控制系统的数学模型
控制工程基础第一章控制系统的数学模型
(t)
m dt
m
1a
2ቤተ መጻሕፍቲ ባይዱ
c
式中,
Tm
Ra
Ra J m f m CmCe
为电动机机电时间常数,s;
K1
Ra
f
Cm
C C
m
me
K2
Ra
f
Ra
C C
m
me
为电动机传递系数。
如果电枢电阻Ra和电动机的转动惯量Jm都很小而忽略不计,式(1-9)
还可进一步简化为
C u (t) (t)
em
a
这时,电动机的转速ωm(t)与电枢电压ua(t)成正比,于是电动机可作为
(1)运算放大器Ⅰ。输入量(即给定电压)ug与速度反馈电压uf在此 合成产生偏差电压并经放大,即
u1 K1(ug u f )
式中,
K1
R2 R3
为运算放大器Ⅰ的比例系数。
(2)运算放大器Ⅱ。考虑RC校正网络,u2与u1之间的微分方程为
u2
K(2
d u1
dt
u1)
式中,K 2
R5 R4
为运算放大器Ⅱ的比例系数;τ=R4C为微分时间常数。
m
(t) (t) (t)
m dt
mm
m
c
式中,fm为电动机和负载折合到电动机轴上的黏性摩擦系数;Jm为电
动机和负载折合到电动机轴上的转动惯量。
由式(1-5)、式(1-6)和式(1-7)中消去中间变量ia(t)、Ea及
Mm(t),便可得到以ωm(t)为输出量,以ua(t)为输入量的直流电动机微
分方程,即
按照其建立的条件,数学模型可分为两种。一是静态数学模型: 静态条件(变量各阶导数为零)下描述变量之间关系的代数方程。 它反映了系统处于稳态时,系统状态有关属性变量之间的关系。二 是动态数学模型:动态条件(变量各阶导数不为零)下描述变量各 阶导数之间关系的微分方程;也可定义为描述实际系统各物理量随 时间演化的数学表达式。它反映了动态系统瞬态与过渡态的特性。 本章以动态数学模型的研究为主。
第二章控制系统的数学模型.
2.2.1传递函数的定义和性质
⑴ 定义 线性定常系统的传递函数,定义为初始条件为零时,输出 量的拉氏变换与输入量的拉氏变换之比,记为G(S),即:
C ( s) G( s) R( s)
(2-4)
注:所有初始条件为零,指的是原系统处于静止状态. 设线性定常系统的n阶线性常微分方程为
dn d n 1 d a0 n c(t ) a1 n 1 c(t ) an 1 c(t ) an c(t ) dt dt dt dm d m1 d b0 m r (t ) b1 m 1 r (t ) bm1 r (t ) bm r (t ) dt dt dt
F(t)
K
F(t) F2(t)
m
f
m
x(t)
F1(t) b)
x(t)
根据牛顿第二运动定律有:
d 2 x (t ) F (t ) F1 (t ) F2 (t ) m dt2
a)
图2-2 机械位移系统
(2-2) 7
式中:
F1 (t ) ——阻尼器阻力。其大小与运动速度成正比,方向 与运动方向相反,阻尼系数为f,即: dx (t ) F1 (t ) f dt F2 (t ) ——弹簧力。设为线性弹簧,根据虎克定律有:
F2 (t ) Kx(t )
K——弹簧刚度 联立以上三式并整理得:
d 2 x (t ) dx(t ) m f Kx (t ) F (t ) 2 dt dt
(2-3) 8
综上所述,列写元件微分方程的步骤可归纳如下: ① 根据元件的工作原理及其在控制系统中的作用,确定其 输入量和输出量; ② 分析元件工作中所遵循的物理规律或化学规律,列写相 应的微分方程; ③ 消去中间变量,得到输出量与输入量之间关系的微分方 程,便是元件时域的数学模型. 9
基本要求-控制系统数学模型
自动控制原理
第二章控制系统的数学模型
线性连续系统微分方程的一般形式
d c (t ) d c (t ) dc (t ) an an 1 ... a1 a0 c ( t ) n n 1 dt dt dt d m r (t ) d m 1r (t ) dr (t ) bm bm 1 ... b1 b0 r (t ) m m 1 dt dt dt
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
• 3.表示形式 a.时域:微分﹑差分﹑状态方程 b.复域:传递函数﹑结构图 c.频域:频率特性
三种数学模型之间的关系 线性系统
拉氏 傅氏 传递函数 微分方程 频率特性 变换 变换
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
自动控制原理
第二章控制系统的数学模型
题目变种3,寻求新解法
1 R1 cs I ( s) U ( s) U r ( s) c 1 R1 cs
Uc( s ) I (s) R2
联立,可解得: 微分方程为:
U c ( s) R2 (1 R1Cs) U r (s) R1 R2 R1 R2 Cs
微分方程的标准形式: 1、与输入量有关的项写在方程的右端; 2、与输出量有关的项写在方程的左端; 3、方成两端变量的导数项均按降幂排列
