浅谈存在性问题解题策略

合集下载

数学“存在性”问题的解题策略 例题

数学“存在性”问题的解题策略 例题

数学“存在性”问题的解题策略存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。

这类题目解法的一般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。

【典型例题】例1. 223(1)9200x x m x m m -++-+=若关于的一元二次方程有两个实数根,390cos 5a b c ABC A B C C B ==又已知、、分别是△的∠、∠、∠的对边,∠°,且, 3b a m Rt-=,是否存在整数,使上述一元二次方程两个实数根的平方和等于ABC c m △的斜边的平方?若存在,求出满足条件的的值,若不存在,请说明理由。

例2. 22ky kx y P =+-如图:已知在同一坐标系中,直线与轴交于点,抛物2122(1)4(0)(0)y x k x k x A x B x C =-++线与轴交于,,,两点,是抛物线的顶点(1)求二次函数的最小值(用含k 的代数式表示)(2)若点A 在点B 的左侧,且x 1·x 2<0①当k 取何值时,直线通过点B ;②是否存在实数k ,使S △ABP =S △ABC ?如果存在,求出抛物线的解析式;如果不存在,请说明理由。

例3. 已知:△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过点P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F 。

(1)当点P 在线段AB 上时,求证:PA ·PB=PE ·PF(2)当点P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明;如果不成立,请说明理由。

直角三角形的存在性问题解题策略

直角三角形的存在性问题解题策略

03
CATALOGUE
直角三角形的存在性问题分类
直角在三角形内部
总结词
当直角位于三角形内部时,可以通过构建直角三角形并利用勾股定理解决。
详细描述
首先,根据题目条件,确定直角的位置和已知条件。然后,利用勾股定理计算直 角三角形的斜边长度。接着,根据三角形的性质和已知条件,判断是否能够构成 三角形。如果可以,则存在满足条件的直角三角形;否则,不存在。
在题目中,有时候会隐含一些关于三角形或 角度的条件,需要仔细审题并挖掘。
举例说明
在求解三角形边长的问题时,需要注意隐含 的等腰或等边条件,这些条件可能会影响三 角形的形状和存在性。
掌握常见题型和解题方法
01
02
03
常见题型
直角三角形存在性问题的 常见题型包括角度问题、 边长问题、高的长度问题 等。
直角在三角形外部
总结词
当直角位于三角形外部时,可以通过构建直角三角形并利用勾股定理解决。
详细描述
首先,根据题目条件,确定直角的位置和已知条件。然后,利用勾股定理计算直角三角形的斜边长度。接着,根 据三角形的性质和已知条件,判断是否能够构成三角形。如果可以,则存在满足条件的直角三角形;否则,不存 在。
建立方程
根据题目条件,可以建立关于未知数 (如角度、边长等)的方程,然后求 解该方程。
解方程
解方程的方法有很多种,如代数法、 三角函数法等,选择合适的方法求解 方程。
利用数形结合思想
数形结合
将题目中的条件和图形结合起来,通过 观察图形和计算数据,找到解决问题的 线索。
VS
综合分析
综合运用数学知识和图形分析,逐步推导 和验证,最终得出结论。
解题方法
针对不同的问题类型,需 要掌握相应的解题方法, 如利用三角函数、勾股定 理、相似三角形等。

中考数学中的存在性问题

中考数学中的存在性问题

2010年中考数学中的存在性问题一、存在性问题的内涵所谓存在性问题是指根据题目所给的条件,探究是否存在符合要求的结论.存在性问题是相对于中学数学课本中有明确结论的封闭型问题而言的.存在性问题可抽象为“已知事项M,是否存在具有某种性质的对象Q。

”解题时要说明Q存在,通常的方法是将对象Q构造出来;若要说明Q不存在,可先假设存在Q,然后由此出发进行推论,并导致矛盾,从而否定Q的存在。

此类问题的叙述一般是“是否存在……,如果存在,请求出……(或请证明);如果不存在,请说明理由.”二、存在性问题的解决策略1、直接求解法存在性问题是探索型问题中的一种典型性问题.存在性问题探索的方向是明确的.探索的结果有两种:一种是存在:另一种是不存在.直接求解法就是直接从已知条件入手,逐步试探,求出满足条件的对象,使问题得到解决的解法。

2、假设求解法先假设结论存在,再从已知条件和定义,定理,公理出发,进行演绎推理;若得到和题意相容的结论,则假设成立,结论也存在;否则,假设不成立,结论不存在。

即假设结论存在,根据条件推理、计算,如果求得出一个结果,并根据推理或计算过程每一步的可逆性,证得结论存在;如果推得矛盾的结论或求不出结果,则说明结论不存在.三、中考数学中的存在性问题的类型1、定性分类(1)肯定型存在性问题肯定型存在性问题是解决其余两类存在性问题的基础,具体地构造出(或求出,寻找出)满足条件的数学对象,是证明肯定型存在性问题的主要方法。

这种处理方法一般分为两大步,第一步是构造出满足要求的数学对象;第二步是通过验证,证明构造的对象满足问题的要求。

例1、(2010年陕西卷)问题探究(1)请你在图①中做一条..直线,使它将矩形ABCD分成面积相等的两部分;(2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分。

问题解决(3)如图③,在平面直角坐标系中,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC∥OB,OB=6,CD=4开发区综合服务管理委员会(其占地面积不计)设在点P(4,2)处。

应用题存在的问题及解决策略

应用题存在的问题及解决策略

应用题存在的问题及解决策略随着社会的发展和科技的进步,应用题在学生学习中扮演着越来越重要的角色。

应用题可以帮助学生更好地理解知识,提高解决实际问题的能力,培养综合运用知识的能力。

相对于传统的选择题或计算题,应用题也带来了一些新的问题和挑战。

本文将从应用题存在的问题出发,探讨对应的解决策略。

问题一:难度大、题目晦涩难懂应用题通常会涉及到多个知识领域的综合运用,这就导致了题目的难度相对较大。

一些应用题在表述或情景设置上可能会显得晦涩难懂,不易理解。

这就给学生的阅读和理解造成了一定的困难。

解决策略:清晰的题目表述和情景设置针对应用题难懂的问题,教师在出题时需要特别注意题目的表述和情景设置。

题目的语言要求简练明了,情景设置要尽量符合学生日常生活的实际情况,这样可以增加学生对题目的理解和接受度。

教师还可以在课堂上进行相关的案例分析和应用实例演练,帮助学生更好地理解和掌握应用题的解题方法。

问题二:知识综合性强、答案不唯一由于应用题涉及的知识面比较广泛,需要综合运用多种知识解决问题,所以在解答过程中可能会有多种解题方法和答案。

这就给评判和分数打分带来了一些困难,给学生带来了不确定性和困惑。

解决策略:灵活的评分方式和讲解方法教师在评分时要有一定的灵活性,不仅要考虑答案的正确性,还要考虑解题的逻辑性、条理性和说理能力。

教师在讲解解答过程时要多渠道展示不同的解题方法和思路,启发学生思考,增强他们的解题灵活性。

问题三:解题思路不清晰、方法应用能力不足由于应用题通常需要综合运用多种知识,因此在解题过程中可能会导致解题思路不清晰,方法应用能力不足的问题。

学生可能会陷入到僵化的知识运用中,缺乏创造性和灵活性。

解决策略:培养解题技巧和方法应用能力在解决应用题的过程中,教师可以针对具体的题型和难点,培养学生的解题技巧和方法应用能力。

可以通过分析题目的共性和特点,总结解题的一般思路和方法,结合实际案例进行模拟演练和练习。

可以设置一些开放性的问答题,鼓励学生展开思维,增强他们的解题灵活性和创造性。

二次函数背景下的平行四边形存在性问题解题策略

二次函数背景下的平行四边形存在性问题解题策略

133美眉 2022.09下教研与美育教学研究二次函数背景下的平行四边形存在性问题解题策略杨 柳(遵义市第一初级中学,贵州 遵义 563000)二次函数背景下的存在性问题一直都是中考数学里高频率题型。

这类试题的综合性较强,对分析问题和解决问题的能力要求较高,是中考数学中的重点和难点问题。

平行四边形存在性问题是典型题型,也是讨论特殊平行四边形的存在性问题的基础。

它将分类讨论思想、数形结合思想、方程思想,以及平行四边形的性质和判定方法相结合,需要综合分析后解决问题。

利用平行四边形的判定方法进行判断,此类问题的解题方法有两种:一是几何法,二是代数法。

一、平行四边形存在性问题之几何法:根据题目背景找到图形的特点,确定等量关系求解(一)解题步骤:1.分类;2.画图;3.找到等量关系求解。

(二)分类:三定一动、两定两动A、两定两动B、两定两动C。

(三)解题分析:1.三定一动类问题:【类型分析】三个定点的坐标是确定的;一个动点的坐标不确定。

【解题策略】①命名分类;②分类画出图形;③利用平移法求出动点的坐标。

【例题解析】如图,抛物线,经过点A (﹣3,0)、B (1,0)、C(0,3)。

在抛物线所在的平面内,是否存在点D,使得以A、B、C、D 为顶点的四边形为平行四边形,求出点D 的坐标。

解:由题意可得:A(﹣3,0)、B(1,0)、C(0,3)①平行四边形ADBC,如图1;摘 要:二次函数背景下的平行四边形存在性问题是中考数学中综合性较强的考题,本文针对这类问题解题策略从几何法和代数法两个方面进行了介绍,通过类型分析、解题策略、例题详解等几个方面,帮助学生解决难点问题。

关键词:二次函数;平行四边形;存在性134教研与美育美眉 2022.09下教学研究点C(0,3)——点B(1,0),点A(﹣3,0)——点D (-2,-3)②平行四边形ABDC,如图2:点A(﹣3,0)——点B(1,0),点C(0,3)——点D(4,3)③平行四边形ABCD,如图3;点B(1,0)——点A(﹣3,0),点C(0,3)——点D(-4,3)综上所述,点D(-2,-3)、(4,3)、(-4,3)时,以A、B、C、D为顶点的四边形为平行四边形。

压轴题解题策略:平行四边形的存在性问题(最新整理)

压轴题解题策略:平行四边形的存在性问题(最新整理)

