动量守恒定律-练习题及答案

合集下载

动量守恒定律练习题及答案

动量守恒定律练习题及答案

动量守恒定律练习一、选择题1、关于系统动量守恒正确的说法是:A.只要系统所受的合外力的冲量为零,系统动量就守恒B.只要系统内有摩擦力,动量就不可能守恒C.系统所受合外力不为零,其动量一定不守恒,但有可能在某一方向上守恒D.各物体动量的增量的矢量和一定为零2、ab两球在光滑的水平面上沿同一直线发生正碰,作用前动量Pa=10kgm/s,Pb=0,碰撞过程中,动量变化△P=-20kgm/s,则作用后Pb为:A.-20 kgm/s B.-10kgm/s C.20kgm /s D.10kgm/s3、两物体ma=2mb,中间有一压缩弹簧,放在光滑的水平面上,现由静止同时放开后一小段时间内:A.a的速率是b的一半B.a的动量大C.a的受力大D.系统总动量为零4、质量为m的子弹水平飞行击穿一块原静止在光滑水平面上质量为M的木块,在子弹穿透木块的过程中:A.m和M所受的冲量相等B.子弹和木块的速度的变化量相等C.子弹和木块的动量变化量大小相等D.子弹和木块作为系统的总动量守恒5、1kg的物体在距地面高5m处自由下落,落在正以5m /s沿光滑水平面匀速前进的砂车中,砂车质量为4kg,则当物体与车相对静止后,车速为:A.3m/s B.4m/s C.5m/s D.6m /s6、质量为m的小球A以速度v与质量为3m的静止小球B发生正碰后以v/2的速度被反弹回,则正碰后B球的速度大小是:A、v/6B、2vC、v/2 D、v/37、m的M碰撞前后的s-t图如图所示,由图可知:A.m:M=1: 3 B.m:M=3:1C.m:M=l:1 D、m:M=l:28、质量为m的人站在长为L的船M一端,系统原来静止。

当人从船一端走到另一端过程中,不计水的阻力A.人速度大,船后退的速度也大B.人突然停止,船也突然停止C.人突然停止时,船由于惯性仍在运动D.人从一端走到另一端时,船后退了mL/(M+m)9、如图所示,A、B两物体彼此接触静止于光滑的水平桌面上,物体A的上表面是半径为R的光滑圆形轨道,物体C由静止开始从A上圆形轨道的右侧最高点下滑,则有:A.A和B不会出现分离现象B.当C第一次滑到圆弧最低点时,A和B开始分离C.A将会在桌面左边滑出D.A不会在桌面上滑出10、如图所示,A、B两质量相等的物体静止在平板小车C上,A、B之间有一根被压缩的弹簧,A、B与平板车的上表面间的滑动摩擦力之比为3:2,地面光滑,当压缩弹簧突然释放后,则:A.A、B系统动量守恒B.小车向左运动C.A、B、C系统动量守恒D.小车向右运动二、填空题11、质量为m=70kg的人从质量为M=140kg的小船船头走到船尾。

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案)
v 25m / s
考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是 两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系 统,由系统动量守恒列出等式,联立求解
2.一质量为 的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧
代入数据解得:E 损=0.25J 答:①碰后 A 球的速度为 1.0m/s; ②碰撞过程中 A、B 系统损失的机械能为 0.25J. 【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.
9.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
根据题意: m1 : m2 2
有以上四式解得: v2 2 2gR
接下来男演员做平抛运动:由 4R 1 gt2 ,得 t 8R
2
g
因而: s v2t 8R ; 【点睛】
两演员一起从从 A 点摆到 B 点,只有重力做功,根据械能守恒定律求出最低点速度;女 演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回
Q

动量守恒定律大题专练(含答案)

动量守恒定律大题专练(含答案)

动量守恒定律大题专练(含答案)1.在图中,地面被竖直线MN分隔成两部分。

M点左侧地面粗糙,动摩擦因数为μ=0.5,右侧光滑。

MN右侧空间有一范围足够大的匀强电场。

在O点用长为R-4=5m的轻质绝缘细绳,拴一个质量为mA=0.04kg,带电量为q=+2×10的小球A,在竖直平面内以v=10m/s的速度做顺时针匀速圆周运动,运动到最低点时与地面刚好不接触。

处于原长的弹簧左端连在墙上,右端与不带电的小球B接触但不粘连,B球的质量为mB=0.02kg,此时B球刚好位于M点。

现用水平向左的推力将B球缓慢推至P点(弹簧仍在弹性限度内),MP之间的距离为L=10cm,推力所做的功是W=0.27J,当撤去推力后,B球沿地面右滑恰好能和A球在最低点处发生正碰,并瞬间成为一个整体C(A、3B、C均可视为质点),碰后瞬间立即把匀强电场的场强大小变为E=6×10N/C,电场方向不变。

(取g=10m/s)求:1)A、B两球在碰前匀强电场的大小和方向。

2)碰撞后整体C的速度。

3)整体C运动到最高点时绳的拉力大小。

2.在图中,EF为水平地面,O点左侧是粗糙的、右侧是光滑的。

一轻质弹簧右端与墙壁固定,左端与静止在O点质量为m的小物块A连结,弹簧处于原长状态。

质量为m的物块B在大小为F的水平恒力的作用下由C处从静止开始向左运动,已知物块B与地面EO段间的滑动摩擦力大小为F,物块B运动到O点与物块A相碰并一起向右运动(设碰撞时间极短),运动到D点时撤去外力F。

