圆锥曲线与方程复习课
复习课 圆锥曲线与方程
[题组训练]
x2 y2 2.(全国卷Ⅰ)一个圆经过椭圆 + =1 的三个顶点,且圆心在 16 4 x 轴的正半轴上,则该圆的标准方程为________.
x2 y2 3.方程 + =1 表示曲线 C,给出以下命题: 4-t t-1 ①曲线 C 不可能为圆; ②若 1<t<4,则曲线 C 为椭圆; ③若曲线 C 为双曲线,则 t<1 或 t>4; 5 ④若曲线 C 为焦点在 x 轴上的椭圆,则 1<t< . 2 其中真命题的序号是________(写出所有正确命题的序号).
[考点精要]
直线与圆锥曲线有关的问题 (1)直线与圆锥曲线的位置关系,可以通过讨论直线方程 与曲线方程组成的方程组的实数解的个数来确定,通常消去 方程组中变量 y(或 x )得到关于变量 x (或 y)的一元二次方程(不 能忽略对二次项系数是否为 0 的讨论 ),考虑该一元二次方程直线与圆锥曲线相切于一点; Δ <0⇔直线与圆锥曲线无交点.
[类题通法] 求解离心率三种方法 (1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲 线)的焦点在 x 轴上还是 y 轴上都有关系式 a2-b2=c2(a2+b2=c2) c 以及 e=a,已知其中的任意两个参数,可以求其他的参数,这是 基本且常用的方法. (2)方程法:建立参数 a 与 c 之间的齐次关系式,从而求出其 离心率,这是求离心率的十分重要的思路及方法. (3)几何法:求与过焦点的三角形有关的离心率问题,根据平 面几何性质以及椭圆 (双曲线)的定义、几何性质,建立参数之间 的关系,通过画出图形,观察线段之间的关系,使问题更形象、 直观.
1 心率等于 ,则 C 的方程是 2 x2 y2 A. + =1 3 4 x2 y2 C. + =1 4 2
第3章圆锥曲线的方程(复习课件)高二数学(人教A版选择性必修第一册)
x=ty+a,
由 2
y =2x,
消去 x,得 y2-2ty-2a=0.
设A(x1,y1),B(x2,y2),则y1+y2=2t,y1y2=-2a.
y21y22
因为 OA⊥OB,所以 x1x2+y1y2=0,即 4 +y1y2=0,
解得y1y2=0(舍去)或y1y2=-4.
所以-2a=-4,解得a=2.
我们把平面内与两个定点F1,F2的距离之和(2a)等于常数
(大于|F1F2|)的点的轨迹叫做椭圆。这两个定点叫做椭圆的
焦点,两焦点间的距离叫做椭圆的焦距,焦距的一半称为半焦
距。
对椭圆定义的理解
①当2a=|F1F2|时,其轨迹为线段;
②当2a<|F1F2|时,其轨迹不存在.
椭圆的简单几何性质:
焦点位置
x2 y2
∴椭圆的方程为 4 + 3 =1.
1
(2)若直线 l:y=-2x+m 与椭圆交于 A,B 两点,与以 F1F2 为直径的圆交于 C,
|AB| 5 3
D 两点,且满足|CD|= 4 ,求直线 l 的方程.
解
由(1)知,以F1F2为直径的圆的方程为x2+y2=1,
2|m|
∴圆心到直线 l 的距离 d=
焦点坐标
y 2 2 px ( p 0)
p
F ( ,0)
2
y 2 2 px ( p 0)
F (
x 2 py( p 0)
p
F (0, )
2
y
p
F (0, )
2
y
2
x 2 2 py( p 0)
p
,0)
2
准线方程
x
x
p
圆锥曲线复习课课件
将问题转化为函数问题,利用函数的性质和图像,求解相关 问题。
05
圆锥曲线的问题与挑战
圆锥曲线中的难题与挑战
圆锥曲线中的复杂计算
圆锥曲线问题往往涉及大量的计算和复杂的数学公式,需要学生 具备较高的数学计算能力和逻辑思维能力。
圆锥曲线中的抽象概念
圆锥曲线问题常常涉及到抽象的概念和性质,需要学生具备较好的 数学基础和空间想象力。
利用圆锥曲线的参数方程,将问 题转化为参数的取值范围或最值 问题,简化计算。
圆锥曲线的特殊解题方法
焦点三角形法
利用圆锥曲线的焦点三角形,结合正 弦定理、余弦定理等,求解相关问题 。
切线法
通过圆锥曲线的切线性质,结合导数 和切线斜率,求解相关问题。
圆锥曲线的综合解题方法
数形结合法
将几何性质与代数表达式相结合,通过数形结合的方法,直 观地解决问题。
作用。
光线的弯曲程度与圆锥曲线的离 心率有关,离心率越大,光线弯
曲程度越明显。
圆锥曲线的对称性质
圆锥曲线具有对称性,包括中 心对称、轴对称和面对称等。
圆具有中心对称和轴对称,椭 圆和双曲线只有中心对称,抛 物线只有轴对称。
对称性是圆锥曲线的一个重要 性质,在解决几何问题时具有 广泛应用。
03
圆锥曲线的应用
路,提高解题能力。
培养数学思维
学生应注重培养数学思维,提高 逻辑推理能力和空间想象力,以
便更好地解决圆锥曲线问题。
如何进一步深化对圆锥曲线的研究
研究圆锥曲线的性质
01
学生可以进一步研究圆锥曲线的性质和特点,探索其内在规律
和数学之美。
探索圆锥曲线与其他数学领域的联系
02
学生可以探索圆锥曲线与其他数学领域之间的联系,例如与代
《圆锥曲线与方程》复习课教案
一、课题:《圆锥曲线与方程》的复习二、教学目的:1、通过小结与复习,使同学们完整准确地理解和掌握三种曲线的特点以及它们之间的区别与联系。
2、通过本节教学使学生较全面地掌握本章所教的各种方法与技巧,尤其是解析几何的基本方法――坐标法;并在教学中进一步培养他们形与数结合的思想、化归的思想以及“应用数学”的意识3、结合教学内容对学生进行运动变化、自我总结和对立统一的观点的教育 三、教学方法:讲授法、练习法四、教学重点:自我总结并引导学生对三种曲线的标准方程和图形、性质的总结 五、教学难点:做好思路分析,引导学生找到解题的落足点,使学生能够自己独立对知识进行总结 六、教学过程: (一)知识梳理: 1.曲线与方程⑴曲线C 上的点与二元方程()0,=y x f 的实数解建立如下关系: ①曲线上的点的坐标都是这个方程的解; ②以上这个方程的解为坐标的点都是曲线上的点.⑵求曲线的方程的一般步骤①建系;②设点;③列方程;④化简;⑤检查. 2.圆锥曲线的定义⑴平面内满足()212122F F a a PF PF >=+的点P 的轨迹叫做椭圆,定义可实现椭圆上的点到两焦点的距离的相互转化.