mx(t ) fx(t ) kx(t ) F (t )
航空
第二章控制系统的数学模型
电气系统三元件(知识补充)
电阻
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
2.为什么要建立数学模型: 只是定性地了解系统的工作原理和大致的 运动过程是不够的,还要从理论上对系统 性能进行定量的分析和计算。 另一个原因:许多表面上看毫无共同之处 的控制系统,其运动规律具有相似性,可 以用相同形式的数学模型表示。
自动控制原理:第二章--控制系统数学模型全
TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
(1)根据克希霍夫定律可写出原始方程式
((23))式消LuLCcdd中去(titd)i中2d是utRc间2(中Cti1)变间C1量iR变dCti量idd后udt,ct,(t它)u输r与u(入tc输)(输t)出出uu微rc((tt)分)有方如程下式关系
或
T1T2
d 2uc (t) dt 2
T2
duc (t) dt
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
线性(或线性化)定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比 称为传递函数。
令线C性(s定)=常L[c系(t统)],由R下(s)述=Ln阶[r(微t)]分,方在程初描始述条:件为零
时[[aab,nnmbssdmdn进mt+ndn+dt行acmmbn(tm拉-r1)-(s1t氏ns)-am1变n+-1b1+…m换dd…1t+,nndd+1a1t得mm1bcs1(11到+ts)r+a关(t0b)]于0C]的RD(sM的s的a(()分s1s(分))=代sdbd为母)t1子为数cd传d多(tt多传方)r递项(项t程递函)式a式0函数c。b(0数tr) (t)
第二章_控制系统的数学模型
R
a
La
Ea
+
if -
i a (t ) U a (t )
m Mm
Jm fm
MC
dia ( t ) R a i a (t) E a dt E a C e m ( t ) u a La M m (t) M c (t) J m M m (t) C mi a (t) dm ( t ) f m m ( t ) dt
2.2 控制系统的复数域数学模型
1、传递函数的定义
在零初始条件下,线性定常系统输出量的拉普拉斯变 换与输入量的拉普拉斯变换之比,定义为线性定常系统 的传递函数。 即,
传递函数与输入、输出之间的关系,可用结构图表示:
若已知线性定常系统的微分方程为 dnc(t ) dn 1c(t ) dc(t ) a0 a1 a n 1 anc(t ) n n 1 dt dt dt m m 1 d r(t ) d r(t ) dr (t ) b0 b1 b m 1 b mr(t ) m m 1 dt dt dt
设 c(t)和r(t)及其各阶导数初始值均为零,对上 式取拉氏变换,得
(a0s a1s
n m
n 1
an 1s an )C(s)
(b 0s b1s
m 1
bm 1s bm )R(s)
则系统的传递函数为
C(s) b 0sm b1sm 1 bm 1s bm G (s ) R(s) a0sn a1sn 1 an 1s an
L[f (t )] e sF(s)
F ( s ) f ( 1 ) ( 0 ) ( 1 ) L[ f (t )dt ] , f (0) f (t )dt t 0 s s
控制系统的数学模型
第二章控制系统的数学模型2-1 什么是系统的数学模型?大致可以分为哪些类型?答定量地表达系统各变量之间关系的表达式,称工矿企业数学模型。
从不同的角度,可以对数学模型进行大致的分类,例如:用来描述各变量间动态关系的数学模型为动态模型,用来描述各变量间稳态关系有数学模型为静态模型;数学模型中各变量与几何位置无关的称为集中参数模型,反之与几何位置有关的称为分布参数模型;变量间关系表现为线性的称为线性模型,反之非线性模型;模型参数与时间有关的称为时变模型,与时间无关的称为时不变或定常模型;以系统的输入、输出变量这种外部特征来描述系统特性的数学模型称为输入输出模型,而以系统内部状态变量描述的数学模型称为状态空间模型;等等。
2-2 系统数学模型的获取有哪几种方法?答获取系统数学模型的方法主要有机理分析法和实验测试法。
机理分析法是通过对系统内部机理的分析,根据一些基本的物理或化学变化的规律而导出支配系统运动规律的数学模型,这样得到的模型称为机理模型。
实验测试法是通过对实际系统的实验测试,然后根据测试数据,经过一定的数据处理而获得系统的数学模型,这样得到的模型可称为实测模型或经验模型。
如果将上述两种方法结合起来,即通过机理分析的方法预先得到数学模型的结构或函数形式,然后对其中的某些参数用实验辨识的方法来确定,这样得到的数学模型可称为混合模型。
这是介于上述两种方法之间的一种比较切合实际的应用较为普遍的方法。
