基于MATLAB的图像融合算法
MATLAB中的图像融合与增强技术指南

MATLAB中的图像融合与增强技术指南介绍图像处理是计算机科学与技术领域的核心研究方向之一,而MATLAB作为一种功能强大的科学计算软件,提供了许多图像融合与增强的工具和函数。
本文将深入探讨MATLAB中的图像融合与增强技术,并为读者提供一份详尽的技术指南。
一、图像融合技术1.1 像素级融合图像融合的一种常用方式是像素级融合,即将两幅或多幅图像的像素值进行组合,生成一幅新的图像。
MATLAB中的`imfuse`函数可以实现像素级融合,可以选择使用不同的融合方式,如加权平均、最大值、最小值等。
1.2 尺度级融合尺度级融合是一种多尺度图像处理技术,它将不同尺度空间中的图像进行融合,以获得更全面的信息。
MATLAB中的`waveletFusion`函数可用于尺度级融合,该函数使用小波变换对输入图像进行分解和重建,从而实现图像融合。
二、图像增强技术2.1 灰度变换灰度变换是一种常见的图像增强技术,它通过调整图像的灰度级别来改善图像的质量。
MATLAB中的`imadjust`函数可以实现灰度变换,可以通过调整参数来实现图像的对比度增强、亮度调整等效果。
2.2 直方图均衡化直方图均衡化是一种常用的图像增强技术,它通过重新分布图像的灰度级别,使得图像的直方图在整个灰度范围内更均匀。
MATLAB中的`histeq`函数可以实现直方图均衡化,可以使图像的对比度得到显著提高。
2.3 空间滤波空间滤波是一种用于图像增强的重要技术,它基于图像的局部邻域信息来对图像进行处理。
MATLAB中的`imfilter`函数可以实现各种空间滤波操作,如平滑、锐化、边缘检测等。
三、图像融合与增强实例3.1 多传感器图像融合多传感器图像融合是一种将来自不同传感器的图像信息进行融合的技术,旨在提高图像的质量和信息丰富度。
MATLAB中的`multisensorFusion`函数可以实现多传感器图像融合,可以选择使用不同的融合算法和技术。
brovey变换融合算法matlab

Brovey变换融合算法MATLAB实现一、引言Brovey变换是一种常用于遥感图像融合的方法,它能够有效地融合多光谱和全色图像,生成既有全色图像的空间细节,又保留多光谱图像的光谱信息的融合图像。
以下是在MATLAB中实现Brovey变换融合算法的步骤。
二、算法原理Brovey变换的基本思想是对每一个像素进行归一化处理,然后再将归一化后的图像进行乘法运算。
这样可以增强图像的对比度,提高图像的空间分辨率,同时保持原有的光谱特性。
具体算法步骤如下:1. 对多光谱图像(MSI)和全色图像(PAN)进行归一化处理。
2. 对归一化后的MSI和PAN进行乘法运算。
3. 对得到的乘积图像进行反归一化处理,得到最终的融合图像。
三、MATLAB实现以下是基于上述算法原理的MATLAB实现代码:```Matlabfunction fused_img = Brovey_Transform(MSI, PAN)% 输入:MSI - 多光谱图像,PAN - 全色图像% 输出:fused_img - 融合后的图像% 将MSI和PAN转换为double类型,方便后续计算MSI = double(MSI);PAN = double(PAN);% 获取MSI和PAN的大小[M, N, ~] = size(MSI);[P, Q] = size(PAN);% 确保MSI和PAN大小一致,如果不一致,则需要进行重采样或其他处理if M ~= P || N ~= Qerror('MSI和PAN的大小不一致,无法进行Brovey变换');end% 对MSI和PAN进行归一化处理MSI_norm = MSI ./ repmat(sum(MSI, 3), [1, 1, size(MSI, 3)]);PAN_norm = PAN ./ sum(PAN(:));% 对归一化后的MSI和PAN进行乘法运算fused_img = zeros(size(MSI));for i = 1:size(MSI, 3)fused_img(:, :, i) = MSI_norm(:, :, i) .* PAN_norm;end% 对得到的乘积图像进行反归一化处理,得到最终的融合图像min_val = min(min(min(fused_img)));max_val = max(max(max(fused_img)));fused_img = (fused_img - min_val) / (max_val - min_val); % 归一化到[0,1]区间fused_img = uint8(fused_img * 255); % 转换为uint8类型,方便显示和存储end```请注意,这只是一个基础的Brovey变换实现,实际应用中可能需要进行一些优化和调整,例如对输入图像进行预处理(如去噪、增强等),对输出图像进行后处理(如颜色校正、对比度拉伸等)。
在Matlab中进行图像融合与图像叠加的方法与技巧