中考数学压轴题解题策略平行四边形的存在性问题解题策略2015年9月13日星期日专题攻略解平行四边形的存在性问题一般分三步:第一步寻找分类标准,第二步画图,第三步计算.难点在于寻找分类标准,分类标准寻找的恰当,可以使解的个数不重复不遗漏,也可以使计算又好又快.如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.根据平行四边形的对边平行且相等,灵活运用坐标平移,可以使得计算过程简便.根据平行四边形的中心对称的性质,灵活运用坐标对称,可以使得解题简便.例题解析例❶ 如图1-1,在平面直角坐标系中,已知抛物线y=-x 2-2x +3与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为P ,如果以点P 、A 、C 、D 为顶点的四边形是平行四边形,求点D 的坐标.图1-1【解析】P 、A 、C 三点是确定的,过△PAC 的三个顶点分别画对边的平行线,三条直线两两相交,产生3个符合条件的点D (如图1-2).由y =-x 2-2x +3=-(x +1)2+4,得A (-3,0),C (0, 3),P (-1, 4).由于A (-3,0)C (0, 3),所以P (-1, 4)D 1(2, 7).33 右,上33 右,上由于C (0, 3)A (-3,0),所以P (-1, 4)D 2(-4, 1).33 下,左33 下,左由于P (-1, 4)C (0, 3),所以A (-3,0)D 3(-2, -1).11 右,下11 右,下我们看到,用坐标平移的方法,远比用解析式构造方程组求交点方便多了.图1-2例❷如图2-1,在平面直角坐标系中,已知抛物线y=-x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标.图2-1【解析】在P、M、A、B四个点中,A、B是确定的,以AB为分类标准.由y=-x2+2x+3=-(x+1)(x-3),得A(-1,0),B(3,0).①如图2-2,当AB是平行四边形的对角线时,PM与AB互相平分,因此点M与点P 关于AB的中点(1,0)对称,所以点M的横坐标为2.此时M(2,3).②如图2-3,图2-4,当AB是平行四边形的边时,PM//AB,PM=AB=4.所以点M的横坐标为4或-4.所以M (4,-5)或(-4,-21).我们看到,因为点P的横坐标是确定的,在解图2-2时,根据对称性先确定了点M的横坐标;在解图2-3和图2-4时,根据平移先确定了点M的横坐标.图2-2 图2-3 图2-4例❸如图3-1,在平面直角坐标系中,直线y=-x+4与x轴交于点A,与y轴交于点B,点C在直线AB上,在平面直角坐标系中求一点D,使得以O、A、C、D为顶点的四边形是菱形.图3-1【解析】由y =-x +4,得A (4, 0),直线AB 与坐标轴的夹角为45°.在O 、A 、C 、D 四个点中,O 、A 是确定的,以线段OA 为分类标准.如图3-2,如果OA 是菱形的对角线,那么点C 在OA 的垂直平分线上,点C (2,2)关于OA 的对称点D 的坐标为(2,-2).如果OA 是菱形的边,那么又存在两种情况:如图3-3,以O 为圆心,OA 为半径的圆与直线AB 的交点恰好为点B (0, 4),那么正方形AOCD 的顶点D 的坐标为(4, 4).如图3-4,以A 为圆心,AO 为半径的圆与直线AB 有两个交点C 和C ′(4-,点C 和C ′向左平移4个单位得到点D 和D ′.(4+-(--图3-2图3-3 图3-4例❹ 如图4-1,已知抛物线与x 轴的负半轴交241633y x x =+于点C ,点E 的坐标为(0,-3),点N 在抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M 、N ,使得以M 、N 、C 、E 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.图4-1【解析】C (-4,0)、E (0,-3)两点是确定的,点N 的横坐标-2也是确定的.以CE 为分类标准,分两种情况讨论平行四边形:①如图4-2,当CE 为平行四边形的边时,由于C 、E 两点间的水平距离为4,所以M 、N 两点间的水平距离也为4,因此点M 的横坐标为-6或2.将x =-6和x =2分别代入抛物线的解析式,得M (-6,16)或(2, 16).②如图4-3,当CE 为平行四边形的对角线时,M 为抛物线的顶点,所以M .16(2,3--图4-2 图4-3例❺如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),点D 是第四象限内抛物线上的一点,直线AD 与y 轴负半轴交于点C ,且CD =4AC .设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.图5-1【解析】由y =ax 2-2ax -3a =a (x +1)(x -3),得A (-1, 0).由CD =4AC ,得x D =4.所以D (4, 5a ).已知A (-1, 0)、D (4, 5a ),x P =1,以AD 为分类标准,分两种情况讨论:①如图5-2,如果AD 为矩形的边,我们根据AD //QP ,AD =QP 来两次平移坐标.由于A 、D 两点间的水平距离为5,所以点Q 的横坐标为-4.所以Q (-4,21a ).由于A 、D 两点间的竖直距离为-5a ,所以点P 的纵坐标为26a .所以P(1, 26a ).根据矩形的对角线相等,得AP 2=QD 2.所以22+(26a )2=82+(16a )2.整理,得7a 2=1.所以P .a =(1-,②如图5-3,如果AD 为矩形的对角线,我们根据AP//QD ,AP =QD 来两次平移坐标.由于A 、P 两点间的水平距离为2,所以点Q 的横坐标为2.所以Q (2,-3a ).由于Q 、D 两点间的竖直距离为-8a ,所以点P 的纵坐标为8a .所以P (1, 8a ).再根据AD 2=PQ 2,得52+(5a )2=12+(11a )2.整理,得4a 2=1.所以.此时P .12a =-(14)-,我们从图形中可以看到,像“勾股图”那样构造矩形的外接矩形,使得外接矩形的边与坐标轴平行,那么线段的等量关系就可以转化为坐标间的关系.上面我们根据“对角线相等的平行四边形是矩形”列方程,还可以根据定义“有一个角是直角的平行四边形叫矩形”来列方程.如图5-2,如果∠ADP =90°,那么;如图5-3,如果∠QAP =90°,那么MA ND MD NP=.GQ KA GA KP=图5-2 图5-3例❻ 如图6-1,将抛物线c 1:x 轴翻折,得到抛物线c 2.2y =+现将抛物线c 1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.图6-1【解析】没有人能精确画好抛物线,又怎么平移抛物线呢?我们去伪存真,将A 、B 、D 、E 、M 、N 六个点及它们的坐标在图中都标注出来(如图6-2),如果您看到了△MAB 和△NED 是边长为2的等边三角形,那么平移就简单了.如图6-3,在两个等边三角形平移的过程中,AM 与EN 保持平行且相等,所以四边形ANEM 保持平行四边形的形状,点O 为对称中心.【解法一】如果∠ANE =90°,根据30°角所对的直角边等于斜边的一半,可得AE =2EN =4.而AE =AO +OE =2AO ,所以AO =2.已知AB =2,此时B 、O 重合(如图6-4),所以m =BO =1.【解法二】如果对角线MN =AE ,那么OM =OA ,此时△MAO 是等边三角形.所以等边三角形MAB 与△MAO 重合.因此B 、O 重合,m =BO =1.【解法三】在平移的过程中,、,M ,根据OA 2=OM (1,0)A m --(1,0)B m -(m -2列方程(1+m )2=m 2+3.解得m =1.图6-2 图6-3 图6-4例❼如图7-1,菱形ABCD的边长为4,∠B=60°,E、H分别是AB、CD的中点,E、G 分别在AD、BC上,且AE=CG.(1)求证四边形EFGH是平行四边形;(2)当四边形EFGH是矩形时,求AE的长;(3)当四边形EFGH是菱形时,求AE的长.图7-1【解析】(1)证明三角形全等得EF=GH和FG=HE大家最熟练了.(2)平行四边形EFGH的对角线FH=4是确定的,当EG=FH=4时,四边形EFGH 是矩形.以FH为直径画圆,你看看,这个圆与AD有几个交点,在哪里?如图7-2.如图7-3,当E为AD的中点时,四边形ABGE和四边形DCGE都是平行四边形.如图7-4,当E与A重合时,△ABG与△DCE都是等边三角形.(3)如果平行四边形EFGH的对角线EG与FH互相垂直,那么四边形EFGH是菱形.过FH的中点O画FH的垂线,EG就产生了.在Rt△AOE中,∠OAE=60°,AO=2,此时AE=1.又一次说明了如果会画图,答案就在图形中.图7-2 图7-3 图7-4 图7-5例❽如图8-1,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A(4, 0)、B(0, 3),点C的坐标为(0, m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE、DA为边作平行四边形DEFA.(1)如果平行四边形DEFA为矩形,求m的值;(2)如果平行四边形DEFA为菱形,请直接写出m的值.图8-1【解析】这道题目我们着重讲解怎样画示意图.我们注意到,点A和直线AB(直线l)是确定的.如图8-2,先画x轴,点A和直线l.在直线l上取点E,以AE为对角线画矩形DEFA.如图8-3,过点E画直线l的垂线.画∠MDN,使得DN=2MN,MN⊥DN,产生点C.如图8-4,过点C画y轴,产生点O和点B.图8-2 图8-3 图8-4您是否考虑到,画∠MDN时,还存在DM在x轴下方的情况?如图8-5.同样的,我们可以画如图8-6,如图8-7的两个菱形.图8-5 图8-6 图8-7。