已知CO=4S,OD=S。

求撤去外力后:1)弹簧的最大弹性势能。

2)物块B最终离O点的距离。

3.在图中,矩形盒B的质量为M,底部长度为L,放在水平面上,盒内有一质量为m的物体A,A与B、B与地面的动摩擦因数均为μ,开始时二者均静止,A在B的左端。

现瞬间使物体A获得一向右的水平初速度v,以后物体A与盒B的左右壁碰撞时,B始终向右运动。

当A与B的左壁最后一次碰撞后,B立刻停止运动,A继续向右滑行s(s<L)后也停止运动。

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)一、动量守恒定律 选择题1.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,忽略空气阻力,则( )A .过程Ⅰ中钢珠动量的改变量小于重力的冲量B .过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C .过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D .过程Ⅱ中钢珠的动量改变量等于阻力的冲量2.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是A .导体棒ab 刚好匀速运动时的速度22FR vB L =B .通过电阻的电荷量2Ft q BL= C .导体棒的位移22244FtRB L mFR x B L -= D .电阻放出的焦耳热2222244232tRF B L mF R Q B L -= 3.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,取g=10m/s 2,则下列说法正确的是( )A .木板A 获得的动能为2JB .系统损失的机械能为2JC .A 、B 间的动摩擦因数为0.1D .木板A 的最小长度为2m4.平静水面上停着一只小船,船头站立着一个人,船的质量是人的质量的8倍.从某时刻起,人向船尾走去,走到船中部时他突然停止走动.不计水对船的阻力,下列说法正确的是( )A .人在船上走动过程中,人的动能是船的动能的8倍B .人在船上走动过程中,人的位移是船的位移的9倍C .人走动时,它相对水面的速度大于小船相对水面的速度D .人突然停止走动后,船由于惯性还会继续运动一小段时间5.某研究小组通过实验测得两滑块碰撞前后运动的实验数据,得到如图所示的位移—时间图象.图中的线段a 、b 、c 分别表示沿光滑水平面上同一条直线运动的滑块Ⅰ、Ⅱ和它们发生正碰后结合体的位移变化关系.已知相互作用时间极短,由图象给出的信息可知( )A .碰前滑块Ⅰ与滑块Ⅱ速度大小之比为5∶2B .碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大C .碰前滑块Ⅰ的动能比滑块Ⅱ的动能小D .滑块Ⅰ的质量是滑块Ⅱ的质量的166.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为03v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()A .若m 0=3m ,则能够射穿木块B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 27.如图所示,在光滑的水平面上有体积相同、质量分别为m =0.1kg 和M =0.3kg 的两个小球A 、B ,两球之间夹着一根压缩的轻弹簧(弹簧与两球不相连),A 、B 两球原来处于静止状态.现突然释放弹簧,B 球脱离弹簧时的速度为2m/s ;A 球进入与水平面相切、半径为0.5m 的竖直面内的光滑半圆形轨道运动,PQ 为半圆形轨道竖直的直径,不计空气阻力,g 取10m/s 2,下列说法正确的是( )A .A 、B 两球离开弹簧的过程中,A 球受到的冲量大小等于B 球受到的冲量大小B .弹簧初始时具有的弹性势能为2.4JC .A 球从P 点运动到Q 点过程中所受合外力的冲量大小为1N ∙sD .若逐渐增大半圆形轨道半径,仍然释放该弹簧且A 球能从Q 点飞出,则落地的水平距离将不断增大8.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1. 2022年将在我国举办第二十四届冬奥会, 跳台滑雪是其中最具观赏性的项目之一. 某滑道示意图如下, 长直助滑道AB 与弯曲滑道BC 平滑衔接, 滑道BC 高h=10 m, C 是半径R=20 m 圆弧的最低点, 质量m=60 kg 的运动员从A 处由静止开始匀加速下滑, 加速度a=4.5 m/s2, 到达B 点时速度vB=30 m/s. 取重力加速度g=10 m/s2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力, 画出运动员经过C 点时的受力图, 并求其所受支持力FN 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度, 则利用运动学公式可以求解斜面的长度, 即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:从B 运动到C 由动能定理可知:221122C B mgh mv mv =- 解得;3900N N =故本题答案是: (1) (2) (3)点睛:本题考查了动能定理和圆周运动, 会利用动能定理求解最低点的速度, 并利用牛顿第二定律求解最低点受到的支持力大小.2. 图甲为光滑金属导轨制成的斜面, 导轨的间距为 , 左侧斜面的倾角 , 右侧斜面的中间用阻值为 的电阻连接。

在左侧斜面区域存在垂直斜面向下的匀强磁场, 磁感应强度大小为 , 右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场, 磁感应强度为 。

在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab, 另一导体棒cd 置于左侧斜面轨道上, 与导轨垂直且接触良好, ab 棒和cd 棒的质量均为 , ab 棒的电阻为 , cd 棒的电阻为 。

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)一、动量守恒定律 选择题1.如图所示,A 、B 、C 是三级台阶的端点位置,每一级台阶的水平宽度是相同的,其竖直高度分别为h 1、h 2、h 3,将三个相同的小球分别从A 、B 、C 三点以相同的速度v 0水平抛出,最终都能到达A 的下一级台阶的端点P 处,不计空气阻力。

关于从A 、B 、C 三点抛出的小球,下列说法正确的是( )A .在空中运动时间之比为t A ∶tB ∶tC =1∶3∶5B .竖直高度之比为h 1∶h 2∶h 3=1∶2∶3C .在空中运动过程中,动量变化率之比为AC A B P P P t t t::=1∶1∶1 D .到达P 点时,重力做功的功率之比P A :P B :P C =1:4:9 2.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( )A .在A 离开竖直墙前,A 、B 与弹簧组成的系统机械能守恒,之后不守恒B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒C .在A 离开竖直墙后,A 、B 223E mD .在A 离开竖直墙后,弹簧的弹性势能最大值为3E 3.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是A .AB 组成的系统机械能守恒B .B 运动的最大速度大于1m/sC .B 物体上升到最高点时与初位置的高度差为0.05mD .AB 在最高点的加速度大小等于10m/s 24.如图所示,质量为M 、带有半径为R 的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O 为圆心。

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。

动量守恒测试题及答案高中

动量守恒测试题及答案高中

动量守恒测试题及答案高中1. 动量守恒定律适用于哪些情况?2. 一个质量为2kg的物体以5m/s的速度向北运动,与一个质量为3kg 的物体以3m/s的速度向南运动相撞。

