matlab 黄金分割法
机械优化设计

机械优化设计matlab优化设计程序学校:班级:学号:姓名:指导老师:一.进退法求最优点所在区间1.算例:函数:f=x(1)^3+x(2)^2-10*x(1)*x(2)+1;初始参数:x0=0,step=0.01,st=[0,0],sd=[1,1];2.编程代码:function [lb,ub]=jintuifa(x0,step0,st,sd)% lb为区间下限,up为区间上限% x0初始探测点,step0是初始探测步长,st初始搜索点,sd是初始搜索方向step=step0;f0=jintui(x0,st,sd);x1=x0+step0;f1=jintui(x1,st,sd);if f1<=f0while truestep=2*step;x2=x1+step;f2=jintui(x2,st,sd);if f1<=f2lb=x0;ub=x2;break;elsex0=x1;x1=x2;f0=f1;f1=f2;endendelsewhile truestep=2*step;x2=x0-step;f2=jintui(x2,st,sd);if f0<=f2lb=x2;ub=x1;break;elsex1=x0;x0=x2;f1=f0;f0=f2;endendendend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=jintui(a,st,sd)f=objfun(st+a.*sd);end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=objfun(x)f=x(1)^3+x(2)^2-10*x(1)*x(2)+1;end3.运行结果二.黄金分割法求最求最优值1.eg:函数:f=x^2+2*x;初始参数:a=-3,b=5,e=0.0001;2.编程代码:function [ans,sp]=golden(a,b,e)%[a,b]初始区间,e为最小区间长度要求%ans为最优解,sp为所需迭代次数a(1)=a;b(1)=b;L=e;t(1)=a(1)+0.382*(b(1)-a(1));u(1)=a(1)+0.618*(b(1)-a(1));k=1;m(1)=feval('f1',t(1));n(1)=feval('f1',u(1));while(b(k)-a(k)>L)if(m(k)>n(k))a(k+1)=t(k);b(k+1)=b(k);t(k+1)=u(k);u(k+1)=a(k+1)+0.618*(b(k+1)-a(k+1));elsea(k+1)=a(k);b(k+1)=u(k);u(k+1)=t(k);t(k+1)=a(k+1)+0.382*(b(k+1)-a(k+1));endm(k+1)=feval('f1',t(k+1));n(k+1)=feval('f1',u(k+1));ans=feval('f1',t(k+1));k=k+1;endans=(a(k)+b(k))/2;sp=k-1;end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function y=f1(x)y=x^2+2*x;end3.运行结果三.无约束优化方法——坐标轮换法1.eg:函数:min f(x)=4*(x(1)-5)^2+(x(2)-6)^2;初始参数:初始点x为[8,9];2.编程代码:function [x,f]=lunhuan(x0)%输入初始点x0[8,9]%输出最优解点x,与最优解值fp=1;h=0.000001;x=x0;while(p>h)%做精度比较w=x(1);q=x(2);d1=[1,0];a1=golden('objfun',x,d1);%黄金分割法求最佳步长 x=x+a1*d1;d2=[0,1];a2=golden('objfun',x,d2);x=x+a2*d2;p=sqrt((x(1)-w)^2+(x(2)-q)^2);endf=objfun(x);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=objfun(x)%函数名f=4*(x(1)-5)^2+(x(2)-6)^2;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [lb,ub]=jintuifa(st,sd)%进退法函数x0=0;step0=0.000001;step=step0;f0=jintui(x0,st,sd);x1=x0+step0;f1=jintui(x1,st,sd);if f1<=f0while truestep=2*step;x2=x1+step;f2=jintui(x2,st,sd);if f1<=f2lb=x0;ub=x2;break;elsex0=x1;x1=x2;f0=f1;f1=f2;endendelsewhile truestep=2*step;x2=x0-step;f2=jintui(x2,st,sd);if f0<=f2lb=x2;ub=x1;break;elsex1=x0;x0=x2;f1=f0;f0=f2;endendendend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=jintui(a,st,sd)f=objfun(st+a.*sd);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ans=golden(f_name,st,sd)[a,b]=jintuifa(st,sd); %进退法求最佳步长区间a(1)=a;b(1)=b;L=0.1;t(1)=a(1)+0.382*(b(1)-a(1));u(1)=a(1)+0.618*(b(1)-a(1));k=1;p=st+t(1)*sd;q=st+u(1)*sd;m(1)=feval(f_name,p);n(1)=feval(f_name,q);while(b(k)-a(k)>L)if(m(k)>n(k))a(k+1)=t(k);b(k+1)=b(k);t(k+1)=u(k);u(k+1)=a(k+1)+0.618*(b(k+1)-a(k+1));elsea(k+1)=a(k);b(k+1)=u(k);u(k+1)=t(k);t(k+1)=a(k+1)+0.382*(b(k+1)-a(k+1));endw=st+t(k+1)*sd;z=st+u(k+1)*sd;m(k+1)=feval(f_name,w);n(k+1)=feval(f_name,z);ans=feval(f_name,w);k=k+1;endt(k)=0;u(k)=0;m(k)=0;n(k)=0;p=[a',b',t',u',m',n'];ans=(a(k)+b(k))/2;end3.运行结果四.无约束优化方法——鲍威尔法1.eg:函数:min f(x)=4*(x(1)-5)^2+(x(2)-6)^2;初始参数:初始点x为[8,9],初始搜索方向[0,1],[1,0];2.编程代码:function [x,f]=powill(x0,d1,d2)%输入x0为初始点,d1,d2为两个线性无关向量for k=1:2w=x0(1);q=x0(2);a1=golden('objfun',x0,d1);x1=x0+a1*d1;a2=golden('objfun',x1,d2);x2=x1+a2*d2;d1=d2;d2=x2-x0;a3=golden('objfun',x2,d2);x3=x2+a3*d2;x0=x3;endx=x0;f=objfun(x);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=objfun(x)f=4*(x(1)-5)^2+(x(2)-6)^2;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [lb,ub]=jintuifa(st,sd)x0=0;step0=0.0001;step=step0;f0=jintui(x0,st,sd);x1=x0+step0;f1=jintui(x1,st,sd);if f1<=f0while truestep=2*step;x2=x1+step;f2=jintui(x2,st,sd);if f1<=f2lb=x0;ub=x2;break;elsex0=x1;x1=x2;f0=f1;f1=f2;endendelsewhile truestep=2*step;x2=x0-step;f2=jintui(x2,st,sd);if f0<=f2lb=x2;ub=x1;break;elsex1=x0;x0=x2;f1=f0;f0=f2;endendend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=jintui(a,st,sd)f=objfun(st+a.*sd);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ans=golden(f_name,st,sd)[a,b]=jintuifa(st,sd);a(1)=a;b(1)=b;L=0.1;t(1)=a(1)+0.382*(b(1)-a(1));u(1)=a(1)+0.618*(b(1)-a(1));k=1;p=st+t(1)*sd;q=st+u(1)*sd;m(1)=feval(f_name,p);n(1)=feval(f_name,q);while(b(k)-a(k)>L)if(m(k)>n(k))a(k+1)=t(k);b(k+1)=b(k);t(k+1)=u(k);u(k+1)=a(k+1)+0.618*(b(k+1)-a(k+1));elsea(k+1)=a(k);b(k+1)=u(k);u(k+1)=t(k);t(k+1)=a(k+1)+0.382*(b(k+1)-a(k+1));endw=st+t(k+1)*sd;z=st+u(k+1)*sd;m(k+1)=feval(f_name,w);n(k+1)=feval(f_name,z);ans=feval(f_name,w);k=k+1;endend3.运行结果五.有约束优化方法——复合形法1.eg:函数:min f(x)=x1^2+x2^2-x1*x2-10*x1-4*x2+60 St:g1(x)=-x1≤0g2(x)=-x2≤0g3(x)=x1-6≤0g4(x)=x2-8≤0g5(x)=x1+x2-11≤02.