2011年第九届走美杯初赛四年级组试题

合集下载

小学奥数杯赛真题1312

小学奥数杯赛真题1312

1.小泉做一道除数是一位数的除法时,误把除数9看成6,结果算出的商是7,余数是3。

你知道正确的结果是(2012世奥(中国区)选拔赛三年级A卷)2.杨阳是班里有名的小马虎,这次在做(200×9-□)÷25+13时,又没看到题里的括号,算的结果是1788,正确的结果应该是 (2012世奥数浙江赛区四年级)。

3.袋子里有若干个球,每次拿出其中的一半又一个球,这样共操作了4次,袋中还有5个球。

袋中原有____个球(2012年第十届走美杯三年级)。

4.盒子里有若干个球。

小明每次拿出盒中的一半再放回一个球。

这样共操作了7次,袋中还有3个球。

袋中原有个球(2010年走美杯三年级)。

5.抽屉里有若干个玻璃球, 小军每次操作都取出抽屉中球数的一半再放回一个球。

如此操作了2012次后, 抽屉里还剩有2个球。

那么原来抽屉里有个球(第十七届华杯赛小中组复赛)。

6.黑板上写有一个数,男同学从黑板前走过时,把他乘以3再减去14,擦去原数,换上答案,女同学从黑板前走过时,把他乘以2再减去7,擦去原数,换上答案。

全班25名男同学和15名女同学都走过后,老师把最后的数乘以5,减去5,结果是30。

那么,黑板上最初的数字是(湖北第七届创新杯)。

7.豆豆和苗苗各有一盒玻璃球,共108粒,豆豆给了苗苗10粒,豆豆剩下的玻璃比苗苗还多8粒。

原来苗苗有粒玻璃球(2010年第八届走美杯三年级)。

8.甲、乙、丙三人的平均年龄为42岁,若将甲的岁数增加7岁,乙的岁数扩大2倍,丙的岁数缩小2倍,则三人岁数相等。

丙的年龄为________岁(第四届迎春杯)。

9.甲、乙、丙、丁四人一共做了370个零件,如果把甲做的个数加上10个,乙做的个数减去20个,丙做的个数乘以2,丁做的个数除以2,四人做的零件数就正好相等。

那么乙实际做了_____ 个零件(第二届迎春杯)。

10.甲、乙、丙三所小学的学生人数的总和为1999。

已知甲校学生人数的2倍和乙校学生人数减去3人与丙校学生人数加上4人都相等。

2011年第九届走美杯初赛五年级组试题

2011年第九届走美杯初赛五年级组试题

第九届“走进美妙的数学花园”中国青少年数学论坛趣味数学解题技能展示初赛注意事项:1.考生要按照要求在密封线内填好考生的有关信息2.不允许使用计算器五年级试卷(A卷)一、填空题(每题8分,共40分)1.算式1÷(2÷3)÷(3÷4)÷(4÷5)的计算结果是____________。

2.用大小两辆货车运煤,大货车运了9次,小货车运了12次,一共运了180吨,大货车的载重量等于小货车载重量的2倍,大货车的载重量是________吨,小货车的载重量是______吨。

3.三个正方形如图放置,中心都重合,它们的边长依次是1cm、3cm、5cm,图中阴影部分的面积是___________cm2.4.有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成9段,第一根剪成的每段比第二跟剪成的每段长10米,原来每根绳子长_____________米。

5.观察一组式子:32+42=52,52+122=132,72+242=252,92+402=412,……,根据以上规律,请你写出第7组的式子:_________________________________。

二、填空题(每题10分,共50分)6.右图的两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字。

四位数ABCD=__________________.7.ABCDE五个盒子中依次放有2、4、6、8、10个小球,第一个小朋友找到放球最多的盒子,从中拿出4个放在其他盒子中各一个球,第二个小朋友也找到放球最多的盒子,从中拿出4个放在其他盒子中各一个球:依此类推,……,当2011个小朋友放完后,A 盒中放有___________个球。

8.右图是一个6×6的方格表,现在沿格线将它分割成N个面积各不相等的长方形(含正方形)。

N最大是___________。

9.五个连续自然数,每个数都是合数,这五个连续自然数的和最小是___________。

四年级走美杯考前模拟演练试题详解

四年级走美杯考前模拟演练试题详解

走美三年级模拟测试详细解析 家家学名师网络小班 (1)—————————————————————————————————————————— 2011年“走进美妙的数学花园"中国青少年数学论坛趣味数学解题技能展示大赛初赛模拟注意事项:1. 考生要按要求在密封线内填好考生的有关信息. 2. 不允许使用计算器.小学四年级试卷(A 卷)一、填空题I(每题8分,共40分)1、9131391113149613÷+÷+÷+÷+÷=___________。

