选:B .5.如图,在平面直角坐标系中,有一矩形COAB ,其中三个顶点的坐标分别为C (0,3),O (0,0)和A (4,0),点B 在⊙O 上. (1)求点B 的坐标; (2)求⊙O 的面积.解答:(1) B (4,3) (2) 25π6.(2014•南平模拟)如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 在AB 边上,且∠CPB=60°,将△CPB 沿CP 折叠,使得点B 落在D 处,则D 的坐标为( )A .(2,32)B .(23 , 32-) C .(2,324-) D .(23,324-) 考点:翻折变换(折叠问题);坐标与图形性质.分析:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,根据正方形的性质∴OC=BC=4,∠B=90°,由∠BPC=60°得∠1=30°,再根据折叠的性质得到∠1=∠2=30°,CD=CB=4,所以∠3=30°,在Rt △CDE 中,根据含30度的直角三角形三边的关系得到DE=21CD=2,CE=3DE=32,则OE=324-,所DF=324-,然后可写出D 点坐标.解答:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,如图,∵四边形OABC 是正方形,点A 的坐标是(4,0), ∴OC=BC=4,∠B=90°, ∵∠BPC=60°, ∴∠1=30°,∵△CPB 沿CP 折叠,使得点B 落在D 处,∴∠1=∠2=30°,CD=CB=4, ∴∠3=30°, 在Rt △CDE 中,DE=21CD=2,CE=3DE=23, ∴OE=OC-CE=324-, ∴DF=OE=324-,∴D 点坐标为(2,324-).故选C .7.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,3),点C 的坐标为(21,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为 .考点:轴对称-最短路线问题;坐标与图形性质.分析:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时PA+PC 的值最小,求出AM ,求出AD ,求出DN 、CN ,根据勾股定理求出CD ,即可得出答案.解答:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N , 则此时PA+PC 的值最小, ∵DP=PA ,∴PA+PC=PD+PC=CD , ∵B (3,3),∴AB=3,OA=3,∠B=60°,由勾股定理得:OB=32, 由三角形面积公式得:21×OA×AB=21×OB×AM ,∴AM=23, ∴AD=2×23=3,∵∠AMB=90°,∠B=60°, ∴∠BAM=30°, ∵∠BAO=90°, ∴∠OAM=60°, ∵DN ⊥OA , ∴∠NDA=30°,∴AN=21AD=23,由勾股定理得:DN=323, ∵C (21,0),∴CN=3-21-23=1,在Rt △DNC 中,由勾股定理得:DC==+22)323(1231, 即PA+PC 的最小值是231, 8.在直角坐标系中,有四个点A (-8,3)、B (-4,5)、C (0,n )、D (m ,0),当四边形ABCD 的周长最短时,nm的值为( ) A .73- B .23- C .27- D .23考点:轴对称-最短路线问题;坐标与图形性质.分析:若四边形的周长最短,由于AB 的值固定,则只要其余三边最短即可,根据对称性作出A 关于x 轴的对称点A′、B 关于y 轴的对称点B′,求出A′B′的解析式,利用解析式即可求出C 、D 坐标,得到nm .解答:根据题意,作出如图所示的图象:过点B 作B 关于y 轴的对称点B′、过点A 关于x 轴的对称点A′,连接A′B′,直线A′B′与坐标轴交点即为所求.解答:直线AB 方程为y=3x-9,直线OB 斜率为23-. 过O‘点平行于直线OB 的直线方程为:y=23-(x+1) . 联立两方程,解得交点B′的坐标为(35,-4).11.已知点D 与点A (8,0),B (0,6),C (a ,-a )是一平行四边形的四个顶点,则CD 长的最小值为 .考点:平行四边形的性质;坐标与图形性质.分析:①CD 是平行四边形的一条边,那么有AB=CD ;②CD 是平行四边形的一条对角线,过C 作CM ⊥AO 于M ,过D 作DF ⊥AO 于F ,交AC 于Q ,过B 作BN ⊥DF 于N ,证△DBN ≌△CAM ,推出DN=CM=a ,BN=AM=8-a ,得出D ((8-a ,6+a ),由勾股定理得:CD 2=(8-a-a )2+(6+a+a )2=8a 2-8a+100=8(a-21)2+98,求出即可.解答:有两种情况:①CD 是平行四边形的一条边,那么有AB=CD=2286+=10 ②CD 是平行四边形的一条对角线,*12.如图,△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上.若线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为( )A .(2m ,n ) B .(m ,n ) C .(m ,2n ) D .(2m ,2n ) 考点:位似变换;坐标与图形性质.分析:根据A ,B 两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.解答:∵△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上,即A 点坐标为:(4,6),B 点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),∴线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为:(2m ,2n). 故选D .*13.(2014•海港区一模)如图,在直角坐标系中,有16×16的正方形网格,△ABC 的顶点分别在网格的格点上.以原点O 为位似中心,放大△ABC 使放大后的△A′B′C′的顶点还在格点上,最大的△A′B′C′的面积是( ) A .8 B .16 C .32 D .64考点:位似变换;坐标与图形性质.分析:根据题意结合位似图形的性质与三角形最长边即为216,进而得出答案.解答:如图所示:△A′B′C′即为符合题意的图形, 最大的△A′B′C′的面积是:21×8×16=64.故选:D .知识点4 坐标与图形的变化知识链接1 坐标与图形变化---对称 (1)关于x 轴对称横坐标相等,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P′的坐标是(x ,-y ). (2)关于y 轴对称 纵坐标相等,横坐标互为相反数.即点P (x ,y )关于y 轴的对称点P′的坐标是(-x ,y ). (3)关于直线对称①关于直线x=m 对称,P (a ,b )⇒P (2m-a ,b ) ②关于直线y=n 对称,P (a ,b )⇒P (a ,2n-b ) 2 坐标与图形变化---平移 (1)平移变换与坐标变化向右平移a 个单位,坐标P (x ,y )⇒P (x+a ,y ) 向左平移a 个单位,坐标P (x ,y )⇒P (x-a ,y ) 向上平移b 个单位,坐标P (x ,y )⇒P (x ,y+b ) 向下平移b 个单位,坐标P (x ,y )⇒P (x ,y-b )(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.) 3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P (x ,y )关于原点O 的对称点是P′(-x ,-y ). (2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.同步练习1.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选:C.2.(2014•呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.故选D.3.(2014•牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)考点:坐标与图形变化-平移.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.解答:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.4.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移.专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.5.(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.考点:坐标与图形变化-平移.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x-a,y)进行计算即可.解答:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1-2,3),即(-1,3),故答案为:(-1,3).6.(2014•宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2).7.(2014•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:∵点O(0,0),A(1,3),线段OA向右平移3个单位,∴点O 1的坐标是(3,0),A 1的坐标是(4,3).故答案为:(3,0),(4,3).*8.(2014•巴中)如图,直线y=−34x+4与x 轴、y 轴分别交于A 、B 两点,把△A0B 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标是 .考点:坐标与图形变化-旋转.分析:首先根据直线AB 来求出点A 和点B 的坐标,B′的横坐标等于OA+OB ,而纵坐标等于OA ,进而得出B′的坐标.解答:直线y=-34x+4与x 轴,y 轴分别交于A (3,0),B (0,4)两点, ∵旋转前后三角形全等,∠O′AO=90°,∠B′O′A=90°∴OA=O′A ,OB=O′B′,O′B′∥x 轴,∴点B′的纵坐标为OA 长,即为3,横坐标为OA+OB=OA+O′B′=3+4=7,故点B′的坐标是(7,3),故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B 和点B′位置的特殊性,以及点B′的坐标与OA 和OB 的关系.9.(2013•梅州)如图,在平面直角坐标系中,A (-2,2),B (-3,-2)(1)若点C 与点A 关于原点O 对称,则点C 的坐标为______;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为______;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A 的横坐标加5,纵坐标不变即可得到对应点D 的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.解答:(1)∵点C 与点A (-2,2)关于原点O 对称,∴点C 的坐标为(2,-2);(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2);(3)由图可知:A (-2,2),B (-3,-2),C (2,-2),D (3,2),∵在平行四边形ABCD 内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1),(0,0),(1,-1),∴P=153=51. 点评:本题考查了关于原点对称的点的坐标,坐标与图形变化-平移,概率公式.难度适中,掌握规律是解题的关键.10.(黄冈)在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1、B 1、C 1,若点A 1的坐标为(3,1).则点C 1的坐标为______.考点:坐标与图形变化-平移.分析:首先根据A 点平移后的坐标变化,确定三角形的平移方法,点A 横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标-2即为点C 1的坐标.解答:由A (-2,3)平移后点A 1的坐标为(3,1),可得A 点横坐标加5,纵坐标减2, 则点C 的坐标变化与A 点的变化相同,故C 1(2+5,0-2),即(7,-2).故答案为:(7,-2).点评:本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.11.(北京)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以31,再把所得数对应的点向右平移1个单位,得到点P 的对应点P′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A′B′,其中点A ,B 的对应点分别为A′,B′.如图1,若点A 表示的数是-3,则点A′表示的数是______;若点B′表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点E′与点E 重合,则点E 表示的数是______.(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A′B′C′D′及其内部的点,其中点A ,B 的对应点分别为A′,B′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F′与点F 重合,求点F 的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质.分析:(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为a ,根据题意列出方程求解即可得到点B 表示的数,设点E 表示的数为b ,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F 的坐标为(x ,y ),根据平移规律列出方程组求解即可.解答:(1)点A′:-3×31+1=-1+1=0,设点B 表示的数为a ,则31a+1=2, 解得a=3,设点E 表示的数为b ,则31b+1=b , 解得b=23;。
北师大版数学八年级上册第三章位置与坐标知识归纳(含练习)
2020年~2021年最新第三章 位置与坐标知识点1 坐标确定位置知识链接平面内特殊位置的点的坐标特征(1)各象限内点P (a ,b )的坐标特征:①第一象限:a >0,b >0; ②第二象限:a <0,b >0;③第三象限:a <0,b <0; ④第四象限:a >0,b <0.(2)坐标轴上点P (a ,b )的坐标特征:①x 轴上:a 为任意实数,b=0;②y 轴上:b 为任意实数,a=0;③坐标原点:a=0,b=0.(3)两坐标轴夹角平分线上点P (a ,b )的坐标特征:①一、三象限:b a =; ②二、四象限:b a -=.同步练习1.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A .2 B .3 C .4 D .5考点:点到直线的距离;坐标确定位置;平行线之间的距离.解答:如图,∵到直线l 1的距离是1的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离是2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上, ∴“距离坐标”是(1,2)的点是M 1、M 2、M 3、M 4,一共4个.故选C .2.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A 点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A .黑(3,3),白(3,1)B .黑(3,1),白(3,3)C .黑(1,5),白(5,5)D .黑(3,2),白(3,3)考点:利用旋转设计图案;坐标确定位置;利用轴对称设计图案.解答:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形但不是中心对称图形,故此选项错误;B、当摆放黑(3,3),白(3,1)时,此时是轴对称图形也是中心对称图形,故此选项正确;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:B.3.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺考点:坐标确定位置.解答:依题意,OA=OC=400=AE,AB=CD=300,DE=400-300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700公尺,再向西直走DE=100公尺.故选:A.4.如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(-2,-1)D.(-2,1)考点:坐标确定位置.解答:建立平面直角坐标系如图,城市南山的位置为(-2,-1).故选C.5.(2014•怀化模拟)小军从点O向东走了3千米后,再向西走了8千米,如果要使小军沿东西方向回到点O的位置,那么小明需要()A.向东走5千米B.向西走5千米C.向东走8千米D.向西走8千米考点:坐标确定位置.解答:小军从点O向东走了3千米,再向西走了8千米后在点O的西边5千米,所以,要回到点O的位置,小明需要向东走5千米.故选A.6.(2014•遵义二模)在一次寻宝游戏中,寻宝人找到了如图所示的两个标志点A(2,1)、B(4,-1),这两个标志点到“宝藏”点的距离都是10,则“宝藏”点的坐标是.考点:勾股定理的应用;坐标确定位置;线段垂直平分线的性质.解答:首先确定坐标轴,则“宝藏”点是C和D,坐标是:(5,2)和(1,-2).故答案是:(5,2)和(1,-2).7.(2014•曲靖模拟)在一次“寻宝”游戏中,“寻宝”人找到了如图所标示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都相等,则“宝藏”点的可能坐标是.考点:坐标确定位置.解答:如图,“宝藏”的可能坐标是(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).故答案为:(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).8.(2014•赤峰)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标.考点:坐标确定位置.解答:建立平面直角坐标系如图,兵的坐标为(-2,3).故答案为:(-2,3).9.