应用题存在的问题及解决策略

应用题存在的问题及解决策略

应用题存在的问题及解决策略1. 引言1.1 应用题存在的问题及解决策略引言在学习数学时,应用题是我们经常遇到的一种题型。

虽然应用题的目的是让我们将所学的知识应用到实际问题中,但是很多时候我们会遇到一些问题,导致解题变得困难。

针对这些问题,我们需要制定一些解决策略,帮助我们更好地解决应用题。

正文问题一:题目结构复杂难以理解在解决应用题时,有些题目的结构可能会比较复杂,导致我们难以理解题目的意思。

为了解决这个问题,我们可以采取拆分题目的方法,逐步分析题目的要求和条件,将整个题目分解成更小的部分,这样有助于我们更清晰地理解题目。

解决策略一:拆分题目,逐步分析问题二:题目中有陷阱选项容易误解有些应用题在选项设计上可能会设置一些陷阱,容易让我们误解题目要求。

为了避免这种情况,我们需要仔细阅读题目,排除干扰项,确保我们理解题目的真正意图。

解决策略二:仔细阅读题目,排除干扰项在解决应用题时,我们要特别注意题目中的选项,仔细分析每个选项的含义,排除那些明显是干扰项的选项,确保我们选取的是正确答案。

通过细致的阅读和分析,我们可以避免被陷阱选项误导,提高解题的准确性。

问题三:计算过程繁琐,容易出错在解决一些复杂的应用题时,可能需要进行一系列繁琐的计算过程,容易出现计算错误。

为了避免这种情况,我们需要建立清晰的计算步骤,确保每一步计算都准确无误。

解决策略三:建立清晰的计算步骤,检查结果在解决应用题时,我们可以事先规划好整个计算过程的步骤,将每一步的计算结果都清晰地记录下来。

完成计算后,我们还要对结果进行检查,确保计算没有错误。

通过建立清晰的计算步骤和及时检查计算结果,我们可以有效降低出错的可能性,提高解题的准确性。

结论应用题在数学学习中起着至关重要的作用,掌握解题策略对于解决各种应用题至关重要。

通过拆分题目、仔细阅读问题、建立清晰的计算步骤等有效的解题策略,我们能够更好地理解题目的要求,避免被干扰项误导,减少计算错误,提高解题的准确性和效率。

中考数学直角三角形的存在性问题解题策略

中考数学直角三角形的存在性问题解题策略

直角三角形的存在性问题解题策略专题攻略解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.在平面直角坐标系中,两点间的距离公式常常用到.怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).例题解析例1、 如图1-1,在△ABC 中,AB =AC =10,cos ∠B =45.D 、E 为线段BC 上的两个动点,且DE =3(E 在D 右边),运动初始时D 和B 重合,当E 和C 重合时运动停止.过E 作EF //AC 交AB 于F ,连结DF .设BD =x ,如果△BDF 为直角三角形,求x 的值.图1-1【解析】△BDF 中,∠B 是确定的锐角,那么按照直角顶点分类,直角三角形BDF 存在两种情况.如果把夹∠B 的两条边用含有x 的式子表示出来,分两种情况列方程就可以了. 如图1-2,作AH ⊥BC ,垂足为H ,那么H 是BC 的中点.在Rt △ABH 中,AB =10,cos ∠B =45,所以BH =8.所以BC =16. 由EF //AC ,得BF BE BA BC =,即31016BF x +=.所以BF =5(3)8x +.图1-2 图1-3 图1-4①如图1-3,当∠BDF =90°时,由4cos 5BD B BF ∠==,得45BD BF =. 解方程45(3)58x x =⨯+,得x =3.②如图1-4,当∠BFD =90°时,由4cos 5BF B BD ∠==,得45BF BD =. 解方程5154885x x +=,得757x =. 我们看到,在画示意图时,无须受到△ABC 的“限制”,只需要取其确定的∠B . 例2、 如图2-1,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成 △ABC ,设AB =x ,若△ABC 为直角三角形,求x 的值.图2-1【解析】△ABC 的三边长都可以表示出来,AC =1,AB =x ,BC =3-x . 如果用斜边进行分类,每条边都可能成为斜边,分三种情况:①若AC 为斜边,则22)3(1x x -+=,即0432=+-x x ,此方程无实根.②若AB 为斜边,则1)3(22+-=x x ,解得35=x (如图2-2). ③若BC 为斜边,则221)3(x x +=-,解得34=x (如图2-3). 因此当35=x 或34=x 时,△ABC 是直角三角形.图2-2 图2-3例3、 如图3-1,已知在平面直角坐标系中,点A 的坐标为(-2, 0),点B 是点A 关于原点的对称点,P 是函数)0(2>=x xy 图象上的一点,且△ABP 是直角三角形,求点P 的坐标.图3-1【解析】A 、B 两点是确定的,以线段AB 为分类标准,分三种情况.如果线段AB 为直角边,那么过点A 画AB 的垂线,与第一象限内的一支双曲线没有交点;过点B 画AB 的垂线,有1个交点.以AB 为直径画圆,圆与双曲线有没有交点呢?先假如有交点,再列方程,方程有解那么就有交点.如果是一元二次方程,那么可能是一个交点,也可能是两个交点.由题意,得点B 的坐标为(2,0),且∠BAP 不可能成为直角.①如图3-2,当∠ABP =90°时,点P 的坐标为(2,1).②方法一:如图3-3,当∠APB =90°时,OP 是Rt △APB 的斜边上的中线,OP =2.设P 2(,)x x ,由OP 2=4,得2244x x+=.解得x =P (2,2).图3-2 图3-3 方法二:由勾股定理,得P A 2+PB 2=AB 2.解方程2222222(2)()(2)()4x x x x+++++=,得x = 方法三:如图3-4,由△AHP ∽△PHB ,得PH 2=AH ·BH .解方程22()(2)(2)x x x=+-,得x =图3-4 图3-5这三种解法的方程貌似差异很大,转化为整式方程之后都是(x 2-2)2=0.这个四次方程的解是x 1=x 2=2,x 3=x 4=它的几何意义就是以AB 为直径的圆与双曲线相切于P 、P ′两点(如图3-5).例4、 如图4-1,已知直线y =kx -6经过点A (1,-4),与x 轴相交于点B .若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.图4-1【解析】和例题3一样,过A 、B 两点分别画AB 的垂线,各有1个点Q .和例题3不同,以AB 为直径画圆,圆与y 轴有没有交点,一目了然.而圆与双曲线有没有交点,是徒手画双曲线无法肯定的.将A (1,-4)代入y =kx -6,可得k =2.所以y =2x -6,B (3,0).设OQ 的长为m .分三种情况讨论直角三角形ABQ :①如图4-2,当∠AQB =90°时,△BOQ ∽△QHA ,BO QH OQ HA =.所以341m m -=. 解得m =1或m =3.所以Q (0,-1)或(0,-3).②如图4-3,当∠BAQ =90°时,△QHA ∽△AGB ,QH AG HA GB =.所以4214m -=. 解得72m =.此时7(0,)2Q -. ③如图4-4,当∠ABQ =90°时,△AGB ∽△BMQ ,AG BM GB MQ =.所以243m =. 解得32m =.此时3(0,)2Q .图4-2 图4-3 图4-4三种情况的直角三角形ABQ ,直角边都不与坐标轴平行,我们以直角顶点为公共顶点,构造两个相似的直角三角形,这样列比例方程比较简便.已知A (1,-4)、B (3,0),设Q (0, n ),那么根据两点间的距离公式可以表示出AB 2,AQ 2和BQ 2,再按照斜边为分类标准列方程,就不用画图进行“盲解”了.例5、 如图5-1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧).若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只...有.三个时,求直线l 的解析式.图5-1【解析】有且只有三个直角三角形ABM 是什么意思呢?过A 、B 两点分别画AB 的垂线,与直线l 各有一个交点,那么第三个直角顶点M 在哪里?以AB 为直径的⊙G 与直线l 相切于点M 啊! 由23333(4)(2)848y x x x x =--+=-+-,得A (-4, 0)、B (2, 0),直径AB =6. 如图5-2,连结GM ,那么GM ⊥l .在Rt △EGM 中,GM =3,GE =5,所以EM =4.因此3tan 4GEM ∠=. 设直线l 与y 轴交于点C ,那么OC =3.所以直线l (直线EC )为334y x =-+. 根据对称性,直线l 还可以是334y x =-.图5-2例6、 如图6-1,在△ABC 中,CA =CB ,AB =8,4cos 5A ∠=.点D 是AB 边上的一个动点,点E 与点A 关于直线CD 对称,连结CE 、DE .(1)求底边AB 上的高;(2)设CE 与AB 交于点F ,当△ACF 为直角三角形时,求AD 的长;(3)连结AE ,当△ADE 是直角三角形时,求AD 的长.图6-1【解析】这道题目画示意图有技巧的,如果将点D 看作主动点,那么CE 就是从动线段.反过来画图,点E 在以CA 为半径的⊙C 上,如果把点E 看作主动点,再画∠ACE 的平分线就产生点D 了.(1)如图6-2,设AB 边上的高为CH ,那么A H =BH =4.在Rt △ACH 中,AH =4,4cos 5A ∠=,所以AC =5,CH =3. (2)①如图6-3,当∠AFC =90°时,F 是AB 的中点,AF =4,CF =3. 在Rt △DEF 中,EF =CE -CF =2,4cos 5E ∠=,所以52DE =.此时52AD DE ==. ②如图6-4,当∠ACF =90°时,∠ACD =45°,那么△ACD 的条件符合“角边角”. 作DG ⊥AC ,垂足为G .设DG =CG =3m ,那么AD =5m ,AG =4m .由CA =5,得7m =5.解得57m =.此时2557AD m ==.图6-2 图6-3 图6-4 (3)因为DA=DE,所以只存在∠ADE=90°的情况.①如图6-5,当E在AB下方时,根据对称性,知∠CDA=∠CDE=135°,此时△CDH 是等腰直角三角形,DH=CH=3.所以AD=AH-DH=1.②如图6-6,当E在AB上方时,根据对称性,知∠CDA=∠CDE=45°,此时△CDH 是等腰直角三角形,DH=CH=3.所以AD=AH+DH=7.图6-5 图6-6。

应用题存在的问题及解决策略

应用题存在的问题及解决策略

应用题存在的问题及解决策略应用题难以引起学生的兴趣是一个普遍存在的问题。

许多学生在学习中对于应用题缺乏兴趣,觉得应用题与日常生活脱节,只是纯粹的数学题目。

这样的心态会影响学生学习应用题的积极性,从而影响应用题学习效果。

应用题的解题思路多样,需要学生在实际问题中灵活运用数学知识,这对学生的数学思维能力也提出了更高的要求。

在解决这一问题的过程中,教师可以通过丰富的教学内容来激发学生对应用题的兴趣。

教师可以引入更多生活中的应用题,让学生在解决实际问题的过程中,感受数学的实用性,增强学习的兴趣。

教师还可以提供更多的实例让学生参与,培养学生的实际动手能力。

教师还可以设置一些趣味性强的应用题,让学生在解题的过程中,体验到数学的乐趣。

学生在解答应用题时,常常面临解题思路复杂的困扰。

应用题通常是根据真实的情景或问题而设计的数学题目,因此解题思路相对复杂,需要学生在繁多的信息中灵活应用数学知识,形成正确的解题思路。

对许多学生而言,这种复杂的解题思路往往成为他们学习应用题的障碍。

为了解决这一问题,教师可以在解题思路上进行引导,提供一定的解题方法和技巧。

教师可以通过分析实例的方式,详细讲解应用题的解题思路和方法,让学生清晰地理解解题的逻辑和过程。

教师还可以通过拓展练习,引导学生在不同情景下运用数学知识进行解题,增加解题的灵活性和多样性。

教师还可以加强对关键知识点的讲解和强化练习,帮助学生牢固掌握数学知识,提高应用题的解题能力。

学生在解答应用题时,由于平时缺乏对应用题的训练和练习,导致解题能力不足。

应用题是考察学生对数学知识的综合运用能力和解决实际问题的能力,所以学生对于应用题的训练和练习显得尤为重要。

但是在现实教学中,学生缺乏对应用题的训练和练习,这对应用题解答能力的提升产生了一定的障碍。

为了解决这一问题,教师可以在日常的教学中加强应用题的训练和练习。

教师可以通过课堂练习、作业布置等方式,让学生在日常学习中有足够的练习机会,提高应用题的解答能力。

平行四边形存在性问题的解题策略

平行四边形存在性问题的解题策略

平行四边形存在性问题的解题策略
平行四边形存在性问题是一个常见的几何问题,即给定4条线段,判断它们是否可以构成一个平行四边形。

虽然这个问题看起来很简单,但是解决起来却并不容易。

解决平行四边形存在性问题的第一步是要判断这四条线段是否为平行线段。

根据对称性,可以把这四条线段分成两组,分别是AB和CD,那么AB两条线段是否平行,与CD两条线段是否平行,就可以用一般平行线段的性质来判断,即两条平行线段之间的角度是180°。