编程代码:function fuhexing(n,b,h,xb1,xb2)%元素数n,初始可行点b,精度h,xb1横坐标上下界,xb2为纵坐标上下界if (rem(n,2)==0)k=n+n/2;elsek=n+(n+1)/2;end%取k值A=kexingdian(k,xb1,xb2,b');%确定可行点A=mubiao(A,n,k,h);%求出目标函数并排序比较,得出最优解End %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function A=mubiao(A,n,k,h)for i=1:kA(3,i)=objfun(A(:,i));endB=A';%根据目标函数值排序A=sortrows(B,3)';p=0;for j=1:kx=(objfun(A(:,j))-objfun(A(:,1)))^2;p=p+x;endo=sqrt(p/(k-1));%收敛条件if(o<h)%判断所求点是否为最优点disp('最优点为')xz(1)=A(1,1);xz(2)=A(2,1);disp(xz);disp('其函数值为')f=A(3,1);disp(f);elsexr=Xcpanduan(A,k,n,h,1.3);endend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function A=kexingdian(k,xb1,xb2,b)A=zeros(3,k);A(1,1)=b(1);A(2,1)=b(2);for i=2:kA(1,i)=xb1(1)+rand(1)*(xb1(2)-xb1(1));A(2,i)=xb2(1)+rand(1)*(xb2(2)-xb2(1));%产生j个顶点endt=0;for j=1:kif(A(1,j)+A(2,j)<=11&&A(1,j)<=6&&A(2,j)<=8)%判断是否有不可行点t=t+1;T(:,t)=A(:,j);endendif(t<k)%计算出可行点的中心位置xcxc=zhongxindian(T,t);endt=0;for j=1:k%利用中心点将原不可行点逼近为可行点while(A(1,j)+A(2,j)>11||A(1,j)>6||A(2,j)>8)A(:,j)=xc+0.5*(A(:,j)-xc);endendendx=x0;f=objfun(x);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function f=objfun(x)f= x1^2+x2^2-x1*x2-10*x1-4*x2+60;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function xc=Xcpanduan(A,k,n,h,a)for i=1:k-1T(:,i)=A(:,i);endxc=zhongxindian(T,k-1);%计算除最坏点以外的可行点中心坐标if(xc(1)+xc(2)<=11&&xc(1)<=6&&xc(2)<=8)%判断xc是否可行xr=Xrpanduan(xc,A,a,n,k,h);A(:,k)=xr;else%不可行时,即重新确定初始可行点fuhexing(n,h,A(:,1),xr);endend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function xc=zhongxindian(T,t)xc=[0;0;0];for i=1:txc=xc+T(:,i);endxc=xc/t;%求解中心点end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xr=Xrpanduan(xc,A,a,n,k,h)xr=xc+a*(xc-A(:,k));while(xr(1)+xr(2)>11||xr(1)>6||xr(2)>8)%判断xr 是否可行若不可行,则持续迭代a=0.5*a;xr=xc+a*(xc-A(:,k));endxr=ercipanduan(a,xr,A(:,k),A,n,k,xc,h,xr);%可行时进入下一判断end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function xr=ercipanduan(a,p,b,A,n,k,xc,h,t)if(objfun(p)>=objfun(b))%判断反射点和最坏点函数值的大小if(a<=1e-10)A(:,k)=A(:,k-1);xr=Xcpanduan(A,k,n,h,a);disp(xr);elsea=0.5*a;xr=Xrpanduan(xc,A,a,n,k,h);%返回中心点判断,持续迭代endelseA(:,k)=p;%以反射点取代最坏点进行循环mubiao(A,n,k,h);xr=t;endend3.运行结果五.有约束优化方法——混合惩罚法1.eg:函数:min f(x)=(x(4)-x(1))^2+(x(5)-x(2))^2+(x(6)-x(3))^2;St:g1=x(1)^2+x(2)^2+x(3)^2-5;g2=(x(4)-3)^2+x(5)^2-1;g3=x(6)-8;g4=4-x(6);2.编程代码function [x,f]=hunhechengfa(x0,r0,c,h1,h2)k=1;z=0;A(:,1)=x0;r(1)=r0;while (z==0)k=k+1;x=lunhuan(x0,r(k-1));A(:,k)=x;r(k)=c*r(k-1);z=shoulian(A,r,h1,h2,k);if(z==1)break;endx0=x;enddisp('最优解点x=');disp(x);disp('最优值=');f=fhanshu(x);disp(f);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function z=shoulian(A,r,h1,h2,k)%判断收敛条件U=abs(objfun(A(:,k),r(k))-objfun(A(:,k-1),r(k-1))/obj fun(A(:,k-1),r(k-1)));V=0;for i=2:kV=V+(A(1,k)-A(1,k-1))^2;endV=sqrt(V);if(U<=h1&&V<=h2)z=1;elsez=0;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function p=objfun(x,r)%φ函数g1=x(1)^2+x(2)^2+x(3)^2-5;g2=(x(4)-3)^2+x(5)^2-1;g3=x(6)-8;g4=4-x(6);j=sqrt(r);u=r*(1/g1+1/g2+1/g3+1/g4);v=(g1^2+g2^2+g3^2+g4^2)/j;p=fhanshu(x)-u+v;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function f=fhanshu(x)%目标函数f=(x(4)-x(1))^2+(x(5)-x(2))^2+(x(6)-x(3))^2;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function x=lunhuan(x0,r)%轮换法p=1;h=0.01;d=zeros(6,6);a=zeros(6,1);x=x0;for i=1:6for j=1:6if(i==j)d(i,j)=1;endendendwhile(p>h)t=x;v=0;for k=1:6a(k)=golden(x,d(:,k),r);c=d(:,k);x=x-a(k)*c';v=v+(x(k)-t(k))^2;endp=sqrt(v);endend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ans=golden(st,sd,r)%黄金分割法求最佳步长 [g,h]=jintuifa(st,sd,r);a(1)=g;b(1)=h;L=0.01;t(1)=a(1)+0.382*(b(1)-a(1));u(1)=a(1)+0.618*(b(1)-a(1));k=1;p=st+t(1)*sd';q=st+u(1)*sd';m(1)=objfun(p,r);n(1)=objfun(q,r);while(b(k)-a(k)>L)if(m(k)>n(k))a(k+1)=t(k);b(k+1)=b(k);t(k+1)=u(k);u(k+1)=a(k+1)+0.618*(b(k+1)-a(k+1));elsea(k+1)=a(k);b(k+1)=u(k);u(k+1)=t(k);t(k+1)=a(k+1)+0.382*(b(k+1)-a(k+1));endw=st+t(k+1)*sd';z=st+u(k+1)*sd';m(k+1)=objfun(w,r);n(k+1)=objfun(z,r);k=k+1;endans=(a(k)+b(k))/2;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=jintui(a,st,sd,r)%代入步长f=objfun(st+a.*sd',r);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [lb,ub]=jintuifa(st,sd,r)%进退法求最佳步长区间x0=0;step0=0.001;step=step0;f0=jintui(x0,st,sd,r);x1=x0+step0;f1=jintui(x1,st,sd,r);if f1<=f0while truestep=2*step;x2=x1+step;f2=jintui(x2,st,sd,r);if f1<=f2lb=x0;ub=x2;break;elsex0=x1;x1=x2;f0=f1;f1=f2;endendelsewhile truestep=2*step;x2=x0-step;f2=jintui(x2,st,sd,r);if f0<=f2lb=x2;ub=x1;break;elsex1=x0;x0=x2; f1=f0; f0=f2;endendend3.运行结果。
最优化方法及其Matlab程序设计