如图1,是由方向线一组同心、等距圆组成的点的位置记录图.包括8个方向:东、南、西、北、东南、东北、西南、西北,方向线交点为O,以O为圆心、等距的圆由内向外分别称作1、2、3、…n.将点所处的圆和方向称作点的位置,例如M(2,西北),N(5,南),则P点位置为.如图2,若将(1,东)标记为点A1,在圆1上按逆时针方向旋转交点依次标记为A2、A3、…、A8;到A8后进入圆2,将(2,东)标记为A9,继续在圆2上按逆时针方向旋转交点依次标记为A10、A11、…、A16;到A16后进入圆3,之后重复以上操作过程.则点A25的位置为,点A2013的位置为,点A16n+2(n为正整数)的位置为.考点:规律型:点的坐标;坐标确定位置.解答:由题意得出:P点在第3个圆上,且在东北方向,故P点位置为:(3,东北),由题意可得出每8个数A点向外移动一次,∵25÷8=3…1,故点A25所在位置与A1方向相同,故点A25的位置为(4,东),∵2013÷8=251…5,故点A2013所在位置与A5方向相同,故点A2013的位置为(252,西),∵(16n+2)÷8=2n…2,故点A16n+2所在位置与A2方向相同,故点A16n+2的位置为(2n+1,东北),故答案为:(3,东北),(4,东),(252,西),(2n+1,东北).10.有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可认,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的位置.解:C点的位置如图.11.如图是某台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的直角坐标系,并写出其余各点的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)现要给台阶铺上地毯,单位长度为1,请你算算要多长的单位长度的地毯?解:以A点为原点,水平方向为x轴,建立平面直角坐标系,所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5);B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;现要给台阶铺上地毯,单位长度为1,要11个单位长度的地毯12.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.解:方法1,用有序实数对(a,b)表示,比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3),方法2,用方向和距离表示,比如:B点位于A点的东北方向(北偏东45°等均可),距离A 3处.点2知识点2 平面直角坐标系知识链接1点的坐标(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).(2)平面直角坐标系的相关概念①建立平面直角坐标系的方法:在同一平面内画两条有公共原点且垂直的数轴.②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.(3)坐标平面的划分建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.(4)坐标平面内的点与有序实数对是一一对应的关系.2 两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=(x1-x2)2+(y1-y2)2.说明:求直角坐标系内任意两点间的距离可直接套用此公式.同步练习1.(2014•台湾)如图的坐标平面上有P 、Q 两点,其坐标分别为(5,a )、(b ,7).根据图中P 、Q 两点的位置,判断点(6-b ,a-10)落在第几象限?( )A .一B .二C .三D .四考点:点的坐标.解答:∵(5,a )、(b ,7),∴a <7,b <5,∴6-b >0,a-10<0,∴点(6-b ,a-10)在第四象限.故选D .2.(2014•萧山区模拟)已知点P (1-2m ,m-1),则不论m 取什么值,该P 点必不在( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:分横坐标是正数和负数两种情况求出m 的值,再求出纵坐标的正负情况,然后根据各象限内点的坐标特征解答.解答:①1-2m >0时,m <21,m-1<0,所以,点P 在第四象限,一定不在第一象限; ②1-2m <0时,m >21,m-1既可以是正数,也可以是负数,点P 可以在第二、三象限, 综上所述,P 点必不在第一象限.故选A .3.(2014•闵行区二模)如果点P (a ,b )在第四象限,那么点Q (-a ,b-4)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:根据第四象限的点的坐标特征确定出a 、b 的正负情况,再确定出点Q 的横坐标与纵坐标的正负情况,然后根据各象限内点的坐标特征判断即可.解答:∵点P (a ,b )在第四象限,∴a >0,b <0,∴-a <0,b-4<0,∴点Q (-a ,b-4)在第三象限.故选C .点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.(2014•北海)在平面直角坐标系中,点M (-2,1)在( )2秒3秒(2)当P点从点O出发10秒,可得到的整数点的个数是______个.(3)当P点从点O出发______秒时,可得到整数点(10,5)考点:点的坐标.分析:(1)在坐标系中全部标出即可;(2)由(1)可探索出规律,推出结果;(3)可将图向右移10各单位,用10秒;再向上移动5个单位用5秒.解答:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0) 22秒(0,2),(2,0),(1,1) 33秒(0,3),(3,0),(2,1),(1,2) 4(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么10秒时,应达到11个整数点;(3)横坐标为10,需要从原点开始沿x轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒.知识点3 坐标与图形性质知识链接1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x 轴的距离与纵坐标有关,到y 轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.同步练习1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为 .考点:勾股定理;坐标与图形性质.分析:首先利用勾股定理求出AB 的长,进而得到AC 的长,因为OC=AC-AO ,所以OC 求出,继而求出点C 的坐标.解答:∵点A ,B 的坐标分别为(-6,0)、(0,8),∴AO=6,BO=8,∴AB=22BO AO =10,∵以点A 为圆心,以AB 长为半径画弧,∴AB=AC=10,∴OC=AC-AO=4,∵交x 正半轴于点C ,∴点C 的坐标为(4,0),故答案为:(4,0).2.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 .解答:C (3,5)3.如图,Rt △OAB 的斜边AO 在x 轴的正半轴上,直角顶点B 在第四象限内,S △OAB =20,OB :AB=1:2,求A 、B 两点的坐标.解答:A (10,0),B (2,-4)4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于21MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=-1C .2a-b=1D .2a+b=1 考点:作图—基本作图;坐标与图形性质;角平分线的性质.分析:根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 与b 的数量关系.解答:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=-1,故选:B .5.如图,在平面直角坐标系中,有一矩形COAB ,其中三个顶点的坐标分别为C (0,3),O (0,0)和A (4,0),点B 在⊙O 上. (1)求点B 的坐标; (2)求⊙O 的面积.解答:(1) B (4,3) (2) 25π6.(2014•南平模拟)如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 在AB 边上,且∠CPB=60°,将△CPB 沿CP 折叠,使得点B 落在D 处,则D 的坐标为( )A .(2,32)B .(23 , 32-) C .(2,324-) D .(23,324-) 考点:翻折变换(折叠问题);坐标与图形性质.分析:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,根据正方形的性质∴OC=BC=4,∠B=90°,由∠BPC=60°得∠1=30°,再根据折叠的性质得到∠1=∠2=30°,CD=CB=4,所以∠3=30°,在Rt △CDE 中,根据含30度的直角三角形三边的关系得到DE=21CD=2,CE=3DE=32,则OE=324-,所DF=324-,然后可写出D 点坐标.解答:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,如图,∵四边形OABC 是正方形,点A 的坐标是(4,0), ∴OC=BC=4,∠B=90°, ∵∠BPC=60°, ∴∠1=30°,∵△CPB 沿CP 折叠,使得点B 落在D 处,∴∠1=∠2=30°,CD=CB=4, ∴∠3=30°, 在Rt △CDE 中,DE=21CD=2,CE=3DE=23, ∴OE=OC-CE=324-, ∴DF=OE=324-,∴D 点坐标为(2,324-).故选C .7.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,3),点C 的坐标为(21,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为 .考点:轴对称-最短路线问题;坐标与图形性质.分析:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时PA+PC 的值最小,求出AM ,求出AD ,求出DN 、CN ,根据勾股定理求出CD ,即可得出答案.解答:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N , 则此时PA+PC 的值最小, ∵DP=PA ,∴PA+PC=PD+PC=CD , ∵B (3,3),∴AB=3,OA=3,∠B=60°,由勾股定理得:OB=32, 由三角形面积公式得:21×OA×AB=21×OB×AM ,∴AM=23, ∴AD=2×23=3,∵∠AMB=90°,∠B=60°, ∴∠BAM=30°, ∵∠BAO=90°, ∴∠OAM=60°, ∵DN ⊥OA , ∴∠NDA=30°,∴AN=21AD=23,由勾股定理得:DN=323, ∵C (21,0),∴CN=3-21-23=1,在Rt △DNC 中,由勾股定理得:DC==+22)323(1231, 即PA+PC 的最小值是231, 8.在直角坐标系中,有四个点A (-8,3)、B (-4,5)、C (0,n )、D (m ,0),当四边形ABCD 的周长最短时,nm的值为( ) A .73- B .23- C .27- D .23考点:轴对称-最短路线问题;坐标与图形性质.分析:若四边形的周长最短,由于AB 的值固定,则只要其余三边最短即可,根据对称性作出A 关于x 轴的对称点A′、B 关于y 轴的对称点B′,求出A′B′的解析式,利用解析式即可求出C 、D 坐标,得到nm .解答:根据题意,作出如图所示的图象:过点B 作B 关于y 轴的对称点B′、过点A 关于x 轴的对称点A′,连接A′B′,直线A′B′与坐标轴交点即为所求.解答:直线AB 方程为y=3x-9,直线OB 斜率为23-. 过O‘点平行于直线OB 的直线方程为:y=23-(x+1) . 联立两方程,解得交点B′的坐标为(35,-4).11.已知点D 与点A (8,0),B (0,6),C (a ,-a )是一平行四边形的四个顶点,则CD 长的最小值为 .考点:平行四边形的性质;坐标与图形性质.分析:①CD 是平行四边形的一条边,那么有AB=CD ;②CD 是平行四边形的一条对角线,过C 作CM ⊥AO 于M ,过D 作DF ⊥AO 于F ,交AC 于Q ,过B 作BN ⊥DF 于N ,证△DBN ≌△CAM ,推出DN=CM=a ,BN=AM=8-a ,得出D ((8-a ,6+a ),由勾股定理得:CD 2=(8-a-a )2+(6+a+a )2=8a 2-8a+100=8(a-21)2+98,求出即可.解答:有两种情况:①CD 是平行四边形的一条边,那么有AB=CD=2286+=10 ②CD 是平行四边形的一条对角线,*12.如图,△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上.若线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为( )A .(2m ,n ) B .(m ,n ) C .(m ,2n ) D .(2m ,2n ) 考点:位似变换;坐标与图形性质.分析:根据A ,B 两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.解答:∵△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上,即A 点坐标为:(4,6),B 点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),∴线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为:(2m ,2n). 故选D .*13.(2014•海港区一模)如图,在直角坐标系中,有16×16的正方形网格,△ABC 的顶点分别在网格的格点上.以原点O 为位似中心,放大△ABC 使放大后的△A′B′C′的顶点还在格点上,最大的△A′B′C′的面积是( ) A .8 B .16 C .32 D .64考点:位似变换;坐标与图形性质.分析:根据题意结合位似图形的性质与三角形最长边即为216,进而得出答案.解答:如图所示:△A′B′C′即为符合题意的图形, 最大的△A′B′C′的面积是:21×8×16=64.故选:D .知识点4 坐标与图形的变化知识链接1 坐标与图形变化---对称 (1)关于x 轴对称横坐标相等,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P′的坐标是(x ,-y ). (2)关于y 轴对称 纵坐标相等,横坐标互为相反数.即点P (x ,y )关于y 轴的对称点P′的坐标是(-x ,y ). (3)关于直线对称①关于直线x=m 对称,P (a ,b )⇒P (2m-a ,b ) ②关于直线y=n 对称,P (a ,b )⇒P (a ,2n-b ) 2 坐标与图形变化---平移 (1)平移变换与坐标变化向右平移a 个单位,坐标P (x ,y )⇒P (x+a ,y ) 向左平移a 个单位,坐标P (x ,y )⇒P (x-a ,y ) 向上平移b 个单位,坐标P (x ,y )⇒P (x ,y+b ) 向下平移b 个单位,坐标P (x ,y )⇒P (x ,y-b )(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.) 3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P (x ,y )关于原点O 的对称点是P′(-x ,-y ). (2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.同步练习1.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选:C.2.(2014•呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.故选D.3.(2014•牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)考点:坐标与图形变化-平移.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.解答:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.4.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移.专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.5.(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.考点:坐标与图形变化-平移.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x-a,y)进行计算即可.解答:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1-2,3),即(-1,3),故答案为:(-1,3).6.(2014•宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2).7.(2014•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:∵点O(0,0),A(1,3),线段OA向右平移3个单位,∴点O 1的坐标是(3,0),A 1的坐标是(4,3).故答案为:(3,0),(4,3).*8.(2014•巴中)如图,直线y=−34x+4与x 轴、y 轴分别交于A 、B 两点,把△A0B 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标是 .考点:坐标与图形变化-旋转.分析:首先根据直线AB 来求出点A 和点B 的坐标,B′的横坐标等于OA+OB ,而纵坐标等于OA ,进而得出B′的坐标.解答:直线y=-34x+4与x 轴,y 轴分别交于A (3,0),B (0,4)两点, ∵旋转前后三角形全等,∠O′AO=90°,∠B′O′A=90°∴OA=O′A ,OB=O′B′,O′B′∥x 轴,∴点B′的纵坐标为OA 长,即为3,横坐标为OA+OB=OA+O′B′=3+4=7,故点B′的坐标是(7,3),故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B 和点B′位置的特殊性,以及点B′的坐标与OA 和OB 的关系.9.