如果两物体发生完全非弹性碰撞,请计算碰撞后两物体的共同速度。

3. 一个质量为5kg的物体以10m/s的速度向东运动,撞击一个静止的质量为3kg的物体。

如果碰撞是完全弹性的,请计算碰撞后两物体的速度。

4. 一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车。

如果刹车过程中动量守恒,计算汽车在刹车过程中受到的平均冲击力(假设刹车过程持续了0.5秒)。

5. 一个质量为0.5kg的足球以15m/s的速度被踢出,如果足球在撞击墙壁后以相同的速率反弹回来,计算墙壁对足球的平均作用力(假设作用时间为0.1秒)。

答案1. 动量守恒定律适用于没有外力作用或外力之和为零的系统。

在这种情况下,系统的总动量在时间上保持不变。

2. 碰撞前总动量为 \( P_{\text{总}} = (2 \times 5) - (3 \times3) = 10 - 9 = 1 \) kg·m/s。

因为完全非弹性碰撞后两物体粘在一起,所以共同速度 \( v \) 为 \( P_{\text{总}} / (2 + 3) = 1 /5 = 0.2 \) m/s,方向向北。

3. 碰撞前总动量为 \( P_{\text{总}} = 5 \times 10 = 50 \)kg·m/s。

碰撞后两物体的总动量仍为50 kg·m/s。

设碰撞后5kg物体速度为 \( v_1 \),3kg物体速度为 \( v_2 \),则 \( 5v_1 + 3v_2= 50 \)。

由于完全弹性碰撞,还满足 \( \frac{5}{3} =\frac{v_1}{v_2} \)。

解得 \( v_1 = 10 \) m/s,\( v_2 = 6 \)m/s。

4. 汽车的初始动量为 \( P_{\text{初}} = 1000 \times 20 = 20000 \) kg·m/s。

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.2.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。

高考物理动量守恒定律题20套(带答案)含解析

高考物理动量守恒定律题20套(带答案)含解析

高考物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A 、B 发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A 、B 、C 系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A 、B 在前,C 在后.此后C 向左加速,A 、B 的加速度沿杆向右,直到弹簧恢复原长,故A 、B 继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A 、B 的速度,C 的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s4.如图所示,质量分别为m 1和m 2的两个小球在光滑水平面上分别以速度v 1、v 2同向运动,并发生对心碰撞,碰后m 2被右侧墙壁原速弹回,又与m 1碰撞,再一次碰撞后两球都静止.求第一次碰后m 1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m 2速度的大小分别为和,由动量守恒定律得:(4分) 两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得5.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m 、厚度为2d 的钢板静止在水平光滑桌面上.质量为m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d 、质量均为m 的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV2=mv1(1分)损失的动能为:ΔE′=12mv21-12×2mV22(2分)联立解得:ΔE′=13(1)2×mv20因为ΔE′=f·x(1分),可解得射入第二钢板的深度x为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解6.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极端的时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止。

(完整版)动量守恒定律经典习题(带答案)

(完整版)动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。

(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。

设小车足够长,求:(1)木块和小车相对静止时小车的速度。

(2)从木块滑上小车到它们处于相对静止所经历的时间。

(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。

例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。

游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。

为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。

若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1. 分析:以物体和车做为研究对象,受力情况如图所示。

在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。

因此地面给车的支持力远大于车与重物的重力之和。

系统所受合外力不为零,系统总动量不守恒。

但在水平方向系统不受外力作用,所以系统水平方向动量守恒。

以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v ⇒Mv 0=(M+m)v⇒s m v m N M v /454140=⨯+=+= 即为所求。

高考物理动量守恒定律题20套(带答案)及解析

高考物理动量守恒定律题20套(带答案)及解析

高考物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.(16分)如图,水平桌面固定着光滑斜槽,光滑斜槽的末端和一水平木板平滑连接,设物块通过衔接处时速率没有改变。

质量m1=0.40kg的物块A从斜槽上端距水平木板高度h=0. 80m处下滑,并与放在水平木板左端的质量m2=0.20kg的物块B相碰,相碰后物块B滑行x=4.0m到木板的C点停止运动,物块A滑到木板的D点停止运动。

已知物块B与木板间的动摩擦因数=0.20,重力加速度g=10m/s2,求:(1) 物块A沿斜槽滑下与物块B碰撞前瞬间的速度大小;(2) 滑动摩擦力对物块B做的功;(3) 物块A与物块B碰撞过程中损失的机械能。

【答案】(1)v0=4.0m/s(2)W=-1.6J(3)E=0.80J【解析】试题分析:①设物块A滑到斜面底端与物块B碰撞前时的速度大小为v0,根据机械能守恒定律有m1gh=12m12v (1分)v02gh,解得:v0=4.0 m/s(1分)②设物块B受到的滑动摩擦力为f,摩擦力做功为W,则f=μm2g(1分)W=-μm2gx解得:W=-1.6 J(1分)③设物块A与物块B碰撞后的速度为v1,物块B受到碰撞后的速度为v,碰撞损失的机械能为E,根据动能定理有-μm2gx=0-12m2v2解得:v=4.0 m/s(1分)根据动量守恒定律m1v0=m1v1+m2v(1分)解得:v1=2.0 m/s(1分)能量守恒12m12v=12m121v+12m2v2+E(1分)解得:E=0.80 J(1分)考点:考查了机械能守恒,动量守恒定律2.如图,一质量为M的物块静止在桌面边缘,桌面离水平地面的高度为h.一质量为m的子弹以水平速度v0射入物块后,以水平速度v0/2 射出.重力加速度为g.求:(1)此过程中系统损失的机械能;(2)此后物块落地点离桌面边缘的水平距离.【答案】(1)2138m E mv M ⎛⎫∆=- ⎪⎝⎭ (2)02mv hs M g= 【解析】 【分析】 【详解】试题分析:(1)设子弹穿过物块后物块的速度为V ,由动量守恒得 mv 0=m +MV ①解得②系统的机械能损失为 ΔE =③由②③式得 ΔE =④(2)设物块下落到地面所需时间为t ,落地点距桌面边缘的水平距离为s ,则⑤s=Vt ⑥ 由②⑤⑥得 S =⑦考点:动量守恒定律;机械能守恒定律.点评:本题采用程序法按时间顺序进行分析处理,是动量守恒定律与平抛运动简单的综合,比较容易.3.牛顿的《自然哲学的数学原理》中记载,A 、B 两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B 对A 的速度,接近速度是指碰撞前A 对B 的速度.若上述过程是质量为2m 的玻璃球A 以速度v 0碰撞质量为m的静止玻璃球B,且为对心碰撞,求碰撞后A、B的速度大小.【答案】v0v0【解析】设A、B球碰撞后速度分别为v1和v2由动量守恒定律得2mv0=2mv1+mv2且由题意知=解得v1=v0,v2=v0视频4.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV 2=mv 1(1分) 损失的动能为:ΔE′=12mv 21-12×2mV 22(2分) 联立解得:ΔE′=13(1)22+×mv 2因为ΔE′=f·x (1分), 可解得射入第二钢板的深度x 为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。

