机械设计基础——凸轮机构
机械设计基础 第三章 凸轮机构
0
v
0 a +
0 -
机械设计基础——凸轮机构
等速运动(续)
回程(0’0) 运动方程: 位移方程: s h1 / 0 ' 速度方程: v h / 0 加速度方程:a 0
s h 0’
0
0
v
0 - -
s h 2h( 0 )
2
h
推程 运动方程:
s
h/2
0
0/2 0
0/2
s
v
2h
2
4 h
2 0
v
02 4h 2 a 02
0 a 0
运动线图 冲击特性:起、中、末点柔性冲击 适用场合:低速轻载
机械设计基础——凸轮机构
三、从动件运动规律的选择
实际使用时, 推程或回程的运动规律可采用单一运动规律 ,也可以 将几种运动规律复合使用。 1. 当机械的工作过程只要求推杆实现一定的工作行程,而对运 动规律无特殊要求时,主要考虑动力特性和便于加工 低速轻载时,便于加工优先; 速度较高时,动力特性优先。 2. 当机械的工作过程对推杆运动规律有特殊要求时: 转速较低时,首先满足运动规律,其次再考虑动力特性和加工 转速较高时,兼顾运动规律和动力特性,采用组合运动
t
0
推程
01
远休止
rb
0’
回程
02
近休止
C
回程,回程运动角0’ 近休止,近休止角02 行程(升程),h 运动线图: 从动件的位移、速度、加速度等随时 间t或凸轮转角j变化关系图
机械设计基础——凸轮机构
机械设计基础凸轮机构
机械设计基础凸轮机构凸轮机构是机械设计中常见的一种机构,用于实现转动运动和直线运动的转换。
它由凸轮和连杆机构组成,具有简单、可靠、紧凑的优点。
本文将介绍机械设计基础凸轮机构的工作原理、应用领域以及设计要点。
一、凸轮机构的工作原理凸轮机构是通过凹凸轮运动对连杆机构施加力,使其发生直线运动。
凸轮的外轮廓形状决定了连杆机构的运动规律。
凸轮可以分为四种基本形状:圆形、椭圆形、心形和指字形。
不同形状的凸轮在工作过程中会给连杆机构带来不同的速度和加速度。
凸轮机构的工作过程可以分为四个阶段:进给段、暂停段、退出段和暂停段。
在进给段,凸轮逐渐使连杆机构向前运动,实现直线运动。
在暂停段,凸轮暂停与连杆机构接触,使连杆机构停止运动。
在退出段,凸轮逐渐使连杆机构向后运动,实现回程。
最后,在暂停段凸轮继续暂停与连杆机构接触,使连杆机构再次停止。
二、凸轮机构的应用领域凸轮机构广泛应用于机械设计中的各个领域。
以下是几个常见的应用领域:1. 发动机:凸轮机构用于气门控制,通过凸轮来控制气门的开闭,实现燃烧室内的气体进出,从而实现发动机的工作。
2. 压力机:凸轮机构用于控制压力机的上下运动,实现工件的压制或切割。
3. 包装机械:凸轮机构用于控制包装机械的送料、密封和分切等工作,实现自动化包装的功能。
4. 自动化流水线:凸轮机构用于控制流水线上的传送带、工作台等部件的运动,实现产品的加工和组装。
5. 机床:凸轮机构用于控制机床上的工作台、进给机构等部件的运动,实现加工工件的精确定位和运动控制。
三、凸轮机构的设计要点在设计凸轮机构时,需要注意以下几个要点:1. 凸轮的轮廓形状:根据实际需求选择合适的凸轮轮廓形状,确保连杆机构的运动规律符合设计要求。
2. 凸轮与连杆机构的配合方式:凸轮与连杆机构之间应具有良好的配合性能,避免偏差和间隙过大导致机构失效或运动不稳定。
3. 连杆机构的设计:根据实际应用需求设计连杆机构,包括长度、角度和材料等参数的选择,确保机构的工作性能满足要求。
《机械设计基础》凸轮机构
2、按从动件型式分 尖顶从动件
5.1 概述
3、根据从动件的运动形式分
移动从动件凸轮机构
摆动从动件凸轮机构
对心
偏置
5.1 概述
4、按照凸轮的锁合方式可把Байду номын сангаас轮分为: 力锁合
5.1 概述
形锁合
沟槽凸轮机构
等径凸轮机构
5.1 概述
三、凸轮机构的基本尺寸和运动参数
基圆:以凸轮最小半径r0所 作的圆,r0称为凸轮的 基圆半径。 ①推程: 推程运动角 t 从动件移动距离为升程h
5.3 盘形凸轮轮廓设计
二、 作图法设计凸轮轮廓曲线
1、对心尖顶移动从动件盘形凸轮轮廓的设计
5.3 盘形凸轮轮廓设计
2、偏置直动尖顶从动件盘形凸轮轮廓的设计
5.3 盘形凸轮轮廓设计
3、滚子从动件盘形凸轮轮廓的设计
5.3 盘形凸轮轮廓设计
4、尖顶摆动从动件盘形凸轮轮廓的设计
5.3 盘形凸轮轮廓设计
形锁合
5.4 凸轮机构基本尺寸的确定
三、滚子半径的确定