(2013•梅州)如图,在平面直角坐标系中,A (-2,2),B (-3,-2)(1)若点C 与点A 关于原点O 对称,则点C 的坐标为______;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为______;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A 的横坐标加5,纵坐标不变即可得到对应点D 的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.解答:(1)∵点C 与点A (-2,2)关于原点O 对称,∴点C 的坐标为(2,-2);(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2);(3)由图可知:A (-2,2),B (-3,-2),C (2,-2),D (3,2),∵在平行四边形ABCD 内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1),(0,0),(1,-1),∴P=153=51. 点评:本题考查了关于原点对称的点的坐标,坐标与图形变化-平移,概率公式.难度适中,掌握规律是解题的关键.10.(黄冈)在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1、B 1、C 1,若点A 1的坐标为(3,1).则点C 1的坐标为______.考点:坐标与图形变化-平移.分析:首先根据A 点平移后的坐标变化,确定三角形的平移方法,点A 横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标-2即为点C 1的坐标.解答:由A (-2,3)平移后点A 1的坐标为(3,1),可得A 点横坐标加5,纵坐标减2, 则点C 的坐标变化与A 点的变化相同,故C 1(2+5,0-2),即(7,-2).故答案为:(7,-2).点评:本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.11.(北京)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以31,再把所得数对应的点向右平移1个单位,得到点P 的对应点P′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A′B′,其中点A ,B 的对应点分别为A′,B′.如图1,若点A 表示的数是-3,则点A′表示的数是______;若点B′表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点E′与点E 重合,则点E 表示的数是______.(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A′B′C′D′及其内部的点,其中点A ,B 的对应点分别为A′,B′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F′与点F 重合,求点F 的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质.分析:(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为a ,根据题意列出方程求解即可得到点B 表示的数,设点E 表示的数为b ,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F 的坐标为(x ,y ),根据平移规律列出方程组求解即可.解答:(1)点A′:-3×31+1=-1+1=0,设点B 表示的数为a ,则31a+1=2, 解得a=3,设点E 表示的数为b ,则31b+1=b , 解得b=23;。
北师大版初中数学八年级上册知识讲解,巩固练习(教学资料,补习资料)第三章 位置与坐标(提高)
第三章位置与坐标(提高)平面直角坐标系(提高)【学习目标】1.了解确定位置的方法,用有序数对或用方向和距离来确定物体的位置.2.理解平面直角坐标系概念,能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标描出点的位置、由点的位置写出它的坐标.3.会用确定坐标、描点、连线的方法在直角坐标系中作出简单图形.【要点梳理】要点一、确定位置的方法有序数对:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.可以用有序数对确定物体的位置,也可以用方向和距离来确定物体的位置(或称方位).要点二、平面直角坐标系与点的坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2.点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图 2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1.象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2.各个象限内和坐标轴上点的坐标的符号特征要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.【典型例题】类型一、确定物体的位置1.某军事行动中,对军队部署的方位,采用钟代码的方式来表示、例如,北偏东30°方向45千米的位置,与钟面相结合,以钟面圆心为基准,时针指向北偏东30°的时刻是1:00,那么这个地点就用代码010045来表示、按这种表示方式,南偏东30°方向78千米的位置,可用代码表示为__________.【思路点拨】根据题目的叙述可知:代码的前四位表示时间,前两位是几点,中间两位表示多少分,后两位是指距离,时间表示方向角,即正对钟表时按:上北,下南,左西,右东的方向,以钟面圆心为基准,时针指向所对应的时间.【答案】050078【解析】解:南偏东30°方向,时针正好指到5点00分,因而代码前4位是:0500,78千米的位置则代码的后两位是78.则代码是:050078.故答案填:050078.【总结升华】正确读懂题目的含义,是解决题目的关键,这一题目就是训练学生审题,理解题目的能力.类型二、平面直角坐标系与点的坐标的概念2.有一个长方形ABCD,长为5,宽为3,先建立一个平面直角坐标系,在此坐标系下求出A,B,C,D各点的坐标.【答案与解析】解:本题答案不唯一,现列举三种解法.解法一:以点A为坐标原点,边AB所在的直线为x轴,边AD所在直线为y轴,建立平面直角坐标系,如图(1):A(0,0),B(5,0),C(5,3),D(0,3).解法二:以边AB的中点为坐标原点,边AB所在的直线为x轴,AB的中点和CD的中点所在的直线为y轴,建立平面直角坐标系,如图(2):A(﹣2.5,0),B(2.5,0),C(2.5,3),D(-2.5,3).解法三:以两组对边中点所在直线为x轴、y轴,建立平面直角坐标系,如图(3):A(﹣2.5,-1.5),B(2.5,-1.5),C(2.5,1.5),D(-2.5,1.5).【总结升华】在不同平面直角坐标系中,长方形顶点坐标不同,说明位置的相对性与绝对性,即只要原点、x轴和y轴确定,每一个点的位置也确定,而一旦原点或x轴、y轴改变,每一个点的位置也相对应地改变.3.平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(-3,-1),B(1,3),C(2,-3).求△ABC的面积.【思路点拨】三角形的三边都不与坐标轴平行,根据平面直角坐标系的特点,可以将三角形的面积转化为梯形或长方形的面积减去多余的直角三角形的面积,即可求得此三角形的面积.【答案与解析】解:如图所示,过点A、C分别作平行于y轴的直线与过B点平行于x轴的直线交于点D、E,则四边形ACED为梯形,根据点A(-3,-1)、B(1,3)、C(2,-3)可求得AD=4,CE=6,DB=4,BE=1,DE=5,所以△ABC的面积为:S△A BC 111(A D CE) DE AD DB CE BE 222111(46)5446114222.【总结升华】点的坐标能体现点到坐标轴的距离,解决平面直角坐标系中的三角形面积问题,就是要充分利用这一点,将不规则图形转化为规则图形,再利用相关图形的面积计算公式求解.举一反三:【变式】(2018春•莘县期末)在如图所示的正方形网格中,每个小正方形的单位长度均为1,△ABC的三个顶点恰好是正方形网格的格点.(1)写出图中所示△ABC各顶点的坐标.(2)求出此三角形的面积.【答案】解:(1)A(3,3),B(﹣2,﹣2),C(4,﹣3);(2)如图所示:S=S﹣S﹣S△ABC矩形DECF△﹣BEC △S ADB △AFC== .类型三、坐标平面及点的特征4.(2019春沂水县期中)已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【思路点拨】根据点的坐标特征一一求解.【答案与解析】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则 P (﹣6,0);(2))∵点 P (a ﹣2,2a +8),在 y 轴上, ∴a ﹣2=0, 解得:a =2,故 2a +8=2×2+8=12, 则 P (0,12);(3)∵点 Q 的坐标为(1,5),直线 PQ ∥y 轴;, ∴a ﹣2=1, 解得:a =3, 故 2a +8=14, 则 P (1,14);(4)∵点 P 到 x 轴、y 轴的距离相等, ∴a ﹣2=2a +8 或 a ﹣2+2a +8=0, 解得:a =﹣10,a =﹣2,故当 a =﹣10 则:a ﹣2=﹣12,2a +8=﹣12, 则 P (﹣12,﹣12);故当 a =﹣2 则:a ﹣2=﹣4,2a +8=4, 则 P (﹣4,4).综上所述:P (﹣12,﹣12),(﹣4,4).【总结升华】此题主要考查了点的坐标性质,包括坐标轴上的点的坐标特征,平行于坐标轴 的点的特征,以及到坐标轴的距离相等的点的特征,考察很全面. 举一反三:【变式】若点 C(x,y)满足 x +y <0,xy >0,则点 C 在第_____象限. 【答案】三.5.一个正方形的一边上的两个顶点 O 、A 的坐标为 O(0,0),A(4,0),则另外两个顶 点的坐标是什么.【思路点拨】有点的坐标说明已有确定的平面直角坐标系,但正方形的另两个顶点位置不确 定,所以应按不同位置分类去求.【答案与解析】解:不妨设另外两个顶点为 B 、C ,因为 OABC 是正方形,所以 OC =BA =BC =OA =4.且 OC ∥ AB ,OA ∥BC ,则:(1)当顶点 B 在第一象限时,如图所示,显然 B 点坐标为(4,4),C 点坐标为(0,4).(2)当顶点 B 在第四象限时,如图所示,显然 B 点坐标为(4,-4),C 点坐标为(0,-4).1 2【总结升华】在解答这类问题时,我们千万不要忽略了分类讨论而导致错误.举一反三:【变式】点A(m,n)到x轴的距离为3,到y轴的距离为2,则点A的坐标为________.【答案】(2,3)或(-2,3)或(-2,-3)或(2,-3).【巩固练习】一、选择题1.A地在地球上的位置如图,则A地的位置是().A.东经130°,北纬50°B.东经130°,北纬60°C.东经140°,北纬50°D.东经40°,北纬50°2.点A(a,-2)在二、四象限的角平分线上,则a的值是().A.2B.-2C.12D.123.已知点M到x轴、y轴的距离分别为4和6,且点M在x轴的上方、y轴的左侧,则点M 的坐标为() .A.(4,-6)B.(-4,6)C.(6,-4)D.(-6,4)4.(2018•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限5. 已知点M(a,b),过M作MH x轴于H,并延长到N,使NH MH,且N点坐标为(2,3),则a b ().A.0B.1C.—1 D.—56.(2019•凉山州)观察图中正方形四个顶点所标的数字规律,可知,数2019应标在()A.第504个正方形的左下角C.第505个正方形的左上角二、填空题B.第504个正方形的右下角D.第505个正方形的右下角7.已知点 P (2-a ,3a -2)到两坐标轴的距离相等,则 P 点的坐标为___________. 8.线段 AB 的长度为 3 且平行 x 轴,已知点 A 的坐标为(2,-5),则点 B 的坐标为 . 9.如果点 A (0 ,1) ,B (3 ,1) ,点C 在 y 轴上,且△A BC 的面积是 5,则 C 点坐标____.10.观察下列有序数对:(3,-1)、1 15, , 7, 、9, 1 4、……根据你发现的规律,第 100 个有序数对是________.11.在平面直角坐标系中,点 A 、B 、C 的坐标分别为:A(-2,1)、B(-3,-1),C(-1, -1),且 D 在 x 轴上方. 顺次连接这 4 个点得到的四边形是平行四边形, 则 D 点的坐标 为_______. 12.已知平面直角坐标系内两点 M(5,a),N(b ,-2).(1)若直线 MN ∥x 轴,则 a________,b________; (2)若直线 MN ∥y 轴,则 a________,b________.13.(2018 春•绥阳县校级期末)点 P 到 x 轴的距离是 2,到 y 轴的距离是 3,且在 y 轴的左 侧,则 P 点的坐标是 . 13.(2019•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为 1 个单位长,P , P ,P ,…,均在格点上,其顺序按图中“→”方向排列,如:P (0,0),P (0,1),P (1, 1),P(1,﹣1),P (﹣1,﹣1),P (﹣1,2)…根据这个规律,点 P 的坐标为________.三、解答题15.(2018 秋•滨湖区校级月考)已知点 P (2a ﹣12,1﹣a )位于第三象限.(1)若点 P 的纵坐标为﹣3,试求出 a 的值; (2)求 a 的范围;(3)若点 P 的横、纵坐标都是整数,试求出 a 的值以及 P 点的坐标.16.如图,若 B (x ,y )、C (x ,y )均为第一象限的点,O 、B 、C 三点不在同一条直线上.1 12 2(1) 求△OBC 的面积(用含 x 、x 、y 、y 的代数式表示);1 2 1 2(2) 如图,若三个点的坐标分别为 A (2,5),B (7,7),C (9,1),求四边形 OABC 的面积.2 312 3 1 2 34 5 6 201917.如图所示,在平面直角坐标系中,第一次将三角形OAB变换成三角形OA B,第二次将三1 1角形OA B变换成三角形OA B,第三次将三角形OA B变换成三角形OA B,已知A(1,2), 11 2 2 2 2 3 3A(2,2),A(4,2),A(8,2);B(2,0),B(4,0),B(8,0),B(16,0).1 2 3 1 2 3(1)观察每次变换前后的三角形有何变化?找出规律,按此规律再将三角形OA B变换成3 3三角形OA B,则A的坐标是________,B的坐标是________;4 4 4 4(2)若按(1)中找到的规律将三角形OAB进行n次变换,得到三角形OA B,推测A的坐n n n标是________,B的坐标是________.n的面积.(3)求出△O【答案与解析】一、选择题 1.【答案】C. 2.【答案】A;【解析】因为(a,-2)在二、四象限的角平分线上,所以a+(-2)=0,即a=2. 3. 【答案】D;【解析】根据题意,画出下图,由图可知M(-6,4).4. 【答案】A;【解析】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.5. 【答案】B;【解析】由题意知:点M(a,b)与点N(-2,-3)关于x轴对称,所以M(-2,3).6. 【答案】D ;【解析】解:∵2019÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形 对应四个数,而第一个最小的数是0,0 在右下角,然后按逆时针由小变大,∴ 第 504 个正方形中最大的数是 2018,∴数 2019 在第 505 个正方形的右下角, 故选 D . 二、填空题7. 【答案】P (1,1)或 P (2,-2);【解析】2a 3a 2,得a 0或a 1,分别代入即可.8. 【答案】B (5,-5)或(-1,-5);【解析】x2 3 5或-1 ,而 y5BB.9. 【答案】(0,13 7 )或(0,);33【解析】AB 3 ,由 △A BC 的面积是 5,可得△A BC 的边 AB 上的高为10 3,又点C 在 y 轴上,所以x 0 , y1 C C10 13 7 或- 3 3 3.10.【答案】201,1 100;【解析】横坐标的规律:(-1)n+1 (2 n 1) ,纵坐标的规律:(1)n1 n.11.【答案】(0,1)或(-4,1);【解析】x22 0或- 4 D,y1 D.12.【答案】(1)=-2, ≠5; (2)≠-2, =5; 13.【答案】(﹣3,2)或(﹣3,﹣2)【解析】解:∵P (x ,y )到 x 轴的距离是 2,到 y 轴的距离是 3,∴x=±3,y=±2;又∵点 P 在 y 轴的左侧, ∴点 P 的横坐标 x=﹣3,∴点 P 的坐标为(﹣3,2)或(﹣3,﹣2). 故填(﹣3,2)或(﹣3,﹣2).14.【答案】(504,﹣504);【解析】由规律可得,2019÷4=504,∴点 P 的在第四象限的角平分线上, ∵点 P (1,﹣1),点 P (2,﹣2),点 P (3,﹣3), ∴点 P (504,﹣504),故答案为(504,﹣504).2019 4 8 12 2019三、解答题 15.【解析】解:(1)由题意得,1﹣a=﹣3,解得 a=4;(2)∵点 P (2a ﹣12,1﹣a )位于第三象限,∴,解不等式①得,a <6, 解不等式②得,a >1, 所以,1<a <6;(3)∵点 P 的横、纵坐标都是整数,∴a 的值为 2、3、4、5,① a=2 时,2a ﹣12=2×2﹣12=﹣8, 1﹣a=1﹣2=﹣1,点 P (﹣8,﹣1),② a=3 时,2a ﹣12=2×3﹣12=﹣6, 1﹣a=1﹣3=﹣2, 点 P (﹣6,﹣2),③ a=4 时,2a ﹣12=2×4﹣12=﹣4, 1﹣a=1﹣4=﹣3, 点 P (﹣4,﹣3),④ a=5 时,2a ﹣12=2×5﹣12=﹣2, 1﹣a=1﹣5=﹣4, 点 P (﹣2,﹣4).16.【解析】解: (1) 如图: SAOBSMOBS梯形 B MNCSCONSAOBSMOBS梯形B MNCSCON11 1 x y( y y )( x x ) x y 2 2 2 1( x y x y ) 2 1 1 2(2)连接 OB ,则:1 1 12 2 1 2 2 2四边形OABC的面积为:SAOB SBOC1177(75-27)(97-71)38.5222.17.【解析】解:(1)(16,2),(32,0);(2)(2n,2),(2n+1,0);(3)△OA Bn n 的面积为:122n122n1.坐标平面内图形的轴对称和平移(提高)【学习目标】1.能在同一直角坐标系中,感受图形经轴对称后点的坐标的变化.2.掌握左右、上下平移点的坐标规律.