最优化方法及其Matlab程序设计1.最优化方法概述在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证,从中提取最佳方案。
最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。
最优化是每个人,每个单位所希望实现的事情。
对于产品设计者来说,是考虑如何用最少的材料,最大的性能价格比,设计出满足市场需要的产品。
对于企业的管理者来说,则是如何合理、充分使用现有的设备,减少库存,降低能耗,降低成本,以实现企业的最大利润。
由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。
用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容:1)建立数学模型。
即用数学语言来描述最优化问题。
模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。
2)数学求解。
数学模型建好以后,选择合理的最优化算法进行求解。
最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。
2.最优化方法(算法)浅析最优化方法求解很大程度上依赖于最优化算法的选择。
这里,对最优化算法做一个简单的分类,并对一些比较常用的典型算法进行解析,旨在加深对一些最优化算法的理解。
最优化算法的分类方法很多,根据不同的分类依据可以得到不同的结果,这里根据优化算法对计算机技术的依赖程度,可以将最优化算法进行一个系统分类:线性规划与整数规划;非线性规划;智能优化方法;变分法与动态规划。
2.1 线性规划与整数规划线性规划在工业、农业、商业、交通运输、军事和科研的各个研究领域有广泛应用。
例如,在资源有限的情况下,如何合理使用人力、物力和资金等资源,以获取最大效益;如何组织生产、合理安排工艺流程或调制产品成分等,使所消耗的资源(人力、设备台时、资金、原始材料等)为最少等。
黄金分割法及其代码

黄⾦分割法及其代码线性搜索之黄⾦分割法及其应⽤摘要最优化理论和⽅法⽇益受到重视,已经渗透到⽣产、管理、商业、军事、决策等各个领域,⽽最优化模型与⽅法⼴泛应⽤于⼯业、农业、交通运输、商业、国防、建筑、通讯和政府机关等领域。
伴随着计算机技术的⾼速发展,最优化理论与⽅法的迅速进步为解决实际最优化问题的软件也在飞速发展。
其中,MATLAB 软件已经成为最优化领域应⽤最⼴的软件之⼀。
有了MATLAB这个强⼤的计算平台,既可以利⽤MATLAB优化⼯具箱(OptimizationToolbox)中的函数,⼜可以通过算法变成实现相应的最优化计算。
在最优化计算中⼀维最优化⽅法是优化设计中最简单、最基本的⽅法。
⼀维搜索,⼜称为线性搜索,⼀维问题是多维问题的基础,在数值⽅法迭代计算过程中,都要进⾏⼀维搜索,也可以把多维问题化为⼀些⼀维问题来处理。
⼀维问题的算法好坏,直接影响到最优化问题的求解速度。
⽽黄⾦分割法是⼀维搜索⽅法中重要的⽅法之⼀,它适⽤于任何单峰函数求最⼩值的问题,甚⾄于对函数可以不要求连续,是⼀种基于区间收缩的极⼩点搜索算法。
关键词:最优化、黄⾦分割法、MATLAB软件、⼀维搜索引⾔数学科学不仅是⾃然科学的基础,也是⼀切重要技术发展的基础。
最优化⽅法更是数学科学⾥⾯的⼀个巨⼤的篇幅,在这个信息化的时代,最优化⽅法⼴泛应⽤于⼯业、农业、国防、建筑、通信与政府机关、管理等各领域;它主要解决最优计划、最优分配、最优决策、最佳设计、最佳管理等最优化问题。
⽽最优解问题是这些所有问题的中⼼,是最优化⽅法的重中之重,在求最优解问题中,有多种⽅法解决,我们在这⾥着重讨论⽆约束⼀维极值问题,即⾮线性规划的⼀维搜索⽅法之黄⾦分割法。
黄⾦分割法也叫0.618法,属于区间收缩法,⾸先找出包含极⼩点的初始搜索区间,然后按黄⾦分割点通过对函数值的⽐较不断缩⼩搜索区间。
当然要保证极⼩点始终在搜索区间内,当区间长度⼩到精度范围之内时,可以粗略地认为区间端点的平均值即为极⼩值的近似值。
matlab实验黄金分割法

matlab实验黄金分割法黄金分割法(Golden Section Method)是一种用于解决最优化问题的数值计算方法。
在数学上,最优化问题可以表述为寻找某个函数的最小值或最大值。
而黄金分割法是一种无约束优化算法,常被用于一维函数的最优化问题。
在本文中,我们将介绍黄金分割法的原理,并通过Matlab实验来演示其应用。
黄金分割法的原理基于黄金分割比,即1:0.618。
黄金分割法通过将搜索区间不断缩小,直到满足指定的精度要求,最终找到函数的极值点。
下面我们将逐步介绍黄金分割法的步骤:1. 初始化:给定初始搜索区间[a, b],以及所需的精度要求ε。
2. 计算区间长度:计算区间长度L = b - a。
3. 计算划分点:计算第一个划分点x1 = a + 0.382L,以及第二个划分点x2 = a + 0.618L。
4. 计算函数值:计算在划分点x1和x2处的函数值f(x1)和f(x2)。
5. 更新搜索区间:比较f(x1)和f(x2)的大小关系,若f(x1) < f(x2),则新的搜索区间为[a, x2],否则为[x1, b]。
6. 判断收敛:如果L < ε,算法收敛,停止迭代;否则,返回步骤2。
接下来,我们将通过一个实例来演示黄金分割法在Matlab中的应用。
假设我们要优化以下函数:```matlabf(x) = x^2 + 5*sin(x)```首先,我们需要在Matlab中定义这个函数。
在命令窗口中输入以下代码:```matlabf = @(x) x^2 + 5*sin(x);```接下来,我们可以采用黄金分割法来最小化这个函数。
以下是Matlab代码的大致框架:```matlaba = 0;b = 10;epsilon = 0.001;L = b - a;x1 = a + 0.382*L;x2 = a + 0.618*L;while L >= epsilonf1 = f(x1);f2 = f(x2);if f1 < f2b = x2;elsea = x1;endL = b - a;x1 = a + 0.382*L;x2 = a + 0.618*L;end```以上代码中,我们使用了一个while循环来不断更新搜索区间和划分点,直到满足指定的精度要求。
求函数最大值黄金分割法matlab程序