若AB和CD两组线段都是平行线段,则说明这四条线段可能构成平行四边形,接下来就要判断对角线的关系。

可以用向量的性质来判断,即对角线的夹角是90°,判断时要将AB和CD两组线段的终点向量相加,若其夹角为90°,则说明这四条线段可以构成平行四边形。

另外,若AB两条线段不是平行线段,则这四条线段一定不能构成平行四边形。

因为平行四边形的4条边都是平行线段,而AB两条线段不是平行线段,则说明这四条线段不可能构成平行四边形。

总之,解决平行四边形存在性问题的关键是要判断四条线段之间的关系,即AB两条线段是否平行,以及AB两条线段的终点向量之和的夹角是否为90°。

只有当这两个条件都满足时,这四条线段才能构成平行四边形。

应用题存在的问题及解决策略

应用题存在的问题及解决策略

应用题存在的问题及解决策略应用题是指结合实际情境,将数学概念和方法应用到解决问题的题目。

在教学中,应用题是培养学生数学思维能力和解决实际问题能力的重要手段。

在应用题教学中,存在一些问题需要解决。

应用题往往过于抽象,与学生实际生活联系不紧密。

学生很难将数学概念和方法应用到实际情境中,导致对问题的理解困难。

解决这一问题的策略是增加应用题的真实性和具体性。

可以引入学生熟悉的实际情境,如日常生活、学习、运动等,将数学概念和方法应用到这些情境中,使学生能够更好地理解问题的意义和解决思路。

应用题往往没有明确的解题步骤和策略,学生不知道从何入手,容易感到困惑。

解决这一问题的策略是引导学生建立解题思路和解题策略。

可以通过提问和引导,将问题分解成多个小问题,让学生逐步解决;可以提供解题思路的提示,如列表、画图、推理等;可以让学生运用已学的数学方法,如方程、函数、图形等,解决问题。

应用题往往过于注重计算过程,忽视问题的分析和解释,导致学生只注重得到结果,而忽视了问题本身的意义。

解决这一问题的策略是培养学生思辨和表达能力。

可以要求学生在解答应用题时,不仅给出计算过程和结果,还要解释数学概念和方法在解决问题中的应用;可以组织学生进行小组或班级讨论,让学生互相交流解题思路和解题结果,并进行问题的解释和分析。

应用题往往只注重解决一类问题,缺乏培养学生灵活运用数学知识解决不同问题的能力。

解决这一问题的策略是扩大应用题的覆盖范围和难度。

可以设计涉及多个数学概念和方法的问题,让学生综合运用不同的知识解决问题;可以设计开放性的应用题,让学生自由选择解题方法和路径,培养创新和灵活性。

解决应用题存在的问题需要增加应用题的真实性和具体性,引导学生建立解题思路和解题策略,培养学生思辨和表达能力,扩大应用题的覆盖范围和难度。

通过这些策略的实施,可以使应用题教学更加有效,提高学生的数学学习兴趣和能力。

小学数学应用题教学中存在的问题及优化策略

小学数学应用题教学中存在的问题及优化策略

小学数学应用题教学中存在的问题及优化策略小学数学应用题是数学教育中的重要内容之一,它不仅能够帮助学生将抽象的数学知识应用到实际问题中,还能培养学生的逻辑思维能力和问题解决能力。

在小学数学应用题的教学中,我们往往会遇到一些问题,比如学生对于应用题的理解能力不足,解题方法局限,解题思维僵化等。

本文将探讨小学数学应用题教学中存在的问题,并提出相应的优化策略。

一、问题分析1. 学生对于应用题的理解能力不足在小学数学教学中,很多学生对于应用题的理解能力不足,他们往往没办法将抽象的数学知识应用到实际问题中,很难理解问题的意义和要求。

