机器学习与深度学习_图文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language model. Journal of Machine Learning Research (JMLR), 3:1137–1155, 2003. [PDF]
outputs
hidden layers
input vector
神经元网络小结
目录
机器学习的基础 神经元网络 深层神经元网络 延伸和应用 深层学习实现架构 未来和思考
BP算法在深层神经元网络中的问题
• 依赖于标注的训练数据
目前大量数据为非标注数据
• 训练时间长, 很难规模化
• NCAP: 神经计算和自适应感知项 目
2004 NCAP Researchers
• Yoshua Bengio • Yann Lecun (FaceBook) • Andrew Ng (Baidu) • 20~ Others
Core Team
深度学习的
• 2006年,Geoffery Hinton Science发表DBN文章。 • 2012年,Hinton, ImageNet, 26%-15%。 • 2012年,Andrew Ng和分布式系统顶级专家Jeff Dean,Google Brain项目,
多层神经元网络训练很慢
• 会停驻在性能较差的本地优化点 浅层网络,该问题不明显 深层网络,问题显著
支持向量基 (SVM) 一个特殊的神经元网络
Bomb
Toy
output units e.g. class labels
non-adaptive hand-coded features
input units e.g. pixels
机器学习与深度学习_图文.ppt
目录
机器学习的基础 神经元网络 深层神经元网络 延伸和应用 深层学习实现架构 未来和思考
小学生解方程
a 3 + b = 10 a 8 + b = 30
a =? b =?
高中, 大学 --- 矩阵,矢量
线性回归及分类
机器学习背景
Y 是一个N 维向量 XT 是一转置矩阵 N * (p+1) β 是 一个 p+1 的向量
• Mikolov Tomáš. Statistical Language Models based on Neural Networks. PhD thesis, Brno University of Technology. 2012. [PDF] • Turian Joseph, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and general method for semi-supervised
输入层加权和的 sigmoid
0
函数
0
Restricted Boltzmann Machines (RBM)
hidden j
i visible
• 限制神经元之间的链接以简化参 数学习. – 只包含一个隐含层.
• 多隐含层后期引入
– 隐含层单元之间无链接.
– 给定输入可观察矢量, 隐含层单元 之间独立
Sketch of a typical perceptron from the 1960’s
Still Perceptron 一个特殊的单隐含层网络 每个训练案例用于构造一个
特征,该特征用于测量改训 练案例和测试案例的距离 SVM训练选择自由特征集以 及特征的权重 1990-2010 很多让放弃NN, 选择 SVM
• Andriy Mnih & Geoffrey Hinton. Three new graphical models for statistical language modelling. International Conference on Machine Learning (ICML). 2007. [PDF] Andriy Mnih & Geoffrey Hinton. A scalable hierarchical distributed language model. The Conference on Neural Information Processing Systems (NIPS) (pp. 1081–1088). 2008. [PDF]
卷积神经元网络的架构
ImageNet 2012年 竞赛
ImageNet 2013年 竞赛
目前图像中物体识别性能
语音识别中CNN的使用 (2013,Sainath @IEEE)
循环神经元网络 RNN
RNN 同 DNN 的比较
Back Propagation Through Time (BPTT)
• 线性回归:, 给定 X, 和 Y, 计算β 以最佳匹 配X, Y 的关系。
• N >> p+1 。 • β 即为线性回归模型的 参数。 • β k 表明对应的维度, Xk 的重要性
什么为最佳匹配?
参数估计方法一: 最小化误差平方和
机器学习背景
正则化 L2 (Ridge) Regularization
16000个CPU核的并行, >10亿个神经元的深度神经网络 • 2012年,微软首席研究官Rick Rashid在21世纪的计算大会上演示了一套自动同
声传译系统 • 2013年,Hinton->>Google; Yann LeCun ->>Facebook; 用户图片信息提取
2013年,百度成立了百度研究院及下属的深度学习研究所(IDL), • 2014年,Andrew Ng ->>Badidu
之一 深度学习主要贡献人
I GET VERY EXCITED WHEN WE DISCOVER A WAY OF MAKING NEURAL NETWORKS BETTER — AND WHEN THAT’S CLOSELY RELATED TO HOW THE BRAIN WORKS.’
谁重新激活了神经元网络?