黄金分割法是一种用于求解函数最大值的数值优化算法。
它利用黄金比例的特性,在搜索过程中逐步减小搜索范围,找到函数的最大值。
本文将介绍黄金分割法的原理和实现方法,并给出利用Matlab编写的程序示例。
一、黄金分割法的原理黄金分割法基于黄金比例的性质,即将一段线段分割成两部分,使整段线段与较短部分的比值等于较短部分与较长部分的比值。
利用这一特性,在搜索过程中逐步减小搜索范围,最终找到函数的最大值。
二、黄金分割法的实现1. 确定初始搜索范围:根据实际问题确定函数的定义域,确定搜索范围[a, b]。
2. 计算黄金分割点:根据搜索范围[a, b]计算黄金分割点x1和x2,使得搜索范围按照黄金比例减小。
3. 计算函数值:计算函数在x1和x2处的取值f(x1)和f(x2)。
4. 更新搜索范围:比较f(x1)和f(x2)的大小,确定新的搜索范围[a, b]。
5. 重复步骤2-4,直到满足收敛条件或达到迭代次数上限。
三、Matlab程序示例以下是利用Matlab编写的黄金分割法程序示例:```matlabfunction [x_opt, f_opt] = golden_section_method(f, a, b, tol, max_iter)phi = (1 + sqrt(5)) / 2; 黄金比例x1 = b - (b - a) / phi;x2 = a + (b - a) / phi;f1 = feval(f, x1);f2 = feval(f, x2);iter = 0;while (b - a) > tol iter < max_iterif f1 < f2a = x1;x1 = x2;f1 = f2;x2 = a + (b - a) / phi;f2 = feval(f, x2);elseb = x2;x2 = x1;f2 = f1;x1 = b - (b - a) / phi;f1 = feval(f, x1);enditer = iter + 1;endx_opt = (a + b) / 2;f_opt = feval(f, x_opt);end```四、结语黄金分割法是一种简单而有效的数值优化算法,可以用于求解函数的最大值。
Matlab习题及答案

现代计算方法Matlab 作业答案1.绘出函数f(x)=sin x x ,在[0,4]上的图形解:在M 文件输入:x=0:pi/100:4;y=x.*sin(x);plot(y)运行2. 求3x +2x +5 = 0的根解:在命令窗口输入:>> solve('x^3+2*x+5=0')ans =((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3) - 2/(3*((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3))1/(3*((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)) - ((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)/2 -(3^(1/2)*i*(2/(3*((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)) + ((108^(1/2)*707^(1/2))/108 -5/2)^(1/3)))/21/(3*((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)) - ((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)/2 +(3^(1/2)*i*(2/(3*((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)) + ((108^(1/2)*707^(1/2))/108 -5/2)^(1/3)))/23.321436min x x x z ++=120..321=++x x x t s301≥x5002≤≤x203≥x解:运用单纯形法计算此题,首先把约束条件化成标准形式:,,,,,205030120654321635241321≥=-=+=-=++x x x x x x x x x x x x x x x(1)在M 文件输入SimpleMthd 函数:function [x,minf] = SimpleMthd(A,c,b,baseVector)sz = size(A);nVia = sz(2);n = sz(1);xx = 1:nVia;nobase = zeros(1,1);m = 1;for i=1:nViaif (isempty(find(baseVector == xx(i),1)))nobase(m) = i;m = m + 1;else;endendbCon = 1;M = 0;while bConnB = A(:,nobase);ncb = c(nobase);B = A(:,baseVector);cb = c(baseVector);xb = inv(B)*b;f = cb*xb;w = cb*inv(B);for i=1:length(nobase)sigma(i) = w*nB(:,i)-ncb(i);end[maxs,ind] = max(sigma);if maxs <= 0minf = cb*xb;vr = find(c~=0 ,1,'last');for l=1:vrele = find(baseVector == l,1);if (isempty(ele))x(l) = 0;elsex(l)=xb(ele);endendbCon = 0;elsey = inv(B)*A(:,nobase(ind));if y <= 0disp('不存在最优解!');x = NaN;minf = NaN;return;elseminb = inf;chagB = 0;for j=1:length(y)if y(j)>0bz = xb(j)/y(j);if bz<minbminb = bz;chagB = j;endendendtmp = baseVector(chagB);baseVector(chagB) = nobase(ind);nobase(ind) = tmp;endendM = M + 1;if (M == 1000000)disp('找不到最优解!');x = NaN;minf = NaN;return;endend(2)在命令窗口输入:clear allA=[1 1 1 0 0 0;1 0 0 -1 0 0;0 1 0 0 1 0;0 0 1 0 0 -1];c=[6 3 4 0 0 0];b=[120;30;50;20];[xm,mf]=SimpleMthd(A,c,b,[3 4 5 6])xm =0 50 70mf =4304.计算下面函数在区间(0,1)内的最小值。
matlab编程实现求解最优解