2-3 通过机理分析法建立对象微分方程数学模型的主要步骤有哪些?答主要步骤有:⑴根据系统的控制方案和对象的特性,确定对象的输入变量和输出变量。
一般来说,对象的输出变量为系统的被控变量,输入变量为作用于对象的操纵变量或干扰变量。
⑵根据对象的工艺机理,进行合理的假设和简化,突出主要因素,忽略次要因素。
⑶根据对象的工艺机理,从基本的物理、化学等定律出了,列写描述对象运动规律的原始微分方程式(或方程式组)。
⑷消去中间变量,推导出描述对象输入变量与输出变量之间关系的方程式。
控制系统的数学模型
第二章控制系统的数学模型第章控制系统的数学模2-1 1 数学模型数学模型本书中主要介绍的几种系统模型图型:信号流程图数学模型描述系统行为特性的数学表达式模方块图信号程图数学模型:微分方程传递函数频率特性一、数学模型:描述系统行为特性的数学表达式。
是对实际物理系统的一种数学抽象。
模型各有特点,使用时可灵活掌握。
若分析研究系统的动态特性,取其数学模型比较方便;若分析研究系统的内部结构情况,取其物理模型比较直观;若两者皆有,则取其图模型比较合理。
11——1.1. 控制系统的时域数学模型控制系统的时域数学模型微分方程r(t)——输入量c(t)c(t)a dc(t)a c(t)d a d a ++++L L dr(t)r(t)d r(t)db 其中,(i =0,1,2,…….n; j =0,1,2…….m) 均为实数,b a r(t)b b ++++=L L b (,,,;j ,,)实,j i2——定定常条输的变2.2.控制系统的复域数学模型控制系统的复域数学模型传递函数A. 定义:线性定常系统在初始条件为零时,输出量的拉氏变设:输入----r(t),输出----c(t),则传递函数:L[c(t)]G()式中C()L[(t)])s (C G(s)==式中:C(s)=L[c(t)]——输出量的拉氏变换式那么:C(s)=R(s)G(s)[R()G()][C()]()11[R(s)G(s)]L [C(s)]c(t)-1-1==推广到一般情况,系统时域数学模型——推广到般情况,系统时域数学模型微分方程:L L c(t)a a a a 011-n 1-n n n ++++r(t)b d b d d b -++++=L L b ()dt dtdt 011-m 1m m m L L R(s)b sR(s)b R(s)sb R(s)s b 01-1m m +++=a. 控制系统传递函数的一般表达形式:s −L L 传式011n n a s a s a a R(s)+++−b.b.表示成典型环节表达形式:111+++−s T s T s T s s R L )))()(21n υ∏∏i C )(s ωω;==11j l pnpnωωm 系统的稳态增益K =——系统的稳态增益;2m m m+=2n n nν++=c 零极点表达形式K C +++++L c. 表示成零、极点表达形式:)())(()(21m r z s z s z s s =−——νjp 系统的极点,个零极点。
控制系统的数学建模方法
控制系统的数学建模方法控制系统是指借助外部设备或内部程序,以使被控对象按照预定的要求或指令完成某种控制目标的系统。
在控制系统的设计过程中,数学建模是十分重要的一步。
通过数学建模,可以将实际的控制过程转化为数学方程,使得系统的行为可以被合理地分析和预测。
本文将介绍几种常用的数学建模方法,包括常微分方程模型、传递函数模型和状态空间模型。
1. 常微分方程模型常微分方程模型是控制系统数学建模中常用的方法。
对于连续系统,通过对系统的动态特性进行描述,可以得到常微分方程模型。
常微分方程模型通常使用Laplace变换来转化为复频域的传递函数形式,从而进行进一步的分析和设计。
2. 传递函数模型传递函数模型是描述线性时不变系统动态特性的一种方法。
它以输入和输出之间的关系进行建模,该关系可以用一个分子多项式与一个分母多项式的比值来表示。
传递函数模型常用于频域分析和控制器设计中,其数学形式直观且易于理解,适用于单输入单输出系统和多输入多输出系统。
3. 状态空间模型状态空间模型是一种将系统的状态表示为向量形式,并以状态方程描述系统动态行为的方法。
通过状态变量的引入,可以将系统行为从时域转换到状态空间,并进行状态变量的观测和控制。
状态空间模型具有较强的直观性和适应性,能够较好地描述系统的内部结构和行为特性,广泛应用于现代控制理论和控制工程实践中。
4. 神经网络模型神经网络模型是一种模拟人脑神经元间相互连接的计算模型,可以用于控制系统的建模与控制。
通过训练神经网络,可以实现对系统的非线性建模和控制,对于复杂控制问题具有较强的适应性和鲁棒性。
5. 遗传算法模型遗传算法是一种通过模拟生物进化过程,优化系统控制器参数的方法。
通过设定适应度函数和基因编码方式,利用遗传算法优化求解出最优控制器参数。
遗传算法模型广泛应用于控制系统自动调参和优化设计中,具有较强的全局寻优能力和较高的收敛性。
数学建模是控制系统设计的重要环节,通过合理选择建模方法,可以更好地描述和分析系统的动态特性,并基于此进行控制器设计和性能评估。