⑵平面内满足()212122F F a a PF PF <=-的点P 的轨迹叫做双曲线,()212122F F a a PF PF <=-表示焦点2F 对应的一支,定义可实现双曲线上的点到两焦点的距离的相互转化.⑶平面内与一个顶点F 与一条定直线l (不经过点F )距离相等的点的轨迹叫做抛物线,定义可实现抛物线上的点到焦点与到准线距离的相互转化. 3.圆锥曲线的标准方程椭圆、双曲线有两种形式的标准方程,抛物线有四种形式的标准方程.根据曲线方程的形式来确定焦点的位置,根据焦点的位置选择恰当的方程形式. 4.圆锥曲线的简单几何性质⑴圆锥曲线的范围往往作为解题的隐含条件. ⑵双曲线焦点位置不同,渐近线方程不同.⑶椭圆有四个顶点,双曲线有两个顶点,抛物线有一个顶点⑷椭圆、双曲线有两条对称轴和一个对称中心,抛物线只有一条对称轴. ⑸圆锥曲线中基本量p e c b a ,,,,的几何意义及相互转化. 6.直线与圆锥曲线的位置关系⑴直线与圆锥曲线的公共点个数等于由它们的方程构成的方程组解的个数. ⑵直线与椭圆有一个公共点,直线与椭圆相切,但直线与双曲线、抛物线不一定相切,双曲线与平行于渐近线的直线,抛物线与平行(重合)于轴的直线,都只有一个公共点但不相切.7.直线与圆锥曲线相交的弦长⑴求弦长的方法是将直线与圆锥曲线的方程联立后,求出两点坐标,利用两点间距离公式,常用的方法是结合韦达定理,如直线b kx y +=与圆锥曲线相交于()()2211,,,y x B y x A 两点,弦长()21221241x x x x k AB -++=.⑵过抛物线焦点的弦长问题结合定义来解决能化简计算. 8.元圆锥曲线有关的“中点弦”弦的中点坐标与斜率可由曲线方程得到关系,此法称为“点差法”,灵活运用科简化计算,但要以直线与曲线相交为前提,即消元后的方程判别式大于零. 9.当直线过x 轴上的点()0,m M 时,设直线方程为m ty x +=与抛物线方程()022>=p px y 联立消元后的方程较简。
圆锥曲线复习+课件
在其他数学分支中的地位和作用
圆锥曲线在解析几何、微积分、线性代数等数学分支中都有 重要应用。
圆锥曲线在解决物理、工程、经济等领域的问题中也有广泛 应用,例如物理学中的光学、力学问题,经济学中的供需关 系、最优问题等。
物体运动轨迹
在物理学中,圆锥曲线被用来描述各种 物体的运动轨迹。例如,当物体在重力 的作用下自由下落时,其运动轨迹可能 是一个抛物线;当物体沿着斜面滑下时 ,其运动轨迹可能是一个螺旋线。
VS
粒子运动
在量子力学和粒子物理学中,粒子在强磁 场中的运动轨迹通常被描述为复杂的曲线 ,这些曲线的形状和变化规律对于理解粒 子的性质和行为至关重要。
THANKS
感谢观看
圆锥曲线在几何学中的应 用
在几何学中,圆锥曲线被广泛应用于解决各 种问题,如轨迹问题、最值问题等。
现代圆锥曲线的研究方向和成果
圆锥曲线与代数几何的结合
现代数学家将圆锥曲线与代数几何相结合,研究了一些深层次的问题,如圆锥曲线的分类、几何不变量等。
圆锥曲线在物理学中的应用
在物理学中,圆锥曲线被应用于解决一些实际问题,如行星运动轨迹的计算、光学问题等。
• 解析
首先求出圆心A到抛物线准线的距离,然后与圆的半径进行比较,得 出圆与抛物线的位置关系。
解答题2
已知椭圆C的中心在原点,焦点在x轴上,且经过两个点$P_1(1,1)$和 $P_2( - frac{1}{5}, - frac{9}{5})$,求椭圆C的标准方程。
• 解析
根据椭圆的性质和给定的两个点,我们可以列出方程组解出椭圆的标 准方程。
06
圆锥曲线复习题及解析
高中数学第二章圆锥曲线与方程章末复习课ppt课件
C.钝角三角形 D.随m,n变化而变化
类型二 圆锥曲线的性质及其运用
∴ba2=12,ba= 22,
答案 解析
(2)知抛物线y2=4x的准线与双曲线 代入双曲线方程-可得a2=15, y2=1交于A,B两点,点F为抛物 线的焦点,假设△FAB为直角三角形,那么该双曲线的离心率于是c= a2+1=是56. ____.
类型三 直线与圆锥曲线的位置关系
所以 x1+x2=1+4k22k2,y1+y2=k(x1+x2)-2k=1-+22kk2.
(1)求椭圆的规范方程; 解答
所以 AB 的中点坐标为(1+2k22k2,1+-2kk2).
(2)过右焦点F2的直线l交椭圆于A,B两点,假设y轴上一点M(0①当k≠0时,,AB的中垂线方程为y-1+-2kk2=-1k(x-1+2k22k2), )满足 |MA|=|MB|,求直线l的斜率k的值. 解答
所以 sin ∠F1PF2=82711,所以
=12|PF1|·|PF2|·sin ∠F1PF2
S △ F P =12×3×9×82711=4
1
11.即△F1PF2 的面积为 4
F2
11.
跟踪训练 1 已知椭圆xm2+y2=1(m>1)和双曲线xn2-y2=1(n>0)有相同的焦 点 F1,F2,P 是它们的一个交点,则△F1PF2 的形状是
设P为椭圆 xa22+yb22 =1(a>b>0)上恣意一点(不在x轴上),F1,F2为焦点且 ∠F1PF2=α,那么△PF1F2为焦点三角形(如图).
1.由双曲线标准方程求其渐近线方程时,最简单实用的办法是:把标准方
程中的 1 换成 0,即可得到两条渐近线的方程.如双曲线Байду номын сангаасx22-by22=1(a>0,b>0)
选修21人教版圆锥曲线复习课共15张PPT
x轴、y轴、 原点对称
(+a,0)
(0,+a)
e c a
e c a
e 1
ybx a
yax b
图像 标准方程
抛物线
ly
ox
yl
ox
y
o lx
y
o
l
x
y2 2 px( p 0) y2 2 px( p 0) x2 2 py( p 0) x2 2 py( p 0)
范围 焦点 准线 对称性 离心率
A
11
22
o
P
x B
联立方程
y
x2 4
kx 1 k + y2 =1
2
消去y, 得 (1 2k 2 )x2
4k(k
1)x
2(k
2
2k
1)
0
令 0,即16k2(k 1)2 8(1 2k2) k2 2k 1 0, 恒成立。
由韦达定理得x1
x2
4k(k 1) 1 2k 2
.