动量及动量守恒定律习题大全(含解析答案)

动量及动量守恒定律习题大全(含解析答案)

动量及动量守恒定律习题大全一.动量守恒定律概述1。

动量守恒定律的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒.2.动量守恒定律的表达形式(1),即p1 p2=p1/ p2/,(2)Δp1 Δp2=0,Δp1= —Δp2 和3.应用动量守恒定律解决问题的基本思路和一般方法(1)分析题意,明确研究对象.(2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。

(3)确定过程的始、末状态,写出初动量和末动量表达式。

注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系.(4)建立动量守恒方程求解。

4.注重动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性.二、动量守恒定律的应用1两个物体作用时间极短,满足内力远大于外力,可以认为动量守恒.碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。

如:光滑水平面上,质量为m1的物体A以速度v1向质量为m2的静止物体B运动,B的左端连有轻弹簧分析:在Ⅰ位置A、B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到Ⅱ位置A、B速度刚好相等(设为v),弹簧被压缩到最短;再往后A、B远离,到Ⅲ位位置恰好分开。

(1)弹簧是完全弹性的。

压缩过程系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;分开过程弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。

这种碰撞叫做弹性碰撞。

由动量守恒和能量守恒可以证实A、B的最终速度分别为:。

(这个结论最好背下来,以后经常要用到.)(2)弹簧不是完全弹性的。

压缩过程系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态弹性势能仍最大,但比损失的动能小;分离过程弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失。

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角θ=37°;过f点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3×10-3 kg、电荷量q=3×l0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5×10-3 kg的不带电小物体P从轨道右端a以v0=8 m/s的水平速度向左运动,P、Q碰撞时间极短,碰后P以1 m/s的速度水平向右弹回.已知P与ab间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s2.求:(1)碰后瞬间,圆弧轨道对物体Q的弹力大小F N;(2)当β=53°时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B1;(3)当区域efgh内所加磁场的磁感应强度为B2=2T时,要让物体Q从gh边穿出磁场且在磁场中运动的时间最长,求此最长时间t及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r rα-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.4.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)

22
2
2
联立①③④解得:R= v02 64g
点睛:该题考查动量守恒定律的应用,要求同学们能正确分析物体的运动情况,列出动量 守恒以及能量转化的方程;注意使用动量守恒定律解题时要规定正方向.
6.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
【分析】
【详解】
(1)设物块 A 的加速度为 a1,则有 mAgsinθ=ma1, 解得 a1=5m/s2 凹槽 B 运动时受到的摩擦力 f=μ×3mgcosθ=mg 方向沿斜面向上;
凹槽 B 所受重力沿斜面的分力 G1=2mgsinθ=mg 方向沿斜面向下; 因为 G1=f,则凹槽 B 受力平衡,保持静止,凹槽 B 的加速度为 a2=0 (2)设 A 与 B 的左壁第一次碰撞前的速度为 vA0,根据运动公式:v2A0=2a1d 解得 vA0=3m/s; AB 发生弹性碰撞,设 A 与 B 第一次碰撞后瞬间 A 的速度大小为 vA1,B 的速度为 vB1,则由
子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F= nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。

动量守恒定律练习题(含答案)

动量守恒定律练习题(含答案)