凸轮轮廓曲线形状与滚子半径的关系 当理论廓线内凹时 当理论廓线外凸时(可分为三种情况) 1) r 2) r
min min
r min' = r min + r
T
此时,无论滚子半径大小,凸轮工作轮廓总是光滑曲线(如图a)
r min ' = r min - r
推荐压力角数值
移动从动件[a]=30
摆动从动件[a]=45
回程中,一般不会有自锁现象,压力角取值为 [a]=70~80
5.4 凸轮机构基本尺寸的确定
二、基圆半径的确定
ds / d e OD e tan a AB r02 e 2 s
机械设计基础凸轮机构
机械设计基础凸轮机构1. 引言凸轮机构是机械设计中常用的一种机构,通过凸轮的旋转运动,使其上的凸轮副与其他零部件发生相对运动,从而实现特定的机械功能。
本文将介绍凸轮机构的基本概念、设计原则以及常见的凸轮机构类型。
2. 凸轮机构的基本概念凸轮机构由凸轮和从动件组成,其中凸轮是凸轮机构的核心部件,决定了从动件的运动规律。
凸轮可以是圆形、椭圆形、心形等不同形状,根据不同的设计需求选择不同的形状。
从动件是凸轮上的接触件,通过凸轮的旋转运动,从动件与其他零部件发生相对运动,实现机械功能。
常见的从动件有凸轮挤压件、滑块和摇杆等。
3. 凸轮机构的设计原则设计凸轮机构时应遵循以下原则:•机构运动规律:根据机械功能需求确定凸轮的运动规律,将其转化为凸轮的轮廓曲线,从而确定凸轮的形状。
•受力分析:在凸轮机构运动过程中,对从动件受力进行合理的分析和计算,确保从动件不会发生过大的应力和变形,保证机构的可靠性和稳定性。
•声、振动和能量损失的控制:凸轮机构在运动过程中会产生一定的声音、振动和能量损失,需要通过合理的设计控制其产生的程度,降低噪声、振动和能量损失。
•结构的紧凑性和制造的可行性:凸轮机构的结构需尽可能紧凑,减少零部件数量,简化制造工艺,降低制造成本。
4. 常见的凸轮机构类型4.1 凸轮挤压件机构凸轮挤压件机构是最常见的凸轮机构类型之一。
它由凸轮和挤压件组成,通常用于压铸、冷挤压、热压实等加工过程中。
通过凸轮的旋转运动,挤压件对工件进行加工,使工件形成特定的形状。
凸轮挤压件机构凸轮挤压件机构4.2 滑块机构滑块机构是另一种常见的凸轮机构类型。
它由凸轮和滑块组成,通过凸轮的旋转运动,滑块在滑道上做直线运动。
滑块机构常用于液压系统、工艺装备等领域。
滑块机构滑块机构4.3 摇杆机构摇杆机构由凸轮和摇杆组成,通过凸轮的旋转运动,驱动摇杆做往复运动。
摇杆机构常用于发动机、输送带等机械设备中。
摇杆机构摇杆机构5. 结论凸轮机构在机械设计中扮演着重要的角色,通过不同凸轮形状和从动件的组合,可以实现多种不同的机械功能。
机械设计基础 第六章 凸轮机构
6.2.1 凸轮机构的运动循环及基本名词术语
凸轮机构的一个运动循环大 致包括:推程、远休程、回 程、近休程四个部分
术语: 基圆 偏距 近休程 近休止角 推程 推程运动角 远休程 远休止角 回程 回程运动角 行程 推杆运动规律
6.2.2 几种常用的推杆运动规律
等速运动规律:
s h / 0 h 1 / 0 a0
凸轮廓线设计步骤: (1)划分位移曲线;
(2)取长度比例尺,绘出凸轮基圆,偏心距圆;
(3)获取基圆上的等分点; (4)绘出反转过程中的导路位置线;
(5)计算推杆的预期位移;
(6)将从动件尖顶点连成光滑曲线,即为凸轮轮廓。
理论轮廓线 实际轮廓线
尖顶从动件
滚子从动件
滚子半径的选择
滚子从动件作用: 1、化滑动摩擦为滚动摩擦; 2、降低凸轮与从动件之间的局 部接触应力。
6.3.2 压力角与凸轮机构尺寸的关系
tan
OC e
PC OP OC BC BC
BC s r02 e 2
P为凸轮和从动件的速度瞬心,故:
v OP
即: OP
v
ds d
于是:
tan
ds e d s r02 e 2
增大基圆半径或设置偏置均可减小压力角,
存在速度突变,加速 度及惯性力理论上将无穷 大,称为刚性冲击。用于 低速轻载场合。
等加速等减速运动规律:
s 2h 2 / 02 4h1 / 02 2 a 4h1 / 02
s h 2h( 0 ) 2 / 02 4h1 ( 0 ) / 02 2 a 4h1 / 02
机械设计基础--第四章(凸轮机构)
二、学习指导
图4-10
三、典型实例分析