又P平分AB, x1 x2 2
4k(k 1) 2,解得k 1 , 又直线过P点,直线方程为y-1=- 1 (x 1),
1 2k 2
2
2
即x+2y-3=0
注2: (1)联立方程组
例3 P(1,1)为椭圆 x2 + y2 =1内一定点,经过P引一弦,使此弦
42
在P点被平分,求此弦所在的直线方程。
解:法2:点差法 设弦的两个端点 A(x1, y1), B(x2, y2 )
(
)
A2
B3
C6
D9
A (2)直线y kx k 1与椭圆 x2 y2 1恒有( )个交点。 94
2023版高考数学一轮总复习第十章圆锥曲线与方程第四讲圆锥曲线的综合问题课件理
化简得y2=4x,即点P的轨迹方程为y2=4x(x≠0).
考向1
求轨迹方程
解法二(定义法) 如图所示,过点P作y轴的垂线,与直线l交于点S,与y
轴交于点R,连接ST,PF.由题意知SF垂直平分线段TP,所以四边形STFP
为菱形,所以|PS|=|PF|,且G为线段SF的中点,
所以|RS|=|OF|=1,
故点P到定点F的距离与它到
定直线x=-1的抛物线.
设P(x,y),则点P的轨迹方程为y2=4x(x≠0).
考向1
求轨迹方程
解法三(参数法)
π
设∠xFG=θ,显然θ≠ 且θ≠π,
2
则点G(0,-tan θ).
因为GT⊥FG,所以直线TG的方程为x+ytan θ=-tan2θ,
求轨迹方程
考向1
常用方法
答题步骤
参数法
注意
求点的轨迹与求轨迹方程时要求不同,求轨迹时,应说明轨迹的形
状、位置、大小等.
考向1
求轨迹方程
2.变式 已知△ABC的两个顶点A,B的坐标分别是(-5,0),(5,0),且AC,BC所在
直线的斜率之积等于m(m≠0),则下列说法错误的是 ( A )
A.当m>0时,点C的轨迹是双曲线
考向1
求轨迹方程
1.典例 直线l(不与x轴重合)过点F(1,0)且与y轴交于点G,过G作FG的垂
线,与x轴交于点T,点P满足=2.
(1)求点P的轨迹C的方程;
(2)过点K(-1,0)的直线l1与C交于A,B两点,点A关于x轴的对称点为
8
D,·=9,求直线BD的方程.
考向1
解析
求轨迹方程
离为2.
(1)求C的方程;
高中数学《圆锥曲线与方程-复习课》课件
复习目标
1)掌握椭圆的定义,标准方程和椭圆的几何性质 2)掌握双曲线的定义,标准方程和双曲线的几何 性质 3)掌握抛物线的定义,标准方程和抛物线的几何 性质 4)能够根据条件利用工具画圆锥曲线的图形,并 了解圆锥曲线的初步应用。
课前热身
(1) 求长轴与短轴之和为20,焦距为 4的5椭
①、②式两边分别相加,得 |O1P|+|O2P|=12
即
( x 3)2 y 2 ( x 3)2 y 2 12
化简并整理,得 3x2+4y2-108=0
即可得
x2 y2 1
36 27
所以,动圆圆心的轨迹是椭圆,它的长轴、短轴分别
为 12、6 3.
解法2:同解法1得方程 ( x 3)2 y 2 ( x 3)2 y 2 12
解得: x 3 5 则: y 1 5
A(3 5,1 5); B(3 5,1 5)
kOB
1 3
5 5
, kOA
1 3
5, 5
kOB
• kOA
1 3
5 • 1 5 3
5 1 5 1 5 95
∴OA⊥OB
证法2:同证法1得方程 x2-6x+4=0
由一元二次方程根与系数的关系,可知
x1+x2=6,
一、知识回顾
椭圆
圆
锥 双曲线
曲
线 抛物线
标准方程 标准方程 标准方程
几何性质
第二定义
几何性质 第二定义
综合应用 统一定义
几何性质
椭圆、双曲线、抛物线的标准方程和图形性质
几何条件 标准方程
椭圆
双曲线
抛物线
与两个定点
与两个定点的 与一个定点和
圆锥曲线复习课市公开课金奖市赛课一等奖课件
最小值为 6.
第44页
B两点, (1)若以AB为直径的圆过原点,求 实数a的值 (2)是否存在这样的实数 a,使双曲线上能找
到两点M,N关于直线y ax 1对称?若存在, 求a的范围.
第41页
例9、抛物线y2 4ax与圆( x a r )2 y2 r 2
(2a r )的上半部分交于 M , N两点,抛物线 2
使 BN BM ?若存在,求k的取值范围;若不存在 , 说明理由.
第39页
例7 、椭圆
x2 a2
y2 b2
1(a
b
0)与x轴,y轴正方向
交于A,B两点, 在劣弧AB上取一点 C , 使四边形
OACB的面积最大 .求最大面积 .