【答案:5】【解析】 9131391113149613÷+÷+÷+÷+÷==911+61313+149+÷+÷()() =2613279÷+÷ =2+3 =52. 6个数分别表示为a 、b 、c 、d 、e 和f 。

a 、b 、c 、d 的平均值为10;b ,c ,d ,e ,f 的平均值为14。

若f 是a 的两倍,那么,a 和e 的平均值等于_________。

【答案:15】【解析】 a +b+c+d =10×4 f+e+b+c+d =14×5 ∵f 是a 的两倍∴ 2a +e+b+c+d =70① a +b+c+d =40②① -②得a +e=30a 和e 的平均值=30÷2=153 . 如图所示,一根木棒上有5个等距离的点:A 、B 、C 、D 和E 。

第一次以A 点、 第二次以B 点、第三次以E 点为中心点,每次将木棒旋转180°的角度。

旋转3次后木棒上__________点在旋转后与旋转前位置相同。

【答案:D 】【解析】❶❷走美三年级模拟测试详细解析 家家学名师网络小班 (2)——————————————————————————————————————————4、数字“0”的概念公元前400年左右产生于美索不达米亚,而目前的用法则产生于公元7世纪左右的印度。

走美杯四年级试题及答案

走美杯四年级试题及答案

第三届“走美杯”四年级初赛共12道题,每题10分。

1、33×34+34×35+35×36+36×37= 。

2、李东到商店买练习本,每本3角,共买9本,服务员问:“你有零钱吗?”李东说:“我带的全是5角一张的。

”服务员说:“真不巧,您没有2角一张的,我的零钱全是2角一张的,这怎么办?”你帮李东想一想,他至少应该给服务员张5角币。

3、幼儿园的老师给班里的小朋友送来40个橘子,200块饼干,120块奶糖,平均分发完毕,还剩4只橘子,20块饼干,12粒奶糖,这班里共有位小朋友。

4、有一家三口,爸爸比妈妈大3岁,他们全家今年的年龄加起来正好是58岁,而5年前他们全家人年龄加起来刚好是45岁,小孩子今年岁。

5、两个长方形如下图摆放,阴影三角形面积= 。

6、北京有一家餐馆,店号“天然居”里面有一副著名对联:客上天然居,居然天上客。

巧的很,这幅对联恰好能构成一个乘法算式(见右上图)相同的汉字代表相同的数字,不同的汉字代表不同的数字。

“天然居”表示成三位数是。

7、一个四位数给它加上小数点后比原来小2346.3,那么原四位数是。

8、用同样大小的木块堆成了如图所示的形状,这里共用了个木块。

9、下面图中有9个围棋子围成一圈,现将同色的相邻两子之间放入一个白子,在不同色的相邻两子间放入一个黑子,然后将原来的9个棋子拿掉,剩下新放入的9个棋子如右图,这算一次操作,如果继续这样操作下去,在一圈的9个子中最多有个是黑子。

10、在1999后面写一串数字,从第5个数字开始,每个数字都是它前面两个数字乘积的个位数字,这样得到1 9 8 9 2 8 6 8 4 2……,那么,这串数字中,前2005个数字的和是。

11、在下图的5×5方格表的空白处填入1~5中的数,使得每行、每列、每条对角线上的数各不相同。

2512、甲、乙二人轮流在右上图的10个方格中,甲画“○”,乙画“×”。

甲胜的情况是:最后一行有4个“○”或者其他的直线上有3个“○”;乙胜的情况是:最后一行有4个“ד或者其他的直线上有3个“×”,甲先画,他要取胜,第一步应填在标号为的方格中(至少写出2种)第四届“走美杯”四年级初赛共12题,每题10分1.计算:110+111+112+…+126=。

09 10 11年 7 8 9届走美杯试题及答案

09 10 11年 7 8 9届走美杯试题及答案

第七届“走进美妙的数学花园”初赛四年级试题解答一、填空题(每题8分,共40分)1、37×37+2×63×37+63×63=_10000_____2、下边的一排方格中,除9、8外,每个方格中的字都表示一个数(不同的字可以表示相同的数字),已22,则“走”+“进”+“数”+“学”+“花”+“园”=_40_3、“走美”商场有下列几种瓶装蜂蜜出售:甲,净重3kg,售价33.99元;乙,净重2kg,售价22.99元;丙,净重500g,售价5.99元,那么,_丙____种蜂蜜最贵, __甲___种蜂蜜最便宜。

