2013年高考真题——理科数学 (湖北卷) 解析版

合集下载

(完整版)2013年高考理科数学湖北卷word解析版

(完整版)2013年高考理科数学湖北卷word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(湖北卷)本试题卷共6页,22题,其中第15、16题为选考题.全卷满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑.2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B 铅笔涂黑.考生应根据自己选做的题目准确填涂题号,不得多选.答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效.5.考生必须保持答题卡的整洁.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013湖北,理1)在复平面内,复数2i=1iz +(i 为虚数单位)的共轭复数对应的点位于( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D解析:∵2i 2i 1i =1i 1i 1i z (-)=+(+)(-)=i(1-i)=1+i , ∴复数2i=1iz +的共轭复数z =1-i ,其在复平面内对应的点(1,-1)位于第四象限.2.(2013湖北,理2)已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,B ={x |x 2-6x +8≤0},则A ∩=( ).A .{x |x ≤0}B .{x |2≤x ≤4}C .{x |0≤x <2或x >4}D .{x |0<x ≤2或x ≥4} 答案:C解析:由题意知集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭={x |x ≥0},集合B ={x |x 2-6x +8≤0}={x |2≤x ≤4},={x |x <2或x >4}.因此A ∩()={x |0≤x <2或x >4}.3.(2013湖北,理3)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ).A .(⌝p )∨(⌝q )B .p ∨(⌝q )C .(⌝p )∧(⌝q )D .p ∨q 答案:A解析:“至少有一位学员没有降落在指定范围”包括甲或乙没有落在指定范围或者两人均没有落在指定范围,因此应为(⌝p )∨(⌝q ).4.(2013湖北,理4)将函数y 3x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ).A .π12 B .π6 C .π3 D .5π6答案:B解析:∵y x +sin x =π2sin 3x ⎛⎫+ ⎪⎝⎭,∴函数y cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,变为函数π=2sin 3y x m ⎛⎫++ ⎪⎝⎭的图象. 又∵所得到的图象关于y 轴对称,则有π3+m =k π+π2,k ∈Z , ∴m =ππ6k +,k ∈Z .∵m >0,∴当k =0时,m 的最小值为π6. 5.(2013湖北,理5)已知π0<<4θ,则双曲线C 1:2222=1cos sin x y θθ-与C 2:22222=1sin sin tan y x θθθ-的( ). A .实轴长相等 B .虚轴长相等C .焦距相等D .离心率相等 答案:D解析:对于双曲线C 1:2222=1cos sin x y θθ-,21a =cos 2θ,21b =sin 2θ,21c =1; 对于双曲线C 2:22222=1sin sin tan y x θθθ-,22a =sin 2θ,22b =sin 2θtan 2θ,22c =sin 2θ+sin 2θtan 2θ=sin 2θ(1+tan 2θ)=22222sin sin sin 1cos cos θθθθθ⎛⎫+= ⎪⎝⎭=tan 2θ. ∵只有当θ=ππ4k +(k ∈Z )时,21a =22a 或21b =22b 或21c =22c , 而π0<<4θ,∴排除A ,B ,C. 设双曲线C 1,C 2的离心率分别为e 1,e 2,则2121cos e θ=,22222tan 1sin cos e θθθ==. 故e 1=e 2,即两双曲线的离心率相等.6.(2013湖北,理6)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB u u u r 在CD uuur 方向上的投影为( ).A .2BC .2-D .答案:A解析:由题意可知AB u u u r =(2,1),CD uuu r =(5,5),故AB u u u r 在CD uuu r 方向上的投影为2AB CD CD⋅==u u u r u u u ru u u r . 7.(2013湖北,理7)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=25731t t-++(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ).A .1+25ln 5B .118+25ln3C .4+25ln 5D .4+50ln 2答案:C解析:由于v (t )=7-3t +251t+,且汽车停止时速度为0, 因此由v (t )=0可解得t =4, 即汽车从刹车到停止共用4 s. 该汽车在此期间所行驶的距离4025=73d 1s t t t ⎛⎫-+ ⎪+⎝⎭⎰ =423725ln 12tt t ⎡⎤-+(+)⎢⎥⎣⎦ =4+25ln 5(m).8.(2013湖北,理8)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V 1,V 2,V 3,V 4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( ).A .V 1<V 2<V 4<V 3B .V 1<V 3<V 2<V 4C .V 2<V 1<V 3<V 4D .V 2<V 3<V 1<V 4 答案:C 解析:由三视图可知,四个几何体自上而下分别为圆台,圆柱,四棱柱,四棱台.结合题中所给数据可得:V 1=13(4π+π+2π)=7π3,V 2=2π, V 3=23=8,V 4=13(16+4+8)=283.故V 2<V 1<V 3<V 4.9.(2013湖北,理9)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( ).A .126125 B .65 C .168125 D .75答案:B解析:由题意可知涂漆面数X 的可能取值为0,1,2,3.由于P (X =0)=27125,P (X =1)=54125,P (X =2)=36125,P (X =3)=8125, 故E (X )=275436815060+1+231251251251251255⨯⨯⨯⨯==+.10.(2013湖北,理10)已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( ).A .f (x 1)>0,f (x 2)>12- B .f (x 1)<0,f (x 2)<12-C .f (x 1)>0,f (x 2)<12-D .f (x 1)<0,f (x 2)>12-答案:D解析:由题意知,函数f (x )=x (ln x -ax )=x ln x -ax 2有两个极值点, 即f ′(x )=ln x +1-2ax =0在区间(0,+∞)上有两个根. 令h (x )=ln x +1-2ax ,则h ′(x )=121=2ax a x x-+-=,当a ≤0时h ′(x )>0,f ′(x )在区间(0,+∞)上递增,f ′(x )=0不可能有两个正根,∴a >0.由h ′(x )=0,可得12x a =,从而可知h (x )在区间10,2a ⎛⎫ ⎪⎝⎭上递增,在区间1,2a ⎛⎫∞ ⎪⎝⎭上递减.因此需111=ln +11=ln >0222h a a a ⎛⎫- ⎪⎝⎭,即1>12a 时满足条件,故当10<<2a 时,h (x )=0有两个根x 1,x 2,且121<2x x a<.又h (1)=1-2a >0, ∴1211<2x x a<<,从而可知函数f (x )在区间(0,x 1)上递减,在区间(x 1,x 2)上递增,在区间(x 2,+∞)上递减.∴f(x1)<f(1)=-a<0,f(x2)>f(1)=12a->-.故选D.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡...对应题号....的位置上,答错位置,书写不清,模棱两可均不得分.11.(2013湖北,理11)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(1)直方图中x的值为__________;(2)在这些用户中,用电量落在区间[100,250)内的户数为__________.答案:(1)0.004 4(2)70解析:(1)由频率分布直方图知[200,250)小组的频率为1-(0.002 4+0.003 6+0.006 0+0.002 4+0.001 2)×50=0.22,于是x=0.2250=0.004 4.(2)∵数据落在[100,250)内的频率为(0.003 6+0.006 0+0.004 4)×50=0.7,∴所求户数为0.7×100=70.12.(2013湖北,理12)阅读如图所示的程序框图,运行相应的程序,输出的结果i=__________.答案:5解析:第一次执行循环体后:a =5,i =2;第二次执行循环体后:a =16,i =3;第三次执行循环体后:a =8,i =4;第四次执行循环体后:a =4,i =5,满足条件,循环结束.输出i =5.13.(2013湖北,理13)设x ,y ,z ∈R ,且满足:x 2+y 2+z 2=1,x +2y +3z 则x +y +z =__________.答案:7解析:由柯西不等式得(x 2+y 2+z 2)(12+22+32)≥(x +2y +3z )2当且仅当123x y z==时等号成立,此时y =2x ,z =3x .∵x 2+y 2+z 2=1,x +2y +3z∴14x =,14y =,14z =.∴x +y +z =14.(2013湖北,理14)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为2111222n n n n (+)=+.记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=21122n n +, 正方形数 N (n,4)=n 2, 五边形数 N (n,5)=23122n n -, 六边形数 N (n,6)=2n 2-n ,…… ……可以推测N (n ,k )的表达式,由此计算N (10,24)=__________. 答案:1 000解析:由题中数据可猜想:含n 2项的系数为首项是12,公差是12的等差数列,含n 项的系数为首项是12,公差是12-的等差数列,因此 N (n ,k )=2211112433222222k k k n k n n n ⎡⎤--⎡⎤⎛⎫+(-)++(-)-=+ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦.故N (10,24)=11n 2-10n =11×102-10×10=1 000.(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.) 15.(2013湖北,理15)(选修4—1:几何证明选讲)如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E .若AB =3AD ,则CEEO的值为______.答案:8解析:设AD =2,则AB =6, 于是BD =4,OD =1. 如图,由射影定理得CD 2=AD ·BD =8, 则CD=.在Rt △OCD 中,DE=·OD CD OC ==则83CE ===,EO =OC -CE =81333-=.因此83=813CE EO =.16.(2013湖北,理16)(选修4—4:坐标系与参数方程)在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b ϕϕ=⎧⎨=⎩(φ为参数,a >b >0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为πsin 42m ρθ⎛⎫+= ⎪⎝⎭(m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为__________.答案:3解析:将椭圆C 的参数方程cos ,sin x a y b ϕϕ=⎧⎨=⎩(φ为参数,a >b >0)化为标准方程为22221x y a b +=(a >b >0).又直线l的极坐标方程为πsin 42m ρθ⎛⎫+= ⎪⎝⎭(m 为非零常数),即sin cos 222m ρθθ⎛⋅+⋅= ⎝⎭,则该直线的一般式为y +x -m =0.圆的极坐标方程为ρ=b ,其标准方程为x 2+y 2=b 2.∵直线与圆O相切,∴=b,|m .又∵直线l 经过椭圆C 的焦点,∴|m |=c .∴c =,c 2=2b 2.∵a 2=b 2+c 2=3b 2,∴22223c e a ==.∴e =.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(2013湖北,理17)(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A-3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC的面积S =b =5,求sin B sin C 的值. 解:(1)由cos 2A -3cos(B +C )=1, 得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍去). 因为0<A <π,所以A =π3.(2)由S =12bc sin A=1224bc bc ⋅==bc =20.又b =5,知c =4. 由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =又由正弦定理得sin B sin C =222035sin sin sin 2147b c bc A A A a a a ⋅==⨯=.18.(2013湖北,理18)(本小题满分12分)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125.(1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得121111ma a a +++≥L ?若存在,求m 的最小值;若不存在,说明理由. 解:(1)设等比数列{a n }的公比为q ,则由已知可得331211125,||10,a q a q a q ⎧=⎨-=⎩ 解得15,33,a q ⎧=⎪⎨⎪=⎩或15,1.a q =⎧⎨=-⎩故1533n n a -=⋅,或a n =-5·(-1)n -1.(2)若1533n n a -=⋅,则113153n n a -⎛⎫=⋅ ⎪⎝⎭,故1n a ⎧⎫⎨⎬⎩⎭是首项为35,公比为13的等比数列,从而1311531 =113mmn na =⎡⎤⎛⎫⋅-⎢⎥⎪⎝⎭⎢⎥⎣⎦-∑=9191<110310m⎡⎤⎛⎫⋅-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 若a n =(-5)·(-1)n -1,则111(1)5n n a -=--,故1n a ⎧⎫⎨⎬⎩⎭是首项为15-,公比为-1的等比数列,从而11,21,150,2,mn n m k k a m k k +=+⎧-=-(∈)⎪=⎨⎪=(∈)⎩∑N N 故111m n n a =<∑. 综上,对任何正整数m ,总有111mn na =<∑. 故不存在正整数m ,使得121111ma a a +++≥L 成立. 19.(2013湖北,理19)(本小题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直线PC ⊥平面ABC ,E ,F 分别是P A ,PC 的中点.(1)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面P AC 的位置关系,并加以证明;(2)设(1)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =u u u r u u u r,记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E -l -C 的大小为β,求证:sin θ=sin αsin β.(1)解:直线l ∥平面P AC ,证明如下: 连接EF ,因为E ,F 分别是P A ,PC 的中点, 所以EF ∥AC . 又EF平面ABC ,且AC ⊂平面ABC ,所以EF ∥平面ABC .而EF ⊂平面BEF ,且平面BEF ∩平面ABC =l ,所以EF ∥l .因为l平面P AC ,EF ⊂平面P AC ,所以直线l ∥平面P AC .(2)证明:(综合法)如图1,连接BD ,由(1)可知交线l 即为直线BD ,且l ∥AC . 因为AB 是O 的直径,图1所以AC ⊥BC , 于是l ⊥BC .已知PC ⊥平面ABC ,而l ⊂平面ABC ,所以PC ⊥l . 而PC ∩BC =C ,所以l ⊥平面PBC . 连接BE ,BF ,因为BF ⊂平面PBC , 所以l ⊥BF .故∠CBF 就是二面角E -l -C 的平面角, 即∠CBF =β.由12DQ CP =u u u r u u u r ,作DQ ∥CP ,且12DQ CP =.连接PQ ,DF ,因为F 是CP 的中点,CP =2PF , 所以DQ =PF ,从而四边形DQPF 是平行四边形,PQ ∥FD .连接CD ,因为PC ⊥平面ABC ,所以CD 是FD 在平面ABC 内的射影, 故∠CDF 就是直线PQ 与平面ABC 所成的角,即∠CDF =θ. 又BD ⊥平面PBC ,有BD ⊥BF ,知∠BDF 为锐角, 故∠BDF 为异面直线PQ 与EF 所成的角,即∠BDF =α, 于是在Rt △DCF ,Rt △FBD ,Rt △BCF 中,分别可得sin θ=CF DF ,sin α=BF DF ,sin β=CF BF, 从而sin αsin β=CF BF CFBF DF DF⋅==sin θ, 即sin θ=sin αsin β.(向量法)如图2,由12DQ CP =u u u r u u u r ,作DQ ∥CP ,且12DQ CP =.图2连接PQ ,EF ,BE ,BF ,BD ,由(1)可知交线l 即为直线BD .以点C 为原点,向量CA u u u r ,CB u u u r ,CP u u u r所在直线分别为x 、y 、z 轴,建立如图所示的空间直角坐标系,设CA =a ,CB =b ,CP =2c ,则有C (0,0,0),A (a,0,0),B (0,b,0),P (0,0,2c ),Q (a ,b ,c ),E 1,0,2a c ⎛⎫⎪⎝⎭,F (0,0,c ).于是1,0,02FE a ⎛⎫= ⎪⎝⎭u u u r ,QP uuur =(-a ,-b ,c ),BF u u u r =(0,-b ,c ),所以cos α=FE QP FE QP ⋅=⋅u u u r u u u r u u u r u u u r,从而sin α=. 又取平面ABC 的一个法向量为m =(0,0,1),可得sin QP QP θ⋅==⋅u u u r u u u r m m , 设平面BEF 的一个法向量为n =(x ,y ,z ),所以由0,0,FE BF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 可得10,20.ax by cz ⎧=⎪⎨⎪-+=⎩取n =(0,c ,b ). 于是|cos β|=||||||⋅=⋅m n m n从而sin β=.故sin αsin β==sin θ,即sin θ=sin αsin β.20.(2013湖北,理20)(本小题满分12分)假设每天从甲地去乙地的旅客人数X 是服从正态分布N (800,502)的椭机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p 0.(1)求p 0的值;(参考数据:若X ~N (μ,σ2),有P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4,P (μ-3σ<X ≤μ+3σ)=0.997 4.)(2)某客运公司用A ,B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A ,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?解:(1)由于随机变量X服从正态分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.954 4.由正态分布的对称性,可得p0=P(X≤900)=P(X≤800)+P(800<X≤900)=1122P+(700<X≤900)=0.977 2.(2)设A型、B型车辆的数量分别为x,y辆,则相应的营运成本为1 600x+2 400y. 依题意,x,y还需满足:x+y≤21,y≤x+7,P(X≤36x+60y)≥p0.由(1)知,p0=P(X≤900),故P(X≤36x+60y)≥p0等价于36x+60y≥900.于是问题等价于求满足约束条件21,7, 3660900, ,0,,, x yy xx yx y x y+≤⎧⎪≤+⎪⎨+≥⎪⎪≥∈⎩N且使目标函数z=1 600x+2 400y达到最小的x,y.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6).由图可知,当直线z=1 600x+2 400y经过可行域的点P时,直线z=1 600x+2 400y在y轴上截距2400z最小,即z取得最小值.故应配备A型车5辆、B型车12辆.21.(2013湖北,理21)(本小题满分13分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D.记λ=mn,△BDM和△ABN的面积分别为S1和S2.(1)当直线l 与y 轴重合时,若S 1=λS 2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得S 1=λS 2?并说明理由. 解:依题意可设椭圆C 1和C 2的方程分别为C 1:2222=1x y a m +,C 2:2222=1x y a n+.其中a >m >n >0,λ=>1mn.(1)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为x =0,则S 1=12|BD |·|OM |=12a |BD |,S 2=12|AB |·|ON |=12a |AB |,图1所以12||||S BD S AB =. 在C 1和C 2的方程中分别令x =0,可得y A =m ,y B =n ,y D =-m , 于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---.若12=S S λ,则1=1λλλ+-,化简得λ2-2λ-1=0. 由λ>1,可解得λ.故当直线l 与y 轴重合时,若S 1=λS 2,则λ. 解法2:如图1,若直线l 与y 轴重合,则|BD |=|OB |+|OD |=m +n ,|AB |=|OA |-|OB |=m -n ;S 1=12|BD |·|OM |=12a |BD |, S 2=12|AB |·|ON |=12a |AB |.所以12||1||1S BD m n S AB m n λλ++===--.若12=S S λ,则1=1λλλ+-,化简得λ2-2λ-1=0. 由λ>1,可解得λ.故当直线l 与y 轴重合时,若S 1=λS 2,则λ.(2)解法1:如图2,若存在与坐标轴不重合的直线l ,使得S 1=λS 2.根据对称性,不妨设直线l :y =kx (k >0),点M (-a,0),N (a,0)到直线l 的距离分别为d 1,d 2,则1d ==,2d ==d 1=d 2.图2又S 1=12|BD |d 1,S 2=12|AB |d 2,所以12||||S BD S AB λ==,即|BD |=λ|AB |. 由对称性可知|AB |=|CD |,所以|BC |=|BD |-|AB |=(λ-1)|AB |, |AD |=|BD |+|AB |=(λ+1)|AB |,于是||1||1AD BC λλ+=-.① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =.根据对称性可知x C =-x B ,x D =-x A ,于是2||||2A Bx AD BC x ==② 从而由①和②式可得11λλλ+=(-).③ 令1=1t λλλ+(-),则由m >n ,可得t ≠1,于是由③可解得22222211n t k a t λ(-)=(-). 因为k ≠0,所以k 2>0.于是③式关于k 有解,当且仅当222221>01n t a t λ(-)(-), 等价于2221(1)<0t t λ⎛⎫-- ⎪⎝⎭由λ>1,可解得1λ<t <1, 即11<11λλλλ+<(-),由λ>1,解得λ>,所以当1<λ≤l ,使得S 1=λS 2; 当λ>时,存在与坐标轴不重合的直线l 使得S 1=λS 2.解法2:如图2,若存在与坐标轴不重合的直线l ,使得S 1=λS 2.根据对称性,不妨设直线l :y =kx (k >0),点M (-a,0),N (a,0)到直线l 的距离分别为d 1,d 2,则1d ==,2d ==d 1=d 2.又S 1=12|BD |d 1,S 2=12|AB |d 2,所以12||=||S BD S AB λ=.因为||||A B A Bx x BD AB x x λ+===-,所以11A B x x λλ+=-.由点A (x A ,kx A ),B (x B ,kx B )分别在C 1,C 2上,可得22222=1A A x k x a m +,22222=1B B x k x a n+,两式相减可得22222222=0A B A B x x k x x a m λ-(-)+, 依题意x A >x B >0,所以22A B x x >.所以由上式解得22222222A B B A m x x k a x x λ(-)=(-). 因为k 2>0,所以由2222222>0A B B A m x x a x x λ(-)(-),可解得<1A B x x λ<. 从而11<<λλλ+-,解得λ>,所以 当1<λ≤l ,使得S 1=λS 2;当λ>时,存在与坐标轴不重合的直线l 使得S 1=λS 2. 22.(2013湖北,理22)(本小题满分14分)设n 是正整数,r 为正有理数.(1)求函数f (x )=(1+x )r +1-(r +1)x -1(x >-1)的最小值;(2)证明:111111<<11r r r r r n n n n n r r ++++-(-)(+)-++;(3)设x ∈R ,记[x ]为不小于...x 的最小整数,例如[2]=2,[π]=4,3=12⎡⎤--⎢⎥⎣⎦.令S L [S ]的值.(参考数据:4380344.7≈,4381350.5≈,43124618.3≈,43126631.7≈)(1)解:因为f ′(x )=(r +1)(1+x )r -(r +1)=(r +1)[(1+x )r -1],令f ′(x )=0,解得x =0. 当-1<x <0时,f ′(x )<0,所以f (x )在(-1,0)内是减函数; 当x >0时,f ′(x )>0,所以f (x )在(0,+∞)内是增函数. 故函数f (x )在x =0处取得最小值f (0)=0.(2)证明:由(1),当x ∈(-1,+∞)时,有f (x )≥f (0)=0,即 (1+x )r +1≥1+(r +1)x ,且等号当且仅当x =0时成立, 故当x >-1且x ≠0时,有 (1+x )r +1>1+(r +1)x .①在①中,令1x n =(这时x >-1且x ≠0),得+1111>1+r r n n+⎛⎫+ ⎪⎝⎭. 上式两边同乘n r +1,得(n +1)r +1>n r +1+n r (r +1),即1111r r rn n n r ++(+)-<+.②当n >1时,在①中令1x n=-(这时x >-1且x ≠0),类似可得 1111r r rn n n r ++-(-)>+.③且当n =1时,③也成立. 综合②,③得11111111r r r r rn n n n n r r ++++-(-)(+)-<<++.④(3)解:在④中,令13r =,n 分别取值81,82,83,…,125,得4444333333(8180)(8281)44--, 4444333333(8281)(8382)44--<, 4444333333(8382)(8483)44--<, ……4444333333(125124)(126125)44--<.将以上各式相加,并整理得4444333333(12580)(12681)44S --<<. 代入数据计算,可得44333(12580)210.24-≈,44333(12681)210.94-≈.由[S ]的定义,得[S ]=211.。