y
B
C
o
Ax
第40页
例8、已知直线y ax 1与双曲线3x2 y2 1交于A,
y
4.焦点弦性质 A1
A(x1,y1)
(1)x1 x2
p2 4
(2) y1 y2 p2
2 11
O
(3)
p mn
(设AF=m, BF=n)
B1
(4) A、O、B1
三点共线
x
p
2
y2 2 px( p 0)
F( P ,0)
x
2
B(x2,y2)
第25页
y
A1
(5) 以AB为直径圆与 准线相切
x2 a2
y2 b2
1
消元
(b2 a2k 2 ) x2 2kma 2 x a2m 2 a2b2 0
b2 a2k2 0
a2m2 a2b2 x 2kma 2
一交点
高三理科数学复习教案:圆锥曲线与方程总复习教案
高三理科数学复习教案:圆锥曲线与方程总复习教案【】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习适应和能力。
因此小编在此为您编辑了此文:高三理科数学复习教案:圆锥曲线与方程总复习教案期望能为您的提供到关心。
本文题目:高三理科数学复习教案:圆锥曲线与方程总复习教案高考导航考试要求重难点击命题展望1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用;2.把握椭圆、抛物线的定义、几何图形、标准方程及简单性质;3.了解双曲线的定义、几何图形和标准方程,明白它的简单几何性质;4.了解圆锥曲线的简单应用;5.明白得数形结合的思想;6.了解方程的曲线与曲线的方程的对应关系. 本章重点:1.椭圆、双曲线、抛物线的定义、几何图形、标准方程及简单性质;2.直线与圆锥曲线的位置关系问题;3.求曲线的方程或曲线的轨迹;4.数形结合的思想,方程的思想,函数的思想,坐标法.本章难点:1.对圆锥曲线的定义及性质的明白得和应用;2.直线与圆锥曲线的位置关系问题;3.曲线与方程的对应关系. 圆锥曲线与函数、方程、不等式、三角形、平面向量等知识结合是高考常考题型.极有可能以一小一大的形式显现,小题要紧考查圆锥曲线的标准方程及几何性质等基础知识、差不多技能和差不多方法运用;解答题常作为数学高考的把关题或压轴题,综合考查学生在数形结合、等价转换、分类讨论、逻辑推理等方面的能力.知识网络9.1 椭圆典例精析题型一求椭圆的标准方程【例1】已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为453和253,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程.【解析】由椭圆的定义知,2a=453+253=25,故a=5,由勾股定理得,(453)2-(253)2=4c2,因此c2=53,b2=a2-c2=103,故所求方程为x25+3y210=1或3x210+y25=1.【点拨】(1)在求椭圆的标准方程时,常用待定系数法,然而当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx2+ny2=1(m0,n0且m(2)在求椭圆中的a、b、c时,经常用到椭圆的定义及解三角形的知识.【变式训练1】已知椭圆C1的中心在原点、焦点在x轴上,抛物线C 2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:据此,可推断椭圆C1的方程为.【解析】方法一:先将题目中的点描出来,如图,A(-2,2),B(-2,0),C(0,6),D(2,-22),E(22,2),F(3,-23).通过观看可明白点F,O,D可能是抛物线上的点.而A,C,E是椭圆上的点,这时正好点B既不在椭圆上,也不在抛物线上.明显半焦距b=6,则不妨设椭圆的方程是x2m+y26=1,则将点A(-2,2)代入可得m=12,故该椭圆的方程是x212+y26=1.方法二:欲求椭圆的解析式,我们应先求出抛物线的解析式,因为抛物线的解析式形式比椭圆简单一些.不妨设有两点y21=2px1,①y22=2px2,②y21y22=x1x2,则可知B(-2,0),C(0,6)不是抛物线上的点.而D(2,-22),F(3,-23)正好符合.又因为椭圆的交点在x轴上,故B(-2,0),C(0,6)不可能同时显现.故选用A(-2,2),E(22,2)这两个点代入,可得椭圆的方程是x212+y26=1.题型二椭圆的几何性质的运用【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,F1PF2=60.(1)求椭圆离心率的范畴;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.【解析】(1)设椭圆的方程为x2a2+y2b2=1(a0),|PF1|=m,|PF2|=n,在△F1PF2中,由余弦定理可知4c2=m2+n2-2mncos 60,因为m+n=2a,因此m2+n2=(m+n)2-2mn=4a2-2mn,因此4c2=4a2-3mn,即3mn=4a2-4c2.又mn(m+n2)2=a2(当且仅当m=n时取等号),因此4a2-4c23a2,因此c2a214,即e12,因此e的取值范畴是[12,1).(2)由(1)知mn=43b2,因此=12mnsin 60=33b2,即△F1PF2的面积只与椭圆的短轴长有关.【点拨】椭圆中△F1PF2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范畴时,要专门注意椭圆定义(或性质)与不等式的联合使用,如|PF1||PF2|(|PF1|+|PF2|2)2,|PF1|a-c.【变式训练2】已知P是椭圆x225+y29=1上的一点,Q,R分别是圆(x +4)2+y2=14和圆(x-4)2+y2=14上的点,则|PQ|+|PR|的最小值是.【解析】设F1,F2为椭圆左、右焦点,则F1,F2分别为两已知圆的圆心,则|PQ|+|PR|(|PF1|-12)+(|PF2|-12)=|PF1|+|PF2|-1=9.因此|PQ|+|PR|的最小值为9.题型三有关椭圆的综合问题【例3】(2021全国新课标)设F1,F2分别是椭圆E:x2a2+y2b2=1(a0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,-1)满足|PA|=|PB|,求E的方程.【解析】(1)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得|AB|=43a.l的方程为y=x+c,其中c=a2-b2.设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组化简得(a2+b2)x2+2a2cx+a2(c2-b2)=0,则x1+x2=-2a2ca2+b2,x1x2=a2(c2-b2)a2+b2.因为直线AB斜率为1,因此|AB|=2|x2-x1|=2[(x1+x2)2-4x1x2],即43a=4ab2a2+b2,故a2=2b2,因此E的离心率e=ca=a2-b2a=22.