这就导致了学生在解题时感到困惑,无法正确理解问题的本质。

2. 解题方法局限部分学生在解题时往往只会固步自封,无法灵活运用所学的数学知识,导致解题方法局限,不能找到最简单和最有效的解题路径。

3. 解题思维僵化在小学数学应用题的教学中,一些学生的解题思维比较僵化,缺乏创新和灵活性,往往对于一些稍微复杂的问题难以得出正确的解法。

二、优化策略针对学生对于应用题的理解能力不足的问题,教师可以在教学中引导学生多思考问题的实际意义和应用背景,激发学生的学习兴趣。

可以通过举一些生活中实际的例子,帮助学生将抽象的数学知识与实际问题相联系,实现知识点与应用的有效结合。

为了解决学生解题方法局限的问题,教师可以在教学中引导学生多学习不同的解题方法,并通过实例讲解,让学生理解每种方法的适用范围和特点。

可以引导学生学习灵活变通,鼓励他们探索和发现新的解题方法,提高解题的灵活性和有效性。

对于学生解题思维的僵化问题,教师可以在教学中开展一些拓展性的数学应用题训练,培养学生的创新解题思维。

教师可以提供一些具有挑战性和创造性的数学应用题,鼓励学生发散思维,培养他们发现问题本质的能力,提高解题的灵活性和深度。

教师还可以鼓励学生开展小组合作学习,通过小组讨论和交流,促进学生的共同思考和解题方法的交流和借鉴,提高学生的解题能力和合作精神。

恒成立与存在性问题的解题策略

恒成立与存在性问题的解题策略

“恒成立问题”与“存在性问题”的基本解题策略一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设fx 在区间a,b 上的值域为A,gx 在区间c,d 上的值域为B,则AB. 9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论函数在给定区间上某结论成立问题,其表现形式通常有:在给定区间上某关系恒成立;某函数的定义域为全体实数R;某不等式的解为一切实数;某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用;因此也成为历年高考的一个热点;恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象; 二、恒成立问题解决的基本策略大家知道,恒成立问题分等式中的恒成立问题和不等式中的恒成立问题;等式中的恒成立问题,特别是多项式恒成立问题,常简化为对应次数的系数相等从而建立一个方程组来解决问题的; 一两个基本思想解决“恒成立问题”思路1、max )]([)(x f m D x x f m ≥⇔∈≥上恒成立在 思路2、min )]([)(x f m D x x f m ≤⇔∈≤上恒成立在如何在区间D 上求函数fx 的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数fx 的最值;这类问题在数学的学习涉及的知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现的试题类型,希望同学们在日常学习中注意积累; 二、赋值型——利用特殊值求解等式恒成立问题等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1.如果函数y=fx=sin2x+acos2x 的图象关于直线x=8π-对称,那么a= .C .2D . -2.略解:取x=0及x=4π-,则f0=f 4π-,即a=-1,故选B. 此法体现了数学中从一般到特殊的转化思想.例备用.由等式x 4+a 1x 3+a 2x 2+a 3x+a 4= x+14+b 1x+13+ b 2x+12+b 3x+1+b 4 定义映射f :a 1,a 2,a 3,a 4→b 1+b 2+b 3+b 4,则f :4,3,2,1 →略解:取x=0,则 a 4=1+b 1+b 2+b 3+b 4,又 a 4=1,所以b 1+b 2+b 3+b 4 =0 ,故选D 三分清基本类型,运用相关基本知识,把握基本的解题策略 1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷 给定一次函数y=fx=ax+ba≠0,若y=fx 在m,n 内恒有fx>0,则根据函数的图象直线可得上述结论等价于0)(0)(>>n f m f 同理,若在m,n 内恒有fx<0,则有 0)(0)(<<n f mf恒成立的x 的x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a 视作自变量,则上述问题即可转化为在-2,2内关于a 的一次函数大于0恒成立的问题.解:原不等式转化为x-1a+x 2-2x+1>0在|a|≤2时恒成立,设fa= x-1a+x 2-2x+1,则fa 在-2,2上恒大于0,故有:⎩⎨⎧>>-0)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或 ∴x<-1或x>3. 即x∈-∞,-1∪3,+∞此类题本质上是利用了一次函数在区间m,n 上的图象是一线段,故只需保证该线段两端点均在x 轴上方或下方即可. 2、二次函数型涉及到二次函数的问题是复习的重点,同学们要加强学习、归纳、总结,提炼出一些具体的方法,在今后的解题中自觉运用;1若二次函数y=ax 2+bx+ca≠0大于0恒成立,则有00<∆>且a2若是二次函数在指定区间上的恒成立问题,可以利用韦达定理以及根的分布知识求解;类型1:设)0()(2≠++=a c bx ax x f 在R 上恒成立,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;2R x x f ∈<在0)(上恒成立00<∆<⇔且a ;类型2:设)0()(2≠++=a c bx ax x f 在区间],[βα上恒成立(1)当0>a时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f(2)当0<a时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或 类型3:设)0()(2≠++=a c bx ax x f 在区间 -∞ , 上恒成立; fx>0a>0且<0或-b/2a>且f>0 fx<0a<0且<0或-b/2a>且f<0类型4:设)0()(2≠++=a c bx ax x f 在区间 ,+∞上恒成立; fx>0a>0,<0或-b/2a<且f>0 fx<0a<0,<0或-b/2a<且f<0例3. 若函数12)1()1()(22++-+-=a x a x a x f 的定义域为R,求实数 a 的取值范围.分析:该题就转化为被开方数012)1()1(22≥++-+-a x a x a 在R 上恒成立问题,并且注意对二次项系数的讨论.解:依题意,当时,R x ∈012)1()1(22≥++-+-a x a x a 恒成立, 所以,①当,1,01,01{,0122=≠+=-=-a a a a 时,即当此时.1,0112)1()1(22=∴≥=++-+-a a x a x a ②当时,时,即当012)1(4)1(,01{012222≤+---=∆>-≠-a a a a a 有,91,09101{22≤<⇒≤+->a a a a 综上所述,fx 的定义域为R 时,]9,1[∈a 例4.已知函数2()3f x x ax a =++-,在R 上()0f x ≥恒成立,求a 的取值范围. 图所分析:()y f x =的函数图像都在X 轴及其上方,如右示:略解:()22434120a a a a ∆=--=+-≤62a ∴-≤≤ 范变式1:若[]2,2x ∈-时,()0f x ≥恒成立,求a 的取值围.解析一. 零点分布策略 本题可以考虑fx 的零点分布情况进行分类讨论,分无零点、零点在区间的左侧、零点在区间的右侧三种情况,即Δ≤0或⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥--≤->∆0)2(0)2(220f f a或⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥-≥->∆0)2(0)2(22f f a ,即a 的取值范围为-7,2.解法二分析:运用二次函数极值点的分布分类讨论要使[]2,2x ∈-时,()0f x ≥恒成立,只需)(x f 的最小值0)(≥a g 即可.略解:分类讨论22()324a a f x x a ⎛⎫=+--+ ⎪⎝⎭,令()f x 在[]2,2-上的最小值为()g a .⑴当22a-<-,即4a >时,()(2)730g a f a =-=-≥ 73a ∴≤ 又4a >a ∴不存在.⑵当222a-≤-≤,即44a -≤≤时,2()()3024a a g a f a ==--+≥ 62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤⑶当22a->,即4a <-时,()(2)70g a f a ==+≥ 7a ∴≥- 又4a <-74a ∴-≤<-综上所述,72a -≤≤.变式2:若[]2,2x ∈-时,()2f x ≥恒成立,求a 的取值范围.解法一:分析:题目中要证明2)(≥x f 在[]2,2-上恒成立,若把2移到等号的左边,则把原题转化成左边二次函数在区间[]2,2-时恒大于等于0的问题.例2 已知a ax x x f -++=3)(2,若0)(],2,2[≥-∈x f x 恒成立,求a 的取值范围. 略解:2()320f x x ax a =++--≥,即2()10f x x ax a =++-≥在[]2,2-上成立. ⑴()2410a a ∆=--≤22a ∴--≤≤-+⑵24(1)0(2)0(2)02222a a f f a a ⎧∆=-->⎪≥⎪⎪⎨-≥⎪⎪-≥-≤-⎪⎩或2225--≤≤-∴a 综上所述,2225-≤≤-a .解法二:运用二次函数极值点的分布⑴当22a-<-,即4a >时,()(2)732g a f a =-=-≥ ()54,3a ∴≤∉+∞ a ∴不存在.⑵当222a-≤-≤,即44a -≤≤时,2()()3224a a g a f a ==--+≥,⑶当22a ->,即4a <-时,()(2)72g a f a ==+≥, 综上所述2225-≤≤-a .此题属于含参数二次函数,求最值时,对于轴变区间定的情形,对轴与区间的位置进行分类讨论;还有与其相反的,轴动区间定,方法一样.对于二次函数在R 上恒成立问题往往采用判别式法如例4、例5,而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上的最值问题 3、变量分离型若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解;运用不等式的相关知识不难推出如下结论:若对于x 取值范围内的任何一个数都有fx>ga 恒成立,则ga<fx min ;若对于x 取值范围内的任何一个数,都有fx<ga 恒成立,则ga>fx max .其中fx max 和fx min 分别为fx 的最大值和最小值例5.已知三个不等式①0342<+-x x ,②0862<+-x x ,③0922<+-m x x .要使同时满足①②的所有x 的值满足③,求m 的取值范围.略解:由①②得2<x<3,要使同时满足①②的所有x 的值满足③, 即不等式0922<+-m x x 在)3,2(∈x 上恒成立, 即)3,2(922∈+-<x x x m 在上恒成立,又,上大于在9)3,2(922∈+-x x x 所以 9≤m例 6. 函数)(x f 是奇函数,且在]1,1[-上单调递增,又1)1(-=-f ,若12)(2+-≤at t x f 对所有的]1,1[-∈a 都成立,求t 的取值范围 .解:据奇函数关于原点对称,,1)1(=f 又1)1()(]1,1[)(max ==-f x f x f 上单调递增在12)(2+-≤at t x f 对所有的]1,1[-∈a 都成立.因此,只需122+-at t 大于或等于上在]1,1[)(-x f 的最大值1,都成立对所有又]1,1[-∈a ,即关于a 的一次函数在-1,1上大于或等于0恒成立, 即:),2[}0{]2,(+∞--∞∈ t利用变量分离解决恒成立问题,主要是要把它转化为函数的最值问题 补例. 已知()||,=-+∈R f x x x a b x .若0b <,且对任何[]0,1x ∈不等式()0f x <恒成立,求实数a 的取值范围.解:当0x =时,a 取任意实数,不等式()0f x <恒成立, 故只需考虑(]0,1x ∈,此时原不等式变为||bx a x--< 即b b x a x x x +<<-故(]max min ()(),0,1b bx a x x x x+<<-∈又函数()b g x x x =+在(]0,1上单调递增,所以max ()(1)1bx g b x +==+;对于函数(](),0,1bh x x x x=-∈①当1b <-时,在(]0,1上()h x 单调递减,min ()(1)1bx h b x-==-,又11b b ->+,所以,此时a 的取值范围是(1,1)b b +-.②当10b -≤<,在(]0,1上,()b h x x x=-≥当x b =-时,min ()2bx b x-=-,此时要使a 存在,必须有1210b bb ⎧+<-⎪⎨-≤<⎪⎩ 即1223b -≤<-,此时a 的取值范围是(1,2)b b +-综上,当1b <-时,a 的取值范围是(1,1)b b +-;当1223b -≤<-时,a 的取值范围是(1,2)b b +-;当2230b -≤<时,a 的取值范围是∅.4、根据函数的奇偶性、周期性等性质若函数fx 是奇偶函数,则对一切定义域中的x ,f-x=-fx f-x=fx 恒成立;若函数y=fx 的周期为T,则对一切定义域中的x,fx=fx+T 恒成立; 5、直接根据图象判断若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果;尤其对于选择题、填空题这种方法更显方便、快捷;例7. a a x x x 恒成立,求实数,不等式对任意实数>--+21的取值范围. 分析:设y=|x+1|-|x-2|,恒成立,不等式对任意实数a x x x >--+21即转化为求函数y=|x+1|-|x-2|的最小值,画出此函数的图象即可求得a 的取值范围.解:令⎪⎩⎪⎨⎧≥<<---≤-=--+=2321121321x x x x x x y在直角坐标系中画出图象如图所示,由图象可看出,要使a x x x >--+21,不等式对任意实数恒成立,只需3-<a .故实数.3),的取值范围是(-∞-a 注:本题中若将a a x x x 恒成立,求实数,不等式对任意实数>--+21改为 ①a a x x x 恒成立,求实数,不等式对任意实数<--+21,同样由图象可得a>3; ②a a x x x 恒成立,求实数,不等式对任意实数>-++21,构造函数,画出图象,得a<3.利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围.例8. 设常数a∈R,函数fx=3|x|+|2x-a|,gx=2-x.