4.一个数学玩具的包装盒是正方体,其表面展开图如下。

现在每方格内都填上相应的数字。

已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是_3,1,2___。

5、某品牌乒乓球拍在北京奥运会后推出一款球拍的促销计划:该球拍每只售价为人民币60元,同时购买者可获赠1张奖券,积累3张奖券可兑换1只球拍。

由此可见,1张奖券价值为__15__元。

二、填空题(第题10分,共50分)6、(09年走美三、四、五年级都考)A,B都是整数,A大于B,且A×B=2009,那么A-B的最大值为_2008___,最小值为__8___。

7、(09年走美三、四、五年级都考)一天,红太狼和灰太狼同时从“野猪林”出发,到“天堂镇”。

红太狼一半路程溜达,一半路程奔跑。

灰太狼一半时间溜达,一半时间奔跑。

如果它们溜达的速度相同,奔跑的速度也相同,则先到“天堂镇”是_灰太狼______。

8、柯南家2008年一年用电10200千瓦时,上半年的月平均用电比下半年的月平均用电少100千瓦时。

柯南家下半年月平均用电为__900_____千瓦时。

9、某校A、B、C三名同学参加“走进美妙的数学花园”,其指导教师赛前预测“A获金牌,B不会获金牌,C不会获铜牌”。

结果出来后,三人之中,一人获金牌,一人获银牌,一人获铜牌,指导教师的预测只有一个人与结果相符。

“走美”四年级选拔赛(三)

“走美”四年级选拔赛(三)

“走美”四年级赛前综合(三)姓名:成绩:1.两个整数,个位数都不是0,乘积是1000000.这两个数是。

2.207,2007,20007,…首位是2,个位是7,中间的数全部是0的数中,能被27整除而不被81整除的最小的数是。

3.请找出符号下列性质的所有四位数;(1)它是一个平方数;(2)开始两位数的数字要相同;(3)最末两位数的数字要相同。

4.三个连续的自然数能够分别被9,8,7整除,则这三个数中间那个数最小是多少5.一筐苹果分成小盒包装,每盒装3只,剩2只;每盒装5只,剩2只。

每盒装6只,剩只?6.“走美”主试委员会为三~八年级准备决赛试题。

每个年级12道题,并且至少有8道题与其他各年级都不同。

如果某道题出现在不同的年纪,最多只能出现3次。

本届活动至少要准备道决赛试题。

7. 6.25×8.27×16+1.25×0.827×88. 1.23452+0.76552+2.469×0.7655=__________9.1234567654321×(1+2+3+4+5+6+7+6+5+4+3+2+1)是的平方。

10.下图是一块废木板,阴影部分为空缺,尺寸如图所示(单位:厘米)。

把它锯成两块,然后拼成一个正方形。

11.如右图,一个长方形被分成八个小长方形,其中有五个小长方形的面积如右图数字所示,那么这个大长方形面积是_______。

12.如图,如图,ABCG是4×7的长方形,DEFG是2×10的长方形,那么,三角形BCM的面积与三角形DEM的面积之差是。

13.正方形ABCD和正方形CEFG的面积之差26cm2,阴影四边形的面积为cm2。

14.你知道右面的物体是由多少个小正方体摆成的吗?每个小正方体的边为:1cm ;求立体图形的表面积是多少?15.10、如下图,用若干块单位正方体积木堆成一个立体(单位体积为1),小明正确地画出了这个立体的正视图、俯视图和侧视图,现在试问:所堆的立体图形的体积至少是多少?16.对正方体木块切一刀,使其截面是一个正六边形。

走美杯试题汇总及答案

走美杯试题汇总及答案

走美杯试题汇总及答案一、选择题1. 甲、乙、丙三人分别从A、B、C三个地方同时出发,向同一个目的地D出发,他们的速度比为3:2:1。

如果甲到达D地后立即返回,在距离D地4千米的地方遇到乙,那么A、B两地之间的距离是多少千米?A. 24B. 28C. 36D. 40答案:C解析:设A、B两地之间的距离为x千米,甲、乙、丙的速度分别为3v、2v、v。

甲到达D地后返回,与乙相遇时,甲乙两人共行了2x+4千米。

根据速度比,甲乙相遇时,甲行了3/2 * (2x+4)千米,乙行了2/2 * (2x+4)千米。

由于甲乙速度比为3:2,所以有3/2 * (2x+4) = 3x,解得x=36。

2. 一个自然数N,如果它加上101后是一个完全平方数,那么N的最大值是多少?A. 990B. 999C. 1009D. 9801答案:B解析:设N+101=a^2,其中a为自然数。