(2 )设AB的中点为N(x0,y0),由(1)知x0=x1+x22=-a2ca2+b2=-23c,y 0=x0+c=c3.由|PA|=|PB|kPN=-1,即y0+1x0=-1c=3.从而a=32,b=3,故E的方程为x218+y29=1.【变式训练3】已知椭圆x2a2+y2b2=1(a0)的离心率为e,两焦点为F1,F2,抛物线以F1为顶点,F2为焦点,P为两曲线的一个交点,若|PF1||PF2 |=e,则e的值是()A.32B.33C.22D.63【解析】设F1(-c,0),F2(c,0),P(x0,y0),则椭圆左准线x=-a2c,抛物线准线为x=-3c,x0-(-a2c)=x0-(-3c)c2a2=13e=33.故选B.总结提高1.椭圆的标准方程有两种形式,其结构简单,形式对称且系数的几何意义明确,在解题时要防止遗漏.确定椭圆需要三个条件,要确定焦点在哪条坐标轴上(即定位),还要确定a、b的值(即定量),若定位条件不足应分类讨论,或设方程为mx2+ny2=1(m0,n0,mn)求解.2.充分利用定义解题,一方面,会依照定义判定动点的轨迹是椭圆,另一方面,会利用椭圆上的点到两焦点的距离和为常数进行运算推理.3.焦点三角形包含着专门多关系,解题时要多从椭圆定义和三角形的几何条件入手,且不可顾此失彼,另外一定要注意椭圆离心率的范畴.9.2 双曲线典例精析题型一双曲线的定义与标准方程【例1】已知动圆E与圆A:(x+4)2+y2=2外切,与圆B:( x-4)2+y2= 2内切,求动圆圆心E的轨迹方程.【解析】设动圆E的半径为r,则由已知|AE|=r+2,|BE|=r-2,因此|AE|-|BE|=22,又A(-4,0),B(4,0),因此|AB|=8,22|AB|.依照双曲线定义知,点E的轨迹是以A、B为焦点的双曲线的右支.因为a=2,c=4,因此b2=c2-a2=14,故点E的轨迹方程是x22-y214=1(x2).【点拨】利用两圆内、外切圆心距与两圆半径的关系找出E点满足的几何条件,结合双曲线定义求解,要专门注意轨迹是否为双曲线的两支.【变式训练1】P为双曲线x29-y216=1的右支上一点,M,N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为()A.6B.7C.8D.9【解析】选D.题型二双曲线几何性质的运用【例2】双曲线C:x2a2-y2b2=1(a0,b0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,使=0,求此双曲线离心率的取值范畴.【解析】设P(x,y),则由=0,得APPQ,则P在以AQ为直径的圆上,即(x-3a2)2+y2=(a2)2,①又P在双曲线上,得x2a2-y2b2=1,②由①②消去y,得(a2+b2)x2-3a3x+2a4-a2b2=0,即[(a2+b2)x-(2a3-ab2)](x-a)=0,当x=a时,P与A重合,不符合题意,舍去;当x=2a3-ab2a2+b2时,满足题意的点P存在,需x=2a3-ab2a2+b2a,化简得a22b2,即3a22c2,ca62,因此离心率的取值范畴是(1,62).【点拨】依照双曲线上的点的范畴或者焦半径的最小值建立不等式,是求离心率的取值范畴的常用方法.【变式训练2】设离心率为e的双曲线C:x2a2-y2b2=1(a0,b0)的右焦点为F,直线l过焦点F,且斜率为k,则直线l与双曲线C的左、右两支都相交的充要条件是()A.k2-e21B.k2-e21C.e2-k21D.e2-k21【解析】由双曲线的图象和渐近线的几何意义,可知直线的斜率k只需满足-ba题型三有关双曲线的综合问题【例3】(2021广东)已知双曲线x22-y2=1的左、右顶点分别为A1、A 2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.(1)求直线A1P与A2Q交点的轨迹E的方程;(2)若过点H(0,h)(h1)的两条直线l1和l2与轨迹E都只有一个交点,且l1l2,求h的值.【解析】(1)由题意知|x1|2,A1(-2,0),A2(2,0),则有直线A1P的方程为y=y1x1+2(x+2),①直线A2Q的方程为y=-y1x1-2(x-2).②方法一:联立①②解得交点坐标为x=2x1,y=2y1x1,即x1=2x,y1=2 yx,③则x0,|x|2.而点P(x1,y1)在双曲线x22-y2=1上,因此x212-y21=1.将③代入上式,整理得所求轨迹E的方程为x22+y2=1,x0且x2.方法二:设点M(x,y)是A1P与A2Q的交点,①②得y2=-y21x21-2(x 2-2).③又点P(x1,y1)在双曲线上,因此x212-y21=1,即y21=x212-1.代入③式整理得x22+y2=1.因为点P,Q是双曲线上的不同两点,因此它们与点A1,A2均不重合.故点A1和A2均不在轨迹E上.过点(0,1)及A2(2,0)的直线l的方程为x+2 y-2=0.解方程组得x=2,y=0.因此直线l与双曲线只有唯独交点A2.故轨迹E只是点(0,1).同理轨迹E也只是点(0,-1).综上分析,轨迹E的方程为x22+y2=1,x0且x2.(2)设过点H(0,h)的直线为y=kx+h(h1),联立x22+y2=1得(1+2k2)x2+4khx+2h2-2=0.令=16k2h2-4(1+2k2)(2h2-2)=0,得h2-1-2k2=0,解得k1=h2-12,k2=-h2-12.由于l1l2,则k1k2=-h2-12=-1,故h=3.过点A1,A2分别引直线l1,l2通过y轴上的点H(0,h),且使l1l2,因此A1HA2H,由h2(-h2)=-1,得h=2.现在,l1,l2的方程分别为y=x+2与y=-x+2,它们与轨迹E分别仅有一个交点(-23,223)与(23,223).因此,符合条件的h的值为3或2.【变式训练3】双曲线x2a2-y2b2=1(a0,b0)的左、右焦点分别为F1,F 2,离心率为e,过F2的直线与双曲线的右支交于A,B两点,若△F1AB 是以A为直角顶点的等腰直角三角形,则e2等于()A.1+22B.3+22C.4-22D.5-22【解析】本题考查双曲线定义的应用及差不多量的求解.据题意设|AF1|=x,则|AB|=x,|BF1|=2x.由双曲线定义有|AF1|-|AF2|=2a,|BF1|-|BF2|=2a(|AF1|+|BF1|)-(|AF2|+|BF2|)=(2+1)x-x=4a,即x=22a=|AF1|.故在Rt△AF1F2中可求得|AF2|=|F1F2|2-|AF1|2=4c2-8a2.又由定义可得|AF2|=|AF1|-2a=22a-2a,即4c2-8a2=22-2a,两边平方整理得c2=a2(5-22)c2a2=e2=5-22,故选D.总结提高1.要与椭圆类比来明白得、把握双曲线的定义、标准方程和几何性质,但应专门注意不同点,如a,b,c的关系、渐近线等.2.要深刻明白得双曲线的定义,注意其中的隐含条件.当||PF1|-|PF2||=2a| F1F2|时,P的轨迹是双曲线;当||PF1|-|PF2||=2a=|F1F2|时,P的轨迹是以F1或F2为端点的射线;当||PF1|-|PF2||=2a|F1F2|时,P无轨迹.3.