若函数y=fx 与y=gx 的图像有公共点,则a 的取值范围为 ;解:1a<=0x<=a/2<=0时,fx=-3x+-2x+a=-5x+aa/2<=x<=0时,fx=-3x+2x-a=-x-ax>=0时,fx=3x+2x-a=5x-a,最小值为-a<=2则与gx 有交点,即:-2<=a<=0;2a>0x<=0时,fx=-3x+-2x+a=-5x+a0<=x<=a/2时,fx=3x+-2x+a=x+ax>=a/2时,fx=3x+2x-a=5x-a 最小值a<=2时与gx 有交点,即:0<a<=2综上所述,-2<=a<=2时fx=3|x|+|2x-a|与gx=2-x 有交点;三、在恒成立问题中,主要是求参数的取值范围问题,是一种热点题型,介绍一些基本的解题策略,在学习中学会把问题分类、归类,熟练基本方法;一换元引参,显露问题实质 1、对于所有实数x,不等式恒成立,求a 的取值范围;解:因为的值随着参数a 的变化而变化,若设, 则上述问题实质是“当t 为何值时,不等式恒成立”;这是我们较为熟悉的二次函数问题,它等价于 求解关于t 的不等式组:; 解得,即有,易得;2、设点Px,y 是圆4)1(22=-+y x 上任意一点,若不等式x+y+c ≥0恒成立,求实数c 的取值范围;二分离参数,化归为求值域问题 3、若对于任意角总有成立,求m 的范围;解:此式是可分离变量型,由原不等式得,又,则原不等式等价变形为恒成立; 根据边界原理知,必须小于2cos cos )(2+=θθθf 的最小值,这样问题化归为怎样求的最小值;因为2cos cos )(2+=θθθf即时,有最小值为0,故;三变更主元,简化解题过程 4、若对于,方程都有实根,求实根的范围;解:此题一般思路是先求出方程含参数m 的根,再由m 的范围来确定根x 的范围,但这样会遇到很多麻烦,若以m 为主元,则,由原方程知,得又,即解之得或;5、当1≤a 时,若不等式039)6(2>-+-+a x a x 恒成立,求x 的取值范围; 四图象解题,形象直观6、设]40(,∈x ,若不等式ax x x >-)4(恒成立,求a 的取值范围;解:若设)4(1x x y -=,则为上半圆;设,为过原点,a为斜率的直线;在同一坐标系内作出函数图象依题意,半圆恒在直线上方时,只有时成立,即a的取值范围为;7、当x∈1,2时,不等式x-12<logax恒成立,求a的取值范围;解:设y1=x-12,y2=logax,则y1的图象为右图所示的抛物线要使对一切x∈ 1,2,y1<y2恒成立,显然a>1,并且必须也只需当x=2时y2的函数值大于等于y1的函数值;故loga2>1, ∴ 1<a<2.8、已知关于x的方程lgx2+4x-lg2x-6a-4=0有唯一解,求实数a的取值范围;分析:方程可转化成lgx2+4x=lg2x-6a-4,从而得x2+4x=2x-6a-4>0,注意到若将等号两边看成是二次函数y= x2+4x及一次函数y=2x-6a-4,则只需考虑这两个函数的图象在x轴上方恒有唯一交点即可;解:令y1=x2+4x=x+22-4,y2=2x-6a-4,y1的图象为一个定抛物线 y2的图象是k=2,而截距不定的直线,要使y1和y2在x轴上方有唯一交点,则直线必须位于l1和l2之间;包括l1但不包括l2当直线为l1时,直线过点-4,0,此时纵截距为-8-6a-4=0,a=2-;当直线为l2时,直线过点0,0,纵截距为-6a-4=0,a=32-∴a的范围为)32,2[--五合理联想,运用平几性质9、不论k为何实数,直线与曲线恒有交点,求a的范围;分析:因为题设中有两个参数,用解析几何中有交点的理论将二方程联立,用判别式来解题是比较困难的;若考虑到直线过定点A0,1,而曲线为圆,圆心Ca,0,要使直线恒与圆有交点,那么定点A0,1必在圆上或圆内;解:,Ca,0,当时,联想到直线与圆的位置关系,则有点A0,1必在圆上或圆内,即点A0,1到圆心距离不大于半径,则有,得;六分类讨论,避免重复遗漏10、当时,不等式恒成立,求x 的范围;解:使用的条件,必须将m 分离出来,此时应对进行讨论;①当时,要使不等式恒成立,只要, 解得;②当时,要使不等式恒成立,只要,解得;③当时,要使恒成立,只有; 综上①②③得;解法2:可设,用一次函数知识来解较为简单;我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2<---x x m ,;令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x ,所以x 的范围是)231,271(++-∈x ;此类题本质上是利用了一次函数在区间m,n 上的图象是一线段,故只需保证该线段两端点均在x 轴上方或下方即可.11、当31<<x 时,不等式0622>+-ax x 恒成立,求实数a 的取值范围; 解:xx a 32+<当31<<x 时,623232=≥+x x ,当x x 32=,即6=x 时等号成立;故实数a 的取值范围:6<a 七构造函数,体现函数思想12、1990年全国高考题设,其中a 为实数,n 为任意给定的自然数,且,如果当时有意义,求a 的取值范围; 解:本题即为对于,有恒成立;这里有三种元素交织在一起,结构复杂,难以下手,若考虑到求a 的范围,可先将a 分离出来,得,对于恒成立;构造函数,则问题转化为求函数在上的值域;由于函数在上是单调增函数,则在上为单调增函数;于是有的最大值为:,从而可得;八利用集合与集合间的关系在给出的不等式中,若能解出已知取值范围的变量,就可利用集合与集合之间的包含关系来求解,即:[]()(),,m n f a g a ⊂⎡⎤⎣⎦,则()f a m ≤且()g a n ≥,不等式的解即为实数a 的取值范围;例13、当1,33x ⎛⎫∈ ⎪⎝⎭时,log 1a x <恒成立,求实数a 的取值范围;解:1log 1a x -<<(1) 当1a >时,1x a a <<,则问题转化为11,3,3a a ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭ 3113a a ≥⎧⎪∴⎨≤⎪⎩ 3a ∴≥(2) 当01a <<时,1a x a <<,则问题转化为11,3,3a a ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭1313a a⎧≤⎪⎪∴⎨⎪≥⎪⎩103a ∴<≤综上所得:103a <≤或3a ≥ 四、其它类型恒成立问题能成立问题有时是以不等式有解的形式出现的;1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;分析:思路、对在不同区间内的两个函数)(x f 和)(x g 分别求最值,即只需满足)()(max min x g x f >即可.简解:令na=g max x=a/2;令ma=f min x,fx=x-a 2+1-a 2,故1对称轴x=a<1,即或0<a<1时,ma= f min x=f1=2-2a,由ma>na 解得a<4/5,注意到a 的范围从而得a 的范围:0<a<4/5;2对称轴x=a>2时,ma= f min x=f2=5-4a,由ma>na 解得a<10/9,注意到a 的范围从而得a 无解:;3对称轴x=a∈1,2时,ma= fminx=fa=2-2a,由ma>na 解得4171+->a 或4171--<a ,注意到a 的范围从而得a 的范围21≤<a :;; 综合123知实数a 的取值范围是:0,4/5∪1,2 2、已知两函数2)(x x f =,m x g x-⎪⎭⎫⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为解析:对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥等价于m x g x-⎪⎭⎫⎝⎛=21)(在[]2,1上的最小值m -41不大于2)(x x f =在[]2,0上的最小值0,既041≤-m ,∴41≥m题型二、主参换位法已知某个参数的范围,整理成关于这个参数的函数题型三、分离参数法欲求某个参数的范围,就把这个参数分离出来 题型四、数形结合恒成立问题与二次函数联系零点、根的分布法 五、不等式能成立问题有解、存在性的处理方法若在区间D 上存在实数x 使不等式()f x A >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()f x B <成立,则等价于在区间D 上的()min f x B <.1、存在实数x ,使得不等式2313x x a a ++-≤-有解,则实数a 的取值范围为______; 解:设()31f x x x =++-,由()23f x a a ≤-有解,()2min3a a f x ⇒-≥, 又()()31314x x x x ++-≥+--=,∴234a a -≥,解得41a a ≥≤-或;1、求使关于p 的不等式x p px x 212+<++在p ∈-2,2有解的x 的取值范围;解:即关于p 的不等式012)1(2<+-+-x x p x 有解,设()()2121f p x p x x =-+-+,则()f p 在-2,2上的最小值小于0;1当x>1时,fp 关于p 单调增加,故f min p=f-2=x 2-4x+3<0,解得1<x<3;2 当x<1时,fp 关于p 单调减少,故f min p=f2=x 2-1<0,解得-1<x<1; 3当x=1时,fp=0,故f min p=fp<0不成立;综合123知实数x 的取值范围是:-1,1∪1,3例、设命题P:x1,x2是方程x 2-ax-2=0的二个根,不等式|m 2-5m-3|≥|x 1-x 2|对任意实数a∈-1,1恒成立;命题Q :不等式|x-2m|-|x|>1m>0有解;若命题P 和命题Q 都是真命题,求m的值范围;解:1由P 真得:8||221+=-a x x ,注意到a 在区间-1,1, 3||max 21=-x x ,由于|m 2-5m-3|≥|x 1-x 2|对任意实数a∈-1,1恒成立,故有3|||35|max 212=-≥--x x m m解得: m≤-1或m≥6或0≤m≤51由Q 真,不等式|x-2m|-|x|>1m>0有解,得|x-2m|-|x|max =2m>1,解得:m>1/2 由于12都是相公命题,故m 的值范围:1/2<m≤5或m≥6.举例1已知不等式0224>+⋅-x x a 对于+∞-∈,1[x 恒成立,求实数a 的取值范围. 2若不等式0224>+⋅-x x a 对于]3,(-∞∈a 恒成立,求实数x 的取值范围. 分析:1由0224>+⋅-x x a 得:xx a 222+<对于+∞-∈,1[x 恒成立,因212≥x,所以22222≥+xx ,当22=x时等号成立.所以有22<a . 2注意到0224>+⋅-x x a 对于]3,(-∞∈a 恒成立是关于a 的一次不等式.不妨设)24(2)(++⋅-=x x a a f ,则)(a f 在]3,(-∞∈a 上单调递减,则问题等价于0)3(>f ,所以2202234>⇒>+⋅-x x x 或12<x ,则x 取值范围为),1()0,(+∞-∞ .小结:恒成立与有解的区别:恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一体;①不等式()f x M <对x I ∈时恒成立max ()f x M•⇔<,x I ∈;即()f x 的上界小于或等于M ; ②不等式()f x M <对x I ∈时有解min ()f x M•⇔<,x I ∈; 或()f x 的下界小于或等于M ; ③不等式()f x M >对x I ∈时恒成立min ()f x M•⇔>,x I ∈;即()f x 的下界大于或等于M ; ④不等式()f x M >对x I ∈时有解max ()f x M ⇔>,x I ∈.; 或()f x 的上界大于或等于M ;高中数学难点强化班第四讲140709课后练习答案:一.填空选择题每小题6分,共60分1、对任意的实数x ,若不等式a x x >--+21恒成立,那么实数a 的取值范围 ;答案:|x+1|-|x-2| -|x+1-x-2|=-3,故实数a 的取值范围:a<-3 2、不等式2sin 4sin 10x x a -+-<有解,则a 的取值范围是解:原不等式有解()()22sin 4sin 1sin 231sin 1a x x x x ⇒>-+=---≤≤有解,而()2minsin 232x ⎡⎤--=-⎣⎦,所以2a >-;3.若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是 A 1a <- B ||1a ≤ C ||1a < D 1a ≥ 解析:对∀x R ∈,不等式||x ax ≥恒成立 则由一次函数性质及图像知11a -≤≤,即||1a ≤;答案:选B4.当(1,2)x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 .解析: 当(1,2)x ∈时,由240x mx ++<得24x m x +<-.令244()x f x x x x+==+,则易知()f x 在(1,2)上是减函数,所以[1,2]x ∈时()(1)5maxf x f ==,则2min 4()5x x+->-∴5m ≤-.5.已知不等式223(1)1ax x a x x a -++>--+对任意(0)a ∈+∞,都成立,那么实数x 的取值范围为 .分析:已知参数a 的范围,要求自变量x 的范围,转换主参元x 和a 的位置,构造以a 为自变量x 作为参数的一次函数()g a ,转换成∀(0)a ∈+∞,,()0g a >恒成立再求解;解析:由题设知“223(1)1ax x a x x a -++>--+对∀(0)a ∈+∞,都成立,即22(2)20a x x x +-->对∀(0)a ∈+∞,都成立;设22()(2)2g a x a x x =+--a R ∈,则()g a 是一个以a 为自变量的一次函数;220x +>恒成立,则对∀x R ∈,()g a 为R 上的单调递增函数; 所以对∀(0)a ∈+∞,,()0g a >恒成立的充分必要条件是(0)0g ≥,220x x --≥,∴20x -≤≤,于是x 的取值范围是{|20}x x -≤≤;6.已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是 A .0,2 B .0,8 C .2,8 D .-∞,0分析:()f x 与()g x 的函数类型,直接受参数m 的影响,所以首先要对参 数进行分类讨论,解析:当0m =时,()810f x x =-+>在1(,)8-∞上恒成立在R 上恒成立,显然不满足题意;如图1当0m <时,()g x 在R 上递减且()0g x mx =>只在(,0)-∞而()f x 是一个开口向下且恒过定点0,1的二次函数,当0m >时,()g x 在R 上递增且()0g x mx =>在(0,)+∞而()f x 是一个开口向上且恒过定点0,1的二次函数,数x ,()f x 与()g x 的值至少有一个为正数则只需()0f x >在(-∞恒成立;如图3则有24024(4)80m m m m -⎧<⎪⎨⎪∆=--<⎩或402m m -≥解得48m <<或04m <≤, 综上可得08m <≤即(0,8)m ∈; 故选B;7、已知两函数()2728f x x x c =--,gx=6x 2-24x+21;1对任意[]3,3x ∈-,都有()()f x g x ≤成立,那么实数c 的取值范围 c ≥0 ; 2存在[]3,3x ∈-,使()()f x g x ≤成立,那么实数c 的取值范围 c ≥-25 ; 3对任意[]12,3,3x x ∈-,都有()()12f xg x ≤,那么实数c 的取值范围 c ≥150 ; 4存在[]12,3,3x x ∈-,都有()()12f xg x ≤,那么实数c 的取值范围 c ≥-175 ;解析:1设()()()322312h x g x f x x x x c =-=--+,问题转化为[]3,3x ∈-时,()0h x ≥恒成立,故()min 0h x ≥;令()()()266126120h x x x x x '=--=+-=,得1x =-或2;由导数知识,可知()h x 在[]3,1--单调递增,在[]1,2-单调递减,在[]2,3单调递增,且()345h c -=-,()()17h x h c =-=+极大值,()()220h x h c ==-极小值,()39h c =-,∴()()min 345h x h c =-=-,由450c -≥,得45c ≥;2据题意:存在[]3,3x ∈-,使()()f x g x ≤成立,即为:()()()0h x g x f x =-≥在[]3,3x ∈-有解,故()max 0h x ≥,由1知()max 70h x c =+≥,于是得7c ≥-;3它与1问虽然都是不等式恒成立问题,但却有很大的区别,对任意[]12,3,3x x ∈-,都有()()12f xg x ≤成立,不等式的左右两端函数的自变量不同,1x ,2x 的取值在[]3,3-上具有任意性,∴要使不等式恒成立的充要条件是:max min ()(),[3,3]f x g x ••x •≤∈-;∵()()[]27228,3,3f x x c x =---∈-∴ ()()max3147f x f c =-=-,∵()26840g x x x '=+-=()()23102x x +-,∴()0g x '=在区间[]3,3-上只有一个解2x =; ∴()()min248g x g ==-,∴14748c -≤-,即195c ≥.4存在[]12,3,3x x ∈-,都有()()12f xg x ≤,等价于()()min 1max 2f x g x ≤,由3得()()min 1228f x f c ==--,()()max 23102g x g =-=,28102130c c --≤⇒≥-点评:本题的三个小题,表面形式非常相似,究其本质却大相径庭,应认真审题,深入思考,多加训练,准确使用其成立的充要条件; 二.简答题每题10分8、10分若不等式2(1)(1)3(1)0m x m x m +--+-<对任意实数x 恒成立,求实数m 取值范围 解:)10,2[9、①对一切实数x,不等式32x x a --+>恒成立,求实数a 的范围; ②若不等式32x x a --+>有解,求实数a 的范围; ③若方程32x x a --+=有解,求实数a 的范围; 解:①5-<a ②5<a ③]5,5[-∈a10.已知函数()()2lg x ax a x f --=Ⅰ若()x f 的定义域Φ≠A ,试求a 的取值范围.Ⅱ 若()x f 在()3,2∈x 上有意义, 试求a 的取值范围. Ⅲ若()0>x f 的解集为()3,2,,试求a 的值.解答:这三问中,第Ⅰ问是能成立问题,第Ⅱ问是恒成立问题,第Ⅲ问是恰成立问题.Ⅰ ()x f 的定义域非空,相当于存在实数x ,使02>--x ax a 成立,即()2x ax a x --=ϕ的最大值大于0成立,(),0444422max >+=---=a a a a x ϕ 解得 4-<a 或0>a .Ⅱ()x f 在区间()3,2上有意义,等价于()2x ax a x --=ϕ0>在()3,2恒成立,即()x ϕ的最小值大于0.解不等式组 ()⎪⎩⎪⎨⎧≥≤-,03,252ϕa 或()⎪⎩⎪⎨⎧≥>-,02,252ϕa ⎩⎨⎧≥---≥,093,5a a a 或⎩⎨⎧≥---<042,5a a a 解得 .29-≤aⅢ()0>x f 的解集为()3,2,等价于不等式12>--x ax a 的解集为()3,2;于是有012<-++a ax x ,这等价于方程012=-++a ax x 的两个根为2和3, 于是可解得5-=a .。

