矩阵分解及其简单应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵分解及其简单应用

x=b,即有如下方程组:Ly=bUx=y 先由Ly=b依次递推求得y1, y2,……,yn,再由方程Ux=y依次递推求得 xn,xn-1,……,

x1、必须指出的是,当可逆矩阵A不满足∆k≠0时,应该用置换矩阵P左乘A以便使PA的n个顺序主子式全不为零,此时有:

Ly=pbUx=y 这样,应用矩阵的三角分解,线性方程组的解求就可

以简单很多了。2、矩阵的QR分解矩阵的QR分解是指,如果实

非奇异矩阵A可以表示为A=QR,其中Q为正交矩阵,R为实非奇

异上三角矩阵。QR分解的实际算法各种各样,有Schmidt正交方法、Givens方法和Householder方法,而且各有优点和不足。2、1.Schmidt正交方法的QR分解Schmidt正交方法解求QR分解原

理很简单,容易理解。步骤主要有:1)把A写成m个列向量a=

(a1,a2,……,am),并进行Schmidt正交化得=(α1,

α2,……,αm);2)

单位化,并令Q=(β1,β2,……,βm),R=diag(α1,

α2,……,αm)K,其中a=K;3)A=QR、这种方法来进行QR分解,过程相对较为复杂,尤其是计算量大,尤其是阶数逐渐变大时,就显得更加不方便。2、2.Givens方法的QR分解Givens方

法求QR分解是利用旋转初等矩阵,即Givens矩阵Tij(c,s)来得

到的,Tij(c,s)是正交矩阵,并且det(Tij(c,s))=1。Tij(c,s)的第i行第i列和第j行第j列为cos,第i行第j列和第j行第i

列分别为sin和-sin,其他的都为0、任何n阶实非奇异矩阵A可通过左连乘Tij(c,s)矩阵(乘积为T)化为上三角矩阵R,另

Q=T-,就有A=QR。该方法最主要的是在把矩阵化为列向量的基础上找出c和s,然后由此把矩阵的一步步向上三角矩阵靠近。Givens方法相对Schmidt正交方法明显的原理要复杂得多,但是却计算量小得多,矩阵Tij(c,s)固有的性质很特别可以使其在很多方面的应用更加灵活。2、3.Householder方法的QR分解Householder方法分解矩阵是利用反射矩阵,即Householder矩阵H=E-2uuT,其中u是单位列向量,H是正交矩阵,detH=-1。可以证明,两个H矩阵的乘积就是Givens矩阵,并且任何实非奇异矩阵A可通过连乘Householder矩阵(乘积为S)化为上三角矩阵R,则A= QR。这种方法首要的就是寻找合适的单位列向量去构成矩阵H,过程和Givens方法基本相似,但是计算量要小一些。矩阵的QR分解可以用来解决线性最小二乘法的问题,也可以用来降低矩阵求逆的代价。矩阵的求逆是件不小的工程,尤其是阶数慢慢变大的情况时,而用先把矩阵QR分解成正交矩阵和上三角矩阵,就容易多了,况且正交矩阵的转置就是逆,这一点是其他的矩阵分解无法比拟的。在解求线性方程组中,如果系数矩阵的阶数比较大,可以利用QR分解来使计算简单化。另外,QR分解考虑的是n阶矩阵,其他的矩阵是不能用这种方法进行分解,由于QR 分解的这一前提条件,使得下面提到的满秩矩阵分解和奇异值分解就有了其特殊的意义。3、满秩分解满秩分解也称最大秩分

解,前面的QR分解是面对n阶矩阵的,而满秩分解可以处理长方阵。满秩分解是指,把秩为r的mxn矩阵A分解成A=FG,其中F 是秩为r的mxr阶矩阵,G是秩为r的rxn阶矩阵。满秩矩阵的解求可以通过初等变换法,但是必须经过多次求逆,所以就利用Hermite行标准形来完成。把矩阵A经过变换成为Hermite行标准形B,B的j1,j2,……,jr列为单位矩阵Im的前r列,另A的第j1,j2,……,jr列为矩阵F,B的前r行为矩阵G,则有A=FG。在广义逆中,满秩分解有很多的应用。在证明A{1}的存在性时就需要用到Hermite行标准形来得到“对于任一的矩阵,总是存在非奇异矩阵Q和置换矩阵P,使QAP=Er 0 0 0”,之后才能构造X=PEr 0 0 LQ来证明A{1}是存在的。用矩阵的满秩分解还能构造A+,若矩阵A有满秩分解,即A= FG,则可以证明有

A+=GH(FHAGH)-1FH。4、奇异值分解矩阵的奇异值分解是线性代数中一种重要的矩阵分解,在最优化问题、特征值问题、最小二乘问题和广义逆问题及统计学问题中都有重要的应用。对秩为r 的mxn阶矩阵A进行奇异值分解的步骤是:1)求得AHA的特征值γ1,γ2,……γn,及对应的特征向量并正交单位化,得矩阵V,使得VHAHAV=M2000,M=diag(γ1,γ2,……γn);2)将V的前r 列作为V1,令U1=AV1H-1,再扩张U1成m阶的矩阵U;3)那么A=UM000VH。从计算过程中可以看出,矩阵的奇异值分解解求是由矩阵的特征值开始的,因此这种分解自然和特征值的问题有莫大联系的。在广义逆问题中,矩阵的奇异值分解的作用一样不可代

替。在证明A{1,2,3}的存在性时,首先就需要用奇异分解来得到一个结论:r(AHA)= r(AAH)= r(AH)= r(A),由此得到的AH 可以由AHA表示,再去证明A{1,2,3}应该满足的条件就方便得多了。另外,在构造A+的过程中也有应用,若A有奇异值分解A+=UM 0 0 0VH,则有可以得到A+=VM-1 0 0 0。

5、奇异值分解应用于秩亏网平差在经典平差中,都是以已知的起算数据为基础,将控制网固定在已知数据上,比如水准网必须至少知道已知网中某一点的高程,平面网至少要已知一个点的坐标、一条边的边长和一条边的方位角。此时,误差方程的系数矩阵B总是列满秩的,由此得出的法方程系数阵N=BTPB是个对称的满秩方阵,即RN=R(B),法方程有唯一解。当网中没有必要的起算数据时(引起秩亏的原因),网中所有点均为待定点,就为自由网,B为列亏矩阵,秩亏数为d(必要的起算数据个数),误差方程为:V=Bx~-l组成的法方程为:

BTPBx~-BTPl=0若是按照直接解法用如下的方程组来解求x的解:V=Bx~-lBTPBx~-BTPl=0VTPV=min (a)可以得到|BTPB|=0,即该方程组有解但不唯一,虽然满足最小二乘准则,但有x~无穷多组解,无法求得x~的唯一解,这是与经典平差的根本区别。为了求得唯一解,必须增加新的约束条件。秩亏自由网平差就是在满足最小二乘VTPV=min和最小范数x~Tx~=min的条件下,求参数一组最佳估值的平差方法,也就是通过对如下的方程组来解求x~的唯一解:V=Bx~-lBTPBx~-BTPl=0VTPV=minx~Tx~=min (b)这是个

相关文档
最新文档