双曲线是具有渐近线的曲线,画双曲线草图时,一样先画出渐近线,要把握以下两个问题:(1)已知双曲线方程,求它的渐近线;(2)求已知渐近线的双曲线的方程.如已知双曲线渐近线y=bax,可将双曲线方程设为x2a2-y2b2=(0),再利用其他条件确定的值,求法的实质是待定系数法.9.3 抛物线典例精析题型一抛物线定义的运用【例1】依照下列条件,求抛物线的标准方程.(1)抛物线过点P(2,-4);(2)抛物线焦点F在x轴上,直线y=-3与抛物线交于点A,|AF|=5.【解析】(1)设方程为y2=mx或x2=ny.将点P坐标代入得y2=8x或x2=-y.(2)设A(m,-3),所求焦点在x轴上的抛物线为y2=2px(p0),由定义得5=|AF|=|m+p2|,又(-3)2=2pm,因此p=1或9,所求方程为y2=2x或y2=18x.【变式训练1】已知P是抛物线y2=2x上的一点,另一点A(a,0) (a0)满足|P A|=d,试求d的最小值.【解析】设P(x0,y0) (x00),则y20=2x0,因此d=|PA|=(x0-a)2+y20=(x0-a)2+2x0=[x0+(1-a)]2+2a-1.因为a0,x00,因此当0当a1时,现在有x0=a-1,dmin=2a-1.题型二直线与抛物线位置讨论【例2】(2021湖北)已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差差不多上1.(1)求曲线C的方程;(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B 的任一直线,都有0?若存在,求出m的取值范畴;若不存在,请说明理由.【解析】(1)设P(x,y)是曲线C上任意一点,那么点P(x,y)满足:(x-1)2+y2-x=1(x0).化简得y2=4x(x0).(2)设过点M(m,0)(m0)的直线l与曲线C的交点为A(x1,y1),B(x2,y 2).设l的方程为x=ty+m,由得y2-4ty-4m=0,=16(t2+m)0,因此①又=(x1-1,y1),=(x2-1,y2).(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+y1y20.②又x=y24,因此不等式②等价于y214y224+y1y2-(y214+y224)+10(y1y2)216+y1y2-14[(y1+y2)2-2y1y2]+10.③由①式,不等式③等价于m2-6m+14t2.④对任意实数t,4t2的最小值为0,因此不等式④关于一切t成立等价于m 2-6m+10,即3-22由此可知,存在正数m,关于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有0,且m的取值范畴是(3-22,3+22).【变式训练2】已知抛物线y2=4x的一条弦AB,A(x1,y1),B(x2,y 2),AB所在直线与y轴的交点坐标为(0,2),则1y1+1y2= .【解析】y2-4my+8m=0,因此1y1+1y2=y1+y2y1y2=12.题型三有关抛物线的综合问题【例3】已知抛物线C:y =2x2,直线y=kx+2交C于A,B两点,M 是线段AB的中点,过M作x轴的垂线交C于点N.(1)求证:抛物线C在点N处的切线与AB平行;(2)是否存在实数k使=0?若存在,求k的值;若不存在,说明理由.【解析】(1)证明:如图,设A(x1,2x21),B(x2,2x22),把y=kx+2代入y=2x2,得2x2-kx-2=0,由韦达定理得x1+x2=k2,x1x2=-1,因此xN=xM=x1+x22=k4,因此点N的坐标为(k4,k28).设抛物线在点N处的切线l的方程为y-k28=m(x-k4),将y=2x2代入上式,得2x2-mx+mk4 -k28=0,因为直线l与抛物线C相切,因此=m2-8(mk4-k28)=m2-2mk+k2=(m-k)2=0,因此m=k,即l∥AB.(2)假设存在实数k,使=0,则NANB,又因为M是AB的中点,因此|MN|= |AB|.由(1)知yM=12(y1+y2)=12(kx1+2+kx2+2)=12[k(x1+x2)+4]=12(k22+4)=k 24+2.因为MNx轴,因此|MN|=|yM-yN|=k24+2-k28=k2+168.又|AB|=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2=1+k2(k2)2-4(-1)=12k2+1k2+16.因此k2+168=14k2+1k2+16,解得k=2.即存在k=2,使=0.【点拨】直线与抛物线的位置关系,一样要用到根与系数的关系;有关抛物线的弦长问题,要注意弦是否过焦点,若过抛物线的焦点,可直截了当使用公式|AB|=x1+x2+p,若只是焦点,则必须使用一样弦长公式.【变式训练3】已知P是抛物线y2=2x上的一个动点,过点P作圆(x-3)2+y2=1的切线,切点分别为M、N,则|MN|的最小值是.【解析】455.总结提高1.在抛物线定义中,焦点F不在准线l上,这是一个重要的隐含条件,若F在l上,则抛物线退化为一条直线.2.把握抛物线本身固有的一些性质:(1)顶点、焦点在对称轴上;(2)准线垂直于对称轴;(3)焦点到准线的距离为p;(4)过焦点垂直于对称轴的弦(通径)长为2p.3.抛物线的标准方程有四种形式,要把握抛物线的方程与图形的对应关系.求抛物线方程时,若由已知条件可知曲线的类型,可采纳待定系数法.4.抛物线的几何性质,只要与椭圆、双曲线加以对比,专门容易把握.但由于抛物线的离心率为1,因此抛物线的焦点有专门多重要性质,而且应用广泛,例如:已知过抛物线y2=2px(p0)的焦点的直线交抛物线于A、B 两点,设A(x1,y1),B(x2,y2),则有下列性质:|AB|=x1+x2+p或|AB|=2p sin2(为AB的倾斜角),y1y2=-p2,x1x2=p24等.9.4 直线与圆锥曲线的位置关系典例精析题型一直线与圆锥曲线交点问题【例1】若曲线y2=ax与直线y=(a+1)x-1恰有一个公共点,求实数a 的值.【解析】联立方程组(1)当a=0时,方程组恰有一组解为(2)当a0时,消去x得a+1ay2-y-1=0,①若a+1a=0,即a=-1,方程变为一元一次方程-y-1=0,方程组恰有一组解②若a+1a0,即a-1,令=0,即1+4(a+1)a=0,解得a= -45,这时直线与曲线相切,只有一个公共点.综上所述,a=0或a=-1或a=-45.【点拨】本题设计了一个思维陷阱,即审题中误认为a0,解答过程中的失误确实是不讨论二次项系数=0,即a=-1的可能性,从而漏掉两解.本题用代数方法解完后,应从几何上验证一下:①当a=0时,曲线y2=ax,即直线y=0,现在与已知直线y=x-1 恰有交点(1,0);②当a=-1时,直线y=-1与抛物线的对称轴平行,恰有一个交点(代数特点是消元后得到的一元二次方程中二次项系数为零);③当a=-45时直线与抛物线相切.【变式训练1】若直线y=kx-1与双曲线x2-y2=4有且只有一个公共点,则实数k的取值范畴为()A.