动量守恒定律复习测试题1.如图所示,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止.若救生员以相对水面速率v水平向左跃入水中,则救生员跃出后小船的速率为()A.v0+mM v B.v0-m M vC.v0+mM(v0+v) D.v0+mM(v0-v)2.在2010年温哥华冬奥会上,首次参赛的中国女子冰壶队喜获铜牌,如图13-1-8为中国队员投掷冰壶的镜头.在某次投掷中,冰壶运动一段时间后以0.4 m/s 的速度与对方的静止冰壶发生正碰,碰后对方的冰壶以0.3 m/s的速度向前滑行.若两冰壶质量相等,规定向前运动的方向为正方向,则碰后中国队冰壶获得的速度为()A.0.1 m/s B.-0.1 m/sC.0.7 m/s D.-0.7 m/s3.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则()A.左方是A球,碰撞后A、B两球速度大小之比为2∶5B.左方是A球,碰撞后A、B两球速度大小之比为1∶10C.右方是A球,碰撞后A、B两球速度大小之比为2∶5D.右方是A球,碰撞后A、B两球速度大小之比为1∶104.如图所示,轻质弹簧的一端固定在墙上,另一端与质量为m的物体A相连,A放在光滑水平面上,有一质量与A相同的物体B,从高h处由静止开始沿光滑曲面滑下,与A相碰后一起将弹簧压缩,弹簧复原过程中某时刻B与A分开且沿原曲面上升.下列说法正确的是()A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 能达到的最大高度为h 2D .B 能达到的最大高度为h5.如图,大小相同的摆球a 和b 的质量分别为m 和3m ,摆长相同,并排悬挂,平衡时两球刚好接触.现将摆球a 向左拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是( )A .第一次碰撞后的瞬间,两球的速度大小相等B .第一次碰撞后的瞬间,两球的动量大小相等C .第一次碰撞后,两球的最大摆角不相同D .发生第二次碰撞时,两球在各自的平衡位置6.如图所示,光滑水平直轨道上有三个滑块A 、B 、C ,质量分别为m A =m C =2m ,m B =m ,A 、B 用细绳连接,中间有一压缩的轻弹簧(弹簧与滑块不拴接).开始时A 、B 以共同速度v 0运动,C 静止.某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同.求B 与C 碰撞前B 的速度.7.如图所示,光滑水平桌面上有长L =2 m 的挡板C ,质量m C =5 kg ,在其正中央并排放着两个小滑块A 和B ,m A =1 kg ,m B =3 kg ,开始时三个物体都静止.在A 、B 间放有少量塑胶炸药,爆炸后A 以6 m/s 速度水平向左运动,A 、B 中任意一块与挡板C 碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板C 碰撞后,C 的速度是多大;(2)A 、C 碰撞过程中损失的机械能.8.如图所示,在光滑水平面上有质量均为m 的两辆小车A 和B ,A 车上表面光滑水平,其上表面左端有一质量为M 的小物块C (可看做质点).B 车上表面是一个光滑的14圆弧槽,圆弧槽底端的切线与A 的上表面相平.现在A 和C 以共同速度v 0冲向静止的B 车,A 、B 碰后粘合在一起,之后物块C 滑离A ,恰好能到达B 的圆弧槽的最高点.已知M =2m ,v 0=4 m/s ,取g =10 m/s 2.求圆弧槽的半径R .动量守恒复习题答案1.如图所示,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止.若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为()A.v0+mM v B.v0-m M vC.v0+mM(v0+v) D.v0+mM(v0-v)【解析】小船和救生员组成的系统满足动量守恒:(M+m)v0=m·(-v)+Mv′解得v′=v0+mM(v0+v)故C项正确,A、B、D三项均错.【答案】 C2.在2010年温哥华冬奥会上,首次参赛的中国女子冰壶队喜获铜牌,如图13-1-8为中国队员投掷冰壶的镜头.在某次投掷中,冰壶运动一段时间后以0.4 m/s的速度与对方的静止冰壶发生正碰,碰后对方的冰壶以0.3 m/s的速度向前滑行.若两冰壶质量相等,规定向前运动的方向为正方向,则碰后中国队冰壶获得的速度为() A.0.1 m/s B.-0.1 m/sC.0.7 m/s D.-0.7 m/s【解析】设冰壶质量为m,碰后中国队冰壶速度为v x,由动量守恒定律得mv0=mv+mv x解得v x=0.1 m/s,故选项A正确.【答案】 A3.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则()A .左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5B .左方是A 球,碰撞后A 、B 两球速度大小之比为1∶10C .右方是A 球,碰撞后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1∶10【解析】 由m B =2m A ,p A =p B 知碰前v B <v A若左为A 球,设碰后二者速度分别为v ′A 、v ′B由题意知p ′A =m A v ′A =2 kg·m/sp ′B =m B v ′B =10 kg·m/s 由以上各式得v ′A v ′B =25,故正确选项为A. 若右为A 球,由于碰前动量都为6 kg·m/s ,即都向右运动,两球不可能相碰.【答案】 A4.如图所示,轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从高h 处由静止开始沿光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是( )A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 能达到的最大高度为h 2D .B 能达到的最大高度为h【解析】 根据机械能守恒定律可得B 刚到达水平地面的速度v 0=2gh ,根据动量守恒定律可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm =12·2mv 2=12mgh ,即A 错,B 正确;当弹簧再次恢复原长时,A 与B 将分开,B 以v 的速度沿斜面上滑,根据机械能守恒定律可得mgh ′=12mv 2,B 能达到的最大高度为h /4,即D 错误.【答案】 B5.如图,大小相同的摆球a 和b 的质量分别为m 和3m ,摆长相同,并排悬挂,平衡时两球刚好接触.现将摆球a 向左拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是( )A .第一次碰撞后的瞬间,两球的速度大小相等B .第一次碰撞后的瞬间,两球的动量大小相等C .第一次碰撞后,两球的最大摆角不相同D .发生第二次碰撞时,两球在各自的平衡位置【解析】 弹性碰撞遵守能量守恒和动量守恒,设第一次碰撞前,a 的速度为v ,第一次碰撞后a 的速度为v 1、b 的速度为v 2,根据动量守恒,得mv =mv 1+3mv 2① 根据能量守恒,得:12mv 2=12mv 21+12×3mv 22② ①②联立得:v 1=-12v ,v 2=12v ,故A 选项正确;第一次碰撞后瞬间,a 的动量大小为12mv ,b 的动量大小为32mv ,故B 选项错误;由于第一次碰撞后瞬间的速度大小相等,根据机械能守恒可知,两球的最大摆角相等,C 选项错误;由于摆长相同,两球的振动周期相等,所以第二次碰撞时,两球在各自的平衡位置,D 选项正确.【答案】 AD6.如图所示,光滑水平直轨道上有三个滑块A 、B 、C ,质量分别为m A =m C =2m ,m B =m ,A 、B 用细绳连接,中间有一压缩的轻弹簧(弹簧与滑块不拴接).开始时A 、B 以共同速度v 0运动,C 静止.某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同.求B 与C 碰撞前B 的速度.【解析】 设共同速度为v ,球A 与B 分开后,B 的速度为v B ,由动量守恒定律(m A +m B )v 0=m A v +m B v B ①m B v B =(m B +m C )v ②联立①②式,得B 与C 碰撞前B 的速度v B =95v 0.7.如图所示,光滑水平桌面上有长L =2 m 的挡板C ,质量m C =5 kg ,在其正中央并排放着两个小滑块A 和B ,m A =1 kg ,m B =3 kg ,开始时三个物体都静止.在A 、B 间放有少量塑胶炸药,爆炸后A 以6 m/s 速度水平向左运动,A 、B 中任意一块与挡板C 碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板C 碰撞后,C 的速度是多大;(2)A 、C 碰撞过程中损失的机械能.【解析】 (1)A 、B 、C 系统动量守恒0=(m A +m B +m C )v C , v C =0.(2)炸药爆炸时A 、B 系统动量守恒m A v A =m B v B解得:v B =2 m/s A 、C 碰撞前后系统动量守恒m A v A =(m A +m C )v v =1 m/sΔE =12m A v 2A -12(m A +m C )v 2=15 J.8.如图所示,在光滑水平面上有质量均为m 的两辆小车A 和B ,A 车上表面光滑水平,其上表面左端有一质量为M 的小物块C (可看做质点).B 车上表面是一个光滑的14圆弧槽,圆弧槽底端的切线与A 的上表面相平.现在A 和C 以共同速度v 0冲向静止的B 车,A 、B 碰后粘合在一起,之后物块C 滑离A ,恰好能到达B 的圆弧槽的最高点.已知M =2m ,v 0=4 m/s ,取g =10 m/s 2.求圆弧槽半径R .【解析】 设A 、B 碰后的共同速度为v 1,C 到达最高点时A 、B 、C 的共同速度为v 2,A 、B 碰撞过程动量守恒:mv 0=2mv 1C 冲上圆弧最高点过程系统动量守恒:Mv 0+2mv 1=(M +2m )v 2机械能守恒:12Mv 20+2×12mv 21=12(M +2m )v 22+MgR 联立以上三式解得:R =v 2016g代入数据得:R =0.1 m。