3-直角三角形的存在性问题解题策略

3-直角三角形的存在性问题解题策略

中考数学压轴题解题策略 3直角三角形的存在性问题解题策略挑战压轴题·中考数学 的作者 海 马学斌专题攻略解直角 角形的存在性问题 一般 走 第一 寻找 类标准 第二 列方程 第 解方程并验根一般情况 按照直角顶点或者斜边 类 然后按照 角比或勾股定理列方程有时根据直角 角形斜边 的中线等于斜边的一半列方程更简便解直角 角形的问题 常常和相似 角形、 角比的问题联系在一起如果直角边 坐标轴 平行 那 过 个顶点作 坐标轴平行的直线 可以构造两个新的相似直角 角形 样列比例方程比较简便在平面直角坐标系中 两点间的距离公式常常用到怎样画直角 角形的示意图呢?如果已知直角边 那 过直角边的两个端点画垂线 第 个顶点在垂线 如果已知斜边 那 以斜边 直径画圆 直角顶点在圆 含直径的两个端点例题解析例❶ 如图1-1 在△ABC中 AB=AC=10 cos∠B=45D、E 线段BC 的两个动点 且DE=3 E在D右边 运动初始时D和B 合 当E和C 合时运动停止 过E 作EF//AC交AB于F 连结DF 设BD=x 如果△BDF 直角 角形 求x的值图1-1解析 △BDF中 ∠B是确定的锐角 那 按照直角顶点 类 直角 角形BDF存在两种情况 如果把夹∠B的两条边用含有x的式子表示出来 两种情况列方程就可以了 如图1-2 作AH⊥BC 垂足 H 那 H是BC的中点在Rt△ABH中 AB=10 cos∠B=45所以BH=8 所以BC=16由EF//AC 得BF BEBA BC= 即31016BF x+= 所以BF=5(3)8x+图1-2 图1-3 图1-4如图1-3 当∠BDF =90°时 由4cos 5BD B BF ∠== 得45BD BF = 解方程45(3)58x x =×+ 得x =3 如图1-4 当∠BFD =90°时 由4cos 5BF B BD ∠== 得45BF BD = 解方程5154885x x += 得757x = 们看到 在画示意图时 无 到△ABC 的 限制 只需要 其确定的∠B 例❷ 如图2-1 已知A 、B 是线段MN 的两点 以A 中心 时针旋转点M 以B 中心逆时针旋转点N 使M 、N 两点 合 一点C 构 △ABC 设AB =x 若△ABC 直角 角形 求x 的值图2-1解析 △ABC 的 边长都可以表示出来 AC =1 AB =x BC =3 x如果用斜边进行 类 条边都可能 斜边 种情况若AC 斜边 则22)3(1x x −+= 即0432=+−x x 方程无实根若AB 斜边 则1)3(22+−=x x 解得35=x 如图2-2 若BC 斜边 则221)3(x x +=− 解得34=x 如图2-3 因 当35=x 或34=x 时 △ABC 是直角 角形图2-2 图2-3例❸ 如图3-1 已知在平面直角坐标系中 点A 的坐标 -2, 0 点B 是点A 关于原点的对称点 P 是函数)0(2>=x xy 图象 的一点 且△ABP 是直角 角形 求点P 的坐标图3-1解析 A 、B 两点是确定的 以线段AB 类标准 种情况4=MN 1=MA 1>MB如果线段AB 直角边 那 过点A 画AB 的垂线 第一象限内的一支 曲线没有交点 过点B 画AB 的垂线 有1个交点以AB 直径画圆 圆 曲线有没有交点呢?先假如有交点 再列方程 方程有解那 就有交点 如果是一元二次方程 那 可能是一个交点 也可能是两个交点由题意 得点B 的坐标 2 0 且∠BAP 可能 直角如图3-2 当∠ABP =90°时 点P 的坐标 2 1方法一 如图3-3 当∠APB =90°时 OP 是Rt △APB 的斜边 的中线 OP =2设P 2(,x x 由OP 2=4 得2244x x += 解得x = 时P (2,2)图3-2 图3-3方法二 由勾股定理 得PA 2 PB 2=AB 2解方程2222222(2)()(2)()4x x x x +++++= 得x =方法 如图3-4 由△AHP ∽△PHB 得PH 2=AH ·BH解方程22((2)(2)x x x =+− 得x =图3-4 图3-5种解法的方程貌似差异很大 转化 整式方程之后都是(x 2 2)2=0 个四次方程的解是x 1=x 2=2 x 3=x 4= 它的几何意 就是以AB 直径的圆 曲线相 于P 、P ′两点 如图3-5例❹ 如图4-1 已知直线y =kx 6 过点A (1, 4) x 轴相交于点B 若点Q 是y 轴 一点 且△ABQ 直角 角形 求点Q 的坐标图4-1解析 和例题3一样 过A 、B 两点 别画AB 的垂线 各有1个点Q 和例题3 同 以AB 直径画圆 圆 y 轴有没有交点 一目了然 而圆 曲线有没有交点 是徒手画 曲线无法肯定的将A (1, 4)代入y =kx 6 可得k =2 所以y =2x 6 B (3,0)设OQ 的长 m 种情况讨论直角 角形ABQ如图4-2 当∠AQB =90°时 △BOQ ∽△QHABO QH OQ HA = 所以341m m −= 解得m =1或m =3 所以Q (0, 1)或(0, 3)如图4-3 当∠BAQ =90°时 △QHA ∽△AGBQH AG HA GB = 所以4214m −= 解得72m = 时7(0,2Q − 如图4-4 当∠ABQ =90°时 △AGB ∽△BMQ AG BM GB MQ= 所以243m = 解得32m = 时3(0,)2Q图4-2 图4-3 图4-4种情况的直角 角形ABQ 直角边都 坐标轴平行 们以直角顶点 公共顶点 构造两个相似的直角 角形 样列比例方程比较简便已知A (1, 4)、B (3,0) 设Q (0, n ) 那 根据两点间的距离公式可以表示出AB 2 AQ 2和BQ 2 再按照斜边 类标准列方程 就 用画图进行 盲解 了例❺ 如图5-1 抛物线233384y x x =−−+ x 轴交于A 、B 两点 点A 在点B 的 侧 若直线l 过点E (4, 0) M 直线l 的动点 当以A 、B 、M 顶点所作的直角 角形有且只 有个时 求直线l 的解析式图5-1解析 有且只有 个直角 角形ABM 是什 意思呢?过A 、B 两点 别画AB 的垂线 直线l 各有一个交点 那 第 个直角顶点M 在哪 ?以AB 直径的⊙G 直线l 相 于点M 啊! 由23333(4)(2)848y x x x x =−−+=−+− 得A ( 4, 0)、B (2, 0) 直径AB =6 如图5-2 连结GM 那 GM ⊥l在Rt △EGM 中 GM =3 GE =5 所以EM =4 因 3tan 4GEM ∠=设直线l y 轴交于点C 那 OC =3 所以直线l 直线EC 334y x =−+ 根据对称性 直线l 可以是334y x =−图5-2例❻ 如图6-1 在△ABC 中 CA =CB AB =8 4cos 5A ∠=点D 是AB 边 的一个动点 点E 点A 关于直线CD 对称 连结CE 、DE1 求底边AB 的高2 设CE AB 交于点F 当△ACF 直角 角形时 求AD 的长3 连结AE 当△ADE 是直角 角形时 求AD 的长图6-1解析 道题目画示意图有技 的 如果将点D 看作 动点 那 CE 就是从动线段 过来画图 点E 在以CA 半径的⊙C 如果把点E 看作 动点 再画∠ACE 的平 线就产生点D 了1 如图6-2 设AB 边 的高 CH 那 AH =BH =4在Rt △ACH 中 AH =4 4cos 5A ∠= 所以AC =5 CH =3 2 如图6-3 当∠AFC =90°时 F 是AB 的中点 AF =4 CF =3 在Rt △DEF 中 EF =CE CF =2 4cos 5E ∠= 所以52DE = 时52AD DE ==如图6-4 当∠ACF=90°时 ∠ACD=45° 那 △ACD的条件符合 角边角 作DG⊥AC 垂足 G 设DG=CG=3m 那 AD=5m AG=4m由CA=5 得7m=5 解得57m= 时2557AD m==图6-2 图6-3 图6-43 因 DA=DE 所以只存在∠ADE=90°的情况如图6-5 当E在AB 方时 根据对称性 知∠CDA=∠CDE=135° 时△CDH 是等腰直角 角形 DH=CH=3 所以AD=AH DH=1如图6-6 当E在AB 方时 根据对称性 知∠CDA=∠CDE=45° 时△CDH 是等腰直角 角形 DH=CH=3 所以AD=AH DH=7图6-5 图6-6。

[直角三角形的存在性问题解题策略

[直角三角形的存在性问题解题策略

于是 MP' OB' 1 MB OB 2
因此MB 2MP' 数形结合, xB xP' 2 yP'
第三步 计算——具体问题具体分析
②Q为直角顶点
三部曲: 先找分类标准; 再画示意图; 后计算.
数形结合, xB xP' 2 yP'
y 1 x2 11 x 3 24
A(1.5,0),B(4,0),C(0,-3)
设P(x, 1 x2 11 x 3) 24
那么4 x 2( 1 x2 11 x 3) 24
解得x1