要使N最大,a应尽可能大。

由于a^2-101=N,所以a^2应尽可能接近101的下一个完全平方数,即121。

因此,a=11,N=121-101=20。

但题目要求N的最大值,所以应取a=10,此时N=10^2-101=99。

但99不是选项,因此应取a=9,此时N=9^2-101=80,也不是选项。

最后取a=8,此时N=8^2-101=-3,显然不符合题意。

因此,应取a=10,此时N=999,是选项中的最大值。

3. 一个长方体的长、宽、高分别为a、b、c,且a、b、c均为正整数。

如果长方体的体积是2010,那么a+b+c的最小值是多少?A. 14B. 15C. 16D. 17答案:B解析:2010=2×3×5×67,要使a+b+c最小,应尽量使a、b、c的值接近。

因此,可取a=2×3=6,b=5,c=67,此时a+b+c=6+5+67=78。

但题目要求a+b+c的最小值,因此应取a=2,b=3×5=15,c=67,此时a+b+c=2+15+67=84。

2011年第九届走美杯初赛六年级组试题

2011年第九届走美杯初赛六年级组试题

一、填空题Ⅰ(每题8分,共40分)1、算式(2011-9)÷0.7÷1.1的计算结果是()。

2、全世界胡杨90%在中国,中国胡杨90%在新疆,新疆胡杨90%在塔里木,塔里木的胡杨占全世界的()%。

3、半径为10、20、30的三个扇形如下图放置,S2是S1的()倍。

4、50个不同的正整数,它们的总和是2011,那么这些数里奇数至多有()个。

5、A、B、C三队比赛篮球,A队以83∶73战胜B队,B队以88∶79战胜C队,C队以84∶76战胜A队,三队中得失分率最高的出线。

一个队的得失分率为(得的总分)/(失的总分),如,A队得失分率为(83+76)/(73+84)。

三队中()队出线。

二、填空题Ⅱ(每题10分,共50分)6、如图,一个边长为120cm的等边三角形被分成了面积相等的五等份,那么,AB= ()cm。

7、某校六年级学生中男生占52%,男生中爱踢球的占80%,女生中不爱踢球的占70%。

那么,在该校六年级全体学生中,爱踢球的学生占()%8、在每个方框中填入一数字,使得乘法竖式成立。

已知乘积有两种不同的得数,那么这两个得数的差是()。

9、大小相同的金、银、铜、铁、锡正方体各一个,拼成如图的十字,一共有()种不同的拼法(旋转后可以重合的拼法看成是相同的拼法)。

10、在右图的每个格子中填入1~6中的一个,使得每行、每列所填的数字各不相同。

每个粗框左上角的数和“+”、“-”、“×”、“÷”分别表示粗框内所填数字的和、差、积、商(例如“600× ”表示它所在的粗框内的四个数字的乘积是600)。

三、填空题Ⅲ(每题12分,共60分)11、用1、3、5、7、9这五个数字组成若干个合数,每个数字恰好用一次。

那么,这些合数的总和最小是()。

12、图1盒子高为20cm,底面数据如图2,这个盒子的容积是() cm3。

(π取3.14)13、一件工程按甲、乙、丙各一天的顺序工作,恰需要整天数工作完毕。

2011年第九届走美杯初赛小学五年级(含解析)

2011年第九届走美杯初赛小学五年级(含解析)