例4-1 试设计一偏置直动滚子从动件盘形凸轮机构。已 知凸轮以等角速度1逆时针方向转动,偏距e =10mm,凸轮 的基圆半径 rb= 50mm,从动件的升程h=20mm,滚子半径rT =10mm,h=120 o,s=90 o,h=90 o,s=60 o。从动件在推 程作等加速等减速运动,回程作等速运动。试用图解法绘制 凸轮的轮廓。
二、学习指导
图4-1
图4-2
二、学习指导
2. 凸轮机构的特点 ⑴ 优点是:只需确定适当的凸轮轮廓就可使从动件得到任
意预期的运动规律,结构简单,体积较小,易于设计。
⑵ 缺点是:由于凸轮与从动件是高副接触,压力较大,易 磨损,故不宜用于大功率传动;又由于受凸轮尺寸限制,凸轮
机构也不适用于要求从动件工作行程较大的场合。
高等院校现代机械设计系列教材
Fundamentals of Machine Design
(第四章)
第四章
凸轮机构
一、基本内容及学习要求 二、学习指导 三、典型实例分析 四、复习题 五、复习题参考答案
回目录
一、基本内容及学习要求
⒈ 基本内容 (1) 凸轮机构的应用和分类;
(2) 从动件的常用运动规律;
(3) 按已知运动规律绘制平面凸轮轮廓;
(4) 凸轮机构设计中应注意的几个问题。
一、基本内容及学习要求
⒉ 学习要求 ⑴ 了解凸轮机构的应用和分类方法。 ⑵ 掌握等速运动、等加速等减速运动规律的特点及位移 线图的绘制方法,能分析凸轮机构产生刚性冲击或柔性冲击 的原因。 ⑶ 掌握直动从动件盘形凸轮轮廓的绘制方法。 ⑷ 掌握任意位置时凸轮机构压力角的绘制。了解选择滚 子半径的原则、压力角与自锁的关系及基圆半径对压力角的 影响等。
机械设计基础-第4章-1-凸轮机构
30
30
120
120
90
δ
360
七、解析法设计凸轮轮廓曲线
1、偏置直动滚子从动件盘形凸轮轮廓的设计
建立凸轮转轴中心的坐标系xOy
根据反转法原理,凸轮以w转过j角;
B点坐标为
x y
(s0 (s0
s) sin j s) cosj
e cosj esinj
上式即为凸轮理论廓线方程
实际廓线与理论廓线在法线上相距
凸轮机构由凸轮、从动件和机架三部分组成。
凸轮机构是高副机构,易于磨损,因此只适用于传 递动力不大的场合。
示例一 内燃机配气机构
示例二 靠模车削机构
示例 绕线机的凸轮绕线机构
示例 缝纫机的凸轮拉线机构
凸轮机构的主要优点: 使从动件实现预定的运动规律,结接触,容易磨损。 用于传递动力不大的控制机构或调节机构。
2、自D0起,沿-ω方向取δ1-4 角,等分各部分,从D1起以 从动件长度为半径作圆,与基 圆交于C点。
3、C1D1起,分别量取β角, 与2的圆交于B点,连接B0、 B1、B2…,即为凸轮曲线。
例题:设计盘形凸轮机构,已知凸轮角速度ω1逆时针转动, 基圆半径r0=30mm,从动件的行程h=40mm。从动件的 位移线图如下:
第四章 凸轮机构及间歇运动机构
§4-1 凸轮机构的应用和分类 §4-2 从动件常用的运动规律 §4-3 盘形凸轮轮廓曲线的设计 §4-4 凸轮机构设计中应注意的问题 §4-5 间歇运动机构
§4-1 凸轮机构的应用和分类
凸轮是一种具有曲线轮廓或凹槽的构件,它通过与从 动件的高副接触,在运动时可以使从动件获得连续或不 连续的任意预期运动。
当凸轮继续以角速度ω1逆时针 转过角度δ2时,从动件尖顶从 C到D,在最远位置停止不动, 对应的δ2是远休止角。
机械设计基础 凸轮机构
凸轮机构
19
1)按前述方法求得尖顶从动件的 B0、B1、B2、
...... 各点; 2)过 B0、B1、B2、B3、...... 各点作平底的 各个位置; 3)作这些平底的包络线即为对心直动 平底从动件盘形凸轮的实际轮廓曲线。 注意:这种凸轮不能设计成 有内凹部分的;
平板移动凸轮: rb —→ ∞
圆柱回转凸轮: 可以看成是绕在圆柱体上的移动凸轮。
工业设计机械基础
2)按从动件端部的形状分: 尖顶从动件: 平底从动件: 滚子从动件:
凸轮机构
4
3)按从动件的运动方式分: 直动从动件:
摆动从动件:
4)按凸轮与从动件的封闭方式分: 力闭合(封闭): 形闭合(封闭):
工业设计机械基础
凸轮机构
16
5)确定从动件与凸轮在不同转角处接触点的位置;
过 B’1、B’2、B’3、......各点沿导路方向分别截取线段 B’1B1 = 11’、 B’2B2 = 22’、 B’3B3 = 33’、...... ,所以 B0、 B1、B2、B3、...... 各点就是反
转后尖顶从动件尖端与凸轮接触点的一系列位置。