{1,-1,52,-52}B.(-,-52][52,+)C.(-,-1][1,+)D.(-,-1)[52,+)【解析】由(1-k2)x2-2kx-5=0,k=52,结合直线过定点(0,-1),且渐近线斜率为1,可知答案为A.题型二直线与圆锥曲线的相交弦问题【例2】(2021辽宁)设椭圆C:x2a2+y2b2=1(a0)的右焦点为F,过F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60,=2 .(1)求椭圆C的离心率;(2)假如|AB|=154,求椭圆C的方程.【解析】设A(x1,y1),B(x2,y2),由题意知y10,y20.(1)直线l的方程为y=3(x-c),其中c=a2-b2.联立得(3a2+b2)y2+23b2cy-3b4=0.解得y1=-3b2(c+2a)3a2+b2,y2=-3b2(c-2a)3a2+b2.因为=2 ,因此-y1=2y2,即3b2(c+2a)3a2+b2=2-3b2(c-2a)3a2+b2.解得离心率e=ca=23.(2)因为|AB|=1+13|y2-y1|,因此2343ab23a2+b2=154.由ca=23得b=53a,因此54a=154,即a=3,b=5.因此椭圆的方程为x29+y25=1.【点拨】本题考查直线与圆锥曲线相交及相交弦的弦长问题,以及用待定系数法求椭圆方程.【变式训练2】椭圆ax2+ by2=1与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为32,则ab的值为.【解析】设直线与椭圆交于A、B两点的坐标分别为(x1,y1),(x2,y 2),弦中点坐标为(x0,y0),代入椭圆方程两式相减得a(x1-x2)(x1+x2)+b(y 1-y2)(y1+y2)=02ax0+2by0y1-y2x1-x2=0ax0-by0=0.故ab=y0x0=32.题型三对称问题【例3】在抛物线y2=4x上存在两个不同的点关于直线l:y=kx+3对称,求k的取值范畴.【解析】设A(x1,y1)、B(x2、y2)是抛物线上关于直线l对称的两点,由题意知k0.设直线AB的方程为y=-1kx+b,联立消去x,得14ky2+y-b=0,由题意有=12+414k0,即bk+10.(*)且y1+y2=-4k.又y1+y22=-1kx1+x22+b.因此x1+x22=k(2k+b).故AB的中点为E(k(2k+b),-2k).因为l过E,因此-2k=k2(2k+b)+3,即b=-2k-3k2-2k.代入(*)式,得-2k-3k3-2+1k3+2k+3k30k(k+1)(k2-k+3)-1【点拨】(1)本题的关键是对称条件的转化.A(x1,y1)、B(x2,y2)关于直线l对称,则满足直线l与AB垂直,且线段AB的中点坐标满足l的方程;(2)关于圆锥曲线上存在两点关于某一直线对称,求有关参数的范畴问题,利用对称条件求出过这两点的直线方程,利用判别式大于零建立不等式求解;或者用参数表示弦中点的坐标,利用中点在曲线内部的条件建立不等式求参数的取值范畴.【变式训练3】已知抛物线y=-x2+3上存在关于x+y=0对称的两点A,B,则|AB|等于()A.3B.4C.32D.42【解析】设AB方程:y=x+b,代入y=-x2+3,得x2+x+b-3=0,因此xA+xB=-1,故AB中点为(-12,-12+b).它又在x+y=0上,因此b=1,因此|AB|=32,故选C.总结提高1.本节内容的重点是研究直线与圆锥曲线位置关系的判别式方法及弦中点问题的处理方法.2.直线与圆锥曲线的位置关系的研究能够转化为相应方程组的解的讨论,即联立方程组通过消去y(也能够消去x)得到x的方程ax2+bx+c=0进行讨论.这时要注意考虑a=0和a0两种情形,对双曲线和抛物线而言,一个公共点的情形除a0,=0外,直线与双曲线的渐近线平行或直线与抛物线的对称轴平行时,都只有一个交点(现在直线与双曲线、抛物线属相交情形).由此可见,直线与圆锥曲线只有一个公共点,并不是直线与圆锥曲线相切的充要条件.3.弦中点问题的处理既能够用判别式法,也能够用点差法;使用点差法时,要专门注意验证相交的情形.9.5 圆锥曲线综合问题典例精析题型一求轨迹方程【例1】已知抛物线的方程为x2=2y,F是抛物线的焦点,过点F的直线l与抛物线交于A、B两点,分别过点A、B作抛物线的两条切线l1和l 2,记l1和l2交于点M.(1)求证:l1(2)求点M的轨迹方程.【解析】(1)依题意,直线l的斜率存在,设直线l的方程为y=kx+12.联立消去y整理得x2-2kx-1=0.设A的坐标为(x1,y1),B的坐标为(x 2,y2),则有x1x2=-1,将抛物线方程改写为y=12x2,求导得y=x.因此过点A的切线l1的斜率是k1=x1,过点B的切线l2的斜率是k2= x2.因为k1k2 =x1x2=-1,因此l1l2.(2)直线l1的方程为y-y1=k1(x-x1),即y-x212=x1(x-x1).同理直线l2的方程为y-x222=x2(x-x2).联立这两个方程消去y得x212-x222=x2(x-x2)-x1(x-x1),整理得(x1-x2)(x-x1+x22)=0,注意到x1x2,因此x=x1+x22.现在y=x212+x1(x-x1)=x212+x1(x1+x22-x1)=x1x22=-12.由(1)知x1+x2=2k,因此x=x1+x22=kR.因此点M的轨迹方程是y=-12.【点拨】直截了当法是求轨迹方程最重要的方法之一,本题用的确实是直截了当法.要注意求轨迹方程和求轨迹是两个不同概念,求轨迹除了第一要求我们求出方程,还要说明方程轨迹的形状,这就需要我们对各种差不多曲线方程和它的形状的对应关系了如指掌.【变式训练1】已知△ABC的顶点为A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是()A.x29-y216=1B.x216-y29=1C.x29-y216=1(x3)D.x216-y29=1(x4)【解析】如图,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,因此|CA|-|CB|=8-2=6,依照双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,方程为x29-y216=1(x3),故选C.题型二圆锥曲线的有关最值【例2】已知菱形ABCD的顶点A、C在椭圆x2+3y2=4上,对角线B D所在直线的斜率为1.当ABC=60时,求菱形ABCD面积的最大值.【解析】因为四边形ABCD为菱形,因此ACBD.因此可设直线AC的方程为y=-x+n.由得4x2-6nx+3n2-4=0.因为A,C在椭圆上,因此=-12n2+640,解得-433设A,C两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n2,x1x2=3 n2-44,y1=-x1+n,y2=-x2+n. 因此y1+y2=n2.因为四边形ABCD为菱形,且ABC=60,因此|AB|=|BC|=|CA|.