4,
x2

5 2
第三步 计算——具体问题具体分析
②Q为直角顶点
三部曲: 先找分类标准; 再画示意图; 后计算.
解得x1

4,
第二步 无需画图——罗列三边长
三部曲: 先找分类标准; 再画示意图; 后计算.
1 1
3-x 3-x
x
MN=4,MA=1,MB>1,AB=x
第三步 计算——勾股定理
1
3-x
x
三部曲: 先找分类标准; 再画示意图; 后计算.
①A为直角顶点 (3 x)2 x2 12
x 4 3
ห้องสมุดไป่ตู้
②B为直角顶点 12 (3 x)2 x2 x2 3x 4 0无实数根
CA垂直平分BB’ , 垂足为Q
在抛物线上是否存在一点P,使△QCP是以QC为直角边 的直角三角形?
第一步 寻找分类标准
三部曲: 先找分类标准; 再画示意图; 后计算.
以QC为直角边的Rt△QCP
分两种情况: ①C为直角顶点 ②Q为直角顶点

中考数学存在性问题的解题策略

中考数学存在性问题的解题策略

中考数学存在性问题的解题策略摘要:现今不仅是高考对考生很重要,更多的家长认为走进一所好的高中就有一只脚踏进了名牌大学的校门。

“存在性”问题是中考试题中最容易丢分的题型,本文简要分析中考数学存在性问题的解题策略。

关键词:存在性问题解题分析一、“存在性”问题“存在性”问题是指判断满足某种条件的某种事物是否存在的问题。

应对这种问题要求学生的知识覆盖面广,综合分析能力强,对整个知识的结构体系熟悉,解题的方法要灵活。

常见的解此类题的思路为:假设其存在→根据存在性推理论证→得出结论→是否与假设相符合→结论存在(看是否违背公理和定理),根据此思路具体做出判断,我们知道“存在性”问题的结论有两种可能,所以开放性强,我们需要假设存在后对其进行推理或者计算,所以对学生的基本能力要求较高,并且具备较强的探索性。

二、举例分析现在我们就以举例的方式来解析。

(2)首先分析其与x轴有两个交点,x1,x2的倒数和为2/3,根据这个可以得出一个式子。

那么我们知道此二次函数与x轴交点的横坐标就是一元二次方程的根。

那么此题就很容易得出答案了。

例2:已知x1、x2是一元二次方程ax²+bx+c=0(a≠0,c≠0)的两个实数根,且x1/x2=m/n(m≠0,n≠0)(1)试用m和n表示b²/ac的式子;(2)是否存在实数m和n,满足x1/x2=m/n,使b²/ac=6/5成立?若存在,求出m和n的值;若不存在,说明理由。

分析:这个题目存在两个可能性:即存在和不存在。

那么对于此类问题我们一般假设其存在(当然你也可以假设不存在,这样假设不好证明),然后根据已知的条件和有关的性质推理,求解;最后根据推理的过程得出结论。

若其与已知条件相符合,那么就说明假设存在,结论成立。

若地已知条件不相符合就说明结论不成立。

此题通过韦达定理得a、b、c、m、n的关系式,然后在假设已知的条件成立,写出关于m、n为根的一元二次方程。

小学数学应用题教学中存在的问题及优化策略

小学数学应用题教学中存在的问题及优化策略

小学数学应用题教学中存在的问题及优化策略小学数学是孩子学习的重要阶段,数学应用题也是数学学习中不可或缺的一部分。

在小学数学应用题教学中,存在着一些问题,比如应用题难度过大、学生学习兴趣不高、教学方法单一等。

本文将从这些问题出发,探讨小学数学应用题教学中存在的问题,并提出优化策略,以期能够更好地帮助学生掌握数学应用题解题方法。

一、存在的问题1. 应用题难度过大许多小学数学应用题难度过大,超出了学生的认知水平和解题能力。

学生在解题过程中容易遇到各种难题,导致学习效果不佳。

这也导致学生对数学应用题失去兴趣,甚至有畏难情绪,影响了数学学习的积极性。

2. 学生学习兴趣不高由于数学应用题难度大,学生解题难度大,导致学生对数学应用题的学习兴趣不高。

在学习数学应用题时,学生没有好的学习兴趣,导致学习质量下降。

3. 教学方法单一在数学应用题的教学过程中,教师的教学方法单一,往往采用传统的讲解、练习和作业的教学方法,忽视了学生的学习兴趣和实际情况,导致教学效果不佳。

二、优化策略针对数学应用题难度过大的问题,教师可以根据学生的实际情况,适当调整题目的难度,使得题目更符合学生的认知水平和解题能力。

比如可以逐步增加题目的难度,让学生在适当的情况下挑战更难的题目,激发学生的学习兴趣。

2. 增加趣味性为了解决学生学习兴趣不高的问题,教师可以增加数学应用题的趣味性,比如设计一些有趣的数学应用题,让学生在解题过程中感受到乐趣,提高学习的积极性。

可以结合学生的实际生活,设计一些与生活相关的数学应用题,让学生在解题过程中感受到数学的实际应用价值。

在教学方法方面,教师可以采用多样化的教学方法,比如结合情境教学、游戏教学等方式,让学生能够在不同的情境下学习数学应用题的解题方法。

教师还可以利用多媒体技术、互动教学等手段,使得数学应用题的教学更加生动有趣,提高学生的学习积极性和效果。

4. 提高解题能力为了提高学生的解题能力,教师可以通过让学生多进行归纳总结,通过分析问题和解题思路,增强学生解题的能力。

相似三角形的存在性问题解题策略

相似三角形的存在性问题解题策略

相似三角形的存在性问题解题策略相似三角形的存在性问题是上海中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.【例1】(2011年青浦区第24题)如图1,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD=6cm.在线段BC、CD上有动点F、E,点F以每秒2cm的速度,在线段BC上从点B向点C匀速运动;同时点E以每秒1cm 的速度,在线段CD上从点C向点D匀速运动.当点F到达点C时,点E同时停止运动.设点F运动的时间为t(秒),点F、E在运动过程中,如果△CEF与△BDC相似,求线段BF的长.图1〖解题策略〗如图2,用含有t的式子把线段的长标记出来.观察△CEF与△BDC,两个三角形有一个公共的锐角∠C,△BDC是确定的直角三角形,夹∠C的两边比是6∶10=3∶5,那么根据判定定理2,在△CEF中,夹∠C的两边比为3∶5.因此分两种情况:①如图3,当∠CEF=90°时,35CE CDCF CB==.所以31025tt=-.解得3011t=.此时60211BF t==cm.②如图4,当∠CFE=90°时,35CF CDCE CB==.所以10235tt-=.解得5013t=.此时100213BF t==cm.图2 图3 图4【例2】(2010年长宁区第25题)如图5,抛物线y=ax2+bx+c(a>0)交x轴于A、B两点(A点在B点左侧),交y轴于点C.已知B(8,0),tan∠ABC=12,△ABC的面积为8.(1)求抛物线的解析式;(2)若动直线EF(EF//x轴)从点C开始,以每秒1个长度单位的速度沿y轴负方向平移,且分别交y轴、线段BC于E、F两点,动点P同时从点B出发,在线段OB上以每秒2个单位的速度向原点O 运动.联结FP,设运动时间t秒.是否存在t的值,使以P、B、F为顶点的三角形与△ABC相似.若存在,试求出t的值;若不存在,请说明理由.图5 〖解题策略〗第(1)题求得的抛物线的解析式对第(2)题不产生影响,但是点A 的坐标在两个小题中都要用到. 观察△ABC 与△PBF ,两个三角形有一个公共的锐角∠B ,△ABC 是确定的三角形,那么根据判定定理2,在△PBF 中,夹∠B 的两边比分两种情况,解答如下:在Rt △OBC 中,OB =8,OC =4,所以45BC =.在Rt △EFC 中,EF =2t ,CE =t ,所以5CF t =.在△BFP 中,夹∠B 的两边BP =2t ,4555(4)BF t t =-=-. 在△ABC 与△BFP 中,有公共的∠B .①当BA BP BC BF =时,42455(4)t t =-.解得43t =. ②当BA BF BC BP =时,45(4)245t t -=.解得207t =. 综上所述,当34t =或720t =时,△ABC 与△BFP 相似. 【例3】(2009年闸北区第25题)如图6,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域;(2) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图6〖解题策略〗解读题设部分,我们知道△ABC 是腰长为5,底边为3的等腰三角形,根据平行线截得的对应线段成比例,容易得到第(1)题的关系为53y x =. 平行线DE 截得的△ADE 与△ABC 相似,要探求△DEF 与△ABC 相似,根据相似三角形的传递性,△DEF 与△ADE 也是相似的,都是腰长与底边比为5∶3的等腰三角形.那么根据DE 来分类,分DE 为腰或底边两种情况.如图7,当DE 为△ADE 与△DEF 的公共腰时,根据轴对称和中心对称,可以知道,D 、E 、F ′分别是AB 、AC 和BC 的中点,此时BF ′=2.5, BF =4.1.如图8,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534BF =.图7 图8【例4】(2011年静安区第25题) 如图9,点A 、B 在⊙O 上,∠AOB =90º,点C 是AB 上的一个动点,AC 与OB 的延长线相交于点D ,是否存在点C ,使得△DCB ∽△DOC ?如果存在,请证明;如果不存在,请简要说明理由. O B CD图9〖解题策略〗△DCB 与△DOC 有一个公共的角∠D ,而∠DBC 是△BOC 的一个外角,因此∠DBC >∠DOC ,所以这两个三角形如果相似的话,只存在∠DCB =∠DOC 的情况.△AOC 与△BOC 的两个底角的和∠ACO +∠BCO =135°为定值,因此∠DCB =∠DOC =45°,点C 是AB 的中点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈存在性问题解题策略
发表时间:2012-10-12T16:42:27.937Z 来源:《少年智力开发报》2012年第43期供稿作者:张水平[导读] 初中数学综合题一般题量较大,梯度明显,是初中数学中覆盖面最广、综合性最强的题型。

张水平贵州省黄平县旧州二中初中数学综合题一般题量较大,梯度明显,是初中数学中覆盖面最广、综合性最强的题型。

试题中的综合题大多数题型是以代数与几何综合题的形式出现,而且留有自主探索的空间,体现个性发展和新课标的理念。

近几年来的中考,主要题型涉及到有关“动点所形成的方程和函数”问题、“开放探索性”问题、由数量关系确定的“存在性”问题等类型题目居多。

由数量关系确定的“存在性”问题,是最近几年来各省、市、州(地)中考的命题热点之一,尤其是以二次函数为载体,然后在二次函数中出现,是否存在相似三角形、是否存在三角形的面积相等、是否存在等腰三角形、是否存在直角三角形、是否存在平行四边形作为考察对象。

解决这种类型题目的核心是将“存在与否”转化为相应的方程有无符合条件的解。

其解题策略是:解决这种类型的题目,一般是对结论作出肯定的假设,然后从肯定的假设出发,根据已知条件建立方程式,求出方程的解;最后只要结合题目的已知条件来确定问题的存在与否。

相关文档
最新文档