第2章 控制系统的数学模型
第2章控制系统的数学模型§1 系统数学模型的基本概念一. 系统模型系统的模型包括实物模型、物理模型、和数学模型等等。
物理本质不同的系统,可以有相同的数学模型,从而可以抛开系统的物理属性,用同一方法进行具有普遍意义的分析研究(信息方法)。
从动态性能看,在相同形式的输入作用下,数学模型相同而物理本质不同的系统其输出响应相似。
相似系统是控制理论中进行实验模拟的基础。
二. 系统数学模型1. 系统数学模型系统的数学模型是系统动态特性的数学描述。
数学模型是描述系统输入、输出量以及内部各变量之间关系的数学表达式,它揭示了系统结构及其参数与其性能之间的内在关系。
2. 系统数学模型的分类数学模型又包括静态模型和动态模型。
(1) 静态数学模型静态条件(变量各阶导数为零)下描述变量之间关系的代数方程。
反映系统处于稳态时,系统状态有关属性变量之间关系的数学模型。
(2) 动态数学模型描述变量各阶导数之间关系的微分方程。
描述动态系统瞬态与过渡态特性的模型。
也可定义为描述实际系统各物理量随时间演化的数学表达式。
动态系统的输出信号不仅取决于同时刻的激励信号,而且与它过去的工作状态有关。
微分方程或差分方程常用作动态数学模型。
动态模型在一定的条件下可以转换成静态模型。
在控制理论或控制工程中,一般关心的是系统的动态特性,因此,往往需要采用动态数学模型。
即,一般所指的系统的数学模型是描述系统动态特性的数学表达式。
三. 系统数学模型的形式对于给定的同一动态系统,数学模型的表达不唯一。
如微分方程、传递函数、状态方程、单位脉冲响应函数及频率特性等等。
对于线性系统,它们之间是等价的。
但系统是否线性这一特性,不会随模型形式的不同而改变。
线性与非线性是系统的固有特性,完全由系统的结构与参数确定。
经典控制理论采用的数学模型主要以传递函数为基础。
而现代控制理论采用的数学模型主要以状态空间方程状态空间方程为基础。
而以物理定律及实验规律为依据的微分方程微分方程又是最基本的数学模型,是列写传递函数和状态空间方程的基础。
控制系统的数学模型及传递函数【可编辑全文】
可编辑修改精选全文完整版控制系统的数学模型及传递函数2-1 拉普拉斯变换的数学方法拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。
一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。
f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。
2)当时,,M,a为实常数。
2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。
—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。
二、典型时间函数的拉氏变换在实际中,对系统进行分析所需的输入信号常可化简成一个成几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。
1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见表2-1:拉氏变换对照表F(s) f(t)11(t)t三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s),则有:,此式可由定义证明。
2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有, 其中,当t<0时,f(t)=0,f(t-a)表f(t)延迟时间a. 证明:,令t-a=τ,则有上式=例:, 求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)由正向使的f(t)值。
第二章 控制系统的数学模型
⇒
QQQr00(((sss)))−−=QQH0c1(((sss)))R=−=1Hcc122s(sHsH)12(s()s)
qc (t)
=
h2 (t) R2
Qc
(s)
=
H2 (s) R2
G(s)
=
Qc (s) Qr (s)
=
R1R 2C1C 2s 2
1 + (R1C1 + R2C2
机理分析法:
依据描述系统运动规律的定律并通过理论推导 来得到数学模型的方法 。
实验辨识法:
通过整理基于系统输入-输出的实验数据来 得到系统的数学模型。本章着重讨论机理分析 法。
建模特点:相似性、简化性、准确性。
数学模型类型: 经典控制理论: 微分方程(连续系统)、
差分方程(离散系统) 、传递函数、系 统方框图和信号流图; 现代控制理论:状态方程
注:如果在第(3)步结束时已经得到符合第(4)步要求的微分方程,则 无须第(4)步。
线性定常系统微分方程的一般形式
an
d nc(t) dt n
+
an−1
d n−1c(t ) dt n−1
+
...