《现代设计方法》课程关于黄金分割法和二次插值法的Matlab语言实现在《现代设计方法》的第二章优化设计方法中有关一维搜索的最优化方法的一节里,我们学习了黄金非分割法和二次插值法。
它们都是建立在搜索区间的优先确定基础上实现的。
为了便于方便执行和比较,我将两种方法都写进了一个程序之内,以选择的方式实现执行其中一个。
下面以《现代设计方法》课后习题为例。
见课本70页,第2—7题。
原题如下:求函数f(x)=3*x^2+6*x+4的最优点,已知单谷区间为[-3,4],一维搜索精度为0.4。
1、先建立函数f(x),f(x)=3*x^2+6*x+4。
函数文件保存为:lee.m源代码为:function y=lee(x)y=3*x^2+6*x+4;2、程序主代码如下,该函数文件保存为:ll.mclear;a=input('请输入初始点');b=input('请输入初始步长');Y1=lee(a);Y2=lee(a+b);if Y1>Y2 %Y1>Y2的情况k=2; Y3=lee(a+2*b);while Y2>=Y3 %直到满足“大,小,大”为止k=k+1;Y3=lee(a+k*b);endA=a+b;B=a+k*b;elseif Y1<Y2 %Y1<Y2的情况k=1;Y3=lee(a-k*b);while Y1>=Y3 %直到满足“大,小,大”为止k=k+1;Y3=lee(a-k*b);endA=a-k*b;B=a;elseA=a;B=a+b; %Y1=Y2的情况enddisp(['初始搜索区间为',num2str([A,B])])%输出符合的区间xuanze=input('二次插值法输入0,黄金分割法输入1');%选择搜索方式T=input('选定一维搜索精度');if xuanze==1while B-A>T %一维搜索法使精度符合要求C=A+0.382*(B-A);D=A+0.618*(B-A); %黄金分割法选点if lee(C)>=lee(D); %缩小区间A=C;elseB=D;endendelsewhile B-A>T %二次插值法是精度符合要求C=(A+B)/2;W=[1,A,A^2;1,B,B^2;1,C,C^2];w=[lee(A);lee(B);lee(C)];x=W\w; %求线性方程组解,求拟合曲线xx=perms(x)';for n=1:(factorial(3)); %使解得值与a0,a1,a2一一对应t=1+(n-1)*3;a0=xx(t);a1=xx(t+1);a2=xx(t+2);if a0+a1*A+a2*A^2~=lee(A)||a0+a1*B+a2*B^2~=lee(B)...||a0+a1*C+a2*C^2~=lee(C);continueendbreakendxp=-a1/(2*a2); %拟合直线的最低点if lee(C)>=lee(xp); %缩小区间if C>=xp; %xp与C大小不定,导致缩小方式不同B=C;elseA=C;endelseif C>=xp;A=xp;elseB=xp;endendendendX=(A+B)/2;Y=lee(X);disp(['极小值点为',num2str(X),'极值为',num2str(Y)]);%输出结果3、由于我编的程序,其搜索区间是自定的。
黄金分割法

黄金分割法黄金分割法也叫0.618法,它是一种基于区间收缩的极小值点搜索算法,当用进退法确定搜索区间后,我们只知道极小值点包含于搜索区间内,但是具体是哪个点,无法得知。
1. 算法原理黄金分割法的思想很直接,既然极小值点包含于搜索区间内,那么可以不断地缩小搜索区间,就可以使搜索区间的端点逼近到极小值点。
[]a,b 为搜索区间,黄金分割法首先根据黄金比例产生两个内点12,x x 。
120.382*()0.618*()x a b a x a b a =+-=+-然后根据()1f x ,()2f x 的大小关系来重新选择搜索区间。
(1) 若()()12f x f x <,则搜索区间变为1[,]x b ;(2) 若()()12f x f x >,则搜索区间变为2[,]a x 。
2. 算法步骤用黄金分割法求无约束问题min (),f x x R ∈的基本步骤如下:(1) 选定初始区间11[,]a b 及精度0ε>,计算试探点:11110.382*()a b a λ=+-11110.618*()a b a μ=+-。
(2) 若k k b a ε-<,则停止计算。
否则当()()k k ff λμ>时转步骤(3)。
当()()k k f f λμ≤转步骤(4)。
(3) 置 11111110.382*()k k k k k kk k k k a b b a b a λλμμ+++++++=⎧⎪=⎪⎨=⎪⎪=+-⎩转步骤(5) (4) 置11111110.382*()k k k k k kk k k k a a b a b a μμλλ+++++++=⎧⎪=⎪⎨=⎪⎪=+-⎩转步骤(5) (5) 令1k k =+,转步骤(2)。
3. 算法的MATLAB 实现在MATLAB 中编程实现黄金分割法的函数为:min HJ 。
功能:用黄金分割法求解一维函数的极值。
调用格式:[,min ]min (,,,)x f HJ f a b eps =其中,f :为目标函数;a :极值区间的左端点;b :极值区间的右端点;e p s :精度;x :目标函数取最小值时的自变量值;m i n f :目标函数的最小值。
最优化方法及其Matlab程序设计

最优化方法及其Matlab程序设计1.最优化方法概述在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证,从中提取最佳方案。
最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。
最优化是每个人,每个单位所希望实现的事情。
对于产品设计者来说,是考虑如何用最少的材料,最大的性能价格比,设计出满足市场需要的产品。
对于企业的管理者来说,则是如何合理、充分使用现有的设备,减少库存,降低能耗,降低成本,以实现企业的最大利润。
由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。
用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容:1)建立数学模型。
即用数学语言来描述最优化问题。
模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。
2)数学求解。
数学模型建好以后,选择合理的最优化算法进行求解。
最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。
2.最优化方法(算法)浅析最优化方法求解很大程度上依赖于最优化算法的选择。
这里,对最优化算法做一个简单的分类,并对一些比较常用的典型算法进行解析,旨在加深对一些最优化算法的理解。
最优化算法的分类方法很多,根据不同的分类依据可以得到不同的结果,这里根据优化算法对计算机技术的依赖程度,可以将最优化算法进行一个系统分类:线性规划与整数规划;非线性规划;智能优化方法;变分法与动态规划。
2.1 线性规划与整数规划线性规划在工业、农业、商业、交通运输、军事和科研的各个研究领域有广泛应用。
例如,在资源有限的情况下,如何合理使用人力、物力和资金等资源,以获取最大效益;如何组织生产、合理安排工艺流程或调制产品成分等,使所消耗的资源(人力、设备台时、资金、原始材料等)为最少等。
数学实验二(matlab中二分法求解方程)

云南大学数学与统计学实验教学中心实验报告
数学实验(二)
一、实验目的:练习用数值迭代逼近法解非线性方程。
1.区间迭代法:对分法和黄金分割法
2.点的迭代法:简单迭代法
二、实验内容:用二分法(即对分法)编程求解方程。
0123=---x x x
三、实验环境:MATLAB.
四.实验方法:
程序代码:
function X=fan(a,b)
e=1e-2;
ep=1;
x0=a;
xn=b;
x=0;
k=0;
N=100;
while (ep>e)
x=(x0+xn)/2;
f1=x^3-x^2-x-1;
f2=x0^3-x0^2-x0-1;
f3=xn^3-xn^2-xn-1;
if f1*f2<0
x0=a;
xn=x;
elseif f1*f3<0
x0=x;
xn=b;
end
ep=abs(f1);
k=k+1;
if k>N
break;
end
x
ep
实验结果:
fan(a,b)
x =
1.8572
ep =
0.0993
五、实验过程
1实验步骤
2 关键代码及其解释
3 调试过程
六、实验总结
1.遇到的问题及解决过程
2.产生的错误及原因分析
3.体会和收获。
黄金分割法二次插值法牛顿法matlab程序一维搜索方法比较