t 2 t 1 s2 h sin t1 t1 2 h v2 t1 2 t 1 cos t1 2 h 2 t a 2 2 sin 加速度 —→ 正弦 t1 t1
由图知,在从动件行程的始、末位置加速
度均无突变,且为零。 —→ 凸轮机构将不产生任何冲击。 ∴ 摆线运动规律适用于高速凸轮传动。
应保证平底总与
凸轮相切而不相交。
工业设计机械基础
四、摆动从动件盘形凸轮廓线的设计
凸轮机构
机械设计基础凸轮机构及其他常用机构
凸轮机构具有结构简单、紧凑、设计灵活等优点,能够实现精确的位移、速度 和加速度控制,因此在自动化生产线、内燃机、压缩机、印刷机等众多领域得 到广泛应用。
凸轮机构的应用领域
总结词
凸轮机构广泛应用于自动化生产线、内燃机、压缩机、印刷机等领域,用于实现 精确的往复运动或摆动。
详细描述
在自动化生产线中,凸轮机构可用于控制传送带的启停、进给等动作;在内燃机 中,凸轮机构用于控制气门的开闭和汽油的喷射;在压缩机中,凸轮机构用于驱 动活塞的往复运动;在印刷机中,凸轮机构用于控制印版的滚筒运动。
高效率原则
凸轮机构的设计应保证运动传 递效率高,减少摩擦和能量损 失。
可靠性原则
凸轮机构的设计应保证其具有 足够的强度和刚度,能够承受
工作载荷和冲击。
凸轮机构的设计步骤
分析运动需求
明确凸轮机构需要实现的运动规律, 如推程、回程和停歇等阶段的要求。
选择凸轮类型
根据运动需求选择合适的凸轮类型, 如盘形、圆柱形或圆锥形等。
优点是可实现多种复杂的运动规律和运动 轨迹;缺点是连杆的铰链处易磨损,且不 适合用于高速传动。
05
凸轮机构的设计与优化
凸轮机构的设计原则
功能需求原则
凸轮机构的设计应满足预定的 运动规律和动力要求,如位移 、速度和加速度等参数应符合
工作需求。
结构简单原则
凸轮机构的结构应尽量简单, 减少零件数量,降低加工难度 和成本。
03
常用机构介绍
常用机构介绍
• 请输入您的内容
04
凸轮机构与其他常用机构的比较
工作原理的比较
凸轮机构
通过凸轮的转动,使从 动件产生预期的运动规
律。
齿轮机构
机械设计基础——凸轮机构
适用场合:中速、轻载。
A
B
t
S
t
a
t t
c).简谐运动规律(余弦加速度运动规律)
简谐运动:当一点在圆周上等速
运动时,它在直径上 的投影的运动.
运动特性:这种运动 规律的加速度在起点和终 点时有有限数值的突变, 故也有柔性冲击。
适用场合:中速、中载。
d).正弦加速度运动规律
——摆线运动规律
凸轮和滚子的工作表面要求:硬度高 耐磨 有足够接触强度
经常受冲击的:凸轮芯部有较强的韧性 凸轮材料:40Cr钢(表面淬火,HRC40~45) 20Cr、20CrMnTi(表面淬火,HRC56~62) 滚子材料:①20Cr钢(渗碳淬火,HRC56~62) ②用滚子轴承作为滚子
5.2 常用从动件运动规律
r0↑, α↓, 凸轮机构传力性能越好, 但机构不紧凑。
∴可通过增大基圆半径r0来获得较小的压力角α 。 根据结构条件→基圆半径r0
凸轮轴:r0略 r轴 单独凸轮:r0 ( 1.6 2)r轴
5.4.3 滚子半径的确定
设:滚子半径为rT ,理论廓线的曲率半径为ρ,
实际廓线的曲率半径为ρ’。
已知:基圆半径为r0, ω逆时针,推杆的运动规律如图所示。 设计:对心直动尖顶从动件盘形凸轮机构的凸轮廓线。
2.对心直动滚子从动件盘形凸轮机构
已知: 基圆半径为r0,滚子半径rT, ω逆时针。 推杆的运动规律如图所示。 设计:对心直动滚子从动件盘形凸轮机构的凸轮廓线。
3.对心直动平底从动件盘形凸轮机构
◆使凸轮机构具有良好的动力特性;
◆使所设计的凸轮便于加工。 2.根据工作条件确定从动件运动规律 (1)对无一定运动要求,只需对从动件工作行程有要求。
机械设计基础 第3章 凸轮机构
图4-16 “反转法”原理
3.3.1 偏置顶尖制动从动件盘形凸轮轮廓绘制
已知凸轮基圆半径rb,偏距e及偏置方位,凸轮以等角速度ω顺时针转动,从动件
的位移线图,试绘制凸轮轮廓。
3.3.2 直动滚子从动件盘形凸轮轮廓绘制
理论轮廓曲线η ——
滚子中心当作从动件的尖端,先按绘制 尖端从动件凸轮的步骤和方法绘出一条凸轮 轮廓曲线 。
圆称为基圆,基圆半径用r。表示。(2)推
从动件
程运动角如图3-7所示,主动件凸轮匀速转
动,从动件被凸轮推动直动,从动件的尖顶
以一定运动规律从最近位置运动到最远位置,
这一过程称为推程。从动件位移h称为升程