2013年湖北省高考数学试卷(理科)答案及解析

2013年湖北省高考数学试卷(理科)答案及解析

2013年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•湖北)在复平面内,复数(i为虚数单位)的共轭复数对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2013•湖北)已知全集为R,集合,则A∩∁R B=()A .{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2或x>4}D.{x|0<x≤2或x≥4}3.(5分)(2013•湖北)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A .(¬p)∨(¬q)B.p∨(¬q)C.(¬p )∧(¬q)D.p∨q4.(5分)(2013•湖北)将函数的图象向左平移m(m >0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A .B.C.D.5.(5分)(2013•湖北)已知,则双曲线的()A .实轴长相等B.虚轴长相等C.焦距相等D.离心率相等6.(5分)(2013•湖北)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D (3,4),则向量在方向上的投影为()A B C D7.(5分)(2013•湖北)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度的单位:s,v的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是()A .1+25ln5B.8+25ln C.4+25ln5D.4+50ln28.(5分)(2013•湖北)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A .V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V49.(5分)(2013•湖北)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X的均值E(X)=()A .B.C.D.10.(5分)(2013•湖北)已知a为常数,函数f(x)=x(lnx ﹣ax)有两个极值点x1,x2(x1<x2)()A B C D二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)(2013•湖北)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为_________;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为_________.12.(5分)(2013•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果i=_________.13.(5分)(2013•湖北)设x,y,z∈R,且满足:,则x+y+z=_________.14.(5分)(2013•湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n 个数的表达式:三角形数,正方形数N(n,4)=n2,五边形数,六边形数N(n,6)=2n2﹣n,…可以推测N(n,k)的表达式,由此计算N(10,24)=_________.15.(5分)(2013•湖北)(选修4﹣1:几何证明选讲)如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则的值为_________.16.(2013•湖北)(选修4﹣4:坐标系与参数方程)在直角坐标系xOy中,椭圆C的参数方程为为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为_________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•湖北)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积,求sinBsinC的值.18.(12分)(2013•湖北)已知等比数列{a n}满足:|a2﹣a3|=10,a1a2a3=125.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.19.(12分)(2013•湖北)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F 分别是PA,PC的中点.(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.20.(12分)(2013•湖北)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(Ⅰ)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)(Ⅱ)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?21.(13分)(2013•湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.22.(14分)(2013•湖北)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;(Ⅱ)证明:;(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如.令的值.(参考数据:.2013年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)考点:复数的代数表示法及其几何意义.专题:计算题.分析:将复数z=的分母实数化,求得z=1+i,即可求得,从而可知答案.解答:解:∵z====1+i,∴=1﹣i.∴对应的点(1,﹣1)位于第四象限,故选D.点评:本题考查复数的代数表示法及其几何意义,将复数z=的分母实数化是关键,属于基础题.2.(5分)考点:其他不等式的解法;交、并、补集的混合运算.专题:计算题;不等式的解法及应用.分析:利用指数函数的性质可求得集合A,通过解一元二次不等式可求得集合B,从而可求得A∩C R B.解答:解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴∁R B={x|x<2或x>4},∴A∩∁R B={x|0≤x<2或x>4},故选C.点评:本题考查指数函数的性质与元二次不等式,考查交、并、补集的混合运算,属于中档题.3.(5分)考点:复合命题的真假.专题:阅读型.分析:由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.解答:解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.点评:本题考查了复合命题的真假,解答的关键是熟记复合命题的真值表,是基础题.4.(5分)考点:两角和与差的正弦函数;函数y=Asin(ωx+φ)的图象变换.专三角函数的图像与性质.分析:函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用平移规律得到平移后的解析式,根据所得的图象关于y轴对称,即可求出m的最小值.解答:解:y=cosx+sinx=2(cosx+sinx)=2sin (x+),∴图象向左平移m(m >0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选B点评:此题考查了两角和与差的正弦函数公式,以及函数y=Asin(ωx+φ)的图象变换,熟练掌握公式是解本题的关键.5.(5分)考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据双曲线的标准方程求出双曲线的几何性质同,即可得出正确答案.解答:解:双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同.故选D.点评:本题主要考查了双曲线的标准方程、双曲线的简单性质等,属于基础题.6.(5分)考平面向量数量积的含义与物理意义.专题:平面向量及应用.分析:先求出向量、,根据投影定义即可求得答案.解答:解:,,则向量方向上的投影为:•cos<>=•===,故选A.点评:本题考查平面向量数量积的含义与物理意义,考查向量投影定义,属基础题,正确理解相关概念是解决问题的关键.7.(5分)考点:定积分.专题:导数的综合应用.分析:令v(t)=0,解得t=4,则所求的距离S=,解出即可.解答:解:令v(t)=7﹣3t+,化为3t2﹣4t ﹣32=0,又t>0,解得t=4.∴由刹车行驶至停止,在此期间汽车继续行驶的距离s===4+25ln5.故选C.点评:熟练掌握导数的运算法则和定积分的几何意义是解题的关键.8.(5分)考点:由三视图求面积、体积.专题:计算题.分析:利用三视图与已知条件判断组合体的形状,分别求出几何体的体积,即可判断出正确选项.解答:解:由题意以及三视图可知,该几何体从上到下由:圆台、圆柱、正四棱柱、正四棱台组成,体积分别记λ为V1==.V2=12×π×2=2π,V3=2×2×2=8V4==;∵,∴V2<V1<V3<V4故选C.点评:本题考查简单组合体的三视图与几何体的体积的求法,正确判断几何体的形状与准确利用公式求解体积是解题的关键.9.(5分)考点:离散型随机变量的期望与方差.专题:压轴题;概率与统计.分析:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,④由以上可知:还剩下125﹣(8=36+54)=27个内部的小正方体的6个面都没有涂油漆,根据上面的分析即可得出其概率及X的分布列,利用数学期望的计算公式即可得出.解答:解:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,∴P(X=3)=;②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,∴P (X=2)=;③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,∴P(X=1)=.④由以上可知:还剩下125﹣(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,∴P(X=0)=.X0123P故X的分布列为因此E(X)==.故选B.点评:正确找出所涂油漆的面数的正方体的个数及古典概型的概率计算公式、分布列与数学期望是解题的关键.10.(5分)考点:利用导数研究函数的极值;函数在某点取得极值的条件.专题:压轴题;导数的综合应用.分析:先求出f′(x),令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0.利用导数与函数极值的关系即可得出.解答:解:∵=lnx+1﹣2ax,(x>0)令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0..①当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,应舍去.②当a>0时,令g′(x)=0,解得x=,∵x,g′(x)>0,函数g(x )单调递增;时,g′(x )<0,函数g(x )单调递减.∴x=是函数g(x)的极大值点,则>0,即>0,∴ln(2a)<0,∴0<2a<1,即.∵,f′(x1)=lnx1+1﹣2ax1=0,f′(x2)=lnx2+1﹣2ax2=0.且f(x1)=x1(lnx1﹣ax1)=x1(2ax1﹣1﹣ax 1)=x 1(ax1﹣1)=﹣<0,f(x2)=x2(lnx2﹣ax2)=x2(ax 2﹣1)>=﹣.().故选D.点评:熟练掌握利用导数研究函数极值的方法是解题的关键.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)考点:频率分布直方图.专题:图表型.分析:(I)根据频率分布直方图中,各组的频率之和为1,我们易得到一个关于x的方程,解方程即可得到答案.(II)由已知中的频率分布直方图,利用[100,250)之间各小组的纵坐标(矩形的高)乘以组距得到[100,250)的频率,利用频率乘以样本容量即可求出频数.解答:解:(Ⅰ)依题意及频率分布直方图知,0.0024×50+0.0036×50+0.0060×50+x×50+0.0024×50+0.0012×50=1,解得x=0.0044.(II)样本数据落在[100,150)内的频率为0.0036×50=0.18,样本数据落在[150,200)内的频率为0.006×50=0.3.样本数据落在[200,250)内的频率为0.0044×50=0.22,故在这些用户中,用电量落在区间[100,250)内的户数为(0.18+0.30+0.22)×100=70.故答案为:0.0044;70.点根据新高考服务于新教材的原则,作为新教材的新增内容﹣﹣频率分布直方图是新高考的重要考点.对评:于“频率分布直方图学习的关键是学会画图、看图和用图.12.(5分)考点:程序框图.分析:框图首先给变量a和变量i赋值,然后对a是否等于4进行判断,不等于4,继续判断a是否为奇数,是执行路径a=3a+1,否执行路径,再执行i=i+1,依次循环执行,当a等于4时跳出循环,输出i 的值.解答:解:框图首先给变量a和变量i赋值,a=4,i=1.判断10=4不成立,判断10是奇数不成立,执行,i=1+1=2;判断5=4不成立,判断5是奇数成立,执行a=3×5+1=16,i=2+1=3;判断16=4不成立,判断16是奇数不成立,执行,i=3+1=4;判断8=4不成立,判断8是奇数不成立,执行,i=4+1=5;判断4=4成立,跳出循环,输出i的值为5.故答案是5.点评:本题考查了程序框图,循环结构中含有条件结构,外面的循环结构为直到型,即不满足条件执行循环,直到条件满足跳出循环.是基础题.13.(5分)考点:一般形式的柯西不等式;进行简单的合情推理.专题:计算题;不等式的解法及应用.分析:根据柯西不等式,算出(x+2y+3z)2≤14(x2+y2+z2)=14,从而得到x+2y+3z恰好取到最大值,由不等式的等号成立的条件解出x=、y=且z=,由此即可得到x+y+z的值.解答:解:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y 2+z 2)=14(x2+y2+z 2)当且仅当时,上式的等号成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合,可得x+2y+3z恰好取到最大值∴=,可得x=,y=,z=因此,x+y+z=++=故答案为:点评:本题给出x、y、z 的平方和等于1,在x+2y+3z恰好取到最大值的情况下求x+y+z的值.着重考查了运用柯西不等式求最值的方法,属于中档题.抓住柯西不等式的等号成立的条件,是本题得以解决的关键.14.(5分)考点:归纳推理.专题:计算题.分析:观察已知式子的规律,并改写形式,归纳可得,把n=10,k=24代入可得答案.解答:解:原已知式子可化为:,,,,由归纳推理可得,故=1100﹣100=1000故答案为:1000点评:本题考查归纳推理,观察已知式子的规律并改写形式是解决问题的关键,属基础题.15.(5分)考点:与圆有关的比例线段;直角三角形的射影定理.专题:压轴题;选作题.分析:设圆O的半径为3x,根据射影定理,可以求出OD2=OE•OC=x2,CD 2=CE•OC=8x2,进而得到的值.解解:设圆O的半径OA=OB=OC=3x,答:∵AB=3AD,∴AD=2x,BD=4x,OD=x又∵点C在直径AB上的射影为D,在△ABC中,由射影定理得:CD2=AD•BD=8x2,在△ODC中,由射影定理得:OD2=OE•OC=x2,CD2=CE•OC=8x2,故==8故答案为:8点评:本题考查的知识点是直角三角形射影定理,射影定理在使用时一定要注意其使用范围…“双垂直”.16.(2013•湖北)考点:参数方程化成普通方程;椭圆的简单性质;点的极坐标和直角坐标的互化.专题:压轴题;圆锥曲线的定义、性质与方程.分析:先根据极坐标与直角坐标的转换关系将直线l的极坐标方程分别为为非零常数)化成直角坐标方程,再利用直线l经过椭圆C的焦点,且与圆O相切,从而得到c=b,又b2=a2﹣c2,消去b后得到关于a,c的等式,即可求出椭圆C的离心率.解答:解:直线l的极坐标方程分别为为非零常数)化成直角坐标方程为x+y﹣m=0,它与x轴的交点坐标为(m,0),由题意知,(m ,0)为椭圆的焦点,故|m|=c,又直线l与圆O:ρ=b相切,∴,从而c=b,又b2=a2﹣c2,∴c2=2(a2﹣c2),∴3c2=2a2,∴=.则椭圆C的离心率为.故答案为:.点评:本题考查了椭圆的离心率,考查了参数方程化成普通方程,点的极坐标和直角坐标的互化,考查提高学生分析问题的能力.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)考点:余弦定理;正弦定理.专题:解三角形.分析:(I)利用倍角公式和诱导公式即可得出;(II)由三角形的面积公式即可得到bc=20.又b=5,解得c=4.由余弦定理得a 2=b2+c2﹣2bccosA=25+16﹣20=21,即可得出a .又由正弦定理得即可得到即可得出.解答:解:(Ⅰ)由cos2A﹣3cos(B+C)=1,得2cos2A+3cosA﹣2=0,即(2cosA﹣1)(cosA+2)=0,解得(舍去).因为0<A<π,所以.(Ⅱ)由S===,得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,故.又由正弦定理得.点评:熟练掌握三角函数的倍角公式和诱导公式、三角形的面积公式、余弦定理得、正弦定理是解题的关键.18.(12分)考点:数列的求和;等比数列的通项公式;数列与不等式的综合.专题:计算题;等差数列与等比数列.分析:(I)设等比数列{a n}的公比为q,结合等比数列的通项公式表示已知条件,解方程可求a1,q,进而可求通项公式(Ⅱ)结合(I)可知是等比数列,结合等比数列的求和公式可求,即可判断解答:解:(Ⅰ)设等比数列{a n}的公比为q ,则由已知可得解得故.(Ⅱ)若,则,故是首项为,公比为的等比数列,从而.若,则是首项为,公比为﹣1的等比数列,从而故.综上,对任何正整数m,总有.故不存在正整数m,使得成立.点评:本题主要考查了等比数列的通项公式及求和公式的综合应用,还考查了一定的逻辑推理与运算的能力19.(12分)考点:用空间向量求平面间的夹角;空间中直线与平面之间的位置关系;直线与平面平行的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间角.分析:(I)直线l∥平面PAC.连接EF,利用三角形的中位线定理可得,EF∥AC;利用线面平行的判定定理即可得到EF∥平面ABC.由线面平行的性质定理可得EF∥l.再利用线面平行的判定定理即可证明直线l∥平面PAC.(II)综合法:利用线面垂直的判定定理可证明l⊥平面PBC.连接BE,BF,因为BF⊂平面PBC,所以l⊥BC.故∠CBF就是二面角E﹣l﹣C的平面角,即∠CBF=β.已知PC⊥平面ABC,可知CD是FD在平面ABC内的射影,故∠CDF就是直线PQ与平面ABC所成的角,即∠CDF=θ.由BD⊥平面PBC,有BD⊥BF,知∠BDF=α,分别利用三个直角三角形的边角关系即可证明结论;向量法:以点C为原点,向量所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,利用两个平面的法向量的夹角即可得出二面角.解答:解:(Ⅰ)直线l∥平面PAC,证明如下:连接EF,因为E,F分别是PA,PC的中点,所以EF∥AC,又EF⊄平面ABC,且AC⊂平面ABC,所以EF∥平面ABC.而EF⊂平面BEF,且平面BEF∩平面ABC=l,所以EF∥l.因为l⊄平面PAC,EF⊂平面PAC,所以直线l∥平面PAC.(Ⅱ)(综合法)如图1,连接BD,由(Ⅰ)可知交线l即为直线BD,且l∥AC.因为AB是⊙O的直径,所以AC⊥BC,于是l⊥BC.已知PC⊥平面ABC,而l⊂平面ABC,所以PC⊥l .而PC∩BC=C,所以l ⊥平面PBC.连接BE,BF,因为BF⊂平面PBC,所以l⊥BF.故∠CBF就是二面角E﹣l﹣C的平面角,即∠CBF=β.由,作DQ∥CP,且.连接PQ,DF,因为F是CP的中点,CP=2PF,所以DQ=PF,从而四边形DQPF是平行四边形,PQ∥FD.连接CD,因为PC⊥平面ABC,所以CD是FD在平面ABC 内的射影,故∠CDF就是直线PQ与平面ABC所成的角,即∠CDF=θ.又BD⊥平面PBC ,有BD⊥BF,知∠BDF=α,于是在Rt△DCF,Rt△FBD,Rt△BCF中,分别可得,从而.(Ⅱ)(向量法)如图2,由,作DQ∥CP,且.连接PQ,EF,BE,BF,BD,由(Ⅰ)可知交线l即为直线BD.以点C为原点,向量所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,设CA=a,CB=b,CP=2c,则有.于是,∴=,从而,又取平面ABC的一个法向量为,可得,设平面BEF 的一个法向量为,所以由可得.于是,从而.故,即sinθ=sinαsinβ.点评:本题综合考查了线面平行的判定定理和性质定理、线面垂直的判定与性质定理、平行四边形的判定与性质定理、线面角、二面角、异面直线所成的角、通过建立空间直角坐标系利用法向量的夹角求二面角等基础知识与方法,需要较强的空间想象能力、推理能力和计算能力.20.(12分)考点:简单线性规划;正态分布曲线的特点及曲线所表示的意义.专题:不等式的解法及应用;概率与统计.分析:(I)变量服从正态分布N(800,502),即服从均值为800,标准差为50的正态分布,适合700<X≤900范围内取值即在(μ﹣2σ,μ+2σ)内取值,其概率为:95.44%,从而由正态分布的对称性得出不超过900的概率为p0.(II)设每天应派出A型x辆、B型车y辆,根据条件列出不等式组,即得线性约束条件,列出目标函数,画出可行域求解.解答:解:(Ⅰ)由于随机变量X服从正态分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.9544.由正态分布的对称性,可得p0=(P(X≤900)=P(X≤800)+P(800<X≤900)=(Ⅱ)设A型、B型车辆的数量分别为x,y辆,则相应的营运成本为1600x+2400y.依题意,x,y还需满足:x+y≤21,y≤x+7,P(X≤36x+60y)≥p0.由(Ⅰ)知,p0=P(X≤900),故P(X≤360x+60y)≥p0等价于36x+60y≥900.于是问题等价于求满足约束条件且使目标函数z=1600x+2400y达到最小值的x,y.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6).由图可知,当直线z=1600x+2400y经过可行域的点P时,直线z=1600x+2400y在y轴上截距最小,即z取得最小值.故应配备A型车5辆,B型车12辆.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查简单线性规划.本题解题的关键是列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.21.(13分)考点:直线与圆锥曲线的关系;三角形的面积公式;点到直线的距离公式.专题:压轴题;圆锥曲线的定义、性质与方程.分(Ⅰ)设出两个椭圆的方程,当直线l与y轴重合时,求出△BDM和△ABN的面积S1和S2,直接由面析:积比=λ列式求λ的值;(Ⅱ)假设存在与坐标轴不重合的直线l,使得S1=λS2,设出直线方程,由点到直线的距离公式求出M 和N到直线l的距离,利用数学转化思想把两个三角形的面积比转化为线段长度比,由弦长公式得到线段长度比的另一表达式,两式相等得到,换元后利用非零的k值存在讨论λ的取值范围.解答:解:以题意可设椭圆C1和C2的方程分别为,.其中a >m>n >0,.(Ⅰ)如图1,若直线l与y轴重合,即直线l的方程为x=0,则,,所以.在C1和C2的方程中分别令x=0,可得y A=m,y B=n ,y D=﹣m,于是.若,则,化简得λ2﹣2λ﹣1=0,由λ>1,解得.故当直线l与y轴重合时,若S1=λS2,则.(Ⅱ)如图2,若存在与坐标轴不重合的直线l,使得S1=λS2,根据对称性,不妨设直线l:y=kx(k >0),点M(﹣a ,0),N(a,0)到直线l的距离分别为d1,d2,则,所以d1=d2.又,所以,即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|﹣|AB|=(λ﹣1)|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|,于是.将l的方程分别与C1和C2的方程联立,可求得根据对称性可知x C =﹣x B,x D=﹣x A,于是②从而由①和②可得③令,则由m>n,可得t≠1,于是由③可得.因为k≠0,所以k 2>0.于是③关于k有解,当且仅当,等价于,由λ>1,解得,即,由λ>1,解得,所以当时,不存在与坐标轴不重合的直线l,使得S1=λS2;当时,存在与坐标轴不重合的直线l,使得S1=λS2.点评:本题考查了三角形的面积公式,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,该题重点考查了数学转化思想方法和分类讨论的数学思想方法,(Ⅱ)中判断λ的存在性是该题的难题,考查了灵活运用函数和不等式的思想方法.22.(14分)考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;数列的求和;不等式的证明.专题:压轴题;导数的综合应用;不等式的解法及应用.分析:(Ⅰ)先求出函数f (x)的导函数f′(x),令f'(x)=0,解得x=0,再求出函数的单调区间,进而求出最小值为f(0)=0;(Ⅱ)根据(Ⅰ)知,即(1+x)r+1≥1+(r+1)x,令代入并化简得,再令得,,即结论得到证明;(Ⅲ)根据(Ⅱ)的结论,令,n分别取值81,82,83,…,125,分别列出不等式,再将各式相加得,,再由参考数据和条件进行求解.解答:解;(Ⅰ)由题意得f'(x)=(r+1)(1+x)r﹣(r+1)=(r+1)[(1+x)r﹣1],令f'(x)=0,解得x=0.当﹣1<x<0时,f'(x)<0,∴f(x)在(﹣1,0)内是减函数;当x>0时,f'(x)>0,∴f(x)在(0,+∞)内是增函数.故函数f(x)在x=0处,取得最小值为f (0)=0.(Ⅱ)由(Ⅰ),当x∈(﹣1,+∞)时,有f (x)≥f(0)=0,即(1+x)r+1≥1+(r+1)x,且等号当且仅当x=0时成立,故当x>﹣1且x≠0,有(1+x)r+1>1+(r+1)x,①在①中,令(这时x>﹣1且x≠0),得.上式两边同乘n r+1,得(n+1)r+1>n r+1+n r(r+1),即,②当n>1时,在①中令(这时x>﹣1且x≠0),类似可得,③且当n=1时,③也成立.综合②,③得,④(Ⅲ)在④中,令,n 分别取值81,82,83, (125)得,,,…,将以上各式相加,并整理得.代入数据计算,可得由[S]的定义,得[S]=211.点评:本题考查了利用导数研究函数的单调性和求最值,以及学生的创新精神,是否会观察,会抽象概括,会用类比的方法得出其它结论,难度较大,注意利用上一问的结论.。