【要点梳理】要点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为(a,-b);P(a,b)关于y轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变. 2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示轴对称1.在直角坐标系中,已知点A(a+b,2-a)与点B(a-5,b-2a)关于y轴对称,(1)试确定点A、B的坐标;(2)如果点B关于x轴的对称的点是C,求△ABC的面积.【思路点拨】(1)根据在平面直角坐标系中,关于y轴对称时,横坐标为相反数,纵坐标不变,得出方程组求出a,b即可解答本题;(2)根据点B关于x轴的对称的点是C,得出C点坐标,进而利用三角形面积公式求出即可.【答案与解析】解:(1)∵点A(a+b,2-a)与点B(a-5,b-2a)关于y轴对称,∴2a b 2a ab a 5 0,解得:a 1b 3,∴点A、B的坐标分别为:(4,1),(-4,1);(2)∵点B关于x轴的对称的点是C,∴C点坐标为:(-4,-1),∴△ABC的面积为:11×BC×AB=×2×8=8.22【总结升华】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法以及三角形面积求法,熟练记忆各象限内点的坐标符号是解题关键.举一反三:【变式】小华看到了坐标系中点B关于X轴的对称点为C(-3,2),点A关于Y轴对称点为D(-3,4),若将A、B、C、D顺次连接,此图形的面积是多少?【答案】解:∵B关于x轴的对称点为C(-3,2),∴B(-3,-2),∵点A关于y轴对称点为D(-3,4),∴A(3,4),∴△ABD的面积为:11×AD×DB=×6×6=18.222.已知点A(a,3)、B(-4,b),试根据下列条件求出a、b的值.(1)A、B两点关于y轴对称;(2)A、B两点关于x轴对称;(3)AB∥x轴;(4)A、B两点在第二、四象限两坐标轴夹角的平分线上.【思路点拨】(1)关于y轴对称,y不变,x变为相反数.(2)关于x轴对称,x不变,y变为相反数.(3)AB∥x轴,即两点的纵坐标不变即可.(4)在二、四象限两坐标轴夹角的平分线上的点的横纵坐标互为相反数,即分别令点A,点B的横纵坐标之和为0,列出方程并解之,即可得出a,b.【答案与解析】解:(1)A、B两点关于y轴对称,故有b=3,a=4;(2)A、B两点关于x轴对称;所以有a=-4,b=-3;(3)AB∥x轴,即b=3,a为≠-4的任意实数.(4)如图,根据题意,a +3=0; b -4=0;所以 a =-3,b =4.【总结升华】本题主要考查学生对点在坐标系中的对称问题的掌握;在一、三象限角平分线 上的点的横纵坐标相等,在二、四象限角平分线上的点的横纵坐标互为相反数.类型二、 用坐标表示平移3.(2018 春•黄陂区校级月考)如图 △,A ′B ′C ′是 △由ABC 平移后得到的,已 △知ABC 中一点 P (x ,y )经平移后对应点为 P ′(x +5,y ﹣2).(1)已知 A (﹣1,2),B (﹣4,5),C (﹣3,0),请写出 A ′、B ′、C ′的坐标; (2)试说 △明A ′B ′C ′是如何 △由ABC 平移得到的; (3)请直接写 △出A ′B ′C ′的面积为 .【思路点拨】(1)根据点 P (x ,y )经平移后对应点为 P ′(x +5,y ﹣2)可得 A 、B 、C 三 点的坐标变化规律,进而可得答案; (2)根据点的坐标的变化规律可 △得ABC 先向右平移 5 个单位,再向下平移 2 个单位; (3) △把A ′B ′C ′放在一个矩形内,利用矩形的面积减去周围多余三角形的面积即可. 【答案与解析】解:(1)A ′为(4,0)、B ′为(1,3)C ′为(2,﹣2);(2)ABC 先向右平移 5 个单位,再向下平移 2 个单位(或先向下平移 2 个单位,再向 右平移 5 个单位);(3)A ′B ′C ′的面积为 6.0 0 0 0 0 0 0 0【总结升华】此题主要考查了坐标与图形的变化,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)举一反三:【变式】(2018•大庆校级模拟)如图所示△,COB是△由AOB经过某种变换后得到的图形,观察点A与点C的坐标之间的关系,解答下列问题:(1)若点M的坐标为(x、y),则它的对应点N的坐标为.(2)若点P(a,2)与点Q(﹣3,b)关于x轴对称,求代数式…的值.【答案】解:(1)由图象知点M和点N关于x轴对称,∵点M的坐标为(x、y),∴点N的坐标为(x,﹣y);(2)∵点P(a,2)与点Q(﹣3,b)关于x轴对称,∴a=﹣3,b=﹣2,∴…= + + +…+,= ﹣ + ﹣ +…+,= ﹣,=.类型三、综合应用4. (2019 春 临沂期末)如图是某台阶的一部分,如果建立适当的坐标系,使A 点的 坐标为(0,0),B 点的坐标为(1,1)(1)直接写出 C ,D ,E ,F 的坐标;(2)如果台阶有 10 级,你能求得该台阶的长度和高度吗?【思路点拨】(1)根据平面直角坐标系的定义建立,然后写出各点的坐标即可; (2)利用平移的性质求出横向与纵向的长度,然后求解即可.【答案与解析】解:(1)∵点 P (a ﹣2,2a +8),在 x 轴上, ∴2a +8=0,解得:a=﹣4,故 a ﹣2=﹣4﹣2=﹣6, 则 P (﹣6,0);(2))∵点 P (a ﹣2,2a +8),在 y 轴上, ∴a ﹣2=0, 解得:a=2,故 2a +8=2×2+8=12, 则 P (0,12);(3)∵点 Q 的坐标为(1,5),直线 PQ ∥y 轴;, ∴a ﹣2=1, 解得:a=3, 故 2a +8=14, 则 P (1,14);(4)∵点 P 到 x 轴、y 轴的距离相等, ∴a ﹣2=2a +8 或 a ﹣2+2a +8=0, 解得:a =﹣10,a =﹣2,故当 a=﹣10 则:a ﹣2=﹣12,2a +8=﹣12, 则 P (﹣12,﹣12);故当 a=﹣2 则:a ﹣2=﹣4,2a +8=4,1 2则 P (﹣4,4).综上所述:P (﹣12,﹣12),(﹣4,4).【总结升华】此题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那 么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.【巩固练习】一、选择题1.(2018△ABC•先济向南右)平如移图4,个在单平位面长直度角,坐再标向系下中平移△,1ABC 个单的位顶长点度都,在得方到格△A 纸的B 格C 点,上那,么如点果A 将的1 1 1对应点 A 的坐标为()1A .(4,3)B .(2,4)C .(3,1)D .(2,5)2.将点 A (3,2)沿 x 轴向左平移 4 个单位长度得到点 A′,点 A ′关于 y 轴对称的点的坐 标是( )A . ( - 3, 2 )B . ( - 1 , 2 )C . ( 1 , 2 )D . ( 1 , - 2 )3. 线段 CD 是由线段 AB 平移得到的,点 A(-1,4)的对应点为 C(4,7),则点 B(-4,-1) 的对应点 D 的坐标为( ). A .(2,9) B .(5,3) C .(1,2) D .(-9,-4)4.以平行四边形 ABCD 的顶点 A 为原点,直线 AD 为 x 轴建立直角坐标系,已知 B 、D 点的坐 标分别为(1,3),(4,0),把平行四边形向上平移 2 个单位,那么 C 点平移后相应的点的 坐标是( ). A .(3,3) B .(5,3) C .(3,5) D .(5,5)5.(2019 青岛)如图,线段 AB 经过平移得到线段 A B ,其中点 A ,B 的对应点分别为点 A ,B ,这四个点都在格点上.若线段A B 上有一个点 P ( a ,b ),则点 P'在 A B 上的 对应点 P 的坐标为( )1 11 1 1 1A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)6.如图所示,海上二救护中心收到一艘遇难船只的求救信号后,发现该船位于点A(5,-4),并且正以缓慢的速度向北漂移,同时发现在点B(5,2)和C(-1,-4)处各有一艘救护船.如果救护船的速度相同,问救护中心应派哪处的救护船前去救护可以在最短时间内靠近遇难船只?()A.派C处B.派B处C.派C或B处D.无法确定二、填空题7. 已知点M(3,-2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是_______.8.点P(5,-6)可以由点Q(-5,6)通过两次平移得到,即先向_______平移_______个单位长度,再向_______平移_______个单位长度.9.如图,某宾馆在重新装修后,准备在大厅的楼梯上铺上某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要元.10.(2018•潍坊一模)在平面直角坐标系A中,已知直线l:y=x,作A(1,0)关于y=x1的对称点B,将点B向右水平平移2个单位得到点A;再作A关于y=x的对称点B,将 11 2 2 2点B向右水平平移2个单位得到点A;….按此规律,则点B的坐标是. 23 201811.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是________.12.已知点A(2a+b,-4),B(3,a-2b)关于x轴对称,求点C(a,b)在第______象限?三、解答题13.已知点M(3a-b,5),N(9,2a+3b)关于x轴对称,求b a的值.14.在平面直角坐标系中,点M的坐标为(a,-2a).(1)当a=-1时,点M在坐标系的第_____象限;(直接填写答案)(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,求a的取值范围.15.(2019春•禹州市期末)已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′、B′、C′的坐标;(2)求出△ABC的面积;(3)点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.【答案与解析】一.选择题1. 【答案】D;【解析】解:由坐标系可得A(﹣2,6),将△ABC先向右平移4个单位长度,在向下平移1个单位长度,点A的对应点A的坐标为(﹣2+4,6﹣1),即(2,5),故选:D.2.【答案】C;1【解析】∵将点A(3,2)沿x轴向左平移4个单位长度得到点A′,∴点A′的坐标为(-1,2),∴点A′关于y轴对称的点的坐标是(1,2).故选C.3. 【答案】C;【解析】由A(-1,4)平移到C(4,7)其横坐标.“加了”5,纵坐标“加了”3,故将B(-4,1)平移到D时,点D的坐标应为D(1,2),故选C.4. 【答案】D;【解析】根据点A、D求出AD的长度,再根据点B求出点C的横坐标,从而得到点C的坐标,再根据向上平移,横坐标不变,纵坐标加解答.5. 【答案】A;【解析】由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3)故选A.6. 【答案】B.二.填空题7.【答案】(-1,1);【解析】原来点的横坐标是3,纵坐标是-2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3-4=-1,纵坐标为-2+3=1.则点N的坐标是(-1,1).8.【答案】右,10,下,12;9.【答案】504;【解析】(2.6 5.8)230504(元).10.【答案】(2013,2018);【解析】解:如图所示:,∵B(0,1),B(1,2),B(2,3),1 2 3∴B点横坐标比纵坐标小1,∴点B的坐标是:(2013,2018).2018故答案为:(2013,2018).11.【答案】(3,3);【解析】∵左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),∴右眼的坐标为(0,3),向右平移3个单位后右眼B的坐标为(3,3).故答案为:(3,3).12.【答案】四;【解析】∵点A(2a+b,-4),B(3,a-2b)关于x轴对称,∴2a+b=3,a-2b=4,解得a=2,b=-1.∴点C(2,-1)在第四象限.三.解答题13.【解析】解:∵3a-b=9,2a+3b=-5,∴a=2,b=-3,∴b a=(-3)2=9.14.【解析】解:(1)当a=-1时点M的坐标为(-1,2),所以M在第二象限,所应填“二”;(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,点M的坐标为(a,-2a),所以N点坐标为(a-2,-2a+1),因为N点在第三象限,所以a 2 0 2a 101,解得<a<2,2所以a的取值范围为12<a<2.15.【解析】解:(1)如图所示:A′(0,4)、B′(﹣1,1)、C′(3,1);(2)=×(3+1)×3=6;△S ABC(3)设点P坐标为(0,y),∵BC=4,点P到BC的距离为|y+2|,由题意得×4×|y+2|=6,解得y=1或y=﹣5,所以点P的坐标为(0,1)或(0,﹣5).《平面直角坐标系》全章复习与巩固(提高)知识讲解【学习目标】1.理解平面直角坐标系及象限的概念,并会在坐标系中根据点的坐标描出点的位置、由点的位置写出它的坐标;2.掌握用坐标系表示物体位置的方法及在物体平移变化前后点坐标的变化;3.通过学习平面直角坐标系的基础知识,逐步理解平面内的点与有序实数对之间的一一对应关系,进而培养数形结合的数学思想.【知识网络】【要点梳理】要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000),(17,190),(21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.要点二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:①x轴上的点纵坐标为零;y轴上的点横坐标为零.②平行于x轴直线上的点横坐标不相等,纵坐标相等;平行于y轴直线上的点横坐标相等,纵坐标不相等.③关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.②x轴上两点A(x,0)、B(x,0)的距离为AB=|x-x|;1 2 1 2y轴上两点C(0,y)、D(0,y)的距离为CD=|y-y|.1 2 1 2③平行于x轴的直线上两点A(x,y)、B(x,y)的距离为AB=|x- x|;1 2 1 2平行于y轴的直线上两点C(x,y)、D(x,y)的距离为CD=|y-y|.1 2 1 2(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补要点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.。
新北师大版八级上册数学第三章位置与坐标复习课件
位置与坐标(全章知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)
专题3.14位置与坐标(全章知识梳理与考点分类讲解)【知识点1】有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000),(17,190),(21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.【知识点2】平面直角坐标系的概念在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:【知识点3】平面直角坐标系(1)各象限内点的坐标的符号特征点(,)P x y 在第一象限⇔0x >,0y >;点(,)P x y 在第二象限⇔0x <,0y >;点(,)P x y 在第三象限⇔0x <,0y <;点(,)P x y 在第四象限⇔0x >,0y <.(2)坐标轴上点的坐标特征点在横轴上⇔y =0;点在纵轴上⇔x =0;点在原点⇔x =0,y =0.(3)各象限角平分线上点的坐标①三象限角平分线上的点的横、纵坐标相等;②四象限角平分线上的点的横、纵坐标互为相反数.(4)平行于坐标轴的直线上点的坐标特征①平行于x 轴的直线上的点的纵坐标都相等;②平行于y 轴的直线上的点的横坐标都相等.【知识点4】点的距离问题(1)点到坐标轴、原点的距离点(,)M a b 到x 轴的距离为b ;点(,)M a b 到y 轴的距离为a ;点(,)M a b 到原点的距离OM .(2)平行于x 轴,y 轴的直线上两点间的距离①水平线段12AB x x =-,铅锤线段12CD y y =-;②两点之间的距离公式:d =③中点公式:1212(,22x x y y ++.【知识点5】点的平移与对称(1)点(,)P x y 平移的坐标特征向左平移a 个单位的坐标为(,)P x a y -;向右平移a 个单位的坐标为(,)P x a y +;向上平移b 个单位的坐标为(,)P x y b +;向下平移b 个单位的坐标为(,)P x y b -;口诀:“右加左减,上加下减”.(2)点(,)P x y 的对称点的坐标特征关于x 轴对称的点P 1的坐标为1(,)P x y -;关于y 轴对称的点P 2的坐标为2(,)P x y -;关于原点对称的点P 3的坐标为3(,)P x y --.口诀:关于谁对称谁不变,另一个变号;关于原点对称都要变号.【考点一】平面直角坐标系➼➻有序数对【例1】(2023秋·全国·八年级专题练习)如图为某县区几个公共设施的平面示意图,小正方形的边长为1.(1)请以学校为坐标原点,建立平面直角坐标系;(2)在所建立的平面直角坐标系中,写出其余各设施的坐标.【答案】(1)见分析;(2)图书馆:()2,3-,商场:()5,2,医院:()3,1--,车站:()2,4-【分析】(1)以学校为原点建立直角坐标系即可;(2)以学校为原点建立直角坐标系,根据图形可得其余各设施的坐标.(1)解:如图:以学校为坐标原点,建立平面直角坐标系如下:(2)解:其余各设施的坐标分别为:图书馆:()2,3-,商场:()5,2,医院:()3,1--,车站:()2,4-.【点拨】本题主要考查的是用坐标确定位置,准确写出其余各设施的坐标是解决本题的关键.【举一反三】【变式1】(2022秋·八年级课时练习)下列数据中不能确定物体位置的是()A .电影票上的“5排8号”B .小明住在某小区3号楼7号C .南偏西37°D .东经130°,北纬54°的城市【答案】C【分析】根据以坐标确定位置需要两个数据对各选项进行判断即可.解:A .电影票上的“5排8号”,位置明确,故本选项不符合题意;B .小明住在某小区3号楼7号,位置明确,故本选项不符合题意;C .南偏西37°,位置不明确,故本选项符合题意;D .东经130°,北纬54°的城市,位置明确,故本选项不符合题意;故选:C .【点拨】本题考查了坐标确定位置,理解位置的确定需要两个数据是解答本题的关键.【变式2】(2023春·七年级课时练习)如图,点A 在射线OX 上,OA 等于2cm ,如果OA 绕点O 按逆时针方向旋转30°到OA ′,那么点A ′的位置可以用(2,30°)表示.若OB =3cm ,且OA ′⊥OB ,则点B 的位置可表示为.【答案】(3,120°)【分析】根据题意得出坐标中第一个数为线段长度,第二个数是逆时针旋转的角度,进而得出B点位置即可.