因此菱形ABCD的面积S=32|AC|2.又|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,因此S=34(-3n2+16) (-433因此当n=0时,菱形ABCD的面积取得最大值43.【点拨】建立目标函数,借助代数方法求最值,要专门注意自变量的取值范畴.在考试中专门多考生没有利用判别式求出n的取值范畴,尽管也能得出答案,然而得分缺失许多.【变式训练2】已知抛物线y=x2-1上有一定点B(-1,0)和两个动点P、Q,若BPPQ,则点Q横坐标的取值范畴是.【解析】如图,B(-1,0),设P(xP,x2P-1),Q(xQ,x2Q-1),由kBPkPQ=-1,得x2P-1xP+1x2Q-x2PxQ-xP=-1.因此xQ=-xP-1xP-1=-(xP-1)-1xP-1-1.因为|xP-1+1xP-1|2,因此xQ1或xQ-3.题型三求参数的取值范畴及最值的综合题【例3】(2021浙江)已知m1,直线l:x-my-m22=0,椭圆C:x2m2+y 2=1,F1,F2分别为椭圆C的左、右焦点.(1)当直线l过右焦点F2时,求直线l的方程;(2)设直线l与椭圆C交于A,B两点,△AF1F2,△BF1F2的重心分别为G,H.若原点O在以线段GH为直径的圆内,求实数m的取值范畴.【解析】(1)因为直线l:x-my-m22=0通过F2(m2-1,0),因此m2-1=m22,解得m2=2,又因为m1,因此m=2.故直线l的方程为x-2y-1=0.(2)A(x1,y1),B(x2,y2),由消去x得2y2+my+m24-1=0,则由=m2-8(m24-1)=-m2+80知m28,且有y1+y2=-m2,y1y2=m28-12.由于F1(-c,0),F2(c,0),故O为F1F2的中点,由=2 ,=2 ,得G(x13,y13),H(x23,y23),|GH|2=(x1-x2)29+(y1-y2)29.设M是GH的中点,则M(x1+x26,y1+y26),由题意可知,2|MO||GH|,即4[(x1+x26)2+(y1+y26)2](x1-x2)29+(y1-y2) 29,即x1x2+y1y20.而x1x2+y1y2=(my1+m22)(my2+m22)+y1y2=(m2+1)(m28-12).因此m28-120,即m24.又因为m1且0,因此1因此m的取值范畴是(1,2).【点拨】本题要紧考查椭圆的几何性质,直线与椭圆、点与圆的位置关系等基础知识,同时考查解析几何的差不多思想方法和综合解题能力.【变式训练3】若双曲线x2-ay2=1的右支上存在三点A、B、C使△A BC为正三角形,其中一个顶点A与双曲线右顶点重合,则a的取值范畴为.【解析】设B(m,m2-1a),则C(m,-m2-1a)(m1),又A(1,0),由AB=BC得(m-1)2+m2-1a=(2m2-1a)2,因此a=3m+1m-1=3(1+2m-1)3,即a的取值范畴为(3,+).总结提高事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。
圆锥曲线与方程小结复习课教学案例设计优秀获奖科研论文
圆锥曲线与方程小结复习课教学案例设计优秀获奖科研论文一、教学内容分析本节课是苏教版数学选修1-1第二章圆锥曲线与方程小结复习课的第一课时。
离心率是圆锥曲线的共性特征之一,它不仅体现了圆锥曲线的方程中参数的某种关系,而且也与圆锥曲线的形状密不可分。
同时对离心率的研究既是圆锥曲线在形式上的统一,也是在研究方法上的统一,是高考的重要考点之一。
二、学生学习情况分析在本节课之前学生已经学习了椭圆、双曲线、抛物线的定义、标准方程及其简单的几何性质,也对圆锥曲线的共性特征有所认识,这都为这节课的教学奠定了基础:从方程形式看,圆锥曲线的方程都是二次的;从集合(或轨迹)的观点看,它们都是与定点和定直线的距离比是常数e的点的集合(或轨迹)。
经过前面的学习,学生已经初步形成从数和形两方面来思考的意识,本节课最大障碍是如何根据题意建立起关于圆锥曲线方程中基本量的关系。
三、设计思想1.教法诱导思维法:运用诱导思维法促使学生对知识进行主动建构,突出重点,突破难点,充分激发学生学习的主动性、积极性和创造性。
分组讨论法:让学生进行讨论交流,发现问题,解决问题,取长补短,共同提高。
讲练结合法:及时巩固所学内容,攻破重点,解决难点。
2.学法由于本节课是复习课,所以应通过对圆锥曲线的定义、标准方程及其简单的几何性质的复习进行引入,之后再通过设计一些从简单到复杂、从特殊到一般的问题,层层铺垫,组织和启发学生获得推导思路。
同时,为了促进成绩优秀学生的发展,笔者还设计了选做题和探索题,进一步培养优秀生用函数观点分析、解决问题的能力,达到了分层教学的目的。
四、教学目标理解离心率与圆锥曲线方程中基本量的关系,巧用离心率求基本量。
借助数形结合的思想方法,从题目中找出基本量的关系,求离心率的值或范围。
五、教学重点和难点本节课的重点:一是巧用离心率与基本量的关系,二是从数和形的角度建立圆锥曲线方程基本量的关系。
本节课的难点:运用数形结合的思想,建立圆锥曲线方程基本量的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第18,19课时第二章《圆锥曲线与方程》复习课导学案
设计人:黄清审核人:李锁详日期:2013/12/6 班级:___________ 组名:____________ 姓名:___________ 【教学目标】
1.知识与技能:掌握三种曲线的定义,标准方程,几何图形及简单性质.
2.过程与方法:能根据三种曲线的几何性质解决一些简单问题,从而培养学生
分析,归纳推理能力.
3.情感态度与价值观:通过三种曲线的学习,让学生进一步体会曲线和方程的
对应关系及数形结合思想.
【教学重点】三种曲线的简单几何性质及初步运用.
【教学难点】三种曲线的性质在实际问题中的应用及数形结合思想,方程思想,转化的思想在研究问题和解决问题中的运用.
【教学过程】
一.复习回顾
2.椭圆的几何性质
二.自主学习
1.已知椭圆的对称轴为坐标轴,离心率3
2
=e ,短轴长为58,求椭圆的方程.
2.已知椭圆经过点()
2,2-和点⎪⎪⎭
⎫ ⎝⎛-214,
1,求它的标准方程.
3.已知抛物线24x y =,求该抛物线的焦点坐标.
4.已知双曲线0369422=+-y x ,求它的焦点坐标.
三. 问题探究
1.抛物线的焦点在x 轴上,直线3-=y 与抛物线交于点A ,5=AF ,求抛物线的标准方程.
2.若双曲线14922
22=-k
y k x 与圆没有公共点,求实数k 的取值范围.
3.平面内有两个定点4,,=AB B A ,P 为平面内一个动点,求满足:2=-PB PA 的动点P 的轨迹方程.
四.拓展训练
1.已知双曲线与椭圆125922=+
y x 共焦点,它们的离心率之和为5
14
,求双曲线的方程.
2.设双曲线()0,0122
22>>=-b a b
y a x 的一条渐近线与抛物线12+=x y 只有一个公
共点,求双曲线的离心率.
五.反思小结 1.我的问题 2.我的收获。