2013年高考真题 新课标2卷 理科数学(详细解答)

2013年高考真题 新课标2卷 理科数学(详细解答)

2013·新课标全国卷Ⅱ(理科数学)1. 已知集合M ={x |(x -1)2<4,x ∈},N ={-1,0,1,2,3},则M ∩N =( ) A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3}1.A [解析] 集合M ={x |-1<x <3},则M ∩N ={0,1,2}. 2. 设复数z 满足(1-i)z =2i ,则z =( ) A .-1+i B .-1-i C .1+i D .1-i2.A [解析] (1-i)z =2i ,则z =2i1-i=i(1+i)=-1+i.故选A.3. 等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13 C.19 D .-193.C [解析] S 3=a 2+10a 1⇒a 1+a 2+a 3=a 2+10a 1⇒a 3=9a 1⇒q 2=9,a 5=9⇒a 3q 2=9⇒a 3=1⇒a 1=a 3q 2=19,故选C.4.,, 已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l4.D [解析] 若α∥β,则m ∥n 与m ,n 为异面直线矛盾,故A 错.若α⊥β且l ⊥β,则由n ⊥平面β知l ∥n 与l ⊥n 矛盾,故B 错.若α与β相交,设垂直于交线的平面为γ,则l ⊥γ,又l ⊥m ,l ⊥n ,m ⊥平面α,n ⊥平面β,故交线平行于l .故选D.5. 已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A .-4 B .-3 C .-2 D .-15.D [解析] 已知(1+ɑx )(1+x )5的展开式中,x 2的系数为C 25+a C 15 =5,则a =-1,故选D.图1-16. 执行如图1-1所示的程序框图,如果输入的N =10,那么输出的S =( )A .1+12+13+…+110B .1+12!+13!+…+110!C .1+12+13+…+111D .1+12!+13!+…+111!6.B [解析] k =1,T =1,S =1;k =2,T =12,S =1+12;k =3,T =12×3,S =1+12+12×3; k =4,T =12×3×4,S =1+12!+13!+14!,…,10>10不成立,继续循环.答案为B.7. 一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )图1-27.A [解析] 在空间直角坐标系O -xyz 中画出三棱锥,由已知可知三棱锥O -ABC 为题中所描叙的四面体,而其在zOx 平面上的投影为正方形EBDO ,故选A.图1-48., 设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c8.D [解析] a -b =log 36-log 510=(1+log 32)-(1+log 52)=log 32-log 52>0, b -c =log 510-log 714=(1+log 52)-(1+log 72)=log 52-log 72>0, 所以a >b >c ,选D.9., 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3).若z =2x +y 的最小值为1,则a =( )A.14B.12C .1D .29.B [解析] 直线y =a (x -3)过定点(3,0) .画出可行域如图,易得A (1,-2a ),B (3,0),C (1,2). 作出直线y =-2x ,平移易知直线过A 点时直线在y 轴上的截距最小,即2+(-2a )=1⇒a =12.答案为B.10.,,, 已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .∃x 0∈,f (x 0)=0B .函数y =f (x )的图像是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)单调递减D .若x 0是f (x )的极值点,则f ′(x 0)=010.C [解析] x →-∞ 时,f (x )<0 ,x →+∞ 时,f (x )>0,f (x ) 连续,∃x 0∈ ,f (x 0)=0,A 正确;通过平移变换,函数可以化为f (x )=x 3+c ,从而函数y =f (x )的图像是中心对称图形,B 正确; 若x 0是f (x )的极小值点,可能还有极大值点x 1 ,则f (x )在区间(x 1 ,x 0)单调递减.C 错误.D 正确.故答案为C.11., 设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5.若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x11.C [解析] 抛物线焦点为F p 2,0 ,由抛物线的定义,设M 5-p2,2p 5-p2,设N点坐标为(0,2).因为圆过点N (0,2),故NF ⊥NM ⇒2-p 2×2p 5-p 2-25-p 2=-1,① 设p 5-p2=t ,则①式可化为t 2-4 2t +8=0⇒t =2 2⇒p 2-10p +16=0⇒p =2或p=8 .12., 已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫1-22,12C.⎝⎛⎦⎤1-22,13 D.⎣⎡⎭⎫13,12 12.B [解析] 方法一:易得△ABC 面积为1,利用极限位置和特值法.当a =0时,易得b =1-22;当a =13时,易得b =13;当a =1时,易得b =2-1>13.故选B. 方法二:(直接法)⎩⎪⎨⎪⎧x +y =1,y =ax +b⇒y =a +b a +1 ,y =ax +b 与x 轴交于⎝⎛⎭⎫-ba ,0,结合图形与a >0 ,12×a +b a +1×⎝⎛⎭⎫1+b a =12⇒(a +b )2=a (a +1)>0⇒a =b 21-2b.∵a >0,∴b 21-2b >0⇒b <12,当a =0时,极限位置易得b =1-22,故答案为B.二、填空题13.、 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 13.2 [解析] 如图,建立直角坐标系,则 AE →=(1,2),BD →=(-2,2),AE →·BD →=2.14., 从n 个正整数1,2,3,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________.14.8 [解析] 和为5的只有两种情况,1+4,2+3,故2C 2n =114⇒C 2n =28⇒n =8. 15., 设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________. 15.-105 [解析] 由tan ⎝⎛⎭⎫θ+π4=12得1+tan θ1-tan θ=12⇒tan θ=-13⇒cos θ=-3sin θ , 由sin 2θ+cos 2θ=1⇒10sin 2θ=1,θ 在第二象限,⇒ sin θ=1010,cos θ=-31010, ∴sin θ+cos θ=-105. 16.,, 等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________. 16.-49 [解析] 由已知,a 1+a 10=0,a 1+a 15=103⇒d =23,a 1=-3,∴nS n =n 3-10n 23,易得n =6或n =7时,nS n 出现最小值.当n =6时,nS n =-48;n =7时,nS n =-49.故nS n的最小值为-49.17., △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值. 17.解:(1)由已知及正弦定理得 sin A =sin B cos C +sin C sin B .① 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立.因此△ABC 面积的最大值为2+1. 18.,, 如图1-3所示,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1∥平面A 1CD ;(2)求二面角D -A 1C -E 的正弦值.图1-318.解:(1)证明:联结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,联结DF ,则BC 1∥DF . 因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD .(2)由AC =CB =22AB 得,AC ⊥BC . 以C 为坐标原点,CA →的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2),CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2).设=(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧·CD →=0,n ·CA 1→=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1+2z 1=0.可取=(1,-1,-1).同理,设为平面A 1CE 的法向量,则⎩⎪⎨⎪⎧·CE →=0,m ·CA 1→=0.可取=(2,1,-2). 从而cos 〈,〉=n·m|n||m |=33,故sin 〈,〉=63. 即二面角D -A 1C -E 的正弦值为63. 19.,, 经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-4所示,经销商为下一个销售季度购进了130 t 该农产品,以X (单位:t ,100≤X ≤150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望.图1-419.解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000.当X ∈[130,150]时,T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X <130,65 000,130≤X ≤150.(2)由(1)知利润T 不少于57 000元,当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.(3)依题意可得T 的分布列为所以E (T )=45 000×0.1+53 000×0.2+61 000×0.3+65 000×0.4=59 400.20.,, 平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.20.解:(1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1. y 2-y 1x 2-x 1=-1. 由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1,解得⎩⎨⎧x =4 33,y =-33或⎩⎨⎧x =0,y = 3.因此|AB |=4 63. 由题意可设直线CD 的方程为y =x +n -5 33<n <3,设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1得3x 2+4nx +2n 2-6=0,于是x 3,4=-2n ±2(9-n 2)3.因为直线CD 的斜率为1,所以|CD |=2|x 4-x 3|=439-n 2. 由已知,四边形ACBD 的面积S =12|CD |·|AB |=8 699-n 2.当n =0时,S 取得最大值,最大值为8 63.所以四边形ACBD 面积的最大值为8 63.21., 已知函数f (x )=e x -ln(x +m ).(1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; (2)当m ≤2时,证明f (x )>0. 21.解:(1)f ′(x )=e x -1x +m.由x =0是f (x )的极值点得f ′(0)=0,所以m =1.于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=e x -1x +1.函数f ′(x )=e x -1x +1在(-1,+∞)单调递增,且f ′(0)=0,因此当x ∈(-1,0)时, f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. (2)证明:当m ≤2,x ∈(-m ,+∞)时,ln(x +m )≤ln(x +2),故只需证明当m =2时,f (x )>0. 当m =2时,函数f ′(x )=e x -1x +2在(-2,+∞)单调递增.又f ′(-1)<0,f ′(0)>0,故f ′(x )=0在(-2,+∞)有唯一实根x 0,且x 0∈(-1,0).当x ∈(-2,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0,从而当x =x 0时,f (x )取得最小值.由f ′(x 0)=0得e x 0=1x 0+2,ln(x 0+2)=-x 0,故f (x )≥f (x 0)=1x 0+2+x 0=(x 0+1)2x 0+2>0.综上,当m ≤2时,f (x )>0.22. 选修4-1:几何证明选讲:如图1-5,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC ·AE =DC ·AF ,B ,E ,F ,C 四点共圆.(1)证明:CA 是△ABC 外接圆的直径;(2)若DB =BE =EA ,求过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值.图1-522.解:(1)证明:因为CD 为△ABC 外接圆的切线,所以∠DCB =∠A ,由题设知BCF A =DC EA,故△CDB ∽△AEF ,所以∠DBC =∠EF A .因为B ,E ,F ,C 四点共圆,所以∠CFE =∠DBC ,故∠EF A =∠CFE =90°.所以∠CBA =90°,因此CA 是△ABC 外接圆的直径.(2)联结CE ,因为∠CBE =90°,所以过B ,E ,F ,C 四点的圆的直径为CE ,由DB =BE ,有CE =DC ,又BC 2=DB ·BA =2DB 2,所以CA 2=4DB 2+BC 2=6DB 2.而DC 2=DB ·DA =3DB 2,故过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为12.23. 选修4—4:坐标系与参数方程已知动点P ,Q 都在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 23.解:(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹过坐标原点. 24. 选修4-5:不等式选讲设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ca ≤13;(2)a 2b +b 2c +c 2a≥1. 24.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得 a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a ≥a +b +c ,又a +b +c =1, 所以a 2b +b 2c +c 2a ≥1.。