解:∵OA等于2cm,如果OA绕点O按逆时针方向旋转30°到OA′,那么点A′的位置可以用(2,30°)表示,∵OA′⊥OB,∴∠BOA=90°+30°=120°,∴OB=3cm,∴点B的位置可表示为:(3,120°).故答案为:(3,120°).【点拨】此题主要考查了用有序数对表示位置,解决本题的关键是理解所给例子的含义.【考点二】平面直角坐标系➼➻象限内点的坐标的符号特征【例2】(2023春·全国·七年级专题练习)已知平面直角坐标系中有一点P(2m+1,m﹣3).(1)若点P在第四象限,求m的取值范围;(2)若点P到y轴的距离为3,求点P的坐标.【答案】(1)12-<m<3;(2)点P的坐标为(3,﹣2)或(﹣3,﹣5).【分析】(1)直接利用第四象限内点的坐标特点分析得出答案;(2)利用点P到y轴的距离为3,得出m的值.(1)解:由题知21030 mm+>⎧⎨-<⎩,解得:13 2m-<<;(2)解:由题知|2m+1|=3,解得m=1或m=﹣2.当m=1时,得P(3,﹣2);当m=﹣2时,得P(﹣3,﹣5).综上,点P的坐标为(3,﹣2)或(﹣3,﹣5).【点拨】此题主要考查了点的坐标,熟练掌握点在各象限内的特点以及点到坐标轴的距离是解题关键.【举一反三】【变式1】(2023春·全国·七年级专题练习)不论m 取何实数,点()2,3P m m -+都不在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【分析】先判断点P 的纵坐标、横坐标之和为5,大于0,然后根据各象限内点的坐标特征解答.解:∵()()232350m m m m -++=-++=>,∴点P 的纵坐标、横坐标之和为5,大于0,∵第三象限的点的横坐标是负数,纵坐标是负数,∴纵坐标、横坐标之和必然小于0,∴点P 一定不在第三象限,故选:C .【点拨】本题考查了点的坐标,利用作差法求出点P 的横坐标大于纵坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【变式2】(2023春·七年级单元测试)经过点Q (1,﹣3)且垂直于y 轴的直线可以表示为直线.【答案】y =﹣3【分析】垂直于y 轴的直线,纵坐标相等,为-3,所以为直线:y =-3.解:由题意得:经过点Q (1,﹣3)且垂直于y 轴的直线可以表示为直线y =﹣3,故答案为:y =﹣3.【点拨】本题考查了点的坐标,解题的关键是抓住过某点的坐标且垂直于y 轴的直线的特点:纵坐标相【考点三】平面直角坐标系➼➻坐标轴点的坐标的符号特征【例3】(2020秋·广东佛山·八年级校考阶段练习)已知点P (8﹣2m ,m +1).(1)若点P 在y 轴上,求m 的值.(2)若点P 在第一象限,且点P 到x 轴的距离是到y 轴距离的2倍,求P 点的坐标.【答案】(1)4;(2)P (2,4).【分析】(1)直接利用y 轴上点的坐标特点得出m 的值;(2)直接利用P 点位置结合其到x ,y 轴距离得出点的坐标.(1)解:∵点P (8﹣2m ,m +1),点P 在y 轴上,∴8﹣2m =0,解得:m =4;(2)解:由题意可得:m +1=2(8﹣2m ),解得:m =3,则8﹣2m =2,m +1=4,故P (2,4).【点拨】此题主要考查了点的坐标,正确掌握平面内点的坐标特点是解题关键.【举一反三】【变式1】(2023春·七年级课时练习)下列说法不正确的是()A .点()21,1A a b --+一定在第二象限B .点()2,3P -到y 轴的距离为2C .若(),P x y 中0xy =,则P 点在x 轴上D .若(),P x y 在x 轴上,则0y =【答案】C【分析】A :第二象限的点满足(-,+),B :找出P 点坐标即可确定与y 轴的距离,C :xy =0,可确定x 、y 至少有一个为0来确定,D :根据x 轴上点的坐标特征即可判定.解:A :21a --<0,1b +>0,本选项说法正确;B :P 点到y 轴距离是2,本选项说法正确;C :xy =0,得到x 、y 至少有一个为0,P 可能在x 轴上,也可能在y 轴上,本选项说法错误;D :点P 在x 轴上,则y =0,本选项说法正确.故选:C .【点拨】本题考查坐标上点的特征.确定各个象限的点和坐标轴上点的特征是解决本题的关键.【变式2】(2021春·重庆巫溪·七年级统考期末)若点()2,3M a a -+在y 轴上,则点M 的坐标是.【答案】()0,5【分析】根据y 轴上点的坐标的特点即可求得.解:∵点()2,3M a a -+在y 轴上,∴a -2=0,解得a =2,故a +3=2+3=5,故点M 的坐标为()0,5,故答案为:()0,5.【点拨】本题考查了y 轴上点的坐标的特点,熟练掌握和运用y 轴上点的坐标特点是解决本题的关键.【考点四】平面直角坐标系➼➻角平分线上点的坐标特征【例4】(2018秋·八年级单元测试)(1)若点M (5+a ,a -3)在第二、四象限角平分线上,求a 的值;(2)已知点N 的坐标为(2-a ,3a +6),且点N 到两坐标轴的距离相等,求点N 的坐标.【答案】(1)a =-1;(2)点N 的坐标为(3,3)或(6,-6).【分析】(1)分析题目中点M 、N 的坐标特征,第二、四象限角平分线上点的横纵坐标互为相反数,即可得到5+a=-(a-3),求解可得a 的值;(2)点到两坐标轴的距离相等,则点的横纵坐标相等或互为相反数,据此列式求解,即可得到a 的值,进而确定点N 的坐标.解:(1)由题意可得5+a +a -3=0,解得a =-1.(2)由题意可得|2-a|=|3a +6|,即2-a =3a +6或2-a =-(3a +6),解得a =-1或a =-4,所以点N 的坐标为(3,3)或(6,-6).【点拨】本题考查了坐标的相关知识点,解题的关键是熟练的掌握象限内点的坐标的特征.【举一反三】【变式1】(2021秋·九年级单元测试)已知坐标平面内一点()12A -,,若A 、B 两点关于第一、三象限内两轴夹角平分线对称,则B 点的坐标为.【答案】()2,1-【分析】画出相关图形可得纵横坐标交换位置即可.解:由图中可得答案为(-2,1).故答案为(-2,1).【点拨】本题考查了两点关于坐标轴夹角平分线对称的关系;用到的知识点为:点(a ,b )关于第一、三象限角平分线的对称点的坐标为(b ,a ).【变式2】(2018秋·八年级单元测试)已知A (2x -1,3x +2)是第一、三象限角平分线上的点,则点A 的坐标是.【答案】(-7,-7)【分析】根据第一、三象限的角平分线上点的特点:横坐标等于纵坐标,可得方程,根据解方程,可得答案.解:由A (2x -1,3x +2)在第一、三象限的角平分线上,得2x-1=3x+2,解得x=-3,则点A 的坐标为(-7,-7),故答案为:(-7,-7).【点拨】本题考查的是平面直角坐标系中象限角平分线上点的特点,熟练掌握该特点是解题的关键.【考点五】平面直角坐标系➼➻平行于坐标轴上点的坐标特征【例5】(2023春·全国·七年级期末)在平面直角坐标系中,点()0A a ,,()2B b ,,()40C ,,且0a >.(1)若2(2)40a b --=,求点A ,点B 的坐标;(2)如图,在(1)的条件下,过点B 作BD 平行y 轴,交AC 于点D ,求点D 的坐标;【答案】(1)()02A ,,()24B ,;(2)()21D ,【分析】(1)由非负性质得出20a -=,40b -=,得出2a =,4b =,即可得出答案;(2)延长BD 交OC 于M ,由题意得出点D 的横坐标为2,可得点D 是AC 的中点,即可得出答案.(1)解:2(2)0a -= ,20a ∴-=,且40b -=,2a ∴=,4b =,∴点()02A ,,()24B ,;(2)解:延长BD 交OC 于M ,如图所示:,BD x ∥轴,DM OC ∴⊥,点D 的横坐标为2,()02A ,,()40C ,,∴点D 是AC 的中点,()21D ∴,.【点拨】本题考查了偶次方和算术平方根的非负性质、坐标与图形等知识,熟练掌握非负数的性质是解题的关键.【举一反三】【变式1】(2022秋·福建三明·八年级统考阶段练习)过点(3,2)A 和(1,2)B -作直线,则直线AB ()A .与x 轴平行B .与y 轴平行C .与x 轴相交D .与x 轴、y 轴均相交【答案】A【分析】根据A ,B 两点的纵坐标相等,得出直线AB 平行于x 轴.解: 点(3,2)A 和(1,2)B -,∴直线AB 为:2y =,直线2y =与x 轴平行,∴直线AB x ∥轴,故A 正确.故选:A .【点拨】本题考查了坐标与图形的性质,熟记平行坐标轴的直线的特征是解本题的关键.【变式2】(2023春·北京·七年级校联考期中)经过点()3,2M -与点(),N x y 的直线平行干x 轴,且4MN =,则点N 的坐标是.【答案】(1,2)--或(7,2)-【分析】本题根据两点在同一平行于x 轴的直线上确定点N 的纵坐标,继而根据两点距离确定点N 的横坐标.解:由已知得:点N 的纵坐标为2-,设点N 的横坐标为x ,则M 、N 的距离可表示为3x -,∵4MN =,∴34x -=,求解得:7x =或=1x -,故点N 坐标为(1,2)--或(7,2)-.故填:(1,2)--或(7,2)-.【点拨】本题考查点坐标的求法,解题关键在于理清两点之间的位置关系,其次此类型题目通常需要分类讨论,确保结果不重不漏.【考点六】平面直角坐标系➼➻两点之间距离【例6】(2022秋·甘肃白银·八年级校考期中)阅读下列一段文字,然后回答下列问题.已知在平面内两点111(,)P x y 、222(,)P x y ,其两点间的距离12PP 所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为21x x -或21y y -.(1)已知(24)A ,、(3,8)--B ,试求A 、B 两点间的距离;(2)已知A 、B 在平行于y 轴的直线上,点A 的纵坐标为4,点B 的纵坐标为-1,试求A 、B 两点间的距离;(3)已知一个三角形各顶点坐标为6(1)D ,、(2,2)E -、2(4)F ,,你能判定此三角形的形状吗?说明理由;(4)在上一问的条件下,平面直角坐标中,在x 轴上找一点P ,使PD PF +的长度最短,求PD PF +的最短长度.【答案】(1)13AB =;(2)5AB =;(3)DEF 为等腰三角形,理由见分析;(4)PD PF +的最短长【分析】(1)由已知两点坐标,根据公式计算即可;(2)由已知两点纵坐标,根据公式计算;(3)由两点间距离公式分别计算三角形三边长,根据三边大小关系可判断;(4)根据轴对称知识,作点F 关于x 轴的对称点F ',则(4,2)F ¢-,连接DF ',与x 轴交于点P ,根据两点间线段最短,此时DP PF +最短,计算DF '即得解.(1)解:∵(2,4)A 、(3,8)--B ,∴13AB =(2)解:∵A 、B 在平行于y 轴的直线上,点A 的纵坐标为4,点B 的纵坐标为1-,∴5|(41)|AB =--=;(3)解:DEF 为等腰三角形,理由为:)6(1,D 、(2,2)E -、(4,2)F ,∴5DE ==,5DF ==,6EF =,即DE DF =,则DEF 为等腰三角形;(4)解:做出F 关于x 轴的对称点F ',则(4,2)F ¢-,连接DF ',与x 轴交于点P ,此时DP PF +最短,∵PF PF '=,∴PD PF DP PF DF ⅱ+=+==则PD PF +【点拨】本题考查平面直角坐标系内两点间距离计算,轴对称,两点之间线段最短;运用轴对称知识得到线段相等是解题的关键.【举一反三】【变式】(2023秋·全国·八年级专题练习)设点()5P a a -,到x 轴的距离为1m ,到y 轴的距离为2m .(1)当1a =时,12m m -=;(2)若点P 在第四象限,且12210m km +=(k 为常数),则k 的值为;(3)若127m m +=,则点P 的坐标为.【答案】32()16--,或()61,【分析】(1)当1a =时()14P -,,从而可得出1241m m ==,,代入进行计算即可得到答案;(2)由点P 在第四象限可得050a a >-<,,从而得出125m a m a =-=,,代入12210m km +=得10210a ka -+=,即可求出k 的值;(3)根据题意可得57a a -+=,讨论a 的范围,分三段:当a<0时;当05a ≤≤时;当5a >时,分别进行计算即可得到答案.解:(1)当1a =时,5154a -=-=-,()14P ∴-,,点()5P a a -,到x 轴的距高力1m ,到y 轴的距离为2m ,1241m m ∴==,,12413m m ∴-=-=,故答案为:3;(2) 点P 在第四象限,050a a ∴>-<,,1255m a a m a a ∴=-=-==,,12210m km +=,()2510a ka ∴-+=,10210a ka ∴-+=,2k ∴=,故答案为:2;(3) 点()5P a a -,到x 轴的距高力1m ,到y 轴的距离为2m ,125m a m a ∴=-=,,127m m +=,57a a ∴-+=,当a<0时,57a a --+=,解得:1a =-,()16P ∴--,,当05a ≤≤时,557a a -+=≠,不成立,舍去,当5a >时,57a a -+=,解得:6a =,()61P ∴,,综上所述,点P 的坐标为()16--,或()61,.【点拨】本题主要考查了点到坐标轴的距离,熟练掌握平面直角坐标系中的点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,是解题的关键.【考点七】平面直角坐标系➼➻中点坐标公式【例7】(2023春·陕西商洛·七年级校考期末)在平面直角坐标系中,线段AB 平移得到的线段记为线段CD .其中点A 的对应点是点C ,点B 的对应点是点D .(1)若()1,2--A ,()41B ,,()2,3C -,则点D 的坐标为.(2)已知13,2A m ⎛⎫- ⎪⎝⎭,()6B n -,,1,2C m ⎛⎫-- ⎪⎝⎭,()7,6D n ,请写出m 和n 之间的数量关系,并说明理由.【答案】(1)()7,0;(2)2m n =-;理由见分析【分析】(1)设点D 的坐标为(),D D x y ,根据平移的性质列出方程组()()421132D Dx y ⎧-=--⎪⎨-=---⎪⎩,解方程组即可;(2)根据平移的特点得出()73n n m m --=--,整理即可得出答案.(1)解:设点D 的坐标为(),D D x y ,根据题意得:()()421132D Dx y ⎧-=--⎪⎨-=---⎪⎩,解得:70D Dx y =⎧⎨=⎩,∴点D 的坐标为()7,0.故答案为:()7,0.(2)解:2m n =-;理由如下:∵线段AB 平移得到的线段记为线段CD ,其中点A 的对应点是点C ,点B 的对应点是点D ,∴()73n n m m --=--,整理得:2m n =-.【点拨】本题主要考查了坐标平移的特点,解题的关键是熟练掌握坐标平移的性质,列出相应的等式.【举一反三】【变式】(2021春·广东广州·七年级广州大学附属中学校考期中)已知点()00,E x y ,点()22,F x y ,点()11,M x y 是线段EF 的中点,则02021122x x y y x y ++==.在平面直角坐标系中有三个点()()()1,11,10,1A B C ---,,,点()0,2P 关于A 的对称点为1P (即1P A P 、、三点共线,且1PA P A =),1P 关于B 的对称点为2P ,2P 关于C 的对称点为3P ,按此规律以、、A B C 为对称点重复前面的操作,依次得到456P P P 、、,则点2018P 的坐标是().A .()0,0B .()0,2C .()2,4-D .()4,2-【答案】D 【分析】首先利用题目所给公式求出1P 的坐标,然后利用公式求出对称点2P 的坐标,依此类推即可求出7P 的坐标;由7P 的坐标和1P 的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点2018P的坐标.解:设()1P x y ,,()1,1A -,()0,2P ,且A 是1PP 的中点,∴012x +=,212y +=-解得:24x y ==-,,()124P ∴-,同理可得:()()()()()()234567424022000224P P P P P P ----,,,,,,,,,,,,∴每6个点一个循环,201833626=∴点2018P 的坐标是()201842P -,故选D .【点拨】本题考查的是平面直角坐标系中点的对称点的坐标,解题的关键在于找出对称点坐标的规律.【考点八】平面直角坐标系➼➻点的平移【例8】(2023春·甘肃武威·七年级校联考期末)在平面直角坐标系中,O 为原点,点()()()022040A B C -,,,,,.(1)如图①,则三角形ABC 的面积为;(2)如图②,将点B 向右平移7个单位长度,再向上平移4个单位长度,得到对应点D .①求三角形ACD 的面积;②点()3P m ,是一动点,若三角形PAO 的面积等于三角形CAO 的面积.请直接写出点P 坐标.【答案】(1)6(2)①9;②()43P -,或()43,.【分析】(1)根据题意得出OA OB OC ,,,然后直接计算即可;(2)①连接OD ,根据ACD AOD COD AOC S S S S =+- 解题即可;②根据三角形PAO 的面积等于三角形CAO 的面积列方程求解即可.解:(1)∵()()()022040A B C -,,,,,,∴224OA OB OC ===,,,∴11·62622ABC S BC AO ==⨯⨯= .故答案为6.(2)①如图②中由题意()54D ,,连接OD .ACD AOD COD AOCS S S S =+-1112544249222=⨯⨯+⨯⨯-⨯⨯=.②由题意:1122422m ⨯⨯=⨯⨯,解得4m =±,∴()43P -,或()43,.【点拨】本题考查了点的平移,三角形的面积,分割法,掌握数形结合的方法是解题关键.【举一反三】【变式1】(2022·山东淄博·统考中考真题)如图,在平面直角坐标系中,平移△ABC 至△A 1B 1C 1的位置.若顶点A (﹣3,4)的对应点是A 1(2,5),则点B (﹣4,2)的对应点B 1的坐标是.【答案】(1,3)【分析】根据点A 和点1A 的坐标可得出平移规律,从而进一步可得出结论.解:∵顶点A (﹣3,4)的对应点是A 1(2,5),又352,415-+=+=∴平移ABC ∆至111A B C ∆的规律为:将ABC ∆向右平移5个单位,再向上平移1个单位即可得到111A B C ∆∵B (﹣4,2)∴1B 的坐标是(-4+5,2+1),即(1,3)故答案为:(1,3)【点拨】本题主要考查了坐标与图形,正确找出平移规律是解答本题的关键.【变式2】(2023春·河北保定·八年级校考期中)将点()3,2P -先向右平移2个单位,再向下平移4个单位,得到的点的坐标为()A .()1,4--B .()1,2--C .()5,4--D .()5,2--【答案】B【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.解:将点()3,2P -先向右平移2个单位,再向下平移4个单位,得到的点的坐标为()32,24-+-,即()1,2--,故选:B .【点拨】此题主要考查了坐标与图形的变化—平移,关键是掌握点的坐标的变化规律.。
北师大版数学八年级上册第三章位置与坐标复习课件
3
2
结果如图.