牛顿法求解 n 的平方根求解 n 的平方根,其实是求方程 x2−n=0 的解利用上 面的公式可以得到:xi+1=xi−x2i−n2xi=(xi+nxi)/2 编程的时候核心的代码是:x = (x + n/x)/2 三、二次插值法
二次插值法亦是用于一元函数 在确定的初始区间内搜索极小点的一种 方法。它属于曲线拟合方法的范畴。
t=
0.0283
公元前 4 世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建 立起比例理论。
公元前 300 年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成 果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。
中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣 比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。
左边的区间距离 0.0402
黄金分割法所得最小极值点为:-0.993642 黄金分割法所得最小极值为:-0.999960 迭代次数为:9.000000 右边的区间距离 0.0249
左边的区间距离 0.0249
黄金分割法所得最小极值点为:-1.013756 黄金分割法所得最小极值为:-0.999811 迭代次数为:10.000000 右边的区间距边的区间距离 0.7214
左边的区间距离 0.7212
黄金分割法所得最小极值点为:-0.888304 黄金分割法所得最小极值为:-0.987524 迭代次数为:3.000000 右边的区间距离 0.4459
左边的区间距离 0.4459
黄金分割法所得最小极值点为:-1.249028 黄金分割法所得最小极值为:-0.937985 迭代次数为:4.000000 右边的区间距离 0.2755
最优化理论与方法上机实验报告

最优化理论与方法上机报告
函数句柄和匿名函数的操作符均为@,匿名函数是函数句柄的一种特殊用法, 这里所得到的函数句柄变量不指向特定的函数(即不指向函数M文件中的函数 名),而是指向一个函数表达式(具体表达式).在命令窗口中输入@func就是用 了函数句柄将其传给objf变量,而step=golden(@(x)objf(X0+x*d),0,1, epsilon);则是通过匿名函数将函数传给golden程序,此两处的改变就大大提高 了程序的运行速度!
分为了三段, 比较 f ( x1 )与f ( x2 ) 的大小, 若 f ( x1 ) f x2 , 则 x* [ x1 , b], 去掉 [a, x1 ]; 若 f ( x1 ) f x2 , 则 x* [a, x2 ], 去掉 [ x2 , b] ,然后在余下的区间上根据对称原则再 计算一个对称点的函数值,再重复上述操作,直到满足精度. 1.2 实现及结果 采用 matlab 2011a 实现,命名为 golden,具体程序见附录 golden.m 文件. 该程序的使用方法, 请参见附录中golden.m文件中绿色部分, 下面给出程序 运行结果,其中目标函数为: f ( x) x12 x1 6 ,精度采用默认: 106 .
(a)采用默认精度
(b)精度为0.001 图 1-3-1 牛顿法运行结果
牛顿法收敛速度快,正如上图(a)所示,达到 106 精度只需 18 步,而最速 下降法却需要 366304 步,两者的收敛速度由此可见一斑,可谓有天壤之别! 3.4 体会 由于牛顿法收敛速度快,且人工求目标函数的梯度、Hesse 矩阵,有时较为 繁杂,故算法实现时,实现了自动求梯度和 Hesse 矩阵,这样便在程序的易用性 和时间复杂度两者间得到了很好的折中.
Matlab的优化工具箱的几个应用函数及例子

optnew = optimget(my_options,'Display','final'); 参见: optimset
如果函数的导数容易求得,一般来说首先考虑使用三次插值法,因为它具有较高
的效率。对于只需要计算函数值的方法中,二次插值法是一个很好的方法,它的 收敛速度较快,尤其在极小点所在区间较小时尤其如此。黄金分割法则是一种十 分稳定的方法,并且计算简单。由于以上原因,Matlab 优化工具箱中使用得较 多的方法是二次插值法、三次插值法、二次、三次混合插值法和黄金分割法。 9.2.1.2 相关函数介绍 fminbnd 功能:找到固定区间内单变量函数的最小值。 语法: x = fminbnd(fun,x1,x2) x = fminbnd(fun,x1,x2,options) x = fminbnd(fun,x1,x2,options,P1,P2,...) [x,fval] = fminbnd(...) [x,fval,exitflag] = fminbnd(...) [x,fval,exitflag,output] = fminbnd(...) 描述: fminbnd 求取固定区间内单变量函数的最小值。 x = fminbnd(fun,x1,x2)返回区间{x1,x2}上 fun 参数描述的标量函数的最小值 x。 x = fminbnd(fun,x1,x2,options)用 options 参数指定的优化参数进行最小化。 x = fminbnd(fun,x1,x2,options,P1,P2,...)提供另外的参数 P1,P2 等,传输给 目标函数 fun。如果没有设置 options 选项,则令 options=[]。 [x,fval] = fminbnd(...)返回解 x 处目标函数的值。 [x,fval,exitflag] = fminbnd(...)返回 exitflag 值描述 fminbnd 函数的退出 条件。 [x,fval,exitflag,output] = fminbnd(...)返回包含优化信息的结构输出。 变量: 函数的输入变量在表 9-7 中进行描述,输出变量在表 9-8 中描述。与 fminbnd 函数相关的细节内容包含在 fun,options,exitflag 和 output 等参数中,如表 9-10 所示。
最优化方法的Matlab实现(公式完整版)

第九章最优化方法的Matlab实现在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。
最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。
由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。
用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容:1)建立数学模型即用数学语言来描述最优化问题。
模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。
2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。
最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。
概述利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。
具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。
另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。
9.1.1 优化工具箱中的函数优化工具箱中的函数包括下面几类:1.最小化函数表9-1 最小化函数表2.方程求解函数表9-2 方程求解函数表3.最小二乘(曲线拟合)函数表9-3 最小二乘函数表4.实用函数表9-4 实用函数表5.大型方法的演示函数表9-5 大型方法的演示函数表6.中型方法的演示函数表9-6 中型方法的演示函数表9.1.3 参数设置利用optimset函数,可以创建和编辑参数结构;利用optimget函数,可以获得o ptions优化参数。
optimget函数功能:获得options优化参数。
语法:val = optimget(options,'param')val = optimget(options,'param',default)描述:val = optimget(options,'param') 返回优化参数options中指定的参数的值。
matlab黄金分割法程序