2013年高考真题——理科数学(湖北卷) Word版含答案

2013年高考真题——理科数学(湖北卷) Word版含答案

绝密★启用前2013年普通高等学校招生全国统一考试(湖北卷)数 学(理工类)本试题卷共6页,22题,其中第15、16题为选考题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号码条粘贴在答题卡上的指定位置。

用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选凃其它答案标号。

答在试卷、草稿纸上无效。

3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定位置用统一提供的2B 铅笔涂黑。

考生应根据自己选做的题目准确填涂题号,不得多选。

答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。

5.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数z=i1i2+(i 为虚数单位)的共轭复数对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知全集为R ,集合A=⎭⎬⎫⎩⎨⎧≤1)21(2x ,B={}0862≤+-x x x ,则A ∩R ∂B=A.{}0x ≤xB. {}42x ≤≤x C. {0≤x x <2或x >}4 D. {0x <x ≤2或x ≥}43.再一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A.(-p )∨(-q ) B. p ∨(-q ) C. (-p )∧(-q ) D.p ∨q4.将函数y=3cosx+sinx (x ∈R )的图像向左平移m (m >0)个单位长度后,所得到的图像关于y 轴对称,则m 的最小值是A.12π B. 6π C. 3πD 65π5.已知0<θ<4π,则双曲线C 1:1sin cos 2222=-θθy x 与C 2: 1tan sin sin 22222=-θθθx y 的 A.实轴长相等 B.虚轴长相等 C.焦距相等 D.离心率相等6.已知点A (-1,1)、B (1,2)、C (-2,1)、D (3,4),则向量在方向上的投影为 A.223 B. 2153 C. -223D .- 21537.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t)=7-3t+t125+(t 的单位:s ,v 的单位:m/s )行驶至停止。

2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2013年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0] 12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.2013年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B nC n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,﹣c n+1=,∴=a1﹣b n,又由题意,b n+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos <,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,。

2013年高考理科数学湖北卷word解析版(2021年整理)

2013年高考理科数学湖北卷word解析版(2021年整理)

2013年高考理科数学湖北卷word解析版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2013年高考理科数学湖北卷word解析版(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2013年高考理科数学湖北卷word解析版(word版可编辑修改)的全部内容。

2013年普通高等学校夏季招生全国统一考试数学理工农医类(湖北卷)本试题卷共6页,22题,其中第15、16题为选考题.全卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑.2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B铅笔涂黑.考生应根据自己选做的题目准确填涂题号,不得多选.答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效.5.考生必须保持答题卡的整洁.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013湖北,理1)在复平面内,复数2i=1iz+(i为虚数单位)的共轭复数对应的点位于().A.第一象限 B.第二象限C.第三象限 D.第四象限答案:D解析:∵2i2i1i=1i1i1iz(-)=+(+)(-)=i(1-i)=1+i,∴复数2i=1iz+的共轭复数z=1-i,其在复平面内对应的点(1,-1)位于第四象限.2.(2013湖北,理2)已知全集为R,集合112xA x⎧⎫⎪⎪⎛⎫=≤⎨⎬⎪⎝⎭⎪⎪⎩⎭,B={x|x2-6x+8≤0},则A∩=().A.{x|x≤0} B.{x|2≤x≤4}C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}答案:C解析:由题意知集合112xA x⎧⎫⎪⎪⎛⎫=≤⎨⎬⎪⎝⎭⎪⎪⎩⎭={x|x≥0},集合B={x|x2-6x+8≤0}={x|2≤x≤4},={x|x<2或x>4}.因此A∩()={x|0≤x<2或x>4}.3.(2013湖北,理3)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围",则命题“至少有一位学员没有降落在指定范围”可表示为( ).A.(⌝p)∨(⌝q) B.p∨(⌝q)C .(⌝p )∧(⌝q )D .p ∨q 答案:A解析:“至少有一位学员没有降落在指定范围”包括甲或乙没有落在指定范围或者两人均没有落在指定范围,因此应为(⌝p )∨(⌝q ).4.(2013湖北,理4)将函数y =cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ).A .π12B .π6C .π3D .5π6答案:B解析:∵y x +sin x =π2sin 3x ⎛⎫+ ⎪⎝⎭,∴函数y x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,变为函数π=2sin 3y x m ⎛⎫++ ⎪⎝⎭的图象.又∵所得到的图象关于y 轴对称,则有 π3+m =k π+π2,k ∈Z , ∴m =ππ6k +,k ∈Z .∵m >0,∴当k =0时,m 的最小值为π6.5.(2013湖北,理5)已知π0<<4θ,则双曲线C 1:2222=1cos sin x y θθ-与C 2:22222=1sin sin tan y x θθθ-的( ).A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等 答案:D解析:对于双曲线C 1:2222=1cos sin x y θθ-,21a =cos 2θ,21b =sin 2θ,21c =1; 对于双曲线C 2:22222=1sin sin tan y x θθθ-,22a =sin 2θ,22b =sin 2θtan 2θ,22c =sin 2θ+sin 2θtan 2θ=sin 2θ(1+tan 2θ)=22222sin sin sin 1cos cos θθθθθ⎛⎫+= ⎪⎝⎭=tan 2θ. ∵只有当θ=ππ4k +(k ∈Z )时,21a =22a 或21b =22b 或21c =22c ,而π0<<4θ,∴排除A ,B ,C.设双曲线C 1,C 2的离心率分别为e 1,e 2,则2121cos e θ=,22222tan 1sin cos e θθθ==. 故e 1=e 2,即两双曲线的离心率相等. 6.(2013湖北,理6)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB 在CD 方向上的投影为( ).A .2BC .2-D .答案:A解析:由题意可知AB=(2,1),CD=(5,5),故AB在CD方向上的投影为2AB CDCD⋅==.7.(2013湖北,理7)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t)=25731tt-++(t的单位:s,v的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是().A.1+25ln 5 B.118+25ln3C.4+25ln 5 D.4+50ln 2答案:C解析:由于v(t)=7-3t+251t+,且汽车停止时速度为0,因此由v(t)=0可解得t=4,即汽车从刹车到停止共用4 s。

2013年高考真题——数学全国卷1(完整试题+答案+解析)

2013年高考真题——数学全国卷1(完整试题+答案+解析)

绝密★启用前2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数球的面积公式24R S π=第Ⅰ卷(选择题 共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数ii++121(i 是虚数单位)的虚部是 A .23 B .21C .3D .1 2.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x xM ,则=M C N R A .)2,1(B .[]2,0C .∅D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .155.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a的值是 A .6π B .3π C .4π D .2π 6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为 (1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα (3),,βα⊥⊥m m 则α∥β (4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC -=等于A .1B .2C .3D .4 8.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是A .18B .21C .24D .15 9.函数xx x f 1lg )(-=的零点所在的区间是 A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞ 10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B . 223 C .210 D .211.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是A .43 B .41 C .83D .8512.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若题图第130=⋅FN FM ,则a 的值为A .916 B .59 C .925 D .516第Ⅱ卷(非选择题 共90分)注意事项:1. 请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效. 3. 第Ⅱ卷共包括填空题和解答题两道大题. 二、填空题:本大题共4小题,每小题4分,共16分. 13.如图所示的程序框图输出的结果为__________.14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为__________.15.地震的震级R 与地震释放的能量E 的关系为)4.11(lg 32-=E R .2011年3月11日,日本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的 倍. 16.给出下列命题: ①已知,,a b m都是正数,且bab a >++11,则a b <; ②已知()f x '是()f x 的导函数,若,()0x R f x '∀∈≥,则(1)(2)f f <一定成立; ③命题“x R ∃∈,使得2210x x-+<”的否定是真命题; ④“1,1≤≤y x 且”是“2≤+y x ”的充要条件.其中正确命题的序号是 .(把你认为正确命题的序号都填上)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)第14题图已知向量),2cos 2sin 3()2cos ,1(y xx b x a +==→→与共线,且有函数)(x f y =.(Ⅰ)若1)(=x f ,求)232cos(x -π的值; (Ⅱ)在ABC ∆中,角C B A ,,,的对边分别是c b a ,,,且满足b c C a 2cos 2=+,求函数)(B f 的取值范围.18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知四棱锥BCDE A -,其中1====BE AC BC AB ,2=CD ,ABC CD 面⊥,BE ∥CD ,F 为AD 的中点. (Ⅰ)求证:EF ∥面ABC ; (Ⅱ)求证:面ACD ADE 面⊥; (III )求四棱锥BCDE A -的体积.20.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:AB CDEF现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y 关于x 的线性回归方程26139134ˆ+=x y,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.21.(本小题满分12分)已知函数1)(2++=x bax x f 在点))1(,1(--f 的切线方程为03=++y x . (Ⅰ)求函数()f x 的解析式;(Ⅱ)设x x g ln )(=,求证:)()(x f x g ≥在),1[+∞∈x 上恒成立.22.(本小题满分14分)实轴长为34的椭圆的中心在原点,其焦点1,2,F F 在x 轴上.抛物线的顶点在原点O ,对称轴为y 轴,两曲线在第一象限内相交于点A ,且12AF AF ⊥,△12AF F 的面积为3.(Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A 作直线l 分别与抛物线和椭圆交于C B ,,若2=,求直线l 的斜率k .参考答案及评分标准一.选择题(本大题共12小题,每小题5分,共60分.)B D B A D B B D BC C B二.填空题(本大题共4小题,每小题4分,共16分.)13.2 14.π31915. 2310 16. ①③ 三.解答题17.(本小题满分12分) 解:(Ⅰ)∵→a 与→b 共线∴yxx x 2cos 2cos2sin 31=+21)6sin()cos 1(21sin 232cos 2cos 2sin 32++=++=+=πx x x x x x y …………3分∴121)6sin()(=++=πx x f ,即21)6sin(=+πx …………………………………………4分211)6(sin 21)3(cos 2)3(2cos )232cos(22-=-+=--=-=-ππππx x x x…………………………………………6分 (Ⅱ)已知b c C a 2cos 2=+由正弦定理得:CA C A C C A C ABC C A sin cos 2cos sin 2sin cos sin 2)sin(2sin 2sin cos sin 2+=++==+∴21cos =A ,∴在ABC ∆中 ∠3π=A …………………………………………8分21)6sin()(++=πB B f∵∠3π=A ∴320π<<B ,6566πππ<+<B …………………………………………10分∴1)6sin(21≤+<πB ,23)(1≤<B f∴函数)(B f 的取值范围为]23,1( …………………………………………12分 18.(本小题满分12分) 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………2分 解得⎩⎨⎧==231d a , …………………………………………4分1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………7分 123)12(37353-⋅+++⋅+⋅+=n n n T n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………9分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴n n n T 3⋅= …………………………………………12分19.(本小题满分12分)解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是AD,AC 的中点∴FG ∥CD,且FG=21DC=1 .∵BE ∥CD ∴FG 与BE 平行且相等∴EF ∥BG . ……………………………2分ABC BG ABC EF 面面⊂⊄,∴EF ∥面ABC ……………………………4分 (Ⅱ)∵△ABC 为等边三角形 ∴BG ⊥ACABCDEF G又∵DC ⊥面ABC,BG ⊂面ABC ∴DC ⊥BG ∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …………………………………………6分 ∵EF ∥BG ∴E F ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …………………………………………8分 (Ⅲ)连结EC,该四棱锥分为两个三棱锥E -ABC 和E -ADC .43631232313114331=+=⨯⨯+⨯⨯=+=---ACD E ABC E BCDE A V V V .………………………12分 另法:取BC 的中点为O ,连结AO ,则BC AO ⊥,又⊥CD 平面ABC ,∴C CD BC AO CD =⊥ , , ∴⊥AO 平面B C D E ,∴AO 为BCDE A V -的高,43232331,2321)21(,23=⨯⨯=∴=⨯+==-BCDE A BCDE V S AO . 20.(本小题满分12分)解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A ,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A 包含的基本事件有10种. …………………………………………3分所以321510)(==A P .所以选取的2组数据恰好不相邻的概率是32. ………………………6分(Ⅱ) 当10=x 时,;2|1026219|,262192613910134ˆ<-=+⨯=y ……………………………………9分 当30=x 时,;2|1626379|,263792613930134ˆ<-=+⨯=y所以,该研究所得到的回归方程是可靠的. …………………………………………12分 21.(本小题满分12分)解:(Ⅰ)将1-=x 代入切线方程得2-=y ∴211)1(-=+-=-ab f ,化简得4-=-a b . …………………………………………2分222)1(2)()1()(x xb ax x a x f +⋅+-+=' 12424)(22)1(-===-+=-'bb a b a f . …………………………………………4分解得:2,2-==b a∴122)(2+-=x x x f . …………………………………………6分 (Ⅱ)由已知得122ln 2+-≥x x x 在),1[+∞上恒成立化简得22ln )1(2-≥+x x x即022ln ln 2≥+-+x x x x 在),1[+∞上恒成立 . …………………………………………8分 设22ln ln )(2+-+=x x x x x h ,21ln 2)(-++='xx x x x h ∵1≥x ∴21,0ln 2≥+≥xx x x ,即0)(≥'x h . …………………………………………10分 ∴)(x h 在),1[+∞上单调递增,0)1()(=≥h x h∴)()(x f x g ≥在),1[+∞∈x 上恒成立 . …………………………………………12分22.(本小题满分14分)解(1)设椭圆方程为22221(0)x y a b a b+=>>,12,AF m AF n ==由题意知⎪⎪⎩⎪⎪⎨⎧==+=+6344222m n n m c n m …………………………………………2分解得92=c ,∴39122=-=b .∴椭圆的方程为131222=+y x …………………………………………4分 ∵3=⨯c y A ,∴1=A y ,代入椭圆的方程得22=A x ,将点A 坐标代入得抛物线方程为y x 82=. …………………………………………6分(2)设直线l 的方程为)22(1-=-x k y ,),(),,(2211y x C y x B 由2= 得)22(22212-=-x x ,化简得22221=-x x …………………………………………8分联立直线与抛物线的方程⎪⎩⎪⎨⎧=-=-yx x k y 8)22(12,得0821682=-+-k kx x∴k x 8221=+① …………………………………………10分联立直线与椭圆的方程⎪⎩⎪⎨⎧=+-=-124)22(122y x x k y得0821632)2168()41(2222=--+-++k k x k k x k∴22241821622k kk x +-=+② …………………………………………12分 ∴2222418216)228(222221=++---=-kkk k x x 整理得:0)4121)(2416(2=+--k kk∴42=k ,所以直线l 的斜率为42 . …………………………………………14分。

2013湖北高考理科数学真题及参考答案

2013湖北高考理科数学真题及参考答案
2013高考时间安排在6月7日8日9日进行出国留学网wwwliuxue86com高考频道将在考后第一时间为广大考生公布2013年湖北高考真题及答案考生可关注各科2013年高考真题频道和各科2013年频道进行查询考生也可收藏出国留学 参 考 答 案
2013高考时间安排在6月7日、8日、9日进行,店铺(www.)高考频道将在考后第一时间为广大考生公布2013年湖北高考真 题及答案,考生可关注各科2013年高考真题频道和各科2013年高考答案频道进行查询2013年高考试题及答案,考生也可收藏 店铺高考真题及答案频道。