+
a1
dc(t ) dt
+
a0c(t )
=
bm
d mr(t) dt m
+
bm −1
d m−1r(t ) dt m−1
d x(t ) + dt
Kx(t ) = f (t )
当f(t)=f1(t)时,上述方程的解为x1(t); 当f(t)=f2(t)时,上述方程的解为x2(t); 如果f(t)=f1(t)+ f2(t) ,方程的解为x(t)= x1(t)+x2(t),这就是叠加性
现代控制理论第一章-控制系统数学模型
y b0
b1
bn1
xn
注:如果输入项的导数阶次和输出项导数阶次相同,则有d。
Y (s) R(s)
bn s n an s n
b1s b0 a1s a0
d
bn1sn1 b1s b0 ansn a1s a0
例1-4 已知描述系统的微分方程为 y18y 192y 640y 160u 640u
y bn1z(n1) b1z b0 z b0 x1 b1x2 bn1xn
写成矩阵形式
x1
x2
xn
0
0
0
a0
1 0 0 a1
0 1 0 a2
0 0 0 a3
0
0
0 1 an1
x1 x2
xn
0 u 0
1
x1
第1章 控制系统数学模型
本课程的任务是系统分析和系统设计。而不论是系统分析还是系 统设计,本课程所研究的内容是基于系统的数学模型来进行的。因 此,本章首先介绍控制系统的数学模型。
本章内容为: 1、状态空间表达式 2、由微分方程求出系统状态空间表达式 3、传递函数矩阵 4、离散系统的数学模型 5、线性变换(状态变量选取非唯一)
写成矩阵形式
x1 0 1 0 x1 0
x2
0
0
1
x2
0
u
x3 a0 a1 a2 x3 b0
x1
y 1
0
0
x2
x3
状态图如下:
一般情况下,n 阶微分方程为: y(n) an1 y(n1) a1 y a0 y b0u
选择状态变量如下:
x1 y x1 x2 y x2 x3 y
0
x2
1 M
自动控制原理:第2章-控制系统的数学模型可编辑全文
*
上式表明,三个环节的串联可以用一个等效环节来代替。这种情况可以推广到有限个环节串联(各环节之间无负载效应)的情况,等效环节的传递函数等于各个串联环节的传递函数的乘积,如有n个环节串联则等效传递函数可表示为:
*
2. 环节的并联
环节并联的特点是各环节的输入信号相同,输出信号相加(或相减)。
2.7 闭环系统的传递函数
一.闭环系统
*
(3)开环传递函数: 假设N(s)=0,主反馈信号B(s)与误差信号E(s)之比。
(2)反馈回路传递函数:假设N(s)=0,主反馈信号B(s)与输出信号C(s)之比。
*
(4)闭环传递函数 Closed-loop Transfer Function 假设N(s)=0 输出信号C(s)与输入信号R(s)之比。
复习拉普拉斯变换有关内容(6)
(3)积分定理
零初始条件下有:
进一步有:
例4 求 L[t]=?
解.
例5 求
解.