或升距,凸轮对应 转 过的 角 度币 称 为推 程 运 行程
动角。
远休止角﹐当凸轮继续回转时,由于凸轮的 向径不变,从动件的尖顶在最远位置划过凸 轮表面,保持不动,这一过程称为远停程, 此时凸轮转过的角度。称为远休止角。
s
h
δ0
δ
v
δ a
+∞
δ
刚性冲击 -∞
图4-13 等速运动规律线图
3.2.2 从动件常用的运动规律
2 等加速等减速运动规律
从动件在推程的前半段做等加速运动, 在后半段做等减速运动的运动规律, 称为 等加速等减速运动规律 从动件在推程的前半段为等加速,后半段 为等减速的运动规律,称为等加速等减速运动 规律。通常前半段和后半段完全对称,即两者 的位移相等,加速运动和减速运动加速度的绝 对值也相等。 等加速等减速运动规律的位移线图由两段 抛物线组成,而速度线图由两段斜直线组成。
s
h/2
1 23 4 5
δ0
v
2hω/δ0
h/2 6δ
03机械设计基础-凸轮机构
s2 = h
2h
(δ t δ 1 )
2
a2 =
4hω
2 1
δ t2
如图3-8所示。
等加速部分可按下述方法画出:在横坐标 轴上分成若干等份,得1、2、3各点,过这些点 作横轴的垂线。再过点O作任意的斜线OO`,在 其上以适当的单位长度自点O按1:4:9量取对 应长度,得1、4、9各点。连接直线9-3”,并分 别过4、1两点,作其平行线4-2”和1-1”,分别 与S2轴相交于2”、1”点。最后由1”、2”、3”点 分别向过1、2、3各点的垂线投影,得1`、2`、 3`点,将这些点连接成光滑的曲线,同样可得 等减速度段的抛物线。
§3-2 从动件的常用运动规律
从动件的运动规律即是从动件的位移s、 速度v和加速度a随时间t变化的规律。当凸 轮作匀速转动时,其转角δ与时间t成正比 (δ=ωt),所以从动件运动规律也可以用 从动件的运动参数随凸轮转角的变化规律来 表示,即s=s(δ),v=v(δ),a=a(δ)。 通常用从动件运动线图直观地表述这些关系。
图3-15偏置移动尖顶从动件盘形凸轮
5.摆动从动件盘形凸轮轮廓
已知从动件的角位移线图(图3-16b), 凸轮与摆动从动件的中心距lOA,摆动从动 件的长度lAB,凸轮的基圆半径rmin,以及凸 轮以等角速度ω1逆时针回转,要求绘出此凸 轮的轮廓。仍用“反转法”求凸轮轮廓 。
图3-16 尖顶摆动从动件盘形凸轮
2.对心移动滚子从动件盘形凸轮
其凸轮轮廓设计方法如图3-13所示。首 先,把滚子中心看作尖顶从动件的尖顶,按照 上面的方法画出一条轮廓曲线β0。再以β0上各 点为中心,以滚子半径为半径,画一系列圆, 最后作这些圆的内包络线β,它便是使用滚子 从动件时凸轮的实际轮廓,而β0称为此凸轮的 理论轮廓。由作图过程可知,滚子从动件凸轮 轮廓的基圆半径rmin应当在理论轮廓上度量。
机械设计基础凸轮机构
机械设计基础凸轮机构在机械设计中,凸轮机构是一种常见且重要的机械传动机构,它利用凸轮的凸缘与从动件(如滚子或柱塞)的凹槽相互作用,将旋转运动转换为直线运动或者其他特定的运动形式,广泛应用于各种机器和设备中。
下面将介绍凸轮机构的基本原理和常见类型,并探讨其在机械设计中的应用。
凸轮机构是一种基于凸轮运动的机械传动机构,其工作原理是通过凸轮的不规则形状使凹槽中的从动件产生预期的运动。
凸轮可以是一个圆柱体的一部分,也可以是一个分离的轴螺栓,并且可以具有各种形状的凸缘。
凹槽中的从动件可以是滚子、柱塞、针杆等。
凸轮机构常见的基本动作包括推动、提升、转动、倾斜、抛射等。
凸轮机构的工作过程中,凸轮的凸缘和从动件的凹槽在运动过程中不断接触和分离,从而实现所需的运动形式。
凸轮的凹槽形状和凸度的大小直接影响从动件的运动形态和速度。
在凸轮机构的设计中,需要考虑凸轮的基本形状、凹槽的形状和尺寸以及凸轮和从动件之间的相对位置等因素。
同时,还需要对从动件的负载、速度和运动惯量等进行估算和计算,以确保凸轮机构可以正常工作并满足设计要求。
凸轮机构在机械设计中有广泛的应用。
最常见的应用是在内燃机中,凸轮机构用于驱动气门的开启和关闭,控制燃气的进出,实现正常的运转。
此外,凸轮机构还可以用于机床上的工件夹持、印刷机上的纸张送纸、纺织机上的细纱传动等。
另外,凸轮机构还可以用于高精度和高速度的机械系统中。
例如,在印刷机上,凸轮机构被用来实现纸张进给、定位和印刷等动作,凸轮的凹槽形状和凸度的大小非常关键,以确保纸张的正确进给和精确的印刷位置。