2013年湖北卷数学试题及答案(理)

 2013年湖北卷数学试题及答案(理)

理科数学1. 在复平面内,复数z =2i1+i(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限1.D [解析] z =2i1+i =2i (1-i )(1+i )(1-i )=i(1-i)=1+i ,z =1-i ,z 对应的点在第四象限,选D.2. 已知全集为,集合A =,B ={x|x 2-6x +8≤0},则A ∩(∁B)=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x<2或x>4}D .{x|0<x ≤2或x ≥4}2.C [解析] A ={x|x ≥0},B ={x|2≤x ≤4},∁B ={x|x<2或x>4},可得答案为C. 3. 在一次跳伞中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(⌝p)∨(⌝q)B .p ∨(⌝q)C .(⌝p)∧(⌝q)D .p ∨q3.A [解析] “至少一位学员没降落在指定区域”即“甲没降落在指定区域或乙没降落在指定区域”,可知选A.4. 将函数y =3cos x +sin x(x ∈)的图像向左平移m(m>0)个单位长度后,所得到的图像关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π64.B [解析] 结合选项,将函数y =3cos x +sin x =2sin ⎝⎛⎭⎫x +π3的图像向左平移π6个单位得到y =2sin ⎝⎛⎭⎫x +π2=2cos x ,它的图像关于y 轴对称,选B.5. 已知0<θ<π4,则双曲线C 1:x 2cos 2 θ-y 2sin 2 θ=1与C 2:y 2sin 2 θ-x 2sin 2 θtan 2 θ=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等5.D [解析] e =c a =1+b 2a 2,C 1与C 2的b 2a2=tan 2 θ,故e 1=e 2,选D.6. 已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量AB →在CD →方向上的投影为( )A.3 22B.3 152 C .-3 22 D .-3 1526.A [解析] AB →=(2,1),CD →=(5,5),|AB →|·cos 〈AB →,CD →〉=AB →·CD →|CD →|=3 22,选A.7. 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t)=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln 113C .4+25ln 5D .4+50ln 27.C [解析] 令v(t)=0,得3t 2-4t -32=0,解得t =4⎝⎛⎭⎫t =-83舍去,求定积分得行驶距离为s =⎠⎛04v(t)dt =⎠⎛04(7-3t +251+t )dt =[7t -32t 2+25ln(1+t)]⎪⎪⎪ )40=4+25ln 5,选C. 8. 一个几何体的三视图如图1-1所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V 1,V 2,V 3,V 4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )图1-1A .V 1<V 2<V 4<V 3B .V 1<V 3<V 2<V 4C .V 2<V 1<V 3<V 4D .V 2<V 3<V 1<V 48.C [解析] 由图知组成该几何体的从上到下的简单几何体为圆台,圆柱,棱柱,棱台,其体积分别为V 1=7π3,V 2=2π,V 3=8,V 4=283,选C.9. 如图1-2所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( )图1-2A.126125B.65C.168125D.759.B [解析] X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0×27125+1×54125+2×36125+3×8125=65,选B.10. 已知a 为常数,函数f(x)=x(ln x -ax)有两个极值点x 1,x 2(x 1<x 2),则( )A .f(x 1)>0,f(x 2)>-12B .f(x 1)<0,f(x 2)<-12C .f(x 1)>0,f(x 2)<-12D .f(x 1)<0,f(x 2)>-1210.D [解析] f′(x)=ln x -(2ax -1)=0ln x =2ax -1,函数y =ln x 与函数y =2ax -1的图像有两个交点,令y 1=ln x ,y 2=2ax -1,在同一坐标系中作出这两个函数的图像,显然a ≤0时,两个函数图像只有一个公共点,故a>0,此时当直线的斜率逐渐变大直到直线y =2ax -1与曲线y =ln x 相切时,两函数图像均有两个不同的公共点,y ′1=1x,故曲线y =ln x 上的点(x 0,ln x 0)处的切线方程是y -ln x 0=1x 0(x -x 0),该直线过点(0,-1),则-1-ln x 0=-1,解得x 0=1,故过点(0,-1)的曲线y =ln x 的切线斜率是1,故2a =1,即a =12,所以a 的取值范围是(0,12).因为0<x 1<1<x 2,当x ∈(x 1,x 2)时,f ′(x)>0,f(x)递增,f(1)=-a ,f(x 1)<f(1)=-a<0,f(x 2)>f(1)=-a>-12,选D.11. 从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图1-3所示.(1)直方图中x 的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.图1-311.(1)0.004 4 (2)70 [解析] (1)(0.001 2+0.002 4×2+0.003 6+x +0.006 0)×50=1x =0.004 4.(2)[1-(0.001 2+0.002 4×2)×50]×100=70.12. 阅读如图1-4所示的程序框图,运行相应的程序,输出的结果i =________.图1-412.5 [解析] 逐次运算结果是a =5,i =2;a =16,i =3;a =8,i =4;a =4,i =5,满足条件,输出i =5.13. 设x ,y ,z ∈,且满足:x 2+y 2+z 2=1,x +2y +3z =14,则x +y +z =________.13.3 147 [解析] 由柯西不等式得(x 2+y 2+z 2)(1+4+9)=14≥(x +2y +3z)2=14,当x 1=y 2=z 3时取“=”,故x =1414,y =147,z =31414,则x +y +z =3 147. 14. 古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N(n ,k)(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N(n ,3)=12n 2+12n ,正方形数 N(n ,4)=n 2,五边形数 N(n ,5)=32n 2-12n ,六边形数 N(n ,6)=2n 2-n , ……可以推测N(n ,k)的表达式,由此计算N(10,24)=________.14.1 000 [解析] 观察得k 每增加1,n 2项系数增加12,n 项系数减少12,N(n ,k)=k -22n 2+(4-k)n2,故N(10,24)=1 000.图1-515. (选修4-1:几何证明选讲)如图1-5所示,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E.若AB =3AD ,则CEEO的值为________.15.8 [解析] 设AB =6k ,则AD =2k ,DO =k ,CO =3k ,设EO =x ,由射影定理:DO 2=EO·CO ,k 2=x·3k ,x =k 3,故CE EO =3k -k 3k3=8.16. (选修4-4:坐标系与参数方程)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =acos φ,y =bsin φ(φ为参数,a>b>0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin(θ+π4)=22m(m 为非零常数)与ρ=b.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为________.16.63[解析] 直线l 的直角坐标方程为x +y -m =0,圆O 的直角坐标方程为x 2+y 2=b 2,由直线与圆相切得:m 2=2b 2.又椭圆C 的一般方程为x 2a 2+y 2b2=1,直线过椭圆焦点,故m =c ,所以c 2=2b 2e =c a =63.17. 在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c.已知cos 2A -3cos(B +C)=1.(1)求角A 的大小;(2)若△ABC 的面积S =5 3,b =5,求sin Bsin C 的值.17.解: (1)由cos 2A -3cos(B +C)=1,得2cos 2A +3cos A -2=0.即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍去),因为0<A<π,所以A =π3.(2)由S =12bcsin A =12bc ·32=34bc =5 3,得bc =20,又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cosA =25+16-20=21,故a =21.又由正弦定理得sin Bsin C =b a sinA c a sin A =bc a 2sin 2 A =2021×34=57.18. 已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125. (1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得1a 1+1a 2+…+1a m≥1?若存在,求m 的最小值;若不存在,说明理由.18.解: (1)设等比数列{a n }的公比为q ,则由已知可得⎩⎪⎨⎪⎧a 31q 3=125,|a 1q -a 1q 2|=10,解得⎩⎪⎨⎪⎧a 1=53,q =3,或⎩⎪⎨⎪⎧a 1=-5,q =-1. 故a n =53·3n -1或a n =-5·(-1)n -1.(2)若a n =53·3n -1,则1a n =35(13)n -1,故{1a n }是首项为35,公比为13的等比数列,从而∑n =1m 1a n=35[1-(13)m ]1-13=910[1-(13)m ]<910<1. 若a n =(-5)·(-1)n -1,则1a n =-15(-1)n -1,故⎩⎨⎧⎭⎬⎫1a n 是首项为-15,公比为-1的等比数列,从而∑n =1m 1a n =⎩⎪⎨⎪⎧-15,m =2k -1(k ∈N +),0,m =2k (k ∈N +),故∑n =1m 1a n <1.综上,对任何正整数m ,总有∑n =1m1a n <1.故不存在正整数m ,使得1a 1+1a 2+…+1a m≥1成立.19., 如图1-6所示,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(1)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(2)设(1)中的直线l 与圆O 的另一个交点为D ,且点Q 满足DQ →=12CP →.记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E -l -C 的大小为β,求证:sin θ=sin αsin β.图1-619.解: (1)直线l ∥平面PAC ,证明如下:联结EF ,因为E ,F 分别是PA ,PC 的中点,所以EF ∥AC.又EF 平面ABC ,且AC 平面ABC ,所以EF ∥平面ABC.而EF 平面BEF ,且平面BEF ∩平面ABC =l ,所以EF ∥l.因为l 平面PAC ,EF 平面PAC ,所以直线l ∥平面PAC.(2)方法一:(综合法)如图①,联结BD ,由(1)可知交线l 即为直线BD ,且l ∥AC. 因为AB 是⊙O 的直径,所以AC ⊥BC ,于是l ⊥BC. 已知PC ⊥平面ABC ,而l 平面ABC ,所以PC ⊥l , 而PC ∩BC =C ,所以l ⊥平面PBC.联结BE ,BF ,因为BF 平面PBC ,所以l ⊥BF ,故∠CBF 就是二面角E -l -C 的平面角,即∠CBF =β.由DQ →=12CP →,作DQ ∥CP ,且DQ =12CP.联结PQ ,DF ,因为F 是CP 的中点,CP =2PF ,所以DQ =PF ,从而四边形DQPF 是平行四边形,PQ ∥FD.联结CD ,因为PC ⊥平面ABC ,所以CD 是FD 在平面ABC 内的射影,故∠CDF 就是直线PQ 与平面ABC 所成的角,即∠CDF =θ.又BD ⊥平面PBC ,有BD ⊥BF ,知∠BDF 为锐角,故∠BDF 为异面直线PQ 与EF 所成的角,即∠BDF =α,于是在Rt △DCF ,Rt △FBD ,Rt △BCF 中,分别可得sin θ=CF DF ,sin α=BF DF ,sin β=CFBF,从而sin αsin β=BF DF ·CF BF =CFDF=sin θ,即sin θ=sin αsin β.方法二:(向量法)如图②,由DQ →=12CP →,作DQ ∥CP ,且DQ =12CP.联结PQ ,EF ,BE ,BF ,BD ,由(1)可知交线l 即为直线BD.以点C 为原点,向量CA →,CB →,CP →所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,设CA =a ,CB =b ,CP =2c ,则有C(0,0,0),A(a ,0,0),B(0,b ,0),P(0,0,2c),Q(a ,b ,c),E ⎝⎛⎭⎫12a ,0,c ,F(0,0,c),于是FE →=⎝⎛⎭⎫12a ,0,0,QP →=(-a ,-b ,c),BF →=(0,-b ,c),所以cos α=|FE →·QP →||FE →||QP →|=a a 2+b 2+c 2,从而sin α=1-cos 2α=b 2+c 2a 2+b 2+c 2. 又取平面ABC 的一个法向量为=(0,0,1),可得sin θ=|m ·QP →||m ||QP →|=ca 2+b 2+c 2. 设平面BEF 的一个法向量为=(x ,y ,z),所以由⎩⎪⎨⎪⎧·FE →=0,n ·BF →=0,可得⎩⎪⎨⎪⎧12ax =0,-by +cz =0,取=(0,c ,b),于是|cos β|=|m·n ||m||n |=b b 2+c 2,从而sin β=1-cos 2β=cb 2+c2. 故sin αsin β=b 2+c 2a 2+b 2+c 2·c b 2+c 2=ca 2+b 2+c 2=sin θ,即sin θ=sin αsinβ.20., 假设每天从甲地去乙地的旅客人数X 是服从正态分布N(800,502)的随机变量,记一天中从甲地去乙地的旅客人数不超过900的概率为P 0.(1)求P 0的值;(参考数据:若X ~N(μ,σ2),有P(μ-σ<X ≤μ+σ)=0.682 6,P(μ-2σ<X ≤μ+2σ)=0.954 4,P(μ-3σ<X ≤μ+3σ)=0.997 4)(2)某客运公司用A ,B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A ,B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天要以不小于P 0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?20.解: (1)由于随机变量X 服从正态分布N(800,502),故有μ=800,σ=50,P(700<X ≤900)=0.954 4.由正态分布的对称性,可得P 0=P(X ≤900)=P(X ≤800)+P(800<X ≤900) =12+12P(700<X ≤900)=0.977 2. (2)设A 型、B 型车辆的数量分别为x ,y 辆,则相应的营运成本为1 600x +2 400y ,依题意,x ,y 还需满足:x +y ≤21,y ≤x +7,P(X ≤36x +60y)≥P 0.由(1)知,P 0=P(X ≤900),故P(X ≤36x +60y)≥P 0等价于36x +60y ≥900,于是问题等价于求满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N且使目标函数z =1 600x +2 400y 达到最小的x ,y 值.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y在y 轴上截距z2 400最小,即z 取得最小值,故应配备A 型车5辆,B 型车12辆.21., 如图1-9,已知椭圆C 1与C 2的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2n(m>n),过原点且不与x 轴重合的直线l 与C 1,C 2的四个交点按纵坐标从大到小依次为A ,B ,C ,D.记λ=mn,△BDM 和△ABN 的面积分别为S 1和S 2.(1)当直线l 与y 轴重合时,若S 1=λS 2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得S 1=λS 2?并说明理由.图1-921.解: 依题意可设椭圆C 1和C 2的方程分别为C 1:x 2a 2+y 2m 2=1,C 2:x 2a 2+y 2n 2=1,其中a>m>n>0,λ=m n>1.(1)方法一:如图①,若直线l 与y 轴重合,即直线l 的方程为x =0,则S 1=12|BD|·|OM|=12a|BD|,S 2=12|AB|·|ON|=12a|AB|,所以S 1S 2=|BD||AB|.在C 1和C 2的方程中分别令x =0,可得y A =m ,y B =n ,y D =-m ,于是|BD||AB|=|y B -y D ||y A -y B |=m +n m -n =λ+1λ-1.若S 1S 2=λ,则λ+1λ-1=λ,化简得λ2-2λ-1=0.由λ>1,可解得λ=2+1,故当直线l 与y 轴重合时,若S 1=λS 2,则λ=2+1.方法二:如图①,若直线l 与y 轴重合,则|BD|=|OB|+|OD|=m +n ,|AB|=|OA|-|OB|=m -n ;S 1=12|BD|·|OM|=12a|BD|,S 2=12|AB|·|ON|=12a|AB|.所以S 1S 2=|BD||AB|=m +n m -n =λ+1λ-1,若S 1S 2=λ,则λ+1λ-1=λ,化简得λ2-2λ-1=0,由λ>1,可解得λ=2+1,故当直线l 与y 轴重合时,若S 1=λS 2,则λ=2+1.(2)方法一:如图②,若存在与坐标轴不重合的直线l ,使得S 1=λS 2,根据对称性,不妨设直线l :y =kx(k>0),点M(-a ,0),N(a ,0)到直线l 的距离分别为d 1,d 2,则因为d 1=|-ak -0|1+k 2=ak 1+k 2,d 2=|ak -0|1+k 2=ak1+k 2,所以d 1=d 2. 又S 1=12|BD|d 1,S 2=12|AB|d 2,所以S 1S 2=|BD||AB|=λ,即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|-|AB|=(λ-1)|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|,于是|AD||BC|=λ+1λ-1.① 将l 的方程分别与C 1,C 2的方程联立,可求得x A =am a 2k 2+m 2,x B =ana 2k 2+n2. 根据对称性可知x C =-x B ,x D =-x A ,于是|AD||BC|=1+k 2|x A -x D |1+k 2|x B -x C |=2x A 2x B =m na 2k 2+n 2a 2k 2+m 2.② 从而由①和②式可得a 2k 2+n 2a 2k 2+m 2=λ+1λ(λ-1).③ 令t =(λ+1)λ(λ-1),则由m>n ,可得t ≠1,于是由③可解得k 2=n 2(λ2t 2-1)a 2(1-t 2).因为k ≠0,所以k 2>0,于是③式关于k 有解,当且仅当n 2(λ2t 2-1)a 2(1-t 2)>0,等价于(t 2-1)(t 2-1λ2)<0,由λ>1可解得1λ<t<1, 即1λ<λ+1λ(λ-1)<1,由λ>1,解得λ>1+2,所以当1<λ≤1+2时,不存在与坐标轴不重合的直线l ,使得S 1=λS 2;当λ>1+2时,存在与坐标轴不重合的直线l ,使得S 1=λS 2.方法二:如图②,若存在与坐标轴不重合的直线l ,使得S 1=λS 2,根据对称性,不妨设直线l :y =kx(k>0),点M(-a ,0),N(a ,0)到直线l 的距离分别为d 1,d 2,则因为d 1=|-ak -0|1+k 2=ak 1+k 2,d 2=|ak -0|1+k 2=ak 1+k 2,所以d 1=d 2. 又S 1=12|BD|d 1,S 2=12|AB|d 2,所以S 1S 2=|BD||AB|=λ. 因为|BD||AB|=1+k 2|x B -x D |1+k 2|x A -x B|=x A +x B x A -x B=λ,所以x A x B =λ+1λ-1. 由点A(x A ,kx A ),B(x B ,kx B )分别在C 1,C 2上,可得x 2A a 2+k 2x 2A m 2=1,x 2B a 2+k 2x 2B n 2=1,两式相减可得x 2A -x 2B a 2+k 2(x 2A -λ2x 2B )m 2=0,依题意x A >x B >0,所以x 2A >x 2B ,所以由上式解得k 2=m 2(x 2A -x 2B )a 2(λ2x 2B -x 2A ). 因为k 2>0,所以由m 2(x 2A -x 2B )a 2(λ2x 2B -x 2A )>0,可解得1<x A x B <λ, 从而1<λ+1λ-1<λ,解得λ>1+2,所以 当1<λ≤1+2时,不存在与坐标轴不重合的直线l ,使得S 1=λS 2;当λ>1+2时,存在与坐标轴不重合的直线l 使得S 1=λS 2.22., 设n 是正整数,r 为正有理数.(1)求函数f(x)=(1+x)r +1-(r +1)x -1(x>-1)的最小值;(2)证明:n r +1-(n -1)r +1r +1<n r <(n +1)r +1-n r +1r +1; (3)设x ∈,记[x]为不小于...x 的最小整数,例如[2]=2,[π]=4,[-32]=-1.令S =381+382+383+…+3125,求[S]的值.(参数数据:8043≈344.7,8143≈350.5,12443≈618.3,12643≈631.7) 22.解: (1)因为f′(x)=(r +1)(1+x)r -(r +1)=(r +1)[(1+x)r -1],令f′(x)=0,解得x =0.当-1<x<0时,f ′(x)<0,所以f(x)在(-1,0)内是减函数;当x>0时,f ′(x)>0,所以f(x)在(0,+∞)内是增函数,故函数f(x)在x =0处取得最小值f(0)=0.(2)由(1),当x ∈(-1,+∞)时,有f(x)≥f(0)=0,即(1+x)r +1≥1+(r +1)x ,且等号当且仅当x =0时成立,故当x>-1且x ≠0时,有(1+x)r +1>1+(r +1)x.①在①中,令x =1n (这时x>-1且x ≠0),得⎝⎛⎭⎫1+1n r +1>1+r +1n . 上式两边同乘n r +1,得(n +1)r +1>n r +1+n r (r +1),即n r <(n +1)r +1-n r +1r +1.② 当n>1时,在①中令x =-1n (这时x>-1且x ≠0),类似可得n r >n r +1-(n -1)r +1r +1,③ 且当n =1时,③也成立,综合②,③得n r +1-(n -1)r +1r +1<n r <(n +1)r +1-n r +1r +1.④ (3)在④中,令r =13,n 分别取值81,82,83,…,125,得 34(8143-8043)<381<34(8243-8143), 34(8243-8143)<382<34(8343-8243), 34(8343-8243)<383<34(8443-8343), ……34(12543-12443)<3125<34(12643-12543), 将以上各式相加,并整理得34(12543-8043)<S<34(12643-8143), 代入数据计算,可得34(12543-8043)≈210.2,34(12643- ≈210.9.由[S]的定义,得[S]=211.。