复习拉普拉斯变换有关内容(7)
(4)实位移定理
证明:
例6
解:
令
复习拉普拉斯变换有关内容(8)
(5)复位移定理
证明:
令
例7
例8
例9
复习拉普拉斯变换有关内容(9)
负反馈:反馈信号与给定输入信号符号相反的反馈。
正反馈:反馈信号与给定输入信号符号相同的反馈。
*
上述三种基本变换是进行方框图等效变换的基础。对于较复杂的系统,例如当系统具有信号交叉或反馈环交叉时,仅靠这三种方法是不够的。
(二)信号相加点和信号分支点的等效变换
对于一般系统的方框图,系统中常常出现信号或反馈环相互交叉的现象,此时可将信号相加点(汇合点)或信号分支点(引出点)作适当的等效移动,先消除各种形式的交叉,再进行等效变换即可。
自动控制原理-控制系统的数学模型可编辑全文
r(t)
b1
d m1 dt m1
r(t)
bm1
d dt
r(t)
bm r (t )
c(t)是系统输出量,r(t)是系统输入量,参数是常系数。
性质:满足叠加原理
6
3. 系统微分方程的建立步骤
第一步:将系统分成若干个环节,列写各环节的 输出输入的数学表达式。
利用适当物理定律—如牛顿定律、 基尔霍夫定律、能量守恒定律等。
s2 2
n 1 2
e nt
s in( n
1 2t)
n2 s 2 2n s n 2
12
4、拉氏反变换
查表实现
f
(t )
1 2pj
s j F ( s )e st ds
s j
F(s)化成下列因式分解形式:
F (s) B(s) k(s z1)(s z2 ) (s zm ) A(s) (s s1)(s s2 ) (s sn )
设双变量非线性方程为:y f (x1,, x工2 ) 作点为
则可近似为:
y K1x1 K2x2
y0 f (x10 , x20 )
x1 x1 x10 x2 x2 x20
K1
y x1
| , K x1x10
2
x2 x20
y x2
|x1 x10
x2 x20
[注意]: ⑴上述非线性环节不是指典型的非线性特性(如间隙、饱和特 性等),它可以用泰勒级数展开。 ⑵实际的工作情况在工作点附近。 ⑶变量的变化必须是小范围的。其近似程度与工作点附近的非 线性情况及变量变化范围有关。
◆F(s)中具有单极点时,可展开为
F (s) c1 c2 cn
s s1 s s2
s sn
自动控制原理(数学模型)精选全文完整版
t 0
s
证明:由微分定理 df (t) estdt s F (s) f (0)
0 dt
lim df (t) estdt lim s F (s) f (0)
s 0 dt
s
左 df (t) limestdt 0 0 dt s
lim
s
s F(s)
f (0 )
0
f
二、非线性系统微分方程的线性化
例5 已知某装置的输入输出特性如下,求小扰动线性化方程。
y( x ) E0 cos[x(t )]
解. 在工作点(x0, y0)处展开泰勒级数
y( x)
y(x0)
y( x0 )( x
x0 )
1 2!
y( x0 )( x
x0 )2
取一次近似,且令
y(x) y(x) y(x0) E 0 sin x0 ( x x0 )
1
s(s a)( s b)
f
lim
s0
s
ss
1
as
b
1 ab
例12
Fs
s2
ω ω2
f sinωt t
lim s
s0
s2
ω ω2
0
3 用拉氏变换方法解微分方程
系统微分方程
y(t) a1 y(t) a2 y(t) 1(t)
y(0) y(0) 0
L变换
(s2
a1s
a2 )Y (s)
0
1 1
1 1 2 j
2j
s
j
s
j
2j
s2
2
s2
2
2 拉氏变换的几个重要定理
(1)线性性质 La f1(t) b f2(t) a F1(s) b F2(s)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章控制系统的数学模型对于一个控制系统,建立数学模型的目的有二个:第一,模型可以用在现存的控制系统特性的研究中,模型代表了我们对系统特性的认识,并且在我们对系统知道得更多时还可以修改和扩展模型。
第二,在实际系统尚不存在时,例如在建设工程刚刚开始时,可以借助模型来预测设计思想和不同控制策略的效果,而不招致建造和试验系统所带来的费用浪费,也避免了冒危险的可能。
2-1 物理系统的动态描述—数学模型每一个自动控制系统都是由若干个元件组成的。
每个元件在系统中都具有各自的功能,它们相互配合起来就构成一个完整的控制系统,共同实现对某个物理量(被控制量)的控制,而满足所要求的特定规律。
如果把控制系统中各物理量(变量)之间的关系用数学表达式描述出来,就得到了此控制系统的数学模型。
在静态条件下(即变量的各阶导数为零),描述各变量之间关系的数学方程,称为静态模型,而各变量在动态过程中的数学方程,称为动态模型。