matlab黄金分割法程序黄金分割法是一种数值计算方法,可以用于求解函数的极值点。
在数学和计算机领域中,黄金分割法被广泛应用于优化算法和数值分析中。
黄金分割法的原理是通过不断缩小搜索区间来逼近函数的极值点。
假设我们要求解的函数为f(x),我们需要找到一个搜索区间[a, b],使得在这个区间内函数的极值点存在。
然后,我们将搜索区间按照黄金分割比例划分成两个子区间,再通过比较子区间上的函数值来确定新的搜索区间。
重复这个过程,直到搜索区间的长度足够小,我们就可以得到函数的极值点的近似解。
具体来说,黄金分割法的步骤如下:1. 初始化搜索区间[a, b],选择一个适当的初始值。
2. 计算黄金分割点x1和x2:x1 = a + (3 - sqrt(5)) * (b - a) / 2x2 = a + sqrt(5) - x13. 计算函数在x1和x2处的值f(x1)和f(x2)。
4. 比较f(x1)和f(x2)的大小,确定新的搜索区间:如果f(x1) < f(x2),则新的搜索区间为[a, x2];如果f(x1) > f(x2),则新的搜索区间为[x1, b];如果f(x1) = f(x2),则新的搜索区间为[x1, x2]。
5. 判断搜索区间的长度是否足够小,如果是,则停止计算,否则返回步骤2。
通过以上步骤,我们可以不断缩小搜索区间,逼近函数的极值点。
黄金分割法的优点是收敛速度相对较快,且不需要函数的导数信息。
然而,由于每次只能确定一个新的搜索区间,因此需要进行多次迭代才能找到极值点的近似解。
下面通过一个简单的示例来说明黄金分割法的具体计算过程。
假设我们要求解函数f(x) = x^2 - 4x + 4在区间[0, 4]上的极小值。
我们初始化搜索区间[a, b]为[0, 4]。
根据步骤2,计算黄金分割点x1和x2:x1 = 0 + (3 - sqrt(5)) * (4 - 0) / 2 ≈ 1.472x2 = 0 + sqrt(5) - x1 ≈ 2.528然后,计算函数在x1和x2处的值f(x1)和f(x2):f(x1) = (1.472)^2 - 4(1.472) + 4 ≈ 0.133f(x2) = (2.528)^2 - 4(2.528) + 4 ≈ 0.133根据步骤4,由于f(x1) = f(x2),新的搜索区间为[1.472, 2.528]。
matlab-黄金分割法

matlab-黄金分割法黄金分割法是一种优化算法,它可以求解目标函数的最优解。
该方法利用了黄金比例(0.618)的性质,通过将当前搜索区间不断划分为黄金比例的两部分来逐步缩小搜索范围,并最终找到最优解。
黄金分割法的具体步骤如下:1. 确定初始搜索区间[a,b],其中a和b分别是目标函数的定义域上下限,通常是一个较大的正数和一个较小的负数。
2. 计算出黄金分割点c和d,分别满足:c = b - 0.618*(b-a)3. 计算f(c)和f(d),选取小值所在的区间作为新的搜索区间:若f(c) < f(d),则新的搜索区间是[a,d]4. 重复步骤2和3,直到达到设定的收敛要求(比如搜索区间宽度小于某个值),最终返回搜索区间中的最优解。
下面是一个用MATLAB实现黄金分割法求解目标函数的例子:目标函数:f(x) = 0.2*x^2 + sin(2*x)代码实现:% 定义搜索范围a = -5;b = 5;% 定义收敛要求tol = 1e-6;% 初始化搜索区间h = b - a;c = b - h/1.618; % 黄金分割点cd = a + h/1.618; % 黄金分割点d% 迭代搜索while h > tol% 计算f(c)和f(d)fc = f(c);fd = f(d);% 选取小值所在的区间作为新的搜索区间 if fc < fdb = d;d = c;c = b - (b-a)/1.618;elsea = c;c = d;d = a + (b-a)/1.618;end% 更新搜索区间宽度h = b - a;end% 返回最终搜索区间的中点作为最优解x_opt = (a + b)/2;最终输出的x_opt即为该目标函数的最优解。
matlab 程序汇总

1.xiangsujisuan.m(计算像素尺寸的大小)C=imread('E:/8.jpg'); 读入图片数据C=rgb2gray(C);装换图片格式(rgb图像装换为灰度图像)BW=edge(C,'canny_old',0.6); Canny算法提取悬滴边界BW=imcrop(BW);对提取到的边界图像进行剪裁BW=imcrop(BW);BW1=BW(end:-1:1,1:end); 对边界图像的数据进行重新排序[Z3,X3]=find(BW1==1);找到边界像素点的坐标for i=1:length(Z3)a=find(Z3==Z3(i));A1=X3(a);BZ(i)=abs(A1(1)-A1(2));endxiangsu=sum(BZ)/length(BZ)计算针头外径所对应的像素长度xiangsu是最终获得的数据,是后续计算的输入量。
2.lunkuotiqv.m(提取悬滴轮廓)C=imread('E:/8.jpg'); 读入图片数据C=rgb2gray(C);装换图片格式(rgb图像装换为灰度图像)BW=edge(C,'canny_old',0.7);Canny算法提取悬滴边界BW=imcrop(BW);对提取到的边界图像进行剪裁BW1=BW(end:-1:1,1:end); 对边界图像的数据进行重新排序imshow(BW)显示图像BW1是最终获得的数组,是后续计算的输入量。
3.zhengtichengxv.m(曲线拟合计算)[X2,Z2,X,Z,R,btr]=huchangxuanqu2222(BW1,1.6/xiangsu); 对悬滴轮廓进行坐标提取及变换tol1=1;c=0;tol2=1;tic;设定各循环参数的初值a=btr-0.01;b=btr+0.01;设定初始搜索区间while tol1>0.000001整个循环的终止条件bt=f618g(a,b,X,Z,R); 黄金分割法对β进行寻优[s,y]=ode45('RK',[0.00001:0.001:3.8],[0.000001 0.000001 0.000001],[],bt); 4-5阶RK法解laplace方程xl=y(:,1);zl=y(:,2);fail=y(:,3);将x、z、θ对应的数组提取出来while tol2>0.01牛顿法的循环终止条件[xfit,zfit,faifit,sfit]=zydg(xl,zl,fail,s,X,Z,bt,R); 找到悬滴轮廓的对应点[ER,ER2]=Rzljs(xfit,zfit,faifit,sfit,X,Z,R);计算目标函数对R的一/二阶导数tol2=abs(sum(ER));重新定义tol2为R的一阶导数R=R-sum(ER)/sum(ER2);计算下一次循环计算的R值endtol2=1;重新定义tol2为1,tol1=abs(c-distance(xfit,zfit,X,Z,R));重新定义tol1endbt,R,toc输出β和R的数值rho=1.075743;g=0.0098;定义密度和重力加速度得数值sigma=1000*rho*g*(R).^2/bt计算表面张力得数值c输出最终的目标函数数值cancha=c/1.6/xiangsu输出拟合计算的残差sigma是最终计算的输出量4.huchangxuanqv2222函数(实现坐标提取及坐标变换)function [X2,Z2,X,Z,R,bt]=huchangxuanqu2222(BW1,xiangsu)%BW1:读入的图片%xiangsu:表示像素尺寸%X2,Z2:全轮廓坐标。
最优化方法