此外,凸轮机构还可以通过改变凸轮的形状和凹槽的设计,实现多种复杂的运动形式。
例如,通过使用多个凸轮和从动件,可以实现复杂的步进运动、循环运动和连续运动。
这种应用在自动化生产线、工业机器人和动画制作等领域非常常见。
总而言之,凸轮机构作为一种常见的机械传动机构,通过凸轮的运动将旋转运动转换为直线运动或其他特定的运动形式。
机械设计基础第三章 凸轮机构
φ φ
等加速等减速
V0=0,
作图: (推程) 前半行程(h/2)→等加速 →将每半行程时 →位 1 : 4 : 9 :16 后半行程(h/2)→等减速 间分为χ(4) 份 移 16 : 9 : 4 : 1
1 2 当时间为→ 1 : 2 : 3 : 4 S 2 at 位移为 → 1 : 4 : 9 :16 2
注意: 实际上, 从动件 在推、回程的运动规 律并非相同。
§3-4 图解法设计凸轮轮廓
p.44
→按给定从动件运动规律设计凸轮轮廓 一.设计方法的原理 相对运动原理 二.直动从动件盘形凸轮轮廓的绘制 (解析法、作图法) 三.摆动从动件盘形凸轮轮廓的绘制 反转法: 四.设计凸轮注意事项 给整个机构加 -ω运动
0
变尖
r 过大→凸轮工作 廓线变尖或失真
r 0
r 过小→滚子及滚 子销的强度会不够 一般: r = 0.1~0.5rmin , 且 r ≤ 0.8 0min 并使min> 1~5 mm
= 0 - r
r > 0 →失真
2.合理选用基圆半径 基圆半径↑→
推程廓线平缓↑ 结构↑ →消除运动失真
-∞
2.作运动线图: T-推程运动时间
例:已知从动件作等速运动,h=20mm,Φt=120°, ΦS=40°, Φ’=120°, Φs′=80°,作运动线图。
S2
h
取作图比例μl 10mm
φ
120°
40° 120°
80°
→在启动与终止段用其它运动规律过渡→ 适于低速、轻载、从动杆质量不大ห้องสมุดไป่ตู้有匀速要求。
§3-2 从动件的常用运动规律 P.41
(一)凸轮运动常用术语:图3-5 P.42
机械设计基础三凸轮机构
0/2
h
(00/2)
(0/20)
加速段
减速段
位移方程
速度方程
加速度方程
机械设计基础——凸轮机构
2 等加速等减速运动—二次多项式运动规律
运动线图 冲击特性:起、中、末点柔性冲击 适用场合:低速轻载
三、从动件运动规律的选择
机械设计基础——凸轮机构
3-3 盘形凸轮轮廓曲线的设计
01
反转法原理
根据从动件的运动规律:作出位移线图S2-δ1,并等分角度 定基圆 作出推杆在反转运动中依次占据的位置 据运动规律,求出从动件在预期运动中依次占据的位置 将两种运动复合,就求出了从动件尖端在复合运动中依次占据的位置点 将各位置点联接成光滑的曲线 在理论轮廓上再作出凸轮的实际轮廓
二、作图法设计凸轮廓线
A
从动件的运动规律是指从动件的位移、速度、加速度等随时间t或凸轮转角j变化的规律 基圆(以凸轮轮廓最小向径所组成的圆),基圆半径rb 推程,推程运动角 0 远休止,远休止角 01
0
01
0’
02
rb
0
推程
01
远休止
0’
回程
02
近休止
t
s
0
B
C
D
h
A’
机械设计基础——凸轮机构
一、凸轮机构的运动过程
α
n
n
压力角与作用力的关系
不考虑摩擦时,作用力沿法线方向。
F
F’
F”
F’----有用分力, 沿导路方向
F”----有害分力,垂直于导路
F”=F’ tg α
F’ 一定时, α↑
Ff > F’
Ff
为了保证凸轮机构正常工作,要求:
机械设计基础——凸轮机构
3.余弦加速度(简谐运动)规律:
从动件加速度在起点和终点存在有限值O
v
突变,故有柔性冲击;
若从动件作无停歇的升-降-升连续往
0/2 p h /20
复运动,加速度曲线变为连续曲线,可
O
以避免柔性冲击;
a
可适用于高速的场合。
O
0/2 p22 h /202
0/2
机械设计基础
-p22 h /202
0
机械设计基础
直动平底从动件盘形凸轮轮廓的绘制
机械设计基础
直动平底从动件盘形凸轮轮廓的绘制
-
机械设计基础
实际廓线
3.6 凸轮机构设计中应注意的几个问题
(1)滚子半径的选择
设计滚子从动件时若从强度和耐用性考虑,滚子 的半径应取大些。滚子半径取大时,对凸轮的实际轮 廓曲线影响很大,有时甚至使从动件不能完成预期的 运动规律。
机械设计基础
1、图解法的原理 -
-
B1
s
rb
B0 B
e