2013年高考真题——理科数学(全国卷大纲版)

2013年高考真题——理科数学(全国卷大纲版)

2013年普通高等学校招生全国统一考试数学(理科)一、选择题:(1)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )6(2)()3=(A )8- (B )8 (C )8i - (D )8i(3)已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则(A )4- (B )-3 (C )2- (D )-1(4)已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭(5)函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021x x ≠- (C )()21x x R -∈ (D )()210x x -> (6)已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于 (A )()-10-61-3 (B )()-1011-39(C )()-1031-3 (D )()-1031+3 (7)()()342211+x y x y +的展开式中的系数是 (A )56 (B )84 (C )112 (D )168(8)椭圆22122:1,,46x y C A A P C PA +=的左、右顶点分别为点在上且直线斜率的取值范围是[]12,1,PA --那么直线斜率的取值范围是(A )1324⎡⎤⎢⎥⎣⎦, (B )3384⎡⎤⎢⎥⎣⎦, (C )112⎡⎤⎢⎥⎣⎦, (D )314⎡⎤⎢⎥⎣⎦, (9)若函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是(A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+(10)已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于(A )23(B)3 (C)3 (D )13 (11)已知抛物线()2:82,2,C C y x M k C =-与点过的焦点,且斜率为的直线与交于 ,0,A B MA MB k ==两点,若则(A )12(B(C(D )2 (12)已知函数()=cos sin 2,f x x x 下列结论中正确的是(A )()(),0y f x π=的图像关于中心对称 (B )()2y f x x π==的图像关于对称 (C )()f x (D )()f x 既是奇函数,又是周期函数 二、填空题:本大题共4小题,每小题5分.(13)已知1sin ,cot 3a a a =-=是第三象限角,则 .(14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)(15)记不等式组0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为.D 若直线()1y a x D a =+与有公共点,则的取值范围是 .(16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =,且圆与圆所在的平面所成角为,则球O 的表面积等于 . 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)等差数列{}n a 的前n 项和为232124.=,,,n S S a S S S 已知且成等比数列,求{}n a 的通项式.18.(本小题满分12分)设()(),,,,,.ABC A B C a b c a b c a b c ac ∆++-+=的内角的对边分别为(I )求;B(II )若31sin sin , C.4A C -=求 19.(本小题满分12分)如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆中,,与都是等边三角形.(I )证明:;PB CD ⊥(II )求二面角.A PD C --的大小20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(II )X 表示前4局中乙当裁判的次数,求X 的数学期望.21.(本小题满分12分)已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2 6.y C =与的两个交点间的距离为(I )求,;a b ;(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF -证明:22.AF AB BF 、、成等比数列22.(本小题满分12分)已知函数()()()1=ln 1.1x x f x x xλ++-+ (I )若()0,0,x f x λ≥≤时求的最小值;;(II )设数列{}211111,ln 2.234n n n n a a a a n n=+++⋅⋅⋅+-+>的通项证明:。

2013年高考理科数学(湖北卷)

2013年高考理科数学(湖北卷)

2013年普通高等学校招生全国统一考试(湖北卷)数 学(理工类)本试题卷共22题,其中15、16题为选考题。

全卷满分150分。

考试用时120分钟一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、在复平面内,复数21iz i=+(i 为虚数单位)的共轭复数对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2、已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =A.{}|0x x ≤B. }42|{≤≤x xC. {}|024x x x ≤<>或D.{}|024x x x <≤≥或3、在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A.()()p q ⌝∨⌝ B. ()p q ∨⌝ C. ()()p q ⌝∧⌝ D.p q ∨4、将函数()sin y x x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是 A.12πB.6π C. 3π D. 56π 5、已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的A.实轴长相等B.虚轴长相等C.焦距相等D. 离心率相等6、已知点()1,1A -、()1,2B 、()2,1C --、()3,4D ,则向量AB 在CD方向上的投影为A.C. D. 7、一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度()25731v t t t=-++(t 的单位:s ,v 的单位:/m s )行驶至停止。

在此期间汽车继续行驶的距离(单位;m )是A. 125ln5+B. 11825ln 3+C. 425ln5+D. 450ln 2+8、一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有 A. 1243V V V V <<< B. 1324V V V V <<< C. 2134V V V V <<< D. 2314V V V V <<< 9、如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体。

2013年高考真题——理科数学(新课标Ⅱ卷) Word版含答案

2013年高考真题——理科数学(新课标Ⅱ卷) Word版含答案

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数 学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x-1)2< 4,x ∈R },N={-1,0,1,2,3},则M ∩N =( ) (A ){0,1,2} (B ){-1,0,1,2} (C ){-1,0,2,3} (D ){0,1,2,3} (2)设复数z 满足(1-i )z=2 i ,则z =( ) (A )-1+i(B )-1-i(C )1+i(D )1-i(3)等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1=( ) (A )13 (B )13- (C )19 (D )19- (4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β。

直线l 满足l ⊥m ,l ⊥n ,,l l αβ⊄⊄,则( )(A )α∥β且l ∥α(B )α⊥β且l ⊥β(C )α与β相交,且交线垂直于l(D )α与β相交,且交线平行于l(5)已知(1+ɑx )(1+x )5的展开式中x 2的系数为5,则ɑ=( ) (A )-4 (B )-3(C )-2(D )-1(6)执行右面的程序框图,如果输入的N=10,那么输出的S=(A )11112310++++ (B )11112!3!10!++++ (C )11112311++++ (D )11112!3!11!++++(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为(A) (B)(C)(D)(8)设a=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a (C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若z=2x+y 的最小值为1,则a=(A) 14 (B) 12(C)1 (D)2(10)已知函数f(x)=x 3+ax 2+bx+c ,下列结论中错误的是 (A )∃x α∈R,f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若x 0是f (x )的极值点,则()0'0f x =(11)设抛物线y 2=3px(p>0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为(A )y 2=4x 或y 2=8x (B )y 2=2x 或y 2=8x(C )y 2=4x 或y 2=16x (D )y 2=2x 或y 2=16x(12)已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是(A )(0,1)(B)112⎛⎫- ⎪ ⎪⎝⎭( C) 113⎛⎤ ⎥ ⎦⎝(D) 11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