经过有限次迭代后(在 matlab 可见全部迭代结果)满足要求的结果为: f ������ ∗ = −1.00000047499302 。 采用解析法可求得其精确解为: ������ ∗ = −1, f ������ ∗ = −1,可见通过有限次迭代后可求得精度相当高的数值解,而且收 敛速度也很快。 因此在实际计算中,最常用的一维搜索试探方法就是黄金 分割法。
������1 ← ������ − ������ ������ − ������ ������1 ← ������ ������1
Y
������ − ������ ������2 − 1 < ������和 < ������ ? ������ ������2
N
������∗ ←
1 ������ + ������ 2
对函数f ������ = ������ 2 + 2������,在给定的搜索区间−3 ≤ x ≤ 5上,试用黄金分 割法求极小值点������ ∗ 。如图 2。
四、 算法描述:
黄金分割法的搜索过程是: 1) 2) 给出初始搜索区间[a,b]及收敛精度ε,将μ赋以 0.618。 按坐标点计算公式������1 = b − μ ������ − ������ , ������2 = ������ − μ ������ − ������ , 计算������1 和 ������2 ,并计算其对应的函数值f(������1 ), f ������2 。 3) 跟区间消去法原理缩短搜索区间。 为了能用原来的坐标点计算公式, 需要进行区间名称的代换, 并在保留区间中计算一个新的试验点及 其函数值。 4) 检查区间是否缩短到足够小和函数值收敛到足够近, 如果条件不满 足则返回到步骤 2。 5) 如果条件满足, 则取最后两试验点的平均值作为极小点的数值近似 解。
最优化方法的Matlab实现(公式(完整版))

第九章最优化方法的Matlab实现在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。
最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。
由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。
用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容:1)建立数学模型即用数学语言来描述最优化问题。
模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。
2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。
最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。
9.1 概述利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。
具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。
另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。
9.1.1 优化工具箱中的函数优化工具箱中的函数包括下面几类:1.最小化函数表9-1 最小化函数表2.方程求解函数表9-2 方程求解函数表3.最小二乘(曲线拟合)函数表9-3 最小二乘函数表4.实用函数表9-4 实用函数表5.大型方法的演示函数表9-5 大型方法的演示函数表6.中型方法的演示函数表9-6 中型方法的演示函数表9.1.3 参数设置利用optimset函数,可以创建和编辑参数结构;利用optimget函数,可以获得options 优化参数。
● optimget函数功能:获得options优化参数。
语法:val = optimget(options,'param')val = optimget(options,'param',default)描述:val = optimget(options,'param') 返回优化参数options中指定的参数的值。
机械优化设计实验课

3、 二次插值法
3.1二次插值法基本思路:
二次插值法又称抛物线法,它的基本思路是: 在寻求函数f(α)极小点的搜索区间内,取三个 点的函数值来构造一个二次插值多项式p(α),用 它的极小点(第四个点)近似地作为原目标 函数的极小点。若近似程度不满足精度要求 时,可以反复使用此法,从四个点中选取三 个点,使函数值呈现“高-低-高”变化的前提 下逐渐的缩短搜索区间,二次插值多项式的 极小点就逼近原目标函数的极小点。
(令一令2)次bα2=f1=。≤αα2f同12,,,,f样2产≤极新f生1小。区新点间区必α间2在点[[a与a,, α原b2]]内区,,间到消的此去α区1点区间重间缩合(短α2,,了b]可,
当缩短的新区间长度小于等于某一精度ε,即
b-a≤ε时,取
为近似极小点。
2.3
黄金 分割 法算 法框 图
2.4练习:
3.2二次插值法区间缩短的4种情况
3.3 程 序 流 程 图
start
Input: a,b,epson
x1=a,x3=b, x2=0.5(x1+x3), fi=f(xi),(i=1,2,3)
k=0
c1←(f3-f1)/(x3-x1), c2←[(f2-f1)/(x2-x1)-c1]/(x2-x3)
机械优化设计实验课
1.学时数:12H 2.用Matlab语言进行编程 3.练习:
根据实验流程图编制调试相应的程序。
1、单峰区间的确定
确定单峰区间的方法—进退法
1.1进退法的基本思路:
由单峰函数的性质可知,在极小点 x*左 边函数值应严格下降,而在极小值右边 函数值应严格上升。因此,可从某一个 给定的初始点x0出发,以初始步长h0沿着 函数值的下降方向,逐步前进(或后 退),直至找到相继的3个试点的函数值 按”大---小---大”变化为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄金分割法
东南大学机械学院**
一黄金分割法基本思路
黄金分割法适用于[a,b]区间上的任何单谷函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。
因此,这种方法的适应面非常广。
黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。
a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。
然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。
二黄金分割法的基本原理
一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。
一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。
该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。
黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点xmin的一种方法。
它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数,即只在单峰区间内才能进行一维寻优,其收敛效率较低。
其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间。
具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。
①如果f(a1)>f(a2),令a=a1,a1=a2,a2=a+0.618*(b-a);
②如果f(a1)<f(a2) ,令b=a2,a2=a1,a1=b-0.618*(b-a);
如果|(b-a)/b|和|(y1-y2)/y2|都大于收敛精度ε重新开始循环。
因为[a,b]为单峰区间,这样每次可将搜索区间缩小0.618倍,处理后的区间都将包含极小点的区间缩小,然后在保留下来的区间上作同样的处理,如此迭代下去,将使搜索区[a,b]逐步缩小,直到满足预先给定的精度时,即获得一维优化问题的近似最优解。
插入点原理图如下:
三实验程序框图
四程序运行结果
例如:f=x^2+2*x,给定搜索区间[-3,5],求此函数的极小点。
1.首先运行主程序:
2.会提示你输入各个变量的值:
2.输完各个变量的值,以及所求函数后,再运行:
xmin=golden(f,a,b,e)
系统调用m文件的内容,这时候matlab就会输出函数的最优值。
即该函数的最小值点在x=-1,最小点的函数值fmin=-1,一共经过了29次迭代。
五实验心得
通过此次实验,加深了对黄金分割法的基本理论和算法框图及步骤的全面理解,掌握了matlab的使用方法。
此方法适用于一维函数求最小值的问题。
原理比较简单,稍微复杂一点的就是缩小区间的时候怎么进行换名,另外一个难点就是如何用matlab来实现,此次实验通过自学matlab的基本操作以及matlab编程语言,最后完成了此次实验。
附录
matlab程序代码
主程序:
syms x a b e; %定义变量
a=input('搜索区间的第一点\a='); %确定搜索区间
b=input('搜索区间的第二点\b=');
e=input('搜索精度\ne='); %收敛精度
disp('需求的优化函数f=f(x),调用xmin=golden(f,a,b,e)'); m文件:
function xmin=golden(f,a,b,e)
k=0;
a1 =b-0.618*(b-a); %插入点的值
a2 =a+0.618*(b-a);
while b-a>e %循环条件
y1=subs(f,a1);
y2=subs(f,a2);
if y1>y2 %比较插入点的函数值的大小
a=a1; %进行换名
a1=a2;
y1=y2;
a2=a+0.618*(b-a);
else
b=a2;
a2=a1;
y2=y1;
a1=b-0.618*(b-a);
end
k=k+1;
end%迭代到满足条件为止就停止迭代xmin=(a+b)/2;
fmin=subs(f,xmin) %输出函数的最优值
fprintf('k=\n'); %输出迭代次数
disp(k);。