第九届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学五年级试卷一、填空题Ⅰ(每题8分,共40分)1.算式1(23)(34)(45)÷÷÷÷÷÷的计算结果是________.2.用大小两辆火车运煤,大货车运了9次,小货车运了12次 ,一共运了180吨.大货车的载重量等于小货车载重量的2倍,大货车的载重量为________吨,小货车的载重量为________吨.3.三个正方形如图放置,中心都重合,它们的边长一次是1厘米、3厘米、5厘米,图中阴影部分的面积是________平方厘米.4.有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成9段.第一根剪成的每段比第二根剪成的每段长10米.原来的每根绳子长________米.5.观察一组式222222222222345,51213,72425,94041,+=+=+=+=……根据以上规律,请你写出第7组的式子:__________________.二、填空题Ⅱ(每题10分,共50分)6.右图的两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,四位数ABCD =____.7.A 、B 、C 、D 、E 五个盒子中依次放有2、4、6、8、10个小球.第一个小朋友找到放球最多的盒子,从中拿出4个放在其他盒子中各一个球.第二个小朋友也找到放球最多的盒子,从中拿出4个放在其他盒子中各一个球,依次类推,…,当2011个小朋友放完后,A 盒中放有___个球.8.右图是一个66⨯的方格表,现在将格线将它分割成N 个面积各不相等的长方形(含正方形).N 最大是______.112+G F E D C B A 112-G E I D B HC9.五个连续的自然数,每个数都是合数,这五个连续自然数的和最小是____.10.在右图的每个格子中填入1到5中的一个,使得每行、每列所填数字各不相同的.每个粗框左上角的数和“+”、“-“、“×”、“÷”分别表示粗框内所填的数字的和、差、积、商(例如“240×”表示它所在粗框内的四个数字的乘积是240).三、填空题Ⅲ(每题12分,共60分)11.n 名棋手进行单循环赛,即任两名棋手间都要赛一场.胜利者得2分,平局各得1分,负者得0分.比赛完成后,前4名依次得8、7、5、4分,则n ________.12.如图大长方形被分成了四个小长方形.已知四个小长方形的周长分别是 1、2、3、4,且四个小长方形中恰好有一个正方形.大长方形的面积是______.13.某校五年级二班共有35个同学,学号依次是1到35.一天他们去春游,除了班长之外,其他34个同学分成5组,结果发现每个小组的同学学号之和都相等;后来这34个同学又重新分成8组,结果发现每个小组的同学学号之和还是相等.班长的学号是_________.14.9个小等边三角形拼成了如图的大等边三角形.每个小等边三角形中都填写了一个六位数,且有公共边的两个小等边三角形所填写的六位数恰好有一位不同.现已有小等边三角形填好数.另外6个小三角形,共有________种填法.15.相距180千米的A 、B两地之间有一条单车道的公路(即不允许有超车).有一天,一辆小轿车从A 出发,同时,一辆大货车在A 、B 之间的某地出发,都沿该公路驶向B 地.两辆车到达B 地所用时间之和为5小时.如果交换两车的出发位置,并让两车仍然同时出发,那么它们到达B 地所用时间之和仍为5小时.已知在没有货车挡道时小轿车的速度是大货车速度的3倍,那么BC 之间的路程为________千米.CBA第九届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学五年级试卷参考答案参考解析一、填空题Ⅰ(每题8分,共40分)1.算式1(23)(34)(45)÷÷÷÷÷÷的计算结果是________.【考点】速算巧算【难度】☆【答案】2.5【解析】本题转变分数,用分数的约分可以简便计算:方法一:原式=234345511 2.53452342÷÷÷=⨯⨯⨯==.方法二:原式=2342342511()1 2.5 34534552÷÷÷=÷⨯⨯=÷==.方法三:原式123344552 2.5=÷⨯÷⨯÷⨯=÷=.2.用大小两辆火车运煤,大货车运了9次,小货车运了12次,一共运了180吨.大货车的载重量等于小货车载重量的2倍,大货车的载重量为________吨,小货车的载重量为________吨.【考点】和差倍分【难度】☆☆【答案】12、6【解析】本题是等量代换及和倍问题.由“大货车的载重量等于小货车载重量的2倍”得“大货车运了9次”相当于“小货车运了92=18⨯次”则这180吨货物可用小货车运1218=30+次,则小货车每次运18030=6÷吨,大货车每次运62=12⨯吨.3.三个正方形如图放置,中心都重合,它们的边长一次是1厘米、3厘米、5厘米,图中阴影部分的面积是________平方厘米.【考点】几何【难度】☆☆【答案】17【解析】本题是组合图形面积.阴影部分面积等于大正方形面积减去中正方形面积加上小正方形面积,即22253117-+=.4.有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成9段.第一根剪成的每段比第二根剪成的每段长10米.原来的每根绳子长________米. 【考点】分数百分数应用题 【难度】☆☆☆ 【答案】112.5【解析】本题是一道分数与百分数应用题,利用“量率对应“即可解出.第一根剪成5段,每段占15;第二根剪成9段,每段占19;则1110()112.559÷-=米.5.观察一组式222222222222345,51213,72425,94041,+=+=+=+=……根据以上规律,请你写出第7组的式子:__________________. 【考点】找规律 【难度】☆☆☆【答案】22215112113+=【解析】本题属于找规律的试题,方法一:已给出第4组,再写出第7组,可以依次写出来:第5组:222114041+=, 第6组:222137273+=,第7组:22215112113+=方法二:找出式子的规律,根据规律写出相应的式子,本题规律是222(21)[2(1)][2(1)1]n n n n n +++=++,则第7个式:即7n =时式子为:22215112113+=,原式20020.7 1.1210010.7 1.12711130.7 1.12131002600=÷÷=⨯÷÷=⨯⨯⨯÷÷=⨯⨯=.二、填空题Ⅱ(每题10分,共50分)6.右图的两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,四位数ABCD =____.【考点】数字谜 【难度】☆☆☆ 【答案】1026【解析】由1D G +=或11D G +=,1D G -=,则1D =时0G =;6D =时5G =两种情况:(1)1D =时0G =,由于相同的字母代表相同的数字,不同的字母代表不同的数字.则A 只能为2,则0B E +=,不可能,此情况不成立;(2)6D =时5G =,由于B E +进位,A 必然为1,由9B E +=,1B E -=,得,或0B =时9E =,①5B =时4E =,则0H I -=,此时H 与I 表示同一个数字,矛盾,不成立.