【物理】物理动量守恒定律题20套(带答案)含解析

【物理】物理动量守恒定律题20套(带答案)含解析

【物理】物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答4.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.5.如图所示,在光滑的水平面上放置一个质量为2m 的木板B ,B 的左端放置一个质量为m 的物块A ,已知A 、B 之间的动摩擦因数为μ,现有质量为m 的小球以水平速度0υ飞来与A 物块碰撞后立即粘住,在整个运动过程中物块A 始终未滑离木板B ,且物块A 和小球均可视为质点(重力加速度g).求:①物块A 相对B 静止后的速度大小; ②木板B 至少多长.【答案】①0.25v 0.②2016v L gμ=【解析】试题分析:(1)设小球和物体A 碰撞后二者的速度为v 1,三者相对静止后速度为v 2,规定向右为正方向,根据动量守恒得, mv 0=2mv 1,① (2分) 2mv 1=4mv 2② (2分)联立①②得,v 2=0.25v 0. (1分)(2)当A 在木板B 上滑动时,系统的动能转化为摩擦热,设木板B 的长度为L ,假设A 刚好滑到B 的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A 碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A 相对B 静止后的速度大小;对子弹和A 共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.6.一列火车总质量为M ,在平直轨道上以速度v 匀速行驶,突然最后一节质量为m 的车厢脱钩,假设火车所受的阻力与质量成正比,牵引力不变,当最后一节车厢刚好静止时,前面火车的速度大小为多少? 【答案】Mv/(M-m) 【解析】 【详解】因整车匀速运动,故整体合外力为零;脱钩后合外力仍为零,系统的动量守恒. 取列车原来速度方向为正方向.由动量守恒定律,可得()0Mv M m v m =-'+⨯ 解得,前面列车的速度为Mvv M m'=-;7.如图所示,在光滑水平面上有一个长为L 的木板B ,上表面粗糙,在其左端有一个光滑的14圆弧槽C 与长木板接触但不连接,圆弧槽的下端与木板的上表面相平,B 、C 静止在水平面上,现有滑块A 以初速度v 0从右端滑上B 并以02v滑离B ,恰好能到达C 的最高点.A 、B 、C 的质量均为m ,试求:(1)滑块与木板B 上表面间的动摩擦因数μ; (2)14圆弧槽C 的半径R 【答案】(1)20516v gL μ=;(2)2064v R g=【解析】由于水平面光滑,A 与B 、C 组成的系统动量守恒和能量守恒,有:mv 0=m (12v 0)+2mv 1 ① μmgL =12mv 02-12m (12v 0) 2-12×2mv 12 ②联立①②解得:μ=2516v gL.②当A 滑上C ,B 与C 分离,A 、C 间发生相互作用.A 到达最高点时两者的速度相等.A 、C 组成的系统水平方向动量守恒和系统机械能守恒: m (12v 0)+mv 1=(m +m )v 2 ③ 12m (12v 0)2+12mv 12=12(2m )v 22+mgR ④ 联立①③④解得:R =264v g点睛:该题考查动量守恒定律的应用,要求同学们能正确分析物体的运动情况,列出动量守恒以及能量转化的方程;注意使用动量守恒定律解题时要规定正方向.8.如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .求男演员落地点C 与O 点的水平距离s .已知男演员质量m 1和女演员质量m 2之比m 1∶m 2=2,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .【答案】8R 【解析】 【分析】 【详解】两演员一起从从A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为m ,则212mgR mv =女演员刚好能回到高处,机械能依然守恒:222112m gR m v =女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:122112m m v m v m v +=-+()③根据题意:12:2m m = 有以上四式解得:222v gR =接下来男演员做平抛运动:由2142R gt =,得8 t g R 因而:28s v t R ==; 【点睛】两演员一起从从A 点摆到B 点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;本题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.9.如图所示,质量为m A =3kg 的小车A 以v 0=4m/s 的速度沿光滑水平面匀速运动,小车左端固定的支架通过不可伸长的轻绳悬挂质量为m B =1kg 的小球B (可看作质点),小球距离车面h =0.8m .某一时刻,小车与静止在光滑水平面上的质量为m C =1kg 的物块C 发生碰撞并粘连在一起(碰撞时间可忽略),此时轻绳突然断裂.此后,小球刚好落入小车右端固定的砂桶中(小桶的尺寸可忽略),不计空气阻力,重力加速度g =10m/s 2.求:(1)小车系统的最终速度大小v 共; (2)绳未断前小球与砂桶的水平距离L ; (3)整个过程中系统损失的机械能△E 机损. 【答案】(1)3.2m/s (2)0.4m (3)14.4J 【解析】试题分析:根据动量守恒求出系统最终速度;小球做平抛运动,根据平抛运动公式和运动学公式求出水平距离;由功能关系即可求出系统损失的机械能. (1)设系统最终速度为v 共,由水平方向动量守恒: (m A +m B ) v 0=(m A +m B +m C ) v 共 带入数据解得:v 共=3.2m/s(2)A 与C 的碰撞动量守恒:m A v 0=(m A +m C )v 1 解得:v 1=3m/s设小球下落时间为t ,则: 212h gt = 带入数据解得:t =0.4s 所以距离为:01()L v v =- 带入数据解得:L =0.4m(3)由能量守恒得:()()2201122B A B A B E m gh m m v m m m v ∆=++-++共损 带入数据解得:14.4E J ∆=损点睛:本题主要考查了动量守恒和能量守恒定律的应用,要注意正确选择研究对象,并分析系统是否满足动量守恒以及机械能守恒;然后才能列式求解.10.如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H 的光滑水平桌面上.现有一滑块A 从光滑曲面上离桌面h 高处由静止开始滑下,与滑块B 发生碰撞并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知,2,3A B C m m m m m m ===,求:(1)滑块A 与滑块B 碰撞结束瞬间的速度v ; (2)被压缩弹簧的最大弹性势能E Pmax ; (3)滑块C 落地点与桌面边缘的水平距离 s. 【答案】(1)111233v v gh ==(2)6mgh (323Hh 【解析】 【详解】解:(1)滑块A 从光滑曲面上h 高处由静止开始滑下的过程,机械能守恒,设其滑到底面的速度为1v ,由机械能守恒定律有:2112=A A m gh m v 解之得:12v gh =滑块A 与B 碰撞的过程,A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为v ,由动量守恒定律有:()1A A B m v m m v =+ 解之得:111233v v gh ==(2)滑块A 、B 发生碰撞后与滑块C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块A 、B 、C 速度相等,设为速度2v 由动量守恒定律有: ()12A A B C m v m m m v =++ 由机械能守恒定律有: ()22max 21()2A A CB B P m v m m m m E v -++=+ 解得被压缩弹簧的最大弹性势能:max 16P E mgh =(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块A 、B 的速度为3v ,滑块C 的速度为4v ,分别由动量守恒定律和机械能守恒定律有:()()34A B A B C m m v m m v m v +=++()()22234111222A B A B C m m v m m v m v +=++ 解之得:30=v ,4123v gh =滑块C 从桌面边缘飞出后做平抛运动:4 s v t =212H gt =解之得滑块C 落地点与桌面边缘的水平距离:23s Hh =11.如图所示,在水平面上有一弹簧,其左端与墙壁相连,O 点为弹簧原长位置,O 点左侧水平面光滑,水平段OP 长L=1m ,P 点右侧一与水平方向成的足够长的传送带与水平面在P 点平滑连接,皮带轮逆时针转动速率为3m/s ,一质量为1kg 可视为质点的物块A 压缩弹簧(与弹簧不栓接),使弹簧获得弹性势能,物块与OP 段动摩擦因数,另一与A 完全相同的物块B 停在P 点,B 与传送带的动摩擦因数,传送带足够长,A 与B 的碰撞时间不计,碰后A .B 交换速度,重力加速度,现释放A ,求:(1)物块A .B 第一次碰撞前瞬间,A 的速度(2)从A .B 第一次碰撞后到第二次碰撞前,B 与传送带之间由于摩擦而产生的热量 (3)A .B 能够碰撞的总次数 【答案】(1)(2)(3)6次【解析】试题分析:(1)设物块质量为m ,A 与B 第一次碰前的速度为,则:解得:(2)设A.B 第一次碰撞后的速度分别为,则,碰后B 沿传送带向上匀减速运动直至速度为零,加速度大小设为, 则:,解得:运动的时间,位移此过程相对运动路程此后B反向加速,加速度仍为,与传送带共速后匀速运动直至与A再次碰撞,加速时间为位移为此过程相对运动路程全过程生热(3)B与A第二次碰撞,两者速度再次互换,此后A向左运动再返回与B碰撞,B沿传送带向上运动再次返回,每次碰后到再次碰前速率相等,重复这一过程直至两者不再碰撞.则对A.B和弹簧组成的系统,从第二次碰撞后到不再碰撞:解得第二次碰撞后重复的过程数为n=2.25,所以碰撞总次数为N=2+2n=6.5=6次(取整数)考点:动能定理;匀变速直线运动的速度与时间的关系;牛顿第二定律【名师点睛】本题首先要理清物体的运动过程,其次要准确把握每个过程所遵守的物理规律,特别要掌握弹性碰撞过程,动量和机械能均守恒,两物体质量相等时交换速度12.如图所示,物块质量m=4kg,以速度v=2m/s水平滑上一静止的平板车上,平板车质量M=16kg,物块与平板车之间的动摩擦因数μ=0.2,其他摩擦不计(g=10m/s2),求:(1)物块相对平板车静止时,物块的速度;(2)物块在平板车上滑行的时间;(3)物块在平板车上滑行的距离,要使物块在平板车上不滑下,平板车至少多长?【答案】(1)0.4m/s(2)(3)【解析】解:物块滑下平板车后,在车对它的摩擦力作用下开始减速,车在物块对它的摩擦力作用下开始加速,当二者速度相等时,物块相对平板车静止,不再发生相对滑动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量守恒定律
一、单选题(每题3分,共36分)
1.下列关于物体的动量和动能的说法,正确的是 ( )
A .物体的动量发生变化,其动能一定发生变化
B .物体的动能发生变化,其动量一定发生变化
C .若两个物体的动量相同,它们的动能也一定相同
D .两物体中动能大的物体,其动量也一定大
2.为了模拟宇宙大爆炸初期的情境,科学家们使用两个带正电的重离子被加速后,沿同一条直线相向运动而发生猛烈碰撞.若要使碰撞前重离子的动能经碰撞后尽可能多地转化为其他形式的能,应该设法使这两个重离子在碰撞前的瞬间具有 ( ) A .相同的速度 B .相同大小的动量 C .相同的动能 D .相同的质量
3.质量为M 的小车在光滑水平面上以速度v 向东行驶,一个质量为m 的小球从距地面H 高处自由落下,正好落入车中,此后小车的速度将 ( ) A .增大 B .减小 C .不变 D .先减小后增大
4.甲、乙两物体质量相同,以相同的初速度在粗糙的水平面上滑行,甲物体比乙物体先停下来,下面说法正确的是
( ) A .滑行过程中,甲物体所受冲量大 B .滑行过程中,乙物体所受冲量大