所得图形与原图形关于y轴对称 -8-7 -6 -5 -4-3 -2 -1
关于y轴对称的点的坐标: 纵坐标相同,横坐标互为 相反数
234 5678
变化前 (3,0) (7,0) (2,2) (3,2) (7,2) (8,2) (5,4) 变化后 (-3,0)(-7,0)(-2,2)(-3,2)(-7,2)(-8,2)(-5,4)
点的坐标为(2,3);若以A点为原点建立直角坐标系(两直角坐标系x轴、
y轴方向一致),则B点的坐标是( A )
y
y
A.(-2,-3) B.(-2,3)
C.(2,-3) D.(2,3) 分析:如图所示
A x
B x
四、典型例题
例3.在平面直角坐标系中,已知点M(m,2m+3). (1)若点M在x轴上,求m的值;
,解决如下问题:
15
14
(3)确定服装区的位置.
13 12
11
解:(3)由于图上标有刻度,可用有序对 10
9
表示位置
8
7
故服装区的位置是(5,7)
6
5
4 3
2
1
.总经理室
.服装区
.入口
.出口
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
【当堂检测】
1.在平面内,下列数据能否确定物体位置;不能的话修改正确.
,每个方格边长为1cm,解决如下问题: 15
北
14
(1)总经理室位于服装区的什么方向?到
13 12
11
.总经理室
服装区的图上距离多少?实际距离是多少?10
1
9
解:(1)如图所示,
北师大版八年级数学上册第三章位置与坐标小结与复习课件
距离,然后再看它所在的象限,确定其横、纵坐标 的符号.
解:如图,过点D作DE⊥x轴. ∵四边形ABCD为等腰梯形. ∴CE=BO=1. 又∵C点坐标为(4,0), ∴OC=4. ∴OE=4-1=3. ∵AD∥BC. ∴点D的纵坐标与点A的纵坐标相等为2. ∴D点的坐标为(3,2).
-3
由坐标找点的方法:先找到表示横坐标与纵坐标的点,然后过 这两点分别作x轴与y轴的垂线,垂线的交点就是该坐标对应的点.
y
各象限点坐标的符号:
3
第二象限 2 第一象限
(-,+) 1 (+,+)
-4 -3 -2 -1 O 1 2 3
x
(-,-) -1 (+,-)
第三象限 -2 第四象限
-3 若点P(x,y)在第一象限,则 x> 0,y> 0
坐标不同.
对称点的坐标
y B(-a,b)
•
1
-1 0 1 -1
P(a,b)
•
1.关于x轴对称的两个点 横坐标相等,纵坐标互为 相反数.
2.关于y轴对称的两个点 纵坐标相等,横坐标互为 相反数.
x
•A(a,-b)
点的坐标与点到坐标轴的距离关系
y
1. 点( x, y )到x轴的距离是 5
4
M(4,3)
234 5678
(7,2) (8,2) (5,4) (-7,2) (-8,2) (-5,4)
所得图形与原图形关于y轴对称.
(2)横坐标不变,纵坐标分别乘以-1. 解: 图形变化前后点的坐标分别为:
5 4 3 2
-1 2 3 4 5 6 7 8 --23 -4
变化前 (3,0) (7,0) (2,2) (3,2) (7,2) (8,2) (5,4) 变化后 (3,0) (7,0) (2,-2) (3,-2) (7,-2) (8,-2) (5,-4)
北师大版八年级数学(上册)《位置与坐标》辅导讲义
目录:1、知识总结2——32、巩固知识及时练 43、能力培养步步高 54、经典剖析开阔视野6——75、综合练习再巩固8——106、课后培优继续练11——147、知识、能力更上一层楼15——191、知识总结1.确定位置的方法(1).行列定位法:在这种方法中常把平面分成若干行、列,然后利用行号和列号表示平面上点的位置,在此方法中,要牢记某点的位置需要两个互相独立的数据,两者缺一不可。
(2).“极坐标”定位法:运用此法需要两个数据:方位角和距离,两者缺一不可。
(3).经纬定位法:它也需要两个数据:经度和纬度。
(4)区域定位法:只描述某点所在的大致位置。
如“小明住在7号楼3层302号”(5)在方格纸上确定物体的位置:在方格纸上,一点的位置由横向格数与纵向格数确定,记作(横向格数,纵向格数)或记作(水平距离,纵向距离),要注意横格数排在前面,纵向格数排在后面。
此种确定位置的方法可看作“平面直角坐标系”中坐标定位法的特例。
2.平面直角坐标系1.平面内确定位置的几种方法:○1有序数对:有两个数据a和b表示,记为_______○2方位角+距离法○3经纬定位法○4区域定位法2.平面直角坐标系:在平面内,两条互相______且具有公共______的数轴组成平面直角坐标系.其中水平方向的数轴叫______或______,向_____为正方向;竖直方向的数轴叫_______或______,向______为正方向。
两条数轴交点叫平面直角坐标系的_______.3.平面内点的坐标:对于平面内任意一点P,过P分别向x轴、y 轴作垂线,x轴上的垂足对应的数a叫P的____坐标,y轴上的垂足对应的数b叫P的_______坐标。
有序数对(a,b),叫点P的坐标。
若P的坐标为(a,b),则P到x轴距离为_______,到y轴距离为_______.4.平面直角坐标系内点的坐标特征:(1)坐标轴把平面分隔成四个象限。
根据点所在位置填表(2)坐标轴上的点不属于任何象限,它们的坐标特征○1在x轴上的点______坐标为0;○2在y轴上的点______坐标为0;(3)P(a,b)关于x轴、y轴、原点的对称点坐标特征○1点P(a,b)关于x轴对称点P1_____________ ;○2点 P(a,b)关于y轴对称点P2_____________ ;○3点P(a,b)关于原点对称点P3_____________ 。
北师大版八年级上册3位置与坐标复习课件
A.关于X轴对称
B.关于Y轴对称
C.关于原点对称
D.以上各项都不对
3.已知点M(3,-2),点N(a,b)是M点关于Y轴的对称点,则 a= -3 ,
b= -2 . 4.已知点P(a-1,5)和点Q(2,b-1)关于X轴对称,则a= 3 , b= -4 .
②解放路 不能
③东经120°,北纬31° 能
④学校北偏西24°方向,距离2公里 能
2.图示是某市旅游景点的示意图。
以“中心广场”为原点建 立平面直角坐标系,并 写出各个景点坐标
北 雁塔
钟楼
中心广场
碑林
大成殿
坐标是(-2,1) 碑林的坐标是(3,1) 中心广场的坐标是(0,0) 大成殿的坐标是(-2,-2) 影月湖的坐标是(0,-5) 科技大学的坐标是(-5,-7)
北师大版八年级(上)
回顾与思考
知识网络
方法 位 置 的 确 定
条件
平
面
直
有序数对
角
坐
方位角、距离 标
系
经纬度
区域
平面需2个数据
点与坐 标的对 应关系
关于坐 标轴对 称的点
一. 平面直角坐标系的相关概念
在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.
特点:①两条数轴互相垂直 ②公共原点
二、矩形法确定点坐标
对于平面内任意一 Y
点P ,过点P 分别向
x轴、y轴作垂线,
b┛
P(a,b)
垂足在x轴、y轴上
对应的数a、 b分别 1
叫做点P 的横坐标、
纵坐标,有序数对 O 1
┓
aX
(a, b)叫做点P
的坐标.
注意:横坐标写在前 面,纵坐标写在后面
北师大版数学八年级上册第3章位置与坐标复习课课件
7. 在平面直角坐标系中,点M(a,b)与点N(3,-1)关于x轴 对称,则a+b的值是____4_____. 8. 若点P(-2a,a-1)在y轴上,则点P的坐标为__(__0_,__-_1_)___, 点P关于x轴对称的点的坐标为__(__0_,__1_)____.
9.已知点P(a-1,-b+2)关于x轴的对称点为M,关于y轴的对称 点为N,若点M与点N的坐标相同. (1)求a,b的值; (2)猜想点P的位置并说明理由.
的点的坐标是( C )
A. (2,3)
B. (-3,2)
C. (-3,-2)
D.(-2,-3)
3. 如图Z3-6,将点A(-1,2)关于x轴作轴对称变换,则变换后 点的坐标是( C ) A.(1,2) B.(1,-2) C.(-1,-2) D.(-2,-1)
பைடு நூலகம்
4.已知△ABC在直角坐标系中的位置如图Z3-7,若△A′B′C′与
7. 已知:如图Z3-5,在△ABC中,AC=BC=5,AB=6,请以点A为原 点,以AB所在的直线为x轴建立平面直角坐标系,并求出△ABC的 各顶点的坐标.
解:建立的直角坐标系如答图Z3-1.
过点C作CD⊥AB于点D,如答图Z3-1.
因为AC=BC=5,AB=6,
所以BD=AD= AB= ×6=3.
第三章 位置与坐标
单元复习课 本章知识梳理
目录
01 课标要求 02 知识导航
课标要求
1.坐标与图形位置: (1)结合实例进一步体会有序数对可以表示物体的位置. (2)理解平面直角坐标系的有关概念,能画出直角坐标系;在给 定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出 它的坐标. (3)在实际问题中,能建立适当的直角坐标系,描述物体的位置 .
位置与坐标复习北师大版八年级数学上册PPT精品课件
A(0,4)B(-3,0)C(3,0)
o
第3章位置与坐标复习-北师大版八年 级数学 上册课 件
C X
第3章位置与坐标复习-北师大版八年 级数学 上册课 件
复习指导3(1分钟)
认真阅读P65,回答下列问题:
∟ ∟
1.坐标与距离 b y ∣a∣
a2 b2
P(a,b)
∣b∣
o
a
x
2.利用平面直角坐标系可以确定点的位置.未给出
y轴上的点的横坐标 为0,表示为(0,y)
复习检测1(8分钟)
1、A岛在B岛的南偏西31°距离240KM,则B岛在A岛 的 北偏东31°,距离240KM
2、如图,A、B、C是棋子在
方格纸上摆出的三个位置,如
A
果用(2,5)表示A的位置,
B
C
B表示为(1,4),C表示为
_(_3_,__4_)_。
3、若 mn = 0,则点 P(m,n)必定在 坐标轴 上 .
解:如图,以长方形对
y 5
边中点的连线所在的直
4
线分别为x轴和y轴,以
3
其交点为原点建立平面 直角坐标系,则A(2.5, C
2 1
B
-2),
B( 2.5,2),
-3 -2 -1 0 1 2 3 4 5 -1
x
D
-2
A
D(-2.5,-2)
-3
易漏:坐标系各要素:箭头、x、y
易读P54~60,回顾与思考下列问题: 1.生活中确定物体的位置,常用的方法有行列定位法 ,
方位角+距离 ,经纬度定位法 ,区域定位法 . 平面内确定物体的位置需要 两 个数据。
2.什么叫平面直角坐标系?平面直角坐标系中各象限内 点的坐标的符号特征是怎样的?坐标轴上点的坐标有何特 点?