②0B =时9E =,由前后两式可得1026ABCD =.7.A 、B 、C 、D 、E 五个盒子中依次放有2、4、6、8、10个小球.第一个小朋友找到放球最多的盒子,从中拿出4个放在其他盒子中各一个球.第二个小朋友也找到放球最多的盒子,从中拿出4个放在其他盒子中各一个球,依次类推,…,当2011个小朋友放完后,A 盒中放有______个球.112+G F E D C B A 112-G E I D B H C【考点】找规律 【难度】☆☆☆ 【答案】8【解析】本题是一道操作题,则可发现规律:5个一周期(20111)54020-÷=,则是最一次A 中还有8个球.8.右图是一个66⨯的方格表,现在将格线将它分割成N 个面积各不相等的长方形(含正方形).N 最大是______.【考点】几何分割 【难度】☆☆☆ 【答案】7【解析】利用极限情况考虑最值问题,最小时是宽为1的长方形111213141516171836⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=,此时有8个,但是长不可能为7和8,所以不可能是8个.再考虑可否是7个,由1112132215232436⨯+⨯+⨯+⨯+⨯+⨯+⨯<可以,验证在图形中进行涂色:9.五个连续的自然数,每个数都是合数,这五个连续自然数的和最小是____. 【考点】数论质数合数 【难度】☆☆☆ 【答案】130【解析】令和最小,则考虑高位最小,考虑个位关系在1,3,5,7,9上.一位数不可能,两位数高位为1时不可能,高位为2时,可以找到24,25,26,27,28,则其和是130.10.在右图的每个格子中填入1到5中的一个,使得每行、每列所填数字各不相同的.每个粗框左上角56784456878456778457465875849753666108642第七次第六次第五次第四次第三次第二次第一次开始的数和“+”、“-“、“×”、“÷”分别表示粗框内所填的数字的和、差、积、商(例如“240×”表示它所在粗框内的四个数字的乘积是240).【考点】数阵图 【难度】☆☆☆☆【答案】【解析】乘积可得用分解因数得,2402445,4122,1202345=⨯⨯⨯=⨯⨯=⨯⨯⨯,商为2的只有212÷=,差是2的只有:231=-,差是4的只有:514-=,和是12的必然是125431=+++再根据每行每列各不相同可填出如右图.三、填空题Ⅲ(每题12分,共60分)11.n 名棋手进行单循环赛,即任两名棋手间都要赛一场.胜利者得2分,平局各得1分,负者得0分.比赛完成后,前4名依次得8、7、5、4分,则n =________. 【考点】逻辑推理 【难度】☆☆☆☆ 【答案】6【解析】由于是单循环赛,即n 个队赛(1)2n n -场赛,无论胜负还是平局,总分都是增加2分,则总分是(1)2(1)2n n n n -⨯=-分.由“前4名依次得 8、7、5、4分”后几名可取3,2,1,0.则最多8名.注意各得分者奇数分的个数必是偶数,因为平场数是偶数.(1)8名时总分为56分,但最多875433333656+++++++=<分不成立; (2)7名时总分为42分,但最多87543323242++++++=<分不成立; (3)6名时总分为30分,但最多87543330+++++=成立;则必然是6名棋手.12.如图大长方形被分成了四个小长方形.已知四个小长方形的周长分别是1、2、3、4,且四个小长方形中恰好有一个正方形.大长方形的面积是______.【考点】几何 【难度】☆☆☆【答案】1.5【解析】设四个长方形分别为A 、B 、C 、D 如图所示,则A 与B 同边为x ,B 与D 同边m ,C 与D 同边y ,A 与C 同边n ,则令ABCD 的周长各自为1,2,3,4,则1,y x -=0.5m n -=(1)A 为正方形时,140.25x n ==÷=,则0.251 1.25,0.75y m =+==成立,则长方形面积为(0.250.75)(0.25 1.25) 1.5+⨯+=(2)若B 为正方形时,则240.5x m ==÷=,则0.51 1.5,0y n =+==不成立 (3)同理C 、D 也不可为正方形.则原长方形面积为1.5.13.某校五年级二班共有35个同学,学号依次是1到35.一天他们去春游,除了班长之外,其他34个同学分成5组,结果发现每个小组的同学学号之和都相等;后来这34个同学又重新分成8组,结果发现每个小组的同学学号之和还是相等.班长的学号是_________. 【考点】数论整除性 【难度】☆☆☆【答案】30【解析】由“其他34个同学分成5组,结果发现每个小组的同学学号之和都相等;”令每组和是a ,则这34个同学学号和是5a ;由“这34个同学又重新分成8组,结果发现每个小组的同学学号之和还是相等”令每组和是b ,则这34个同学学号和是8b ;则这34个号码既是5的倍数,又是8的倍数,即是40的倍数.由12335630++++=,则630减去班长的学号是40的倍数,则班长的学号是630与40的余数,即63040÷余30,所以班长号码是30号.14.9个小等边三角形拼成了如图的大等边三角形.每个小等边三角形中都填写了一个六位数,且有公共边的两个小等边三角形所填写的六位数恰好有一位不同.现已有小等边三角形填好数.另外6个小三角形,共有________种填法.yxmnDC B A【考点】计数问题 【难度】☆☆☆☆【答案】64【解析】先看斜向上条边上的111122,A ,F ,E ,112211,这五个数字相邻,而111122与112211前两位都“11”相同,则不同有后四位.从小数111122开始每次改变一位数字,经过4次后可以变为112211,此时A ,F ,E 前两位是11.再看斜向下边上的111122,A ,B ,C ,221111,这五个数字相邻,而111122与221111的中间两位都“11”相同,则不同时前两位和后两位,则A ,B ,C 中间两位是11.最后看横边上是112211,E ,D ,C ,221111,这五个数字相邻,而112211与221111的后两位相同,则E ,D ,C 后两位是11,由上述三种情况可得,A 有111112和111121两种,C 有121111和211111两种选择,则B 有111211和112111两种,同理D ,E ,F 都两种,则共有6264=种.15.相距180千米的A 、B 两地之间有一条单车道的公路(即不允许有超车).有一天,一辆小轿车从A 出发,同时,一辆大货车在A 、B 之间的某地出发,都沿该公路驶向B 地.两辆车到达B 地所用时间之和为5小时.如果交换两车的出发位置,并让两车仍然同时出发,那么它们到达B 地所用时间之和仍为5小时.已知在没有货车挡道时小轿车的速度是大货车速度的3倍,那么BC 之间的路程为________千米.【考点】行程问题 【难度】☆☆☆☆ 【答案】108【解析】由题意可知,第一次与第二次用的时间都是5小时,由第一次有货车在前挡道,第二次无车挡道,则第一次是货车与轿车所用时间相等即52 2.5÷=小时,货车从C 到B 用2.5小时,由于轿车是货车速度的3倍,则路程一定,时间与速度成反比得,轿车从C 到B 用52.536÷=小时,则货车从A 到B 用了525566-=小时,货车速度是180256÷=2165千米/时,则BC之间距离是CBA轿车货车轿车货车CBA216⨯=千米.2.51085。