C .滑行过程中,甲、乙两物体所受的冲量相同
D .无法比较
5.A 、B 两刚性球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是5kg·m/s ,B 球的动量是7kg·m/s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量的可能值是 ( )
A .-4kg·m /s 、14kg·m /s
B .3kg·m /s 、9kg·m /s
C .-5kg·m /s 、17kg·m /s
D .6kg·m/s 、6kg·m /s
6.质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短,离地的速率为2v .在碰撞过程中,
地面对钢球冲量的方向和大小为 ( )
A .向下,12()m v v -
B .向下,12()m v v +
C .向上,12()m v v -
D .向上,12()m v v +
7.质量为m 的α粒子,其速度为0v ,与质量为3m 的静止碳核碰撞后沿着原来的路径被弹回,其速度为0/2v ,而碳核获得的速度为 ( ) A .06v B .20v C .02v D .03
v 8.在光滑水平面上,动能为0E ,动量大小为0P 的小钢球1与静止的小钢球2发生碰撞,碰撞前后球1的运动方向
相反,将碰撞后球1的动能和动量的大小分别记作1E 、1P ,
球2的动能和动量的大小分别记为2E 、2P ,则必有 ( ) ①1E <0E ②1P <0P ③2E >0E ④2P >0P
A .①② B.①③④ C.①②④ D.②③
9.质量为1.0kg 的小球从高20 m 处自由下落到软垫上,反弹后上升的最大高度为.小球与软垫接触的时间是,在
接触的时间内小球受到的合力的冲量大小为(空气阻力不计,g 取10m/s 2) ( )
A .10N·s B.20N·s C.30N·s D .40N·s
10.质量为2kg 的物体,速度由4m /s 变成 -6m/s ,则在此过程中,它所受到的合外力冲量是 ( )
A .-20N·s ·s C.-4N·s D .-12N·s
11.竖直向上抛出一个物体.若不计阻力,取竖直向上为正,则该物体动量随时间变化的图线是 ( )
12.一颗水平飞行的子弹射入一个原来悬挂在天花板下静止的沙袋并留在其中和沙袋一起上摆.关于子弹和沙袋组成的系统,下列说法中正确的是 ( )