在自动控制系统的分析中,主要是研究动态模型。
微分方程中,各变量的导数表示了它们随时间变化的特性。
因此,微分方程完全可以描绘系统的动态特性,微分方程是物理系统数学模型中最基本的一种。
系统的数学模型可以用实验法和分析法建立。
应当指出:同一个控制系统的数学模型可以有许多不同的形式,另外,对于一个具体系统而言,为了在系统分析中,既不包罗万象,把系统数学模型搞得很复杂,又不要忽略主要因素,而失去系统的准确性,必须对系统有全面的、透彻的了解。
得到控制系统的一个既简化又准确的数学模型,这是我们的根本出发点。
2-2 建立系统数学模型的一般步骤由于控制系统是由各种功能不同的元件组成的,因此,要正确建立系统的运动方程式,首先必须研究系统中各个元件的运动方程式,以及这些元件在控制系统中相互联系时的彼此影响等问题。
应当指出,在列写系统和各元件的运动方程式时,往往将系统分成若干个环节,能使问题简化。
所谓环节,就是指可以组成独立的运动方程式的那一部分。
环节可以是一个元件,控制工程基础(第二版)也可能是一个元件的一部分或者由几个元件组成。
一般说来,建立系统数学模型的步骤是:1.分析系统的工作原理和系统中各变量间的关系,确定出待研究系统的输入量和输出量,以及各环节的输入量和输出量。
(画出系统的方框图,会使问题简化)2.根据支配系统动态特性的定律,从系统的输入端开始,依次列写组成系统各环节的运动方程式,得到联立方程组。
3.由组成系统的各个环节的运动方程式构成的方程组中,消去中间变量,最后得到只包含系统输入量和系统输出量的方程式,即得到了系统的数学模型。
再将该方程式化为标准形式,即将与输入量有关各项放在方程式的右边,而与输出量有关各项放在方程式左边,各导数项要按降幂排列。
这里,我们要加以说明,我们所建立的数学模型,通常是一个线性微分方程式。
我们称具有线性微分方程式的控制系统为线性系统。
且我们一般研究的系统,其微分方程式的系数是常数,我们称之为线性定常(或线性时不变)系统。
线性系统的主要特点是可以运用叠加原理。
叠加原理说明,几个外作用加于系统所产生的总响应,等于各个外作用单独作用时产生的响应之和。
线性系统的另一重要性是均匀性。
就是说,当加于同一线性系统的外作用,其数值增大几倍时,则系统的响应亦相应地增大几倍。
在线性系统分析中,线性系统的叠加性和均匀性是很重要的。
但严格地说,实际控制系统中采用的元件,其输出信号与输入信号之间的关系都具有不同程度的非线性。
如果系统中存在非线性特性,则需用非线性微分方程来描述,这种系统称为非线性系统。
2-3 传递函数控制系统的微分方程,是在时间域里描述系统动态性能的数学模型。
在给定外作用及初始条件下,求解微分方程可以得到系统的输出特性,这种方法比较直观,特别是借助于电子计算机,可迅速而准确地求得结果。
然而不用计算机,则求解微分方程,特别是高阶微分方程的计算工作将相当复杂。
而且在时间域里直接求解微分方程,难于找出微分方程的系数(由组成系统的元件的参数决定)对方程的解(一般为系统的被控制量)的影响的一般规律,一旦求得的结果不满足要求,便无法从解中找出改进方案。
因此,这种方法不便于对系统进行分析和设计。
在拉氏变换的基础上,引入描述线性定常系统(或元件)在复数域中的数学模型——传递函数,不仅可以表征系统的动态性能,而且可以借以研究系统的结构或参数变化对系统性能的影响。
一、传递函数的定义对一个线性定常系统(或元件),在零初始条件下,输出信号的拉氏变换与输入信号的- 14 -第二章 控制系统的数学模型- 15 -拉氏变换的比值,叫做该系统(或该元件)的传递函数。
二、传递函数的性质从上面的举例和讨论不难看出,传递函数具有下列性质:1.系统(或元件)的传递函数,也是描述其动态特性的数学模型的一种,它和系统(或元件)的运动方程式是相互一一对应的。
若给定了系统(或元件)的运动方程式,则与之对应的传递函数便可唯一的确定。
传递函数与微分方程一样,是从实际物理系统中抽象出来的,它只反映系统(元件)中输出信号与输入信号之间的变化规律,而不反映原来物理系统(元件)的实际结构。
对于许多物理性质截然不同的系统(元件),可以具有相同形式的传递函数。
2.传递函数是复变量s 的有理真分式函数,分子的次数m 低于分母的次数n ,且所有系数均为实数。
n m ≤,这是由系统的物理性质决定的。
且各系数都是系统元件参数的函数,而元件参数只能是实数。
3.传递函数也可以写成如下形式:12112()()()()()()()()()m n s z s z s z M s G s K N s s p s p s p −−⋅⋅⋅−==−−⋅⋅⋅− )(m n ≥ )1()1)(1()1()1)(1()()()(2121+⋅⋅⋅+++⋅⋅⋅++==s T s T s T s s s K s N s M s G n m τττ )(m n ≥ 式中(1,2,...,)i s z i m ==是0)(=s M 的根,称为传递函数的零点;(1,2,...,)i s p i n ==是0)(=s N 的根,称为传递函数的极点。