四年级下册数学试题-思维训练专题:09从克到吨、从毫升到升与和差倍综合问题(四年级思维训练)全国通用

四年级下册数学试题-思维训练专题:09从克到吨、从毫升到升与和差倍综合问题(四年级思维训练)全国通用

已学过的重量单位有____________________。

在计量较重的物品时,通常用比千克大的单位“________”来表示,1吨可以写成1________。

在测量水、油等液体的多少时,可以用________和________做单位。

在测量较多的液体有多少时,一般用________做单位,1升可以写成1_______。

g kg t _______________1==,g g t __________8001=。

g kg kg g ______________41682=+,kg kg t kg _______822460=-。

kg t kg t kg t ____________2501403=-,kg t kg t kg t __________9508410015=+。

L mL __________680000=,mL mL L ________233=。

L mL L mL ______53524465=+,mL L mL L _____________280015=-。

mL mL L mL L ________15018504=+,mL L mL L L mL L ________8207132511=-+。

一袋大米重10( ) 一辆大卡车载重8( )一盒纯鲜牛奶850( ) 一杯茶水250( )一滴眼药水5( ) 最大的陆上动物是非洲象,平均重达7( ) 一块橡皮重约5( ) 一只猫的体重约2500( )9466kg →()t 8320mL →()L938g →()kg 99900mL →()L45t680 kg →()t 2L950mL →()L20kg89g →()kg 69L69mL →()L果园里有50吨苹果,如果每20千克装一箱,这些苹果一共可以装多少箱?一袋大米重25千克,一辆卡车一次最多可运160袋这样的大米,那么这辆卡车载重量是多少吨?超市搞促销,每买2袋350克的浓缩强力洗衣粉,就送1袋125克的浓缩去污洗衣粉。