2013年湖北省高考数学试卷(理科)答案及解析

2013年湖北省高考数学试卷(理科)答案及解析

2013年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. (5分)(2013?湖北)在复平面内,复数「-丄(i为虚数单位)的共轭复数对应的点位于()1+i _ _ A.第一象限 B .第二象限 C .第三象限 D .第四象限2. (5 分)(2013?湖北)已知全集为R,集合A ,-. ' < ■ 1 I:. | :■:,则A n?RB=( )A. {x|x O} B . {x|2^X 4} C . {x|0^X V 2 或x > 4} D . {x|0v x 屯或x^4}3. (5分)(2013?湖北)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是甲降落在指定范围” q是乙降落在指定范围”则命题至少有一位学员没有降落在指定范围”可表示为()z ? ? ? ? ?A. (p) V(q)B. p V(q)C. (p) A (q) D . p V q4. (5分)(2013?湖北)将函数,二hj:宀—=- 的图象向左平移m (m> 0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()5. (5分)(2013?湖北)已知-'1- ——,则双曲线42 2 2 2 的()cos f sin f sin 已sin 廿tan fA.实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等6. ( 5 分)(2013?湖北)已知点A (- 1, 1), B ( 1, 2), C (- 2,- 1) , D ( 3, 4),贝U向量AB 在CD 方向上的投影为( )A .B . 1 .C . ;:D . _ Vis227. (5分)(羽3?湖北)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度-'的单位:s, v的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m )是()A . 1l+25ln5B .8+25l n 1 '3C . 4+25 In5D .4+50 In28 (5分)(2013?湖北)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1, V2, V3, V4, 上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有(正视图 侧视图佣观團A • V i < V 2< V4< V3B . V l < V 3< V 2< V 4C . V 2< V 1 < V 3V V 4D . V 2< V 3V Vi < V49. ( 5分)(2013?湖北)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,贝U X 的均值E (X )=()A. 126125B. 6 1 5 C . 1168 |125D . 7510. (5分)(2013?湖北)已知a 为常数,函数f (x ) =x (Inx -ax )有两个极值点x1, X 2 ( X 1< X 2)( )A. f (“)>o. f (七)B .. E (x[)<0* f ( xj)C .f ( x|) >0* f 〔 x 2】 D . f Gj) G f (七)二、填空题:本大题共 6小题,考生共需作答 5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位 置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用 2B 铅笔涂黑.如果全选,则按第 15题作答结果计分.)11. (5分)(2013?湖北)从某小区抽取 100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(I )直方图中 x 的值为 _____________________; (n )在这些用户中,用电量落在区间[100, 250)内的户数为 _____________________ .12. (5分)(2013?湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果 i= _____________13. ______________________________________________________________________________________________ (5 分)(2013?湖北)设x, y, z €R,且满足:吕 + 萝2+忑?二],z+2y+3z二寸肓,则x+y+z= ___________________________ .14. (5分)(2013?湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1, 3, 6,10,…,第n个三角形数为介5+1〕A J丄口.记第n个k边形数为N (n, k)(k為),以下列出了部分k边形数中第n个2 2 2数的表达式:三角形数「」.::;-ri:'二二2正方形数N (n, 4)=n ,五边形数:■:.r : i —丄、-2 2六边形数N (n, 6)=2n2- n,可以推测N (n, k)的表达式,由此计算N (10, 24)= _____________ .15. (5分)(2013?湖北)(选修4 - 1:几何证明选讲)如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则三的值为16. (2013?湖北)(选修4- 4:坐标系与参数方程)在直角坐标系xOy中,椭圆C的参数方程为P_aC0S^ (④为参数,a>b>0).在极坐标系(与直角坐标系xOy {y=bsin(P 取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线I与圆O的极坐标方程分别为为非零常数)与p=b.若直线I经过椭圆C的焦点,且与圆O相切,则椭圆C的离心4 2率为 _________________ .三、解答题:本大题共6小题,共75分•解答应写出文字说明、证明过程或演算步骤.17. (12 分)(2013?湖北)在△ ABC 中,角A, B, C 对应的边分别是a, b, c,已知cos2A - 3cos ( B+C) =1.(I)求角A的大小;(H)若△ ABC 的面积I;■ I' ■,求sinBsinC 的值.18. (12 分)(2013?湖北)已知等比数列{a n}满足:|32-a3|=10, a132a3=125.(I)求数列{a n}的通项公式;(n)是否存在正整数m,使得1 .…,1 I ?若存在,求m的最小值;若不存在,说明理由.a l a219. (12分)(2013?湖北)如图,AB是圆O的直径,点C是圆O上异于A, B的点,直线PC丄平面ABC , E, F 分别是PA, PC的中点.(I)记平面BEF与平面ABC的交线为I,试判断直线I与平面PAC的位置关系,并加以证明;异面直线PQ与EF所成的角为a,二面角E- l - C的大小为3.求证:sin 0=sin asin 3.220. (12分)(2013?湖北)假设每天从甲地去乙地的旅客人数X是服从正态分布N ( 800, 50 )的随机变量•记一天中从甲地去乙地的旅客人数不超过900的概率为p o.(I)求P0的值;2(参考数据:若X 〜N (a, O2),有P ( — O< X < + o) =0.6826 , P (厂2(r< X <+2 <r) =0.9544, P (厂3 o< X < 朮3 o)=0.9974.)(n)某客运公司用A, B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次, A , B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于P0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?21. (13分)(2013?湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m, 2n (m> n),过原点且不与x轴重合的直线l与C1, C2的四个交点按纵坐标从大到小依次为A, B , C, D , 记工』,△ BDM和厶ABN的面积分别为S1和S2.n(I)当直线I与y轴重合时,若S1=;S2,求入的值;(n)当入变化时,是否存在与坐标轴不重合的直线I,使得s仁泊2?并说明理由.22. (14分)(2013?湖北)设n是正整数,r为正有理数.(I)求函数f (x) = (1+x) r+1-( r+1) x - 1 (x >- 1)的最小值;(n)设(I)中的直线l与圆O的另一个交点为D,且点Q满足fi; . | ■:2.记直线PQ与平面ABC所成的角为0,(川)设x€R ,记[x ]为不小于x 的最小整数,例如厂:=「亍| [_]的值.(参考数据:丨厂-::■ . 「:-—:.丄 J …:…,:“:(n )证明:?+i n '^+i'匸「•令2013年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)考点:复数的代数表示法及其几何意义.专题:计算题.分析:将复数z=…的分母实数化,求得z=1+i,即可求得•,从而可知答案.1+i解答:解:••• z== 」=1+i ,1+i (1+i) tl - i) 2•••「=1 - i.对应的点(1, - 1 )位于第四象限,故选D.点评:本题考查复数的代数表示法及其几何意义,将复数z=幕的分母实数化是关键,属于基础题.1+i2. (5 分)考点:其他不等式的解法;交、并、补集的混合运算.专题:计算题;不等式的解法及应用.分析:: 利用指数函数的性质可求得集合A,通过解一兀一次不等式可求得集合B,从而可求得A Q C R B .解答:1龙 1 0解:(2)* (2),2 2•x为,•A={x|x 为};2又x - 6x+8 O? (x - 2) (x - 4)切,•2$ 詔.•B={x|2 強<4},•- ?R B={x|x V 2 或x> 4},•- A Q?R B={X|0強V 2 或x >4}, 故选C.点评:本题考查指数函数的性质与兀二次不等式,考查交、并、补集的混合运算,属于中档题.3. (5 分)考点:复合命题的真假.专题:阅读型.分析:由命题P和命题q写出对应的」p和「q,则命题至少有一位学员没有降落在指定范围”即可得到表示.解答:解:命题p是甲降落在指定范围”则」p是甲没降落在指定范围”q是乙降落在指定范围”则」q是乙没降落在指定范围” 命题至少有一位学员没有降落在指定范围”包括甲降落在指定范围,乙没降落在指定范围”或甲没降落在指定范围,乙降落在指定范围”或甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题至少有一位学员没有降落在指定范围”可表示为(「故选A.p) V 厂q).点评:本题考查了复合命题的真假,解答的关键是熟记复合命题的真值表,是基础题.4. (5 分)考点:两角和与差的正弦函数;函数y=Asin (®x+ $)的图象变换. 专题:三角函数的图像与性质.分析:函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用平移规律得到平移后的解析式,根据所得的图象关于y轴对称,即可求出m的最小值.' 解: y= Icosx+sinx=2 ( —cosx+二sinx) =2sin (x+——),2 2 3•••图象向左平移m (m>0)个单位长度得到y=2sin[ (x+m) +H]=2sin (x+m+工),3 3•••所得的图象关于y轴对称,• m+——=k n+——(k €Z),3 2则m的最小值为工.6故选B点评:此题考查了两角和与差的正弦函数公式,以及函数y=Asin ( «x+ $)的图象变换,熟练掌握公式是解本题的关键.5. (5 分)考点:. 双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:;根据双曲线的标准方程求出双曲线的几何性质同,即可得出正确答案.解答:2 2 1解:双曲线::——务一一一卑~=]的实轴长为2cos 0,虚轴长2sin 焦距2,离心率 --------------------------------- ,1cos2e sin2e 8肌2 2 1双曲线- 口J实干山长丿J U,干山UU11 U,八、'距匕U, | ^离_ [ , J sin20 sin29 tan26 cos 0故它们的离心率相同.故选D.点评:本题主要考查了双曲线的标准方程、双曲线的简单性质等,属于基础题.6. (5 分)考点:平面向量数量积的含义与物理意义.专题:平面向量及应用.分析:先求出向量.「、' 1,根据投影定义即可求得答案.解答:,解:厂;1 J 二匚则向量订二〒方向上的投影为:?cosv〒=> =糾‘ ?打•〔=- ;=一 ',|AB | |CD | |CD | W2 2 故选A.点评:本题考查平面向量数量积的含义与物理意义,考查向量投影定义,属基础题,正确理解相关概念是解决问题的关键.7. (5 分)考点:定积分.专题:导数的综合应用.分析:, 令v (t) =0,解得t=4,则所求的距离S= | •.「,解出即可.解答:.一2解:令v (t)=7 - 3t+ 1,化为3t - 4t-32=0,又t>0,解得t=4.•由刹车行驶至停止,在此期间汽车继续行驶的距离2s=:、- … 二」「一=「‘‘十—「」丨二.t 1 7=4+25In5 .故选C.点评:熟练掌握导数的运算法则和定积分的几何意义是解题的关键.考点:由三视图求面积、体积.专题:计算题.分析:禾U用三视图与已知条件判断组合体的形状,分别求出几何体的体积,即可判断出正确选项. 解答:解:由题意以及三视图可知,该几何体从上到下由:圆台、圆柱、正四棱柱、正四棱台组成,体积分别记入为V i=丄兀尹二"尹)=空.3 3V2=i2xnx2 nV3=2 >2X2=8V4=_. • m - =_';3 3• V2V V i v V3V V4 故选C.点评:本题考查简单组合体的三视图与几何体的体积的求法,正确判断几何体的形状与准确利用公式求解体积是解题的关键.9. (5 分)考点:离散型随机变量的期望与方差.专题:压轴题;概率与统计.分析:由题意可知:X所有可能取值为0, 1 , 2, 3.①8个顶点处的8个小正方体涂有3面,②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3X12=36个小正方体涂有2面,③ 每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9X5=54个小正方体涂有一面,④由以上可知:还剩下125-( 8=36+54 ) =27个内部的小正方体的6个面都没有涂油漆,根据上面的分析即可得出其概率及X的分布列,利用数学期望的计算公式即可得出.解答:解:由题意可知:X所有可能取值为0, 1, 2, 3.①8个顶点处的8个小正方体涂有3面,••• P (X=3 )= ;125②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3X12=36个小正方体涂有2面,• P (X=2 )36125'③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9X3=54个小正方体涂有面,• P (X=1 ) =「.125④ 由以上可知:还剩下125-( 8+36+54 )=27个内部的小正方体的6个面都没有涂油漆,/• P( X=0 ) = _ .故X的分布列为因此E (X ) “ —斗二—:点评:正确找出所涂油漆的面数的正方体的个数及古典概型的概率计算公式、分布列与数学期望是解题的关键.i0. (5 分)考点:利用导数研究函数的极值;函数在某点取得极值的条件. 专题:压轴题;导数的综合应用.分析: 先求出f (x ),令f (x ) =0,由题意可得Inx=2ax - i 有两个解x i , X 2?函数g (x ) =lnx+i - 2ax 有且只有 两个零点? g' (x )在(0, +a)上的唯一的极值不等于0.利用导数与函数极值的关系即可得出.工 亠二.丄工 -=lnx+i - 2ax, (x>0)令f(x ) =0,由题意可得Inx=2ax - i 有两个解x i ,X 2?函数g (x )=lnx+i - 2ax 有且只有两个零点? g (x )在(0, + a)上的唯一的极值不等于0.f、 1 o 1 - 2ax | .,二 = .解答:解:••• 当a 包)时,g' (x ) 当a >0时,令g0, f (x )单调递增,因此 g (x ) =f (x )至多有一个零点,不符合题意, (x ) =0,解得 x=,2a应舍去.g (x )> 0,函数g (x )单调递增;—壬3时,g (xX0,「x —— 单调递减.• x='是函数g (X )的极大值点,贝y一 I >0,即•2a52a丄函数g (x )••• 0v 2a v i , 即2- '.,, f (x i ) =ln x i +i - 2ax i =0, f12a d且 f (x i ) =x i (Inx i - ax i ) =x i (2ax i - 1 - ax i ) =x if (X 2)=X 2 (lnX 2 - aX 2)=X 2 ( aX 2 - i ) > 1 :讥汽故选D .点评:熟练掌握利用导数研究函数极值的方法是解题的关键.(2a )v 0,(X2)=lnx 2+1 - 2ax 2=0 .(ax i - i ) ■--- 12a 2a寻-D = (当〉1). 2a 2 2a二、填空题:本大题共 6小题,考生共需作答 5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位 置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第 15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用 2B 铅笔涂黑.如果全选,则按第 15题作答结果计分.)ii . (5 分)考点:频率分布直方图. 专题:图表型. 分析:(I)根据频率分布直方图中,各组的频率之和为i ,我们易得到一个关于 x的方程,解方程即可得到答案.(II)由已知中的频率分布直方图,利用[i00 , 250)之间各小组的纵坐标(矩形的高)乘以组距得到 [i00, 250)的频率,利用频率乘以样本容量即可求出频数.解答:解:(I)依题意及频率分布直方图知, 解得 x=0.0044 .(II )样本数据落在[i00 , 样本0.0024 >50+0.0036 X50+0.0060 >50+x >50+0.0024 X50+0.00i2 >50=i ,故在这些用户中,用电量落在区间 故答案为:0.0044; 70 .i50)内的频率为 0.0036>50=0.i8, 内的频率为 0.006拓0=0.3.内的频率为 0.0044 >50=0.22 , [i00 , 250)内的户数为(0.i8+0.30+0.22) >00=70.点评:根据新高考服务于新教材的原则,作为新教材的新增内容--频率分布直方图是新高考的重要考点.对于 频率分布直方图学习的关键是学会画图、看图和用图.「一- .二 | -> 0 ,「• In12. (5 分)考点:程序框图.分析:;框图首先给变量a和变量i赋值,然后对a是否等于4进行判断,不等于4,继续判断a是否为奇数,是执行路径a-3a+1,否执行路径._-_!,再执行i-i+1,依次循环执行,当a等于4时跳出循环,输出i的值.2 1解答::解:框图首先给变量a和变量i赋值,a=4, i=1 .判断10=4不成立,判断10是奇数不成立,执行 --—-: , i=1+1=2 ; 2判断5=4不成立,判断5是奇数成立,执行a=3>5+1=16 , i=2+仁3 ;判断16=4不成立,判断16是奇数不成立,执行一.;,i=3+1=4 ;2判断8=4不成立,判断8是奇数不成立,执行-i=4+1=5 ;2判断4=4成立,跳出循环,输出i的值为5.故答案是5.点评:本题考查了程序框图,循环结构中含有条件结构,外面的循环结构为直到型,即不满足条件执行循环,直到条件满足跳出循环•是基础题.13. (5 分)考点:般形式的柯西不等式;进行简单的合情推理.专题:计算题;不等式的解法及应用.分析:;根据柯西不等式,算出(x+2y+3z ) <14 (x +y +z ) =14,从而得到x+2y+3z恰好取到最大值QU ,由不等式的等号成立的条件解出x=—、y= '且z=「\由此即可得到x+y+z的值.14 7 14解答::解:根据柯西不等式,得2 2 2 2、/ 2 2 2、一/ 2 2 2、(x+2y+3z ) < (1 +2 +3 ) (x+y+z ) =14 (x+y+z )当且仅当. 时,上式的等号成立1 2 32 2 2 2••• x +y +z =1 ,•••( x+2y+3z ) <14,结合•、可得x+2y+3z恰好取到最大值.■-• 一丄-,可得-,丄,z=--1 2 3 14 14 7 14因此,x+y+z= + '亠=—14 7 14 7故答案为:——7点评:本题给出x、y、z的平方和等于1,在x+2y+3z恰好取到最大值T i. 的情况下求x+y+z的值.着重考查了运用柯西不等式求最值的方法,属于中档题•抓住柯西不等式的等号成立的条件,是本题得以解决的关键.14. (5 分)考点:归纳推理.专题:计算题.分析:1,-9 4-1-观察已知式子的规律,并改写形式,归纳可得■■ :i, ■ :' - ' - •,把n=10, k=24代入可得答案.解答: 1 1 3-9 4—3解:原已知式子可化为::一|二;•+ - ,/ 八 2 4-2 2 4-4 M f八 3 2 1 5-2 2 4-5kt「二m .. ■. + .•,■■•■.•- ,, - - ,, ■,「八n 2 6-2 2 4-6'■——1■--2 2由归纳推理可得■, :>■. 故 / . 111. :J. 1.=1100- 100=1000故答案为:1000点评: 本题考查归纳推理,观察已知式子的规律并改写形式是解决问题的关键,属基础题. 15. (5 分) 考点:与圆有关的比例线段;直角三角形的射影定理. 专题:压轴题;选作题. 分析:设圆O 的半径为3x ,根据射影定理,可以求出 OD 2=OE?OC=X 2,CD 2=CE?OC=8x 2,进而得到 '的值.E0解答: 解:设圆O 的半径OA=OB=OC=3x , •/ AB=3AD , /• AD=2x , BD=4x , OD=x 又•••点C 在直径AB 上的射影为D , 在厶ABC 中,由射影定理得: 在厶ODC 中,由射影定理得:2 2 CD =AD?BD=8x ,2 2 2 2 OD =OE?OC=x , CD =CE?OC=8x , 故打=J故答案为:8点评:本题考查的知识点是直角三角形射影定理,射影定理在使用时一定要注意其使用范围 …双垂直”.16. (2013?湖北) 考点:参数方程化成普通方程;椭圆的简单性质;点的极坐标和直角坐标的互化. 专题:压轴题;圆锥曲线的定义、性质与方程. 分析:解答: 先根据极坐标与直角坐标的转换关系将直线I 的极坐标方程分别为为非零常4 2数)化成直角坐标方程, 再利用直线I 经过椭圆C 的焦点,且与圆O 相切,从而得到c= ,又b 2=a 2 - c 2, 消去b 后得到关于a, c 的等式,即可求出椭圆 C 的离心率. 解:直线I 的极坐标方程分别为11-:' :-|八为非零常数)化成直角坐标方程为 x+y - m=0,42它与x 轴的交点坐标为(m , 0),由题意知,(m , 0)为椭圆的焦点,故|m|=c , -ml又直线l 与圆O : p=b 相切,••• ----------V2从而 c= ■:b ,又 b 2=a 2 - c 2,2 2 2、…c =2 (a - c ),c 22 c v6•- 3c =2a , •=.a 3则椭圆C 的离心率为 '. 3故答案为:7点评:本题考查了椭圆的离心率,考查了参数方程化成普通方程,点的极坐标和直角坐标的互化,考查提高学生 分析问题的能力. 三、解答题:本大题共 6小题,共75分•解答应写出文字说明、证明过程或演算步骤.17. (12 分)考点:' 余弦定理;正弦定理. 专题:: 解三角形.分析:t (I)利用倍角公式和诱导公式即可得出;(II)由三角形的面积公式厂•■•汇•即可得到bc=20 .又b=5,解得c=4 .由余弦定理得a2=b2+c2- 2bccosA=25+16 - 20=21,即可得出a.又由正弦定理得即可得到--------------- 厂宀即可得出.a a解答:: 解: (I)由cos2A - 3cos (B+C ) =1,得2cos2A+3cosA - 2=0,即(2cosA 1) (cosA+2) =0,解得,21::•'.(舍去).2因为0V A V n所以职匹.3(n)由S= - = ='、.;%[得到bc=20 .又b=5,解得c=4.由余弦定理得a2=b2+c2- 2bccosA=25+16 - 20=21,故「:二=.又由正弦疋理得.丁.「_门| 一:一:| :卜,._ . 一—• 一 . ,L_ _a a 子21 4 T点评::熟练掌握三角函数的倍角公式和诱导公式、三角形的面积公式、余弦定理得、正弦定理是解题的关键.18. (12 分)考点:数列的求和;等比数列的通项公式;数列与不等式的综合.专题:计算题;等差数列与等比数列.分析:(1)设等比数列{a n}的公比为q,结合等比数列的通项公式表示已知条件,解方程可求a1, q,进而可求通项公式(n)结合(1)可知「是等比数列,结合等比数列的求和公式可求 1 •….,即可判断5 a l a2 a rt解答:解:(I)设等比数列{a n}的公比为q,则由已知可得/[冷』- 1=10解得.幻它或1故一• — . 「一■- r .(n)若一二工一一,则1'r ,n3 % 5 3故[―:是首项为.;,公比为一的等比数列,“ 5 3上[1-(丄)\…二1 5 3 」9 _n小2 9八从而;, _ ・1' '.3若一…:• 「;则丄匸「一一:川丄;是首项为,公比为-1的等比数“a n 5J 5列,洼山-1(心+)故£丄V .0, mP2k (k€ N +). 炉 1 a n综上,对任何正整数 m ,总有J ,| .炉1故不存在正整数 m ,使得1 |i 成立.a l a2 a n用空间向量求平面间的夹角;空间中直线与平面之间的位置关系;直线与平面平行的判定; 求法.空间位置关系与距离;空间角.(I ) 直线I //平面PAC .连接EF ,利用三角形的中位线定理可得, EF // AC ;禾U 用线面平行的判定定理即可得到EF //平面ABC .由线面平行的性质定理可得 EF // I .再利用线面平行的判定定理即可证明直线I //平面PAC .(II ) 综合法:利用线面垂直的判定定理可证明 I 丄平面PBC •连接BE ,BF ,因为BF?平面PBC ,所以I 丄BC •故 / CBF 就是二面角 E - I - C 的平面角,即/ CBF= 3-已知PC 丄平面ABC ,可知CD 是FD 在平面ABC 内的射影,故/ CDF 就是直线PQ 与平面ABC 所成的角,即 / CDF= 0.由BD 丄平面PBC ,有BD 丄BF ,知/ BDF= a,分别利用三个直角三角形的边角关系即可证明结论;向量法:以点C 为原点,向量:,■■ , 「、所在直线分别为x , y , z 轴,建立如图所示的空间直角坐标系,利用两个平面的法向量的夹角即可得出二面角.解:(I )直线I //平面PAC ,证明如下: 连接EF ,因为E , F 分别是PA , PC 的中点,所以 EF // AC , 又EF?平面ABC ,且AC?平面ABC ,所以EF //平面 ABC . 而EF?平面BEF ,且平面 BEF D 平面 ABC=I ,所以EF / I . 因为I?平面PAC , EF?平面PAC ,所以直线I //平面PAC .(H )(综合法)如图1,连接BD ,由(I )可知交线I 即为直线BD ,且I // AC . 因为AB 是O O 的直径,所以 AC 丄BC ,于是I 丄BC .已知PC 丄平面 ABC ,而I?平面ABC ,所以PC 丄I . 而PCABC=C ,所以I 丄平面PBC .连接BE , BF ,因为BF?平面PBC ,所以I 丄BF . 故/ CBF 就是二面角 E - I - C 的平面角,即/ CBF= 31i1由.-I .',作 DQ // CP ,且 口=「「连接PQ , DF ,因为F 是CP 的中点,CP=2PF ,所以DQ=PF , 从而四边形 DQPF 是平行四边形,PQ // FD .连接CD ,因为PC 丄平面ABC ,所以CD 是FD 在平面ABC 内的射影, 故/ CDF 就是直线PQ 与平面ABC 所成的角,即/ CDF= 0 . 又BD 丄平面 PBC ,有BD 丄BF ,知/ BDF= a,于是在 Rt △ DCF , Rt △ FBD , Rt △ BCF 中,分别可得 ■ ■ i.:?-,DF DFBF从而二:门匚匕-二和八 一 =]--「.门二「* 1 *(n )(向量法)如图 2,由.■ I :',作 DQ // CP ,且i连接PQ , EF , BE , BF , BD ,由(I )可知交线 I 即为直线 BD .从而厂一n=l a n点评:本题主要考查了等比数列的通项公式及求和公式的综合应用,还考查了一定的逻辑推理与运算的能力19 . (12 分)考 占: 八、、♦ 专 题: 分面角的平面角及解 答:】」「「,从而故 ---------------------- :---------------------- ---------------- 二-,即 sin B =sin osin 3,Va 2+b 2+c Z Vb Z +c Z Va Z +b 2+c Z点本题综合考查了线面平行的判定定理和性质定理、 线面垂直的判定与性质定理、平行四边形的判定与性质定理、评:线面角、二面角、异面直线所成的角、通过建立空间直角坐标系利用法向量的夹角求二面角等基础知识与方法,需要较强的空间想象能力、推理能力和计算能力.20. (12 分)(I)变量服从正态分布 N (800, 502),即服从均值为 800,标准差为50的正态分布,适合 700 v X 电00范 围内取值即在(厂2 q时2 d)内取值,其概率为:95.44%,从而由正态分布的对称性得出不超过 900的概 率为P 0.(II) 设每天应派出 A 型x 辆、B 型车y 辆,根据条件列出不等式组,即得线性约束条件,列出目标函数, 画出可行域求解.2解答: 解:(I)由于随机变量 X 服从正态分布 N ( 800, 50 ),故有 尸800 , (=50 , P (700 v X 电00) =0.9544 .由正态分布的对称性,可得 po=(p (X<900)=P(X 詣00)+p (800v X <900)=^+-^P (700<X<;900)=0. 9772(H)设A 型、B 型车辆的数量分别为 x , y 辆,则相应的营运成本为 1600x+2400y .依题意,x , y 还需满足:x+y <21, y<x+7 , P (X <36x+60y )却0.以点C 为原点,向量CA,亍,千所在直线分别为x , y , z 轴,建立如图所示的空间直角坐标系,设 CA=a ,CB=b , CP=2c , 则有C (0, O f 0)(a, 0, 0),B (0, b, 0) f P (0, 0, 2c) , Q (a, b f c) , E (吉並 0, c)--------------- */?2, 1|FE| -|QP |又取平面ABC 的一个法向量为 匸-、:,.,可得三[门,-I m ■ QF | c ____ I nt | • | QP | Va 2+b 2+c 2设平面BEF 的一个法向量为所以由n pFE=0t n-BF=0.可得却口 取;(山s b).-by+cz=O*考点:简单线性规划;正态分布曲线的特点及曲线所表示的意义. 专题:不等式的解法及应用;概率与统计. 分析:A.【I , 由(I )知,p o =p (X 电00),故 P (X W60x+60y )却o 等价于 36x+60y 为00.x+y<21y<x+7 36x+60y^900u, y>0, x, y€N且使目标函数 z=1600x+2400y 达到最小值的x ,y . 作可行域如图所示,可行域的三个顶点坐标分别为P (5, 12), Q (7, 14), R (15, 6).由图可知,当直线 z=1600x+2400y 经过可行域的点 P 时,直线z=1600x+2400y 在y 轴上截距—二最小,即 「 2400 z 取得最小值.故应配备A 型车5辆,B 型车12辆.本题考查正态分布曲线的特点及曲线所表示的意义,考查简单线性规划•本题解题的关键是列出不等式组 (方程组)寻求约束条件,并就题目所述找出目标函数,将可行域各角点的值一一代入,最后比较,即可 得到目标函数的最优解.21. (13 分)考点:直线与圆锥曲线的关系;三角形的面积公式;点到直线的距离公式. 专题:丿 压轴题;圆锥曲线的定义、性质与方程. 分析:1 1(I)设出两个椭圆的方程,当直线1与y 轴重合时,求出 △ BDM 和厶ABN 的面积&和S 2,直接由面积 比=入列式求入的值;(n)假设存在与坐标轴不重合的直线l ,使得S 1=x S 2,设出直线方程,由点到直线的距离公式求出M 和N 到直线l 的距离,利用数学转化思想把两个三角形的面积比转化为线段长度比,由弦长公式得到线段长度比的另一表达式,两式相等得到- '',换元后利用非零的k 值存在讨论 入的取值范围.解答:解:以题意可设椭圆 C1和C2的方程分别为2 2 2 2厂 「.1 ,:「. 1 •其中 a > m >n >0,a ma n(I)如图1,若直线I 与y 轴重合,即直线I 的方程为x=0,则■ : ' II' I- f ■:,在C 1和C 2的方程中分别令 x=0,可得y A =m , y B =n , y D = - m ,于是问题等价于求满足约束条件_ x.,化简得 斤-2入-1=0,由$> 1,解得x =*7^+1 •_ 1故当直线I 与y 轴重合时,若S i = 0,则’.(n)如图2,若存在与坐标轴不重合的直线I ,使得S 仁$2,根据对称性,不妨设直线I : y=kx 点 M (- a , 0) , N等价于 丨-| I -即1「丄,由$>1,解得 当■- - ■ ■ '时,不存在与坐标轴不重合的直线 I ,使得S 1= &; 当’• "i-卜「-时,存在与坐标轴不重合的直线I ,使得S 1=$$2.若…则1 (k > 0),(a , 0)到直线I 的距离分别为d i , d 2,则I - ak- 0|% 二ak|ak- 0|ak--------- --------- ,所以 d i =d 2-又.: = -- ,K I—I I -1,所以「慨「,即 |BD|=开AB| •由对称性可知 |AB|=|CD|,所以 |BC|=|BD| - |AB|=(入-1) |AB| ,|AD|=|BD|+|AB|=(廿1) |AB|,于是 |-将I 的方程分别与 C i 和C 2的方程联立,可求得_ anlB=7?7w根据对称性可知 X C = - x B , X D = - x A ,I ADI RT 胃廿 i BC i Vl+k 2I - X c从而由①和②可得x+l2i 2丄 2一:一 「 ③ a k +n令—/I 、,则由m > n ,可得t 詞,于是由③可得足/ ]衷"y 入(扎 _ 1)a 2(1 -x 2}因为k 旳,所以k 2> 0•于是 ③关于k 有解,当且仅当22. (14 分) 考 导数在最大值、最小值问题中的应用;禾U 用导数研究函数的单调性;数列的求和;不等式的证明.占:八、、♦ 专 压轴题;导数的综合应用;不等式的解法及应用. 题: 分 (I)先求出函数f (x )的导函数f'(x ),令f (x ) =0,解得x=0,再求出函数的单调区间,进而求出最小值 析:为 f (0) =0 ;(H)根据(I)知,即(1+x ) r+1》+ (r+1) x ,令*2代入并化简得—,再令n r+1 n得n ----------------------- - ----- ,即结论得到证明;r+1(川)根据(n)的结论,令 -,n 分别取值81, 82, 83,…,125,分别列出不等式,再将各式相加得,3444 4--飞 :-:| | !:: :■■ :- --、 :!,再由参考数据和条件进行求解.解 解;(I)由题意得 f (x ) = (r+1) (1+x ) r -( r+1) = (r+1) [ (1+x ) r - 1], 答:令f (x ) =0,解得x=0 .当-1v x v 0 时,f (x )v 0 ,••• f (x )在(-1, 0)内是减函数; 当x >0时,f (x )> 0,「. f (x )在(0, +s)内是增函数. 故函数f (x )在x=0处,取得最小值为f (0) =0.(n)由(I),当 x € (- 1, + R )时,有 f (x )并(0) =0,r+1即(1+x ) 》+ (r+1) X ,且等号当且仅当 x=0时成立, 故当 x >- 1 且 x 和,有(1+x ) r+1> 1+ (r+1) x ,① 在①中,令厂一(这时x >- 1且x 旳),得「「讣■-亠-.AB点评:本题考查了三角形的面积公式,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,该题重点考 查了数学转化思想方法和分类讨论的数学思想方法,(n)中判断 入的存在性是该题的难题,考查了灵活运用函数和不等式的思想方法.。