假想给整个凸轮机构加上 一个与凸轮角速度大小相等 、方向相反的角速度(- ), 凸轮将处于静止状态;机架则 以( - )的角速度围绕凸轮 原来的转动轴线转动;而从动 件一方面随机架转动,另一方 面又按照给定的运动规律相对 机架作往复运动。 ——反转法
机械设计基础
机械设计基础
第三章 凸轮机构
• 学习重点:
1.了解凸轮机构的组成、特点、分类及应用 2.掌握从动件的常用运动规律;了解其冲击特性及应 用
学习难点
凸轮机构运动的实现
机械设计基础
当从动件的位移、速度、加速度必须严格按预 定规律变化,特别是当原动件作连续运动时从动件必 须作间歇运动下,采用凸轮机构设计最为简便
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
a
B
2 3
V
1 P
C
r0
从而 tga =
r02 - e2
e
显然, r0↑→ a ↓
机械设计基础
优点:可精确实现任意运动规律,简单紧凑。 缺点:高副,线接触,易磨损,传力不大。
机械设计基础
西南科技大学制造学院
3.2 凸轮的分类
1. 按凸轮的形状分类 (1)盘形凸轮 它是凸轮的最 基本形式,是一个绕固定轴线 转动并且具有变化半径的盘形 构件。 如内燃机配气凸轮机构。
气阀2的运动规律规定了凸轮 的外形。当凸轮向径变化时,气 阀产生往复运动,而当凸轮回转 中心为圆心的圆弧轮廓与气阀平 底接触时,气阀静止不动。
2.等加速-等减速运动规律
h/2
从动件在一个行程h中,前 半行程做等加速运动,后 半行程作等减速运动的运 动规律。
O v
2h/0
0/2
0
O
0/2
4h2/02
0
a
A O
B
0
C 4h2/02
0/2
机械设计基础
西南科技大学制造学院
2.等加速-等减速运动规律
从动件在起点、中点和终点,因加速度有有限值
西南科技大学制造学院
机械设计基础
滚子从动件凸轮轮廓曲线的设计步骤:
(1)画出滚子中心的轨 迹(称为理论轮廓曲线) (2)以理论轮廓上的点为 圆心,滚子半径rT为半径作 一系列的滚子圆,再画滚子 圆的内包络线,则为从动件 凸轮的实际轮廓曲线。 注意:
n
B
rT r0
β′
C
n
理论轮廓曲线
实际轮廓曲线
β
滚子从动件
平底从动件
从动件与凸轮之间易形 凸轮与从动件之间为滚 成油膜,润滑状况好,受 动摩擦,因此摩擦磨损较小, 力平稳,传动效率高,常 可用于传递较大的动力。 用于高速场合。但与之相 配合的凸轮轮廓须全部外 凸。
机械设计基础
西南科技大学制造学院
3.2 凸轮的分类(3)
按从动件的运动形式分:直动从动件(对心、偏心)、摆动从动件。
机械设计基础
西南科技大学制造学院
3.3 凸轮机构的运动过程
机械设计基础
西南科技大学制造学院
从动件尖顶被凸轮轮廓推动,以一定的 3、推程: 运动规律由离回转中心最近位置A到达 最远位置B的过程。
4、行程:
从动件在推程中上升的最大位移h。 B'
5、推程运动角:
与推程相应的凸轮转角δ0。 δ0= ∠AOB δ0
(1)理论轮廓与实际轮廓互为等距曲线;
(2)凸轮的基圆是指理论轮廓曲线上的基圆。
机械设计基础
西南科技大学制造学院
直动平底从动件盘形凸轮轮廓的绘制
机械设计基础
西南科技大学制造学院
直动平底从动件盘形凸轮轮廓的绘制
-
实际廓线
机械设计基础
西南科技大学制造学院
3.6 凸轮机构设计中应注意的几个问题
(1)滚子半径的选择
西南科技大学
机械设计基础
主讲 钟良
Email:417377611@
机械设计基础
西南科技大学制造学院
第三章 凸轮机构
• 学习重点:
1.了解凸轮机构的组成、特点、分类及应用 2.掌握从动件的常用运动规律;了解其冲击特性及应 用
学习难点
凸轮机构运动的实现
机械设计基础
西南科技大学制造学院
当从动件的位移、速度、加速度必须严格按预 定规律变化,特别是当原动件作连续运动时从动件必 须作间歇运动下,采用凸轮机构设计最为简便
c0 rb
B0
B1
o
B2
2p
δ
c1 90º c2 c3 c4 c5
B6 B5
B8
c8 c c 7 6
B7
(2)按基本尺寸作出凸轮机构的 初始位置; B3 (3)按- 方向划分基圆周得 c 0 、c1、c2…… 等 点;并过这 些点 作射线,即为反转后的导路线; B4 (4)在各反转导路线上量取与位移 图相应的位移,得B1、B2…… 等 点,即为凸轮轮廓上的点。
西南科技大学制造学院
3.6.2. 1.