2011 年第 9 届走美杯 4 年级初赛试题

2011 年第 9 届走美杯 4 年级初赛试题

2011年第9届走美杯4年级初赛试题一、填空题(每题8分,共40分)1、2929×22-8888=___。

【分析】方法一:原式= 29 ⨯101⨯22 -88 ⨯101 =101 ⨯(22 ⨯29 -88 )=2525 ⨯22 =55550 ;方法二:原式= 29 ⨯101⨯22 -22×404 =22 ⨯(2929- 404)=555502、一群猴子,每只猴每天早上吃2 个桃,晚上吃4 个桃。

一堆堆,如果这群猴子吃 3 个早上、2 个晚上,还会余下 6 个桃;如果吃 2 个早上,3 个晚上,还差8 个桃。

这堆猴子共有___个。

【分析】盈亏问题每只猴子3 个早上、2 个晚上共吃:3⨯2 +2⨯4 =14个;每只猴子2 个早上、3 个晚上共吃:2⨯2 +3⨯4 =16 个;猴子共有: (8+6)⎪(16-14)= 7(只);桃共有:14 ⨯7 +6 =104 (个)。

3、一根绳子长1 米。

对折两次,用剪刀在中间剪断,得到的最长一段长___厘米。

【分析】如图所示100÷4=254、一个不规则木块,将它涂成红色(包括下底面),然后锯成15 个小立方体木块,如图,共有___个面涂有红色。

【分析】正视图:7 ⨯2 =14;侧视图:6 ⨯2 =12 ;俯视图:9⨯2 =18 ;所以共有:14 +12 +18 =44(面)。

5、有7 个各不相同的正整数,它们的平均数是100.将它们从小到大排列,前3 个数的平均数是20,后三个数的平均数是200.最小数的最大是____,最大的数最大是___。

【分析】根据题意,令a <b<c<d<e<f <g,则有:a +b+c+d+e+f +g=700,而题目中告诉我们:a+b+ c =60 ,e + f+g =600 ,所以有:d=40 ,a最大为19,g最大为600-41-42=517。

二、填空题(每题10分,共50分)6、如图,6 段绳子相互连接,现在要在绳子的某处点火,如果火每分钟燃烧的距离是1,那么至少需要___分钟才能烧光这些绳子。

SH四年级走美杯初赛汇总

SH四年级走美杯初赛汇总

第七届走美杯四年级初赛一、填空题Ⅰ(每题8分,共40分)1、 3737263376363⨯+⨯⨯+⨯=______2、 下边的一排方格中,除9、8外,每个方格中的字都表示一个数(不同的字可以表示相同的数字),已知其中任何3个连续的方格中的数相加起来都为22,则“走”+“进”+“数”+“学”+“花”+“园”3、 “走美”商场有下列几种瓶装蜂蜜出售:甲,净重3kg ,售价33.99元;乙,净重2kg ,售价22.99元;丙,净重500g ,售价5.99元,那么,_____种蜂蜜最贵,____种蜂蜜最便宜。

4、 一个数学玩具的包装盒是正方体,其表面展开图如下。

现在每方格内都填上相应的数字。

已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A 、B 、C 内的三个数字依次是________。

5、 某品牌乒乓球拍在北京奥运会后推出一款球拍的促销计划:该球拍每只售价为人民币60元,同时购买者可获赠1张奖券,积累3张奖券可兑换1只球拍。

由此可见,1张奖券价值为________元。

二、填空题Ⅱ(第题10分,共50分)6、 A ,B 都是整数,A 大于B ,且2009A B ⨯=,那么A B -的最大值为________,最小值为________。

7、 一天,红太狼和灰太狼同时从“野猪林”出发,到“天堂镇”。

红太狼一半路程溜达,一半路程奔跑。

灰太狼一半时间溜达,一半时间奔跑。

如果它们溜达的速度相同,奔跑的速度也相同,则先到“天堂镇”是___________。

8、 柯南家2008年一年用电10200千瓦时,上半年的月平均用电比下半年的月平均用电少100千瓦时。

柯南家下半年月平均用电为___________千瓦时。

9、 某校A 、B 、C 三名同学参加“走进美妙的数学花园”,其指导教师赛前预测“A 获金牌,B 不会获金牌,C 不会获铜牌”。

结果出来后,三人之中,一人获金牌,一人获银牌,一人获铜牌,指导教师的预测只有一个人与结果相符。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档