输出:
维度的矩阵
连接输入和输出的参数:
维度的矩阵 W
图像识别中的神经元网络应用 :Pooling 层
输入:
region,
输出: A single value ,
连接输入输出层参数:无
最大值 pooling 均值pooling
矩阵
图像识别中的神经元网络应用 :全连层
同DNN
• Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu and Pavel Kuksa.Natural Language Processing (Almost) from Scratch. Journal of Machine Learning Research (JMLR), 12:2493-2537, 2011. [PDF]
神经元网络
单层前向网络 两阶段回归或分类 K-Class 分类 最底层为数据层 最上层为输出层 中间层为隐含层 这种简单的 NN称为Perceptron
神经元网络 --- 输入层到隐含层
中间层为输入层线性组合的某函数 其中δ为激活函数: sigmoid
神经元网络 - 激活函数
训练神经元网络 : 参数集合及维度
神经元网络参数集合 θ
训练神经元网络 优化参数求导
最小化目标函数:最小误差平方和 及求导
训练神经元网络 -- Back Propagation
梯度下降迭代算法
输出层误差: δki 隐含层误差: smi
BP 算法
初始化参数 θ 两阶段算法: Two-Pass
– 隐含层和输入层之间为无向链接
RBM 训练
j
j
j
j
i
i
t=0
t=1
i t=2
i t = infinity
a fantasy
从可观察训练矢量开始,交替更新隐含层和可观察矢量层 单元
小结一个基础的DBN网络
决定DBN的隐含层数以及隐含层的神经元数 每两层之间依据RBM单独依次训练参数 训练完的两层网络简单叠加起来成为深层网络 利用BP算法对叠加后的网络连接参数进一步优化 RBM Pseudo 代码
可信任网络 Belief Nets (BN)
stochastic hidden cause
visible effect
We will use nets composed of layers of stochastic binary variables with weighted connections. Later, we will generalize to other types of variable.
深度学习目前常用的架构
• 深度神经元全连网络 DNN (Deep Neural Nets), Tensor-DNN • 卷积神经元网络 CNN (Convolutional Neural Nets) • 深度叠拼神经元网络 DSN (Deep Stacking Nets); Kernel-DSN, Tensor-DSN • 循环神经元网络 RNNs (Recurrent and recursive Neural Nets)
δ(0.5v)
δ(10v)
δ为激活(Activation)函数 (红线) 0< δ <1 δ (sv) , s控制 0 点的激活强度 当 s0, δ-->线性函数
神经元网络 , 隐含层到输出层
输出层为中间层的线性组合 回归问题 K-Class 分类问题, softmax函数
限制参数的大小 , 以避免过拟合
正则化 L1 Regularization (Lasso)
No closed form for β 限制参数的大小 , 以避免过拟合
逻辑回归
j
G
逻辑回归 - 参数训练
训练目标函数:最大似然对数概率
j
G
牛顿迭代:
目录
机器学习的基础 神经元网络 深层神经元网络 延伸和应用 深层学习实现架构 未来和思考
三类参数 训练方式可等同于前向网络在时域的组合
双向RNN 实现
训练算法: RBM 初始化每个时间点t的 网络
BPTT , BP算法的扩展优化参数训 练
Байду номын сангаас
神经元网络在自然语言处理中的应用
• 语言模型 • 信息分类 • 信息聚类 • 信息提取 • 搜索 • 翻译 • 词向量语义表示
一批关键的文章
DNN在语音识别中的应用
DNN在语音识别中的应用
语音识别中的BottleNeck 特征
图像识别中的神经元网络应用
• 卷积神经元网络
Convolution Neural Network (CNN)
输入层可以使多元的, 也可以是一元的
图像识别中的神经元网络应用 :卷积层
输入:
维度的矩阵 X
For t=0 to n:
Vt - Ht 基于sigmoid函数 和Gibbs 采样 Ht - Vt+1 基于sigmoid函数 和Gibbs 采样 Vt+1 - Ht+1 基于sigmoid函数 和Gibbs 采样 更新参数W:
RBM Code
目录
机器学习的基础 神经元网络 深层神经元网络 延伸和应用 深层学习实现架构 未来和思考
深层信任网络(Deep Belief Net,DBN) 是部分 解决了以上问题的神经元网络
谁重新激活了神经元网络?
• Geoffrey Hinton
出生于: 1947 专业:
• 学士,心理学,1970, • 博士,人工智能,1978
多伦多大学教授 Google 研究中心 1986: 神经元网络BP算法发明人
前向 Forward-Pass: 给定参数,计算输出值 后向 Backward-Pass: 计算输出层误差, 计算隐含层误差,更新
参数
BP算法图示(1985~)
Back-propagate error signal to get derivatives for learning
Compare outputs with correct answer to get error signal
• 一个BN 是一个由随机变量 组成的有向非循环图
• 一部分变量为可观察已知 变量
• 如何由已知变量推断出非 观察变量的状态
• 调整变量之间连接的参数 优化:最大可能重新生成 观察变量
可信任, 信任什么?
随机的二元单元
(Bernoulli variables)
• 隐含层的神经元的状态
1
为0或1
• 该神经元激活的概率为
相关文档
最新文档