凸轮机构的压力角
n
Q
压力角a 与驱动力 F
F F2 t
F1=Fcosα (有效分力)
F1 ν
t
F2=Fsin α(有害分力)
a ↑→ F2 ↑ F1 →效率η↓ 当 a 大于一定值, 将自锁. 一般, 推程 [a ] = 30 (移动) 35 — 45 (摆动) 回程无自锁 [a ' ] = 70~ 80
A
δs'
O
h
D
δ0 ' δs w B C
西南科技大学制造学院
机械设计基础
6、远停程: 凸轮由B转动到C,从 动件在最远位置停止不 动。 7、远停程角: 从动件在最远位置停止 不动所对应的凸轮转角 δs。 B' A
O
h
δs'
δ0 ' D
δ0
δs w B
δS = ∠BOC
C
机械设计基础
西南科技大学制造学院
机械设计基础
西南科技大学制造学院
凸轮 气阀
机架
•
(2)移动凸轮 当盘形凸轮的回转中心趋于无穷远时 ,则成为移动凸轮,当移动凸轮沿工作直线往复运动 时,推动从动件作往复运动。如靠模车削机构。
机械设计基础
西南科技大学制造学院
•
(3)圆柱凸轮
机械设计基础
西南科技大学制造学院
3.2 凸轮的分类(2)
按从动件的形状分:尖底、滚子、平底。
西南科技大学制造学院
滚子摆动从动件盘形凸轮机构
机构中凸轮匀速旋转,带动从动件往复摆动,滚子接触, 摩擦阻力小,不易摩擦,承载能力较大,但运动规律有 局限性,滚子轴处有间隙,不宜高速。
机械设计基础
西南科技大学制造学院
机械设计基础
西南科技大学制造学院
机械设计基础
西南科技大学制造学院
机械设计基础
西南科技大学制造学院
机械设计基础
西南科技大学制造学院
结论:
内凹凸轮廓线: 滚子半径无限制
外凸凸轮廓线: 理论轮廓的最小曲率半径大于滚子半径, 即rmin>rr
一般rr=0.8 rmin实际设计时,应保证rmin -rr [ra] =3~5 mm
故如果不满足要求,可以:增加整个理论轮廓的 曲率半径;缩小滚子半径。
机械设计基础
机械设计基础
3.4 从动件常用的运动规律
• 1.等速运动规律 • 2.等加速-等减速运动规律 • 3.简谐运动规律
机械设计基础
西南科技大学制造学院
1.等速运动规律
从动件在推程(或回程)的运动 速度为常数的运动规律。
s h
O v
0
v0
O a
作推程运动线图
0
s (h 0 ) v (h 0 )ω 常数 0, 0 a 0
注意:速度突变及加速度突变会产生冲击
1.大质量从动件: 应选vmax小的运动规律
2.高速情况: 应选amax小的运动规律
机械设计基础
西南科技大学制造学院
3.5 凸轮轮廓曲线的设计
根据工作条件要求,确定从动件的运动规律,选定 凸轮的转动方向、基圆半径等,进而对凸轮轮廓曲线进 行设计。 设计方法:
1.图解法:简便易行、直观,但精度较低,可用于设计一 般精度要求的凸轮机构。
机械设计基础
西南科技大学制造学院
3-1 凸轮机构的组成及分类 1、组成
1、凸轮: 具有曲线轮廓或凹槽的构件,是主动件, 通常等速转动。
2、从动件: 由凸轮控制按其运动规律作移动或摆动 运动的构件。
3、机架:支承活动构件的构件。
机械设计基础
西南科技大学制造学院
作用:将连续回转
=> 从动件直线移动或摆动。
机械设计基础
西南科技大学制造学院
②当 2) r 3) r
min> min= min<
min-
rT
rT时 r ' > 0这时所得的凸轮实际轮廓为光滑的曲线(如图b) rT 时r ' = 0,实际轮廓线变尖,极易磨损,产生失真(如图c)。 rT 时r ' < 0, 即实际曲线出现交叉会出现严重失真(如图d)。
a
n
Q
a' 过大 将造成滑脱
机械设计基础
西南科技大学制造学院
3、 压力角 a 与基圆半径 r0
CP tga = —— = OP - OC BC BC
其中:① 据三心定理 即: OP· =V ② OC = e ③ BC = S + S0 = S + V/ - e S+ r02 - e2 VP1 = VP2 得: OP = V/
2.解析法:精度高,但计算量大,多用于设计精度要求较高 的凸轮机构。
机械设计基础
西南科技大学制造学院
1、图解法的原理 - 假想给整个凸轮机构加上 一个与凸轮角速度大小相等 、方向相反的角速度(- ), 凸轮将处于静止状态;机架则 以( - )的角速度围绕凸轮 原来的转动轴线转动;而从动 件一方面随机架转动,另一方 面又按照给定的运动规律相对 机架作往复运动。 ——反转法
重力锁合
几何锁合
西南科技大学制造学院
滚子对心移动从动件盘形凸轮机构
机构中凸轮匀速旋转,带动从动件往复移动,滚子接触,摩擦阻 力小,不易摩擦,承载能力较大,但运动规律有局限性,滚子 轴处有间隙,不宜高速。
机械设计基础
西南科技大学制造学院