位置与坐标(全章分层练习)(直通中考)-八年级数学上册基础知识专项突破讲与练(北师大版)
专题3.18位置与坐标(全章分层练习)(直通中考)一、单选题一、单选题1.(2023·浙江台州·统考中考真题)如图是中国象棋棋盘的一部分,建立如图所示的平面直角坐标系,已知“車”所在位置的坐标为()2,2-,则“炮”所在位置的坐标为().A .()3,1B .()1,3C .()4,1D .()3,22.(2023·浙江·统考中考真题)在平面直角坐标系中,点()21,1P m -+位于()A .第一象限B .第二象限C .第三象限D .第四象限3.(2023·浙江杭州·统考中考真题)在直角坐标系中,把点(),2A m 先向右平移1个单位,再向上平移3个单位得到点B .若点B 的横坐标和纵坐标相等,则m =()A .2B .3C .4D .54.(2023·湖北武汉·统考中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积112=+-S N L ,其中,N L 分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知()0,30A ,()()20,10,0,0B O ,则ABO 内部的格点个数是()A .266B .270C .271D .2855.(2023·浙江绍兴·统考中考真题)在平面直角坐标系中,将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()A .()2,1m n --B .()2,1m n -+C .()2,1m n +-D .()2,1m n ++6.(2023·黑龙江大庆·统考中考真题)已知0a b +>,0ab >,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A .()a b ,B .()a b -,C .()--,a bD .()a b -,7.(2022·广西河池·统考中考真题)如果点P (m ,1+2m )在第三象限内,那么m 的取值范围是()A .102m -<<B .12m >-C .0m <D .12m <-8.(2022·内蒙古赤峰·统考中考真题)如图,点()2,1A ,将线段OA 先向上平移2个单位长度,再向左平移3个单位长度,得到线段''O A ,则点A 的对应点'A 的坐标是()A .()3,2-B .()0,4C .()1,3-D .()3,1-9.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()A .()31.34B .()31,34-C .()32,35D .()32,010.(2023·辽宁阜新·统考中考真题)如图,四边形1OABC 是正方形,曲线12345C C C C C 叫作“正方形的渐开线”,其中 12C C , 23C C , 34C C , 45C C ,…的圆心依次按O ,A ,B ,1C 循环.当1OA =时,点2023C 的坐标是()A .)12(022--,B .)20231(-,C .)12(023--,D .(2022)0,二、填空题11.(2023·湖南·统考中考真题)在平面直角坐标系中,点()3,2P --所在象限是第象限.12.(2023·山东日照·统考中考真题)若点()3,1M m m +-在第四象限,则m 的取值范围是.13.(2023·山东滨州·统考中考真题)如图,在平面直角坐标系中,ABO 的三个顶点坐标分别为()()()6,3,6,0,0,0A B O .若将ABO 向左平移3个单位长度得到CDE ,则点A 的对应点C 的坐标是.14.(2023·辽宁营口·统考中考真题)在平面直角坐标系中,将点()3,4M -向左平移5个单位长度,得到点M ',则点M '的坐标是.15.(2022·辽宁大连·统考中考真题)如图,在平面直角坐标系中,点A 的坐标是()1,2,将线段OA 向右平移4个单位长度,得到线段BC ,点A 的对应点C 的坐标是.16.(2022·山东临沂·统考中考真题)如图,在平面直角坐标系中,ABC 的顶点A ,B 的坐标分别是()0,2A ,()2,1B -.平移ABC 得到A B C ''' ,若点A 的对应点A '的坐标为()1,0-,则点B 的对应点B '的坐标是.17.(2022·山东淄博·统考中考真题)如图,在平面直角坐标系中,平移△ABC 至△A 1B 1C 1的位置.若顶点A (﹣3,4)的对应点是A 1(2,5),则点B (﹣4,2)的对应点B 1的坐标是.18.(2022·贵州毕节·统考中考真题)如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点1(1,1)A ;把点1A 向上平移2个单位,再向左平移2个单位,得到点2(1,3)A -;把点2A 向下平移3个单位,再向左平移3个单位,得到点3(4,0)A -;把点3A 向下平移4个单位,再向右平移4个单位,得到点4(0,4)A -;…;按此做法进行下去,则点10A 的坐标为.三、解答题19.(2011·广西贵港·中考真题)在平面直角坐标系中,顺次连接A (-2,0)、B (4,0)、C (-2,-3)各点,试求:(1)A 、B 两点之间的距离.(2)点C 到x 轴的距离.(3)△ABC 的面积.20.(2022·陕西·统考中考真题)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C ''' ,且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C ''' .21.(2010·浙江杭州·中考真题)如图,在平面直角坐标系xOy 中,点()0,8A ,点()6,8B .(1)只用直尺(没有刻度)和圆规,求作一个点P ,使点P 同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P 到,A B 两点的距离相等;②点P 到两条坐标轴的距离相等.(2)写出(1)中作出的点P 的坐标.22.(2013·云南·中考真题)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形.(2)写出A、B、C三点平移后的对应点A′、B′、C′的坐标.23.(2013·广东梅州·中考真题)如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)(1)若点C与点A关于原点O对称,则点C的坐标为;(2)将点A向右平移5个单位得到点D,则点D的坐标为;(3)由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.24.(2012·北京·中考真题)操作与探究:(1)对数轴上的点P进行如下操作:先把点P表示的数乘以13再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是3 ,则点A′表示的数是;若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是;(2)如图2,在平面直角坐标系xoy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.参考答案1.A【分析】根据已知条件,确定平面直角坐标系原点,最后即可求出答案.【详解】解: “車”所在位留的坐标为()2,2-,∴确定点O 即是平面直角坐标系的原点,且每一格的单位长度是1,∴“炮”所在位置的坐标为()3,1.故选:A .【点拨】本题考查了平面直角坐标系,解题的关键在于根据已知条件确定原点.2.B【分析】根据P 点坐标分别判断出横坐标和纵坐标的符号,从而就可以判断改点所在的象限.【详解】解:()21,1P m -+ ,1∴-<0,211m +≥,∴满足第二象限的条件.故选:B .【点拨】本题考查的是平面直角坐标系中点的坐标以及象限知识,解题的关键在于熟练掌握各个象限的横纵坐标点的符号特点.3.C【分析】先根据平移方式确定点B 的坐标,再根据点B 的横坐标和纵坐标相等列方程,解方程即可.【详解】解: 点(),2A m 先向右平移1个单位,再向上平移3个单位得到点B ,∴()1,23B m ++,即()1,5B m +,点B 的横坐标和纵坐标相等,∴15m +=,∴4m =,故选C .【点拨】本题考查平面直角坐标系内点的平移,一元一次方程的应用等,解题的关键是掌握平面直角坐标系内点平移时坐标的变化规律:横坐标右加左减,纵坐标上加下减.4.C【分析】首先根据题意画出图形,然后求出ABO 的面积和边界上的格点个数,然后代入求解即可.【详解】如图所示,∵()0,30A ,()()20,10,0,0B O ,∴130203002ABO S =⨯⨯=V ,∵OA 上有31个格点,OB 上的格点有()2,1,()4,2,()6,3,()8,4,()10,5,()12,6,()14,7,()16,8,()18,9,()20,10,共10个格点,AB 上的格点有()1,29,()2,28,()3,27,()4,26,()5,25,()6,24,()7,23,()8,22,()9,21,()10,20,()11,19,()12,18,()13,17,()16,14,()15,15,()16,14,()17,13,()18,12,()19,11,共19个格点,∴边界上的格点个数31101960L =++=,∵112=+-S N L ,∴13006012N =+⨯-,∴解得271N =.∴ABO 内部的格点个数是271.故选:C .【点拨】本题主要考查了坐标与图形的性质,解决问题的关键是掌握数形结合的数学思想.5.D【分析】把(),m n 横坐标加2,纵坐标加1即可得出结果.【详解】解:将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()2,1m n ++.故选:D .【点拨】本题考查点的平移中坐标的变换,把(),a b 向上(或向下)平移h 个单位,对应的纵坐标加上(或减去)h ,,把(),a b 向右上(或向左)平移n 个单位,对应的横坐标加上(或减去)n .掌握平移规律是解题的关键.6.D【分析】由0a b +>,0ab >,得出00a b >>,,再逐项分析即可得到答案.【详解】解: 0ab >,∴a b 、同号,0a b +>,00a b ∴>>,,A.()a b ,在第一象限,因为小手盖住的点在第四象限,故此选项不符合题意;B.()a b -,在第二象限,因为小手盖住的点在第四象限,故此选项不符合题意;C.()--,a b 在第三象限,因为小手盖住的点在第四象限,故此选项不符合题意;D.()a b -,在第四象限,因为小手盖住的点在第四象限,故此选项符合题意;故选:D .【点拨】本题考查了点的象限的判断,熟练判断a b 、的正负是解题的关键.7.D【分析】根据第三象限点的特征,横纵坐标都为负,列出一元一次不等式组,进而即可求解.【详解】解:∵点P (m ,1+2m )在第三象限内,∴0120m m <⎧⎨+<⎩①②,解不等式①得:0m <,解不等式②得:12m <-,∴不等式组的解集为:12m <-,故选D .【点拨】本题考查了第三象限的点的坐标特征,一元一次不等式组的应用,掌握各象限点的坐标特征是解题的关键.8.C【分析】根据点向上平移a 个单位,点向左平移b 个单位,坐标P (x ,y )⇒P (x ,y +a )⇒P (x +a ,y +b ),进行计算即可.【详解】解:∵点A 坐标为(2,1),∴线段OA 向上平移2个单位长度,再向左平移3个单位长度,点A 的对应点A ′的坐标为(2-3,1+2),即(-1,3),故选C .【点拨】此题主要考查了坐标与图形的变化--平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.9.A【分析】根据图象可得移动3次完成一个循环,从而可得出点坐标的规律()323n A n n --,.【详解】解:∵()121A -,,()412A -,,()703A ,,()1014A ,,L ,∴()323n A n n --,,∵1003342=⨯-,则34n =,∴()1003134A ,,故选:A .【点拨】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律.10.A【分析】由题得点的位置每4个一循环,经计算得出2023C 在第三象限,与3C ,7C ,11C ,…符合同一规律,探究出3C ,7C ,11C ,...的规律即可.【详解】解:由图得123450110()()()()(140)205C C C C C ---,,,,,,,,,,67(506)1()C C --,,,,…点C 的位置每4个一循环,202350543=⨯+,∴2023C 在第三象限,与3C ,7C ,11C ,…符合规律()11n --+,,∴2023C 坐标为)12(022--,.故选:A .【点拨】本题考查了点的坐标的规律的探究,理解题意求出坐标是解题关键.11.三【分析】根据各象限内点的坐标特征解答.【详解】解:()3,2P --的横坐标为负数,纵坐标为负数,()3,2P ∴--在第三象限,故答案为:三.【点拨】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(,)++,第二象限(,)-+,第三象限(,)--,第四象限(,)+-.12.31m -<</13m >>-【分析】根据第四象限的点横坐标为正,纵坐标为负进行求解即可。
北师大八年级数学位置与坐标学习重点汇总_知识点总结
北师大八年级数学位置与坐标学习重点汇总_知识点总结
不少小学生对数学非常头疼,但也有不少人数学非常好!他们是怎么做到的?八年级数学位置与坐标学习重点先来告诉你关于关于这一个单元的重点,赶快来收藏吧!
第一节:确定位置
掌握平面内点的坐标的表示方法及求法,知道有序数对与平面直角坐标系中的点的对应关系完整内容八年级数学探索确定位置的方法知识点解析~
第二节:平面直角坐标系
1.所需能力:
1深刻理解平面直角坐标系和点坐标的意义完整内容初二上册平面直角坐标系知识点~ 第三节:轴对称与坐标变化
用坐标表示轴对称
关于坐标轴轴对称的点的坐标特点:关于谁对称谁不变,即关于x轴对称,则横坐标x的值不变,关于y轴对称,则纵轴标y的值不变完整内容初二数学轴对称与坐标变化知识总结~。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题3.11 《位置与坐标》全章复习与巩固(知识讲解)【学习目标】1. 理解平面直角坐标系及象限的概念,并会在坐标系中根据点的坐标描出点的位置、由点的位置写出它的坐标;2. 掌握用坐标系表示物体位置的方法及在物体平移变化前后点坐标的变化;3. 通过学习平面直角坐标系的基础知识,逐步理解平面内的点与有序实数对之间的一一对应关系,进而培养数形结合的数学思想.【要点梳理】要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000), (17,190), (21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.要点二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:特别说明:(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:① x轴上的点纵坐标为零;y轴上的点横坐标为零.②平行于x轴直线上的点横坐标不相等,纵坐标相等;平行于y轴直线上的点横坐标相等,纵坐标不相等.③关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.② x轴上两点A(x1,0)、B(x2,0)的距离为AB=|x1 - x2|;y轴上两点C(0,y1)、D(0,y2)的距离为CD=|y1 - y2|.③平行于x轴的直线上两点A(x1,y)、B(x2,y)的距离为AB=|x1 - x2|;平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD=|y1 - y2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补.要点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.特别说明:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).特别说明:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.特别说明:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.【典型例题】类型一、有序数对1.马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动.某天中国海巡01号继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体.如果约定“经度在前,纬度在后”,那么我们可以用有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?【答案】东经116度,南纬38度可以表示为(116,38).【分析】根据“经度在前,纬度在后”的顺序,可以将东经116度,南纬38度用有序数对(116,38)表示.解:由题意可知东经116度,南纬38度,可用有序数对(116,38)表示.故东经116度,南纬38度表示为(116,38).【点拨】本题考察了用有序数对表示位置.解题的关键在于读懂题意中给定的规则.举一反三:【变式1】根据指令(s,A)(说明:s≥0,单位:厘米;0°≤A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s,若机器人站在点M处,面对的方向如图所示.(1)给机器人下了一个指令(2,60°),机器人移动到了B点,请你画出机器人从M点到B 点的运动路径;(2)若机器人从M点运动到了C点,则给机器人下了一个什么指令?【答案】(1) 画图略(2) 指令(3,20°)试题分析:(1)首先弄懂(2,60°)表示的意思:先原地逆时针旋转60°,再朝其面对的方向沿直线行走2厘米,据此画图;(2)根据图形看出S和A的值.