A .子弹射入沙袋过程中系统动量和机械能都守恒
B .子弹射入沙袋过程中系统动量和机械能都不守恒
C .共同上摆阶段系统动量守恒,机械能不守恒
D .共同上摆阶段系统动量不守恒,机械能守恒
二、多选题(每题4分,共16分)
13.下列情况下系统动量守恒的是 ( )A .两球在光滑的水平面上相互碰撞 B .飞行的手榴弹在空中爆炸
C .大炮发射炮弹时,炮身和炮弹组成的系统
D .用肩部紧紧抵住步枪枪托射击,枪身和子弹组成的系统
14.两物体相互作用前后的总动量不变,则两物体组成的系统一定 ( )
A .不受外力作用
B .不受外力或所受合外力为零
C .每个物体动量改变量的值相同
D .每个物体动量改变量的值不同

15.从水平地面上方同一高度处,使a 球竖直上抛,使b 球平抛,且两球质量相等,初速度大小相同,最后落于同一水平地面上.空气阻力不计.下述说法中正确的是 ( )
A .着地时的动量相同
B .着地时的动能相同
C .重力对两球的冲量相同
D .重力对两球所做的功相同
16.如图所示,固定的光滑斜面倾角为θ.质量为m 的物体由静止开始从斜面顶端滑到底端,
所用时间为t .在这一过程中 ( )
A .所受支持力的冲量为O
B .所受支持力的冲量大小为cos mg t θ⋅
C .所受重力的冲量大小为mgt
D .动量的变化量大小为sin mg t θ⋅
三、填空题(每题3分,共15分)
17.以初速度0v =40m /s 竖直向上抛出的物体,质量为4kg(g=10m/s 2),则第2s 末的mv 的乘积为 kg·m /s ,
第5s 末的mv 的乘积为 kg·m /s ,从第2s 末到第5s 末mv 的乘积变化量为 kg·m /s .这个过程mv 的乘积 ,机械能 .(填“守恒.”或“不守恒”)
18.质量为150 kg 的小车以2m/s 的速度在光滑水平道路上匀速前进,质量为50 kg 的人以水平速度4m/s 迎面跳上小车后,小车速度为 m/s .
-
19.在光滑的水平轨道上,质量为2kg 的A 球以5m/s 的速度向右运动,质量为3kg 的B 球以 lm/s 的速度向左运动,二者迎面相碰撞,设碰撞中机械能不损失,那么碰撞后,A 球的速度大小为 ,方向 ;B 球的速度大小为 ,方向 。

20.去年夏天,某地区下了一场暴雨,降雨量在2小时内积水深7.2cm .设雨滴落地时速度为35m/s ,则雨滴落地时单位面积的地面受到的平均冲击力是 .
21.物体A 的初动量大小是·m /s ,碰撞某物体后动量大小是·m /s ,那
么物体碰撞过程中动量变化△p 的大小范围是 .
四、实验题(共6分)
22.在验证碰撞中动量守恒的实验中,A 、B 两球直径相同,质量分别
为1m 、2m .
(1)实验中所必须用的测量工具是 、 、 .
(2)某次实验得出小球的落点情况如图所示,12
PM PN OM ==
.碰撞中动量守恒,则两小球质量之比1m :2m = . 五、计算题(共27分)
]
23.(5分)质量为10g 的子弹,以300m/s 的速度射向质量为24g 、静止在光滑水平桌面上的木块,并留在木块中,子弹留在木块中以后,木块运动的速度是多大如果子弹把木块打穿,子弹穿过后的速度为100m /s ,这时木块的速度又是多大
24.(5分)光滑水平面上有一静止小车,质量为M ,小车上一原来静止的人,质量为m ,相对于小车以速度v 向右跳离小车,求人跳离瞬间车的速度的大小
25.(5分)如图所示,质量为2m =1kg 的滑块静止于光滑的水平面上,一小球1m =50g ,以
1000m/s 的速率碰到滑块后又以800m/s 速率被弹回,滑块获得的速度为多少
>
26.(6分)大炮的炮身质量为M =490kg(不包括炮弹),一枚质量为m =10kg 的炮弹从炮口射出,速度大小为
v =490m/s ,方向与水平方向成60°,设炮车与地面间的动摩擦因数μ=,求炮车后退的距离。

(g=10m/s 2)
27.(6分)体重是60kg的建筑工人,不慎从高空中跌下,由于弹性安全带的保护,使他悬挂起来,已知弹性安全带缓冲时间是,安全带长5m,则安全带所受的平均冲击力多大(g=10m/s2)

【参考答案】
一、1.B 2.B 3.B 4.C 5.B 6.D 7.C 8.C 9.C 10.A 11.C 12.D
二、13.ABCD 14.BC 15.BD 16.BCD
三、17.80 40 120不守恒守恒 18. 19.2.2 m/s 向左 3.8m/s 向右
20. N 21.3 kg·m/s≤△p≤11 kg·m/s
四、22.(1)天平刻度尺游标卡尺 (2)4:1
五、23.88.2 m/s,83.3 m/s 24.
m
v M m
25.90m/s方向与小球初速度方向一致 26.1.56 m 27.1100N。

相关文档
最新文档