2013年高考真题——理科数学(全国卷大纲版)精校版

2013年高考真题——理科数学(全国卷大纲版)精校版

绝密★启用前2013年普通高等学校招生全国统一考试数学(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )6(2)()3=(A )8- (B )8 (C )8i - (D )8i (3)已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则(A )4- (B )-3 (C )2- (D )-1 (4)已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫⎪⎝⎭(5)函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> (6)已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于(A )()-10-61-3 (B )()-1011-39(C )()-1031-3 (D )()-1031+3(7)()()342211+x y x y +的展开式中的系数是(A )56 (B )84 (C )112 (D )168(8)椭圆22122:1,,46x y C A A P C PA +=的左、右顶点分别为点在上且直线斜率的取值范围是[]12,1,PA --那么直线斜率的取值范围是(A )1324⎡⎤⎢⎥⎣⎦, (B )3384⎡⎤⎢⎥⎣⎦, (C )112⎡⎤⎢⎥⎣⎦, (D )314⎡⎤⎢⎥⎣⎦,(9)若函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是 (A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+ (10)已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于(A )23 (B)3 (C)3(D )13 (11)已知抛物线()2:82,2,C C y x M k C =-与点过的焦点,且斜率为的直线与交于,0,A B MA MB k ==两点,若则(A )12 (B)2(C(D )2 (12)已知函数()=cos sin 2,f x x x 下列结论中正确的是(A )()(),0y f x π=的图像关于中心对称 (B )()2y f x x π==的图像关于对称(C )()f x (D )()f x 既是奇函数,又是周期函数 二、填空题:本大题共4小题,每小题5分.(13)已知1sin ,cot 3a a a =-=是第三象限角,则 . (14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)(15)记不等式组0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为.D 若直线()1y a x D a =+与有公共点,则的取值范围是 .(16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K = ,且圆与圆所在的平面所成角为,则球O 的表面积等于 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)等差数列{}n a 的前n 项和为232124.=,,,n S S a S S S 已知且成等比数列,求{}n a 的通项式.18.(本小题满分12分)设()(),,,,,.ABC A B C a b c a b c a b c ac ∆++-+=的内角的对边分别为(I )求;B(II )若sin sin C.A C =求19.(本小题满分12分)如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆ 中,,与都是等边三角形.(I )证明:;PB CD ⊥(II )求二面角.A PD C --的大小20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(II )X 表示前4局中乙当裁判的次数,求X 的数学期望.21.(本小题满分12分)已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b ;(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF -证明:22.AF AB BF 、、成等比数列22.(本小题满分12分)已知函数()()()1=ln 1.1x x f x x xλ++-+(I )若()0,0,x f x λ≥≤时求的最小值;;(II )设数列{}211111,ln 2.234n n n n a a a a n n=+++⋅⋅⋅+-+>的通项证明:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年湖北省理科数学高考试题WORD 解析版一、选择题 1、在复平面内,复数21iz i=+(i 为虚数单位)的共轭复数对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【解析与答案】211iz i i==++,1z i ∴=-。

故选D【相关知识点】复数的运算2、已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B = ( )A.{}|0x x ≤B.C. {}|024x x x ≤<>或D.{}|024x x x <≤≥或【解析与答案】[)0,A =+∞,[]2,4B =,[)()0,24,R A C B ∴=+∞ 。

故选C【相关知识点】不等式的求解,集合的运算3、在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A.()()p q ⌝∨⌝ B. ()p q ∨⌝ C. ()()p q ⌝∧⌝ D.p q ∨ 【解析与答案】“至少有一位学员没有降落在指定范围” 即:“甲或乙没有降落在指定范围内”。

故选A 。

【相关知识点】命题及逻辑连接词4、将函数()sin y x x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( ) A.12πB.6πC.3πD.56π【解析与答案】2cos 6y x π⎛⎫=- ⎪⎝⎭的图像向左平移()0m m >个长度单位后变成2cos 6y x m π⎛⎫=-+ ⎪⎝⎭,所以m 的最小值是6π。

故选B 。

【相关知识点】三角函数图象及其变换5、已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的( ) A.实轴长相等 B.虚轴长相等 C.焦距相等 D. 离心率相等【解析与答案】双曲线1C 的离心率是11cos e θ=,双曲线2C 的离心率是21cos e θ==,故选D【相关知识点】双曲线的离心率,三角恒等变形6、已知点()1,1A -、()1,2B 、()2,1C --、()3,4D ,则向量AB 在CD方向上的投影为( )A.C. D.【解析与答案】()2,1AB = ,()5,5CD = ,AB CD CD∴==A 。

【相关知识点】向量的坐标运算,向量的投影7、一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度()25731v t t t=-++(t 的单位:s ,v 的单位:/m s )行驶至停止。

在此期间汽车继续行驶的距离(单位;m )是( ) A. 125ln 5+ B. 11825ln3+ C. 425ln 5+ D. 450ln 2+ 【解析与答案】令 ()257301v t t t =-+=+,则4t =。

汽车刹车的距离是402573425ln 51t dt t ⎛⎫-+=+ ⎪+⎝⎭⎰,故选C 。

【相关知识点】定积分在实际问题中的应用8、一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A. 1243V V V V <<<B. 1324V V V V <<<C. 2134V V V V <<<D. 2314V V V V <<<【解析与答案】C 由柱体和台体的体积公式可知选C 【相关知识点】三视图,简单几何体体积9、如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体。

经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为X ,则X 的均值为()E X = A. 126125 B. 65 C. 168125 D. 75第9题图【解析与答案】三面涂有油漆的有8块,两面涂有油漆的有36块,一面涂有油漆的有54块,没有涂有油漆的有27块,所以()8365463211251251255E X =⨯+⨯+⨯=。

故选B 。

【相关知识点】古典概型,数学期望10、已知a 为常数,函数()()ln f x x x ax =-有两个极值点1212,()x x x x <,则( )A.121()0,()2f x f x >>- B. 121()0,()2f x f x <<- C.121()0,()2f x f x ><-D. 121()0,()2f x f x <>-【解析与答案】令()12ln 0f x ax x '=-+=得021a <<,ln 21(1,2)i i x ax i =-=。

又102f a ⎛⎫'>⎪⎝⎭,121012x x a ∴<<<<。

()222111111111()ln 210f x x x ax x ax ax ax x ∴=-=--=-<,()222222211()11122f x ax x x ax ax a a =-=->->⨯-=- 故选D 。

【相关知识点】函数导数与极值,函数的性质 二、填空题 (一)必考题11、从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示。

(I )直方图中x 的值为 ;(II )在这些用户中,用电量落在区间[)100,250内的户数为 。

第11题图【解析与答案】()0.0060.00360.002420.0012501x ++⨯++⨯=,0.0044x =()0.00360.0060.00445010070++⨯⨯=【相关知识点】频率分布直方图12、阅读如图所示的程序框图,运行相应的程序,输出的结果i = 。

【相关知识点】程序框图13、设,,x y z R ∈,且满足:2221x y z ++=,23xy z ++=x y z ++=。

【解析与答案】由柯西不等式知()()()222222212323xy z x y z ++++≥++,结合已知条件得123x y z==,从而解得123x y z ===x y z ++= 【相关知识点】柯西不等式及其等号成立的条件)14、古希腊毕达哥拉斯学派的数学家研究过各种多边形数。

如三角形数1,3,6,10,…,第n 个三角形数为()2111222n n n n +=+。

记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =- ……可以推测(),N n k 的表达式,由此计算()10,24N = 。

【解析与答案】观察2n 和n 前面的系数,可知一个成递增的等差数列另一个成递减的等差数列,故()2,241110N n n n =-,()10,241000N ∴=【相关知识点】归纳推理,等差数列 (二)选考题15、如图,圆O 上一点C 在直线AB 上的射影为D ,点D 在半径OC 上的射影为E 。

若3AB AD =,则CE EO的值为 。

【解析与答案】由射影定理知()()2222812AD AB AD CE CD AD BDEO OD OA AD AB AD -====-⎛⎫- ⎪⎝⎭【相关知识点】射影定理,圆幂定理16、在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b θθ=⎧⎨=⎩()0a b ϕ>>为参数,。

在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为sin 4πρθ⎛⎫+= ⎪⎝⎭()m 为非零常数与b ρ=。

若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为 。

【解析与答案】直线l 的方程是x y m +=,作出图形借助直线的斜率可得c =,所以()2222c a c =-,e =【相关知识点】极坐标与直角坐标的转化,椭圆的几何性质,直线与圆 三、解答题17、在ABC ∆中,角A ,B ,C 对应的边分别是a ,b ,c 。

已知()cos23cos 1A B C -+=。

(I )求角A 的大小;(II )若ABC ∆的面积S =5b =,求sin sin B C 的值。

【解析与答案】(I )由已知条件得:cos23cos 1A A +=OD E BA第15题图C22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒ (II)1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A ==25sin sin 47bc B C R ∴==【相关知识点】二倍角公式,解三角函数方程,三角形面积,正余弦定理 18、已知等比数列{}n a 满足:2310a a -=,123125a a a =。

(I )求数列{}n a 的通项公式; (II )是否存在正整数m ,使得121111ma a a +++≥ ?若存在,求m 的最小值;若不存在,说明理由。

【解析与答案】(I )由已知条件得:25a =,又2110a q -=,13q ∴=-或, 所以数列{}n a 的通项或253n n a -=⨯(II )若1q =-,12111105m a a a +++=- 或,不存在这样的正整数m ; 若3q =,12111919110310mm a a a ⎡⎤⎛⎫+++=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,不存在这样的正整数m 。

【相关知识点】等比数列性质及其求和19、如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点。

(I )记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(II )设(I )中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =。

记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=。

第19题图【解析与答案】(I )EF AC ,AC ABC ⊆平面,EF ABC ⊆平面EF ABC ∴ 平面又EF BEF ⊆平面EF l ∴ l PAC ∴ 平面(II )连接DF ,用几何方法很快就可以得到求证。

相关文档
最新文档