由于)(s M 、)(s N 的各项系数均为实数,所以传递函数若有复数零、极点,则必以共轭复数对出现。
式中K 为系统(元件)的放大倍数,m τττ,...,,21及n T T T ,...,,21分别为各环节的时间常数。
4.传递函数只与系统(元件)本身内部结构参数有关,而与输入信号无关。
因此,传递函数只表征系统(元件)本身的特性。
5.传递函数的拉氏反变换是系统的脉冲响应。
所谓脉冲响应(或称脉冲过渡函数)()g t 是系统在单位脉冲()t δ输入时的响应。
因为单位脉冲输入时,()[()]1R s L t δ==,因此,系统的输出)()()()(s G s R s G s C =⋅=。
而)(s C 的拉氏反变换即为脉冲响应)(t g ,它也正好等于传递函数的拉氏反变换,即)()]([)]([11t g s G L s C L ==−−因此,系统的脉冲响应)(t g 与系统的传递函数)(s G 有单值对应关系,都可以用于表征系统的动态特性。
三、典型环节的传递函数自动控制系统种类很多,构成环节的类型就其物理本质可能差别很大。
但从数学分析的控制工程基础(第二版)- 16 -观点看,任何一个复杂的系统都仅由有限的几个典型环节组成。
因此,在研究系统动态特性时,熟悉和掌握各种典型环节,就有助于我们对复杂的系统进行分析研究。
我们已知,任何线性系统的传递函数都可以用下列有理分式函数表示:1110111)(a s a s a s a b s b s b s b s G n n n n m m m m +⋅⋅⋅++++⋅⋅⋅++=−−−− )(m n ≥ 如果知道它的分子分母的全部根(实根或共轭复根),则上式可写为 1212()()()()()()()m m n n b s z s z s z G s a s p s p s p −−⋅⋅⋅−=−−⋅⋅⋅− )(m n ≥经过变换,系统的传递函数式可写为如下形式:221112211(1)(21)()(1)(21)i ii i i i i i v j j j j j j K s s s G s s T s T s T s μηλρσττζτζ=====+++=+++ΠΠΠΠΠ式中v ——零根的数目;而i K 是系统总的放大倍数,它实际上就可用一个K 来代替。
由于传递函数的这种表达式包含有六种因子,因此,任何控制系统都可以看作是这六种因子表示的环节在某种情况下的串联组合。
我们将这六种典型环节分别称作:放大环节K 一阶微分环节1+s τ 二阶微分环节1222++s s ζττ 积分环节s 1 惯性环节 11+Ts 振荡环节 12122++Ts s T ζ 下面举例对各种环节分别进行研究。
(-)放大环节放大环节又称比例环节。
它的输出量以一定的比例复现输入量,而毫无失真和时间滞后。
其运动方程式为)()(t r K t c ⋅=。
第二章 控制系统的数学模型- 17 -(二)惯性环节在这类环节中,总含有储能元件,以致对于突变形式的输入来说,输出不能立即复现,使它的输出量的变化落后于输入量。
其运动方程式如下:()()()dc t Tc t r t dt += 传递函数为()1()()1C s G s R s Ts ==+ 式中 T ——时间常数,它表示环节的惯性。
(三)积分环节积分环节的输出量的变化速度等于输入量,亦即输出量)(t c 与输入量)(t r 之间呈积分关系。
其微分方程式为()()dc t r t dt= 或()()c t r t dt =∫ 进行拉氏变换为 1()()C s R s s=⋅ 传递函数为 ()1()()C s G s R s s== (四)振荡环节振荡环节包含有两种形式的储能元件,并且所储存的能量能够相互转换,如位能和动能之间、电能和磁能之间的转换等。
因此,使得振荡环节的输出带有振荡性质。
振荡环节的输出和输入之间的关系由下列微分方程来描述:222()()()()k d c t dc t T T c t r t dt dt ++= 传递函数为2222()11()()11k k C s G s R s T s T s T s T s ===++++控制工程基础(第二版)- 18 -令 ζ2=TT k 所以 22()1()()21C s G s R s T s Ts ζ==++ 式中 T ——环节的时间常数; ζ——阻尼比。
振荡环节的所有特性取决于两个参数:时间常数T 和阻尼比ζ。
应该指出,只有当阻尼比10<<ζ时,即特征方程01222=++Ts s T ζ具有一对复根时,环节才产生振荡,称为振荡环节。