解:(1)如图:(2)给机器人的指令是(3,20°).【点拨】本题考查了用角度和距离表示物体的位置,关键是理解题意,弄懂(2,60°)表示的意思,先原地逆时针旋转60°,再朝其面对的方向沿直线行走2厘米.【变式2】观察如图所示象棋棋盘,回答下列问题:(1)说出“将”与“帅”的位置;(2)说出“马3进4”(即第3列的“马”前进到第4列)后的位置.【答案】(1)“将”在第9行第5列,“帅”在第1行第5列;(2)第7行第4列【分析】(1)根据已知点的位置即可确定行列表示的数据的顺序,进而得出答案;(2)根据“马”的位置,经过平移后得到新的位置,根据新的位置,确定行列表示的数据,进而得出答案.解:(1)按照图中的表示数字,“将”在第9行第5列,“帅”在第1行第5列;(2)第7行第4列.【点拨】本题考查了用有序实数对表示位置,点的平移,掌握用有序数对表示位置是解题的关键.类型二、平面直角坐标系2.ABC ∆在平面直角坐标系中的位置如图所示:(1)点,A B 的坐标分别是: ;(2)在图中作出ABC ∆关于x 轴的对称图形DEF ∆,点F 的坐标是 ;(3)求DEF ∆的面积.【答案】(1) ()()2,1,4,3A B - (2) 见分析,()3,1F (3) 11【分析】(1)从图像中可得到点的坐标;(2)据轴对称的性质分别作出三个顶点先后关于x 轴的对应点,再首尾顺次连接即可; (3)利用矩形的面积减去三个三角形的面积即可.(1)解:由图可知,()()2,1,4,3A B -;(2)解:DEF ∆如图所示,()3,1 F;(3)解:11146251426222DEFS∆=⨯-⨯⨯-⨯⨯-⨯⨯11=,∴DEF∆的面积是11.【点拨】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.举一反三:【变式1】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形ABC(顶点是网格线的交点的三角形)的顶点A,C的坐标分别为A(2,4),B(-1,0),请按要求解答下列问题:(1)在图中建立正确的平面直角坐标系,写出点C的坐标;(2)在图中作出∴ABC关于x轴对称的∴A1B1C1.【答案】(1) 见分析,C(3,2);(2) 见分析【分析】(1)根据A点坐标可知:A点在x轴上方,距离x轴4个单位,A点在y轴右侧,距离y轴2个单位,以此即可找到x轴、y轴的位置,建立坐标系后,即可得C点坐标;(2)先找到A、B、C三点关于x轴的对称点A1、B1、C1,连接A1B1、B1C1、A1C1即可.(1)如图:平面直角坐标系,C(3,2);(2)如图所示,∴A1B1C1即为所求..【点拨】本题考查了作轴对称图形、直角坐标的坐标与图形等知识,根据坐标确定出坐标轴是解答本题的基础.A aB bC b c三点,其中a、b满【变式2】如图,在平面直角坐标系中,已知(0,),(,0),(,)2-==.b c|6|0,64(1)求a、b、c的值;(2)如果在第二象限内有一点(,1)P m,请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.【答案】(1)a=4,b=6,c=8(2)12−2m(3)存在点P(-6,1)使S四边形ABOP=S△ABC 【分析】(1)解方程组可求a,b的值,由平方根的定义可求c的值;(2)由三角形的面积公式可求解;(3)利用面积关系可得12-2m =24,即可求解.解:(12|6|0,64b c -==,可得:a =4,b =6,c =±8;又∴点C 在第一象限,∴c =8(2)∴S △ABO =12×4×6=12,S △APO =12×4×(−m )=−2m ,∴S 四边形ABOP =S △ABO +S △APO =12+(−2m )=12−2m(3)因为S △ABC =12×6×8=24,∴S 四边形ABOP =S △ABC ∴12−2m =24,则m =−6,所以存在点P (-6, 1)使S 四边形ABOP =S △ABC .【点拨】本题是四边形综合题,考查了二元一次方程组的解法,三角形的面积公式,灵活运用这些性质解决问题是本题的关键. 类型三、坐标方法的简单应用(1)地理位置的表示3.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,若体育馆位置的坐标为()2,3A -,图书馆位置坐标为()2,1B -.请在图中建立平面直角坐标系;(1) 若学校位置坐标为()3,2C ,请在坐标系中标出学校的位置;(2) 顺次连接学校、图书馆、体育馆的位置,得到ABC ∆,求ABC ∆的面积.(3) 请在图中画出ABC ∆关于y 轴对称的图形111A B C ∆.【答案】(1) 见分析 (2)图见分析,12 (3)见分析【分析】(1)利用点A 、B 的坐标画出直角坐标系即可标出学校位置;(2)利用矩形的面积减去三个三角形的面积得到∴ABC 的面积;(3)画出ABC ∆的顶点对应的顶点即可得到111A B C ∆.(1)解:平面直角坐标系如图,学校位置如图;(2)解:ABC ∆如图;11155154415222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯12=.(3)解:111A B C 如图.【点拨】本题主要考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.举一反三:【变式1】 如图,是一个简单的平面示意图,已知OA =2km ,OB =6km ,OC =BD =4km ,点E 为OC 的中点,回答下列问题:(1)由图可知,高铁站在小明家南偏西65°方向6km 处.请类似这种方法用方向与距离描述学校、博物馆相对于小明家的位置;(2)图中到小明家距离相同的是哪些地方?(3)若小强家在小明家北偏西60°方向2km 处,请在图中标出小强家的位置.【答案】(1)学校在小明家北偏东45°方向2km 处,博物馆在小明家南偏东50°方向4 km 处(2)图中到小明家距离相同的是学校和公园和影院(3)见分析【分析】(1)由图可知,学校在小明家北偏东45°方向2km 处,博物馆在小明家南偏东50方向4km 处;(2)观察图形,根据OA , OE , OD 的长度及图中各角度,即可得出结论.(3)作北偏西60°角,取OE = 2即可.(1)解:学校在小明家北偏东45°方向2km 处,博物馆在小明家南偏东50°方向4 km 处;(2)图中到小明家距离相同的是学校和公园和影院;(3)如图,点F即为小强家.【点拨】本题考查了方向角,解题的关键是熟练掌握运用方位角及确定位置需要两个元素.【变式2】如图所示,B处在A处的南偏西45°方向上,C处在A处的南偏东30°方向,C处在B处的北偏东60°,求∴ACB是多少度?【答案】∴ACB=90°【分析】先根据题意得出∴BAC的度数,由AE∴DB可得出∴DBA的度数,进而可得出∴ABC的度数,最后根据三角形内角和定理即可求出∴ACB的度数.解:根据题意,得∴BAE=45°,∴CAE=30°,∴DBC=60°,∴∴BAC=∴BAE+∴CAE,=45°+30°,=75°.∴AE∴DB,∴∴DBA=∴BAE=45°,∴∴ABC=∴DBC﹣∴DBA,=60°﹣45°,=15°,∴∴ACB=180°﹣∴ABC﹣∴BAC,=180°﹣15°﹣75°,=90°.故∴ACB 为:90°.【点拨】本题考查方位角问题,掌握方位角的概念,会用方位角确定互相位置,抓住平行线的性质是解答的关键.(2)坐标的平移4.平面直角坐标系中有一点A ,已知点A 在第二象限,点A 到x 轴的距离为3个单位、到y 轴距离为4个单位,请回答下列问题:(1)点A 的坐标为_________.(2)若将点A 向右平移5个单位至1A ,则1A 坐标为_________,若将点A 向左平移5个单位至2A ,则2A 坐标为_________.(3)该坐标系内有一点B ,点B 与点A 的横坐标相同,且线段AB 长为3,点B 坐标为_________.【答案】(1)()4,3-(2)()1,3,()9,3-(3)()4,0-或()4,6-【分析】(1)根据点到坐标轴的距离可得横纵坐标的绝对值,进而根据第二象限点的坐标特征即可求得点A 的坐标;(2)根据平移方式,向右平移5个将点A 的横坐标加5即可得到1A 的坐标,左平移5个单位将点A 的横坐标减5即可得到2A 的坐标;(3)根据题意设()4,B b -,由线段AB 长为3,可得33b -=,解绝对值方程即可求解. (1)解:∴点A 到x 轴的距离为3个单位、到y 轴距离为4个单位,设(),A a b ,∴4,3a b ==,点A 在第二象限,∴0,0a b <>,4,3a b ∴=-=,∴点A 的坐标为()4,3-,故答案为:()4,3-;(2)若将点A ()4,3-向右平移5个单位至1A ,则1A 坐标为()1,3;若将点A ()4,3-向左平移5个单位至2A ,则2A 坐标为()9,3-,故答案为:()1,3,()9,3-;(3)根据题意设()4,B b -,线段AB 长为3,33b ∴-=,解得0b =或6b =,∴点B坐标为()4,0-或()4,6-.【点拨】本题考查了点到坐标轴的距离,第二象限点的坐标特征,点的平移,平行于坐标轴的线段的长度,理解题意,数形结合是解题的关键.举一反三:【变式1】如图,每个小正方形格子的边长为1个单位长度,在平面直角坐标系中有一个三角形ABC ,且三个项点都在格点(横、纵坐标均为整数的点)上,点A 的坐标为(1,3)-.(1)将三角形ABC 先向下平移4个单位长度,再向右平移3个单位长度后得到三角形111A B C ,写出点1A ,1B ,1C 的坐标,并画出三角形111A B C ;(2)求三角形111A B C 的面积;(3)点(,)M x y 在三角形ABC 边上,按(1)中的步骤平移后,点M 的对应点1M 的坐标为________.【答案】(1)画图见分析,1A (2,-1),1B (1,-4),1C (0,-2)(2)52(3)()13,4M x y +-【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用∴111A B C 所在长方形面积减去周围三角形面积进而得出答案; (3)利用平移规律,进而得出答案.(1)解:如图所示:其中1A (2,-1),1B (1,-4),1C (0,-2);(2)由图可知:111A B C △的面积=11123121213222⨯-⨯⨯-⨯⨯-⨯⨯=52;(3)∴平移方式为先向下平移4个单位长度,再向右平移3个单位长度,∴点(,)M x y 平移之后的坐标为()13,4M x y +-.【点拨】此题主要考查了平移规律,正确得出对应点位置是解题关键. 【变式2】已知三角形ABC 的边AB 上任意一点()00,P x y 经过平移后的对应点为()1004,3P x y ++.(1)将三角形ABC 作同样的平移得到三角形111A B C ,在下图中画出三角形111A B C ,并直接写出1A 、1B 、1C 的坐标.(2)求出三角形ABC 的面积.【答案】(1)见分析;(2,6),(0,2),(6,3)(2)11 【分析】(1)根据点P 坐标的变化可画出△A 1B 1C 1,并写出A 1,B 1,C 1的坐标; (2)利用如图所示矩形的面积减掉三个直角三角形的面积即可求解. (1)解:∴点P (x 0,y 0)经平移后对应点为P 1(x 0+4,y 0+3),即点P 先向右平移4个单位,再向上平移3个单位得到点P 1, ∴∴ABC 先向右平移4个单位,再向上平移3个单位得到△A 1B 1C 1,点A 1,B 1,C 1的坐标分别为(2,6),(0,2),(6,3), 如图,△A 1B 1C 1为所作.(2)解:如图,1114624341611222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=【点拨】本题考查作图−平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.类型四、综合应用5.如图,在平面直角坐标系xOy 中,O 为坐标原点,∴ABC 的边BC 在x 轴上,A 、C 两点的坐标分别为A (0,a ),C (b ,0),B (-5,0),且()202243a b -=--,点P 从点B 出发,以每秒2个单位的速度沿射线BO 匀速运动,设点P 运动时间为t 秒.(1)求A 、C 两点的坐标;(2)连接P A ,用含t 的代数式表示∴POA 的面积;(3)当点P 在线段BO 上运动时,在y 轴上是否存在点Q ,使∴POQ 与∴AOC 全等?若存在,请求出t 的值并直接写出Q 点坐标;若不存在,请说明理由.【答案】(1)A (0,4),C (3,0)(2)当502t <时,S =104t -或当52t >时,S =410t -; (3)存在,12t =或1时,Q 的坐标是(0,3)或(0,4)或(0,-3)或(0,-4) 【分析】(1)根据非负数的性质分别求出a 、b 的值,即可求得点A 、C 两点的坐标; (2)先求出OB 的长,再分类讨论求解即可;(3)分△QOP ∴∴AOC 和△POQ ∴∴AOC 两种情况求解即可. (1)解:∴()202243a b -=--,∴4a =,3b =,∴A 的坐标是(0,4),C 的坐标是(3,0);(2)∴B (-5,0),∴OB =5∴当502t <时,P 在线段OB 上,如图1,∴OP =52t -,OA =4,∴()15241042S t t =⨯-⨯=-;∴当52t =时,P 和O 重合,此时△APO 不存在;∴当52t >时,P 在射线OC 上,如备用图2,∴OP =25t -,OA =4,∴()12544102S t t =⨯-⨯=-;(3)解:当P 在线段BO 上运动时,在y 轴上存在点Q ,使△POQ 与△AOC 全等,∴P 在线段BO 上运动,∴t ≤5÷2=2.5,∴当BP =1,即OP =4,OQ =3时,△POQ ∴∴AOC ,此时12t =,Q 的坐标是(0,3)或(0,-3);∴当BP =2,即OP =3,OQ =4时,△QOP ∴∴AOC ,此时221t =÷=,Q 的坐标是(0,4)或(0,-4);综上所述,12t =或1,Q 的坐标是(0,3)或(0,4)或(0,-3)或(0,-4).【点拨】本题考查了全等三角形的判定和性质、坐标与图形性质、非负数的性质等知识点,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.举一反三:【变式1】如图,在平面直角坐标系中,点A(1,2),点B(4,1),点C(4,5).(1)画出△ABC关于y轴的轴对称图形△A1B1C1,并写出点C的对称点C1的坐标;(2)在x轴上画出点P,使P A1+PB1最小;(3)直线MN∴y轴,与线段AB,AC分别交于点M,N(点M不与点A,C重合),若将△AMN沿直线MN翻折,点A的对称点为点A′,当点A′落在△ABC的内部时,点M的横坐标m的取值范围是.【答案】(1)见分析,C1(﹣4,5)(2)见分析(3)1<m<2.5【分析】(1)根据轴对称的性质即可画出△ABC关于y轴的轴对称图形△A1B1C1,并写出点C的对称点C1的坐标;(2)连接B1A1′交x轴于点P即可;(3)根据轴对称的性质即可解决问题.(1)解:如图,△A1B1C1,即为所求;C1(﹣4,5);(2)如图,点P即为所作;(3)当点A的对称点A'落在BC上时,点A'的坐标为(4,2),此时m =12(1+4)=2.5,∴点M 不与点A 重合,点A ′落在△ABC 的内部, ∴点M 的横坐标m 的取值范围是 1<m <2.5 ; 故答案为:1<m <2.5.【点拨】本题考查作图﹣轴对称变换,轴对称﹣最短路线问题,解题的关键是掌握轴对称变换的性质.【变式2】如图,在平面直角坐标系中,点A (1,1),B (3,1),C (3,5),连接AB ,BC ,AC .(1) 特例感知:分别找到线段AB ,BC ,AC 的中点,并依次标记为D ,E ,F ,它们的坐标为D (_________,_________),E (_________,_________),F (_________,_________). (2) 观察猜想:仔细观察上述三条线段中点的横坐标与纵坐标,分别与对应的线段AB ,BC ,AC 的两端点的横坐标与纵坐标进行比较,看看它们之间有什么关系,并根据你的猜想完成下列问题.∴ 若点H (-5,1.5),K (-1,-3.5),则线段HK 的中点坐标为_________; ∴ 若点P (a ,b ),Q (c ,d ),则线段PQ 的中点坐标为_________.(3) 拓展应用:若M ,N 分别是三角形111A B C 中11A C ,11B C 的中点,请直接写出MN 与11A B 的位置关系及数量关系.【答案】(1)D (2,1),E (3,3),F (2,3).(2)∴(-3,-1);∴(2a c +,2b d+). (3)11MN A B ∥,1112MN A B =. 【分析】(1)根据所给的条件结合图像可以直接得到找到线段AB ,BC ,AC 的中点的坐标. (2)由(1)可以归纳出一个“已知线段两个端点的坐标,求线段中点的坐标”的结论,然后根据结论求出答案即可.(3)将三角形111A B C 放在平面直角坐标系中,表示出M ,N 的坐标,然后根据坐标得出结论.解:(1)根据图中的方格直接得到线段AB ,BC ,AC 的中点分别为:D (2,1),E (3,3),F (2,3).(2)根据(1)可以猜想出一个结论:已知线段的两个端点A 、B 的坐标,线段AB 中点的横坐标和纵坐标分别为A 、B 的横坐标和的一半和纵坐标和的一半.所以∴H (-5,1.5),K (-1,-3.5),线段HK 的中点坐标为(-3,-1);∴P (a ,b ),Q (c ,d ),线段PQ 的中点坐标为(2a c +,2b d+).(3)如图,将三角形111A B C 放在平面直角坐标系中,点1A 和点O 重合,1B 在x 轴的正半轴上,则1A (0,0),设1B a (,0),1C b c(,),所以()22b c M ,,()22a b cN +,,M 、N 纵坐标相同,所以11MN A B ∥,11A B a =,MN =222a b b a +-=,所以1112MN A B =,∴11MN A B ∥,1112MN A B =. 【点拨】本题考查了平面直角坐标系相关知识,前两问需要学生认真归纳总结,第三问方法不唯一,需要学生认真探索方法,能够正确理解题意并归纳出相关结论是解决本题的关键.。