在Matlab中进行图像融合与图像叠加的方法与技巧引言:随着数字图像处理和计算机视觉领域的发展,图像融合和图像叠加变得越来越重要。
图像融合是指将多幅图像合成为一幅具有更清晰、更丰富信息的图像,而图像叠加则是在保留所叠加图像的原始信息的同时,使图像更加丰富和易于理解。
Matlab作为一种强大的科学计算工具,提供了丰富的图像处理函数和工具箱,可以很方便地进行图像融合与图像叠加。
一、图像融合的方法与技巧1. 融合算法图像融合的基本方法有加权平均法、空间域融合法、频域融合法、小波融合法等。
加权平均法是最简单的方法,通过计算图像像素的平均值来融合。
空间域融合法是通过对直接融合的图像进行空间域操作来提取融合结果。
频域融合法则是通过将图像转换到频域,然后进行频域操作来实现融合。
小波融合法是基于小波变换的方法,利用小波分析的多尺度分解能力对图像进行分析和融合。
根据具体需求和图像的特点,选择合适的融合算法是非常重要的。
2. 图像预处理在进行图像融合之前,通常需要进行图像预处理,以提高融合结果的质量。
常用的图像预处理方法包括灰度拉伸、直方图均衡化、滤波等。
灰度拉伸是通过对图像的像素值进行线性变换,将图像像素值的范围拉伸到合适的范围内,从而增加图像的对比度。
直方图均衡化则是将图像的像素值在灰度直方图上均匀分布,以增强图像的细节。
滤波是通过对图像进行滤波操作,如低通滤波、高通滤波等,以去除图像中的噪声和不需要的细节。
3. 图像融合的策略图像融合的策略可以根据具体需求来选择。
常见的策略包括全局融合和局部融合。
全局融合是将所有图像的信息进行融合,得到整体的融合结果。
而局部融合则是将不同图像的不同区域进行融合,以保留更多的细节和纹理。
根据具体应用和需求,选择合适的融合策略可以使融合结果更加符合实际需求。
4. 参数设置与调整在进行图像融合过程中,不同的算法和方法有各自的参数,根据不同的图像和具体应用,需要适时地进行参数的设置和调整。
图像处理matlab及图像融合图像镶嵌图像拼接

图像处理matlab及图像融合图像镶嵌图像拼接在实际的对图像处理过程中,由于我们读出的图像是unit8型,⽽在MATLAB的矩阵运算中要求所有的运算变量为double型(双精度型)。
因此读出的图像数据不能直接进⾏相加求平均,因此必须使⽤⼀个函数将图像数据转换成双精度型数据。
MATLAB中提供了这样的函数:im2double函数,其语法格式为:I2 = im2double(I1)其中I1是输⼊的图像数据,它可能是unit8或unit16型数据,通过函数的变化输出I2为⼀个double型数据,这样两图像数据就可以⽅便的进⾏相加等代数运算.要把double的图像(范围是0到1)再次转化为256灰度值的,可以这样Igrey= uint8(I2*255)图像类型转换函数:dither() 通过颜⾊抖动,把真彩图像转换成索引图像或灰度图象转换成⼆值图像gray2ind() 将灰度图像(或⼆值图像)转换成索引图像grayslice() 通过设定的阈值将灰度图象转换成索引图像im2bw() 通过设定亮度阈值将灰度、真彩、索引图象转换成⼆值图像ind2gray() 将索引图象转换成灰度图象ind2rgb() 将索引图象转换成真彩⾊图像mat2gray() 将⼀个数据矩阵转换成⼀幅灰度图象rgb2gray() 将真彩转换成灰度图象rgb2ind() 将真彩转换成索引图象图像类型与类型间的转换1。
索引图像:包括⼀个数据矩阵X和⼀个⾊图阵MAP。
矩阵元素值指向MAP中的特定颜⾊向量。
2。
灰度图像:数据矩阵I,I中的数据代表了颜⾊灰度值。
矩阵中的元素可以是double类型、8位或16位⽆符号的整数类型。
3。
RGB图像:即真彩图像。
矩阵中每个元素为⼀个数组,数组的元素定义了像素的红、绿、蓝颜⾊值。
RGB数组可以是double类型、8位或16位⽆符号的整数类型。
4。
⼆值图像:⼀个数据阵列,每个象素只能取0或1。
矩阵的基本运算⾏列式求值:det(A)矩阵加减:+、-矩阵相乘:*矩阵左除:A/B %相当于inv(A)*B矩阵右除:A\B %相当于A*inv(B)矩阵的幂:^矩阵转置:'矩阵求共轭(实部相同,虚部相反):conj(X)矩阵求逆:inv(X)级数的求和与收敛symsum(fun,var,a,b):其中fun是通项表达式,var为求和变量,a为求和起点,b为求和终点例如:I为1/[n*(2n+1)]从1到正⽆穷的和,求Isyms n;f1=1/(n*(2*n+1));I=symsum(f1,n,1,inf)计算结果为:I =2-2*log(2)空间曲⾯mesh()函数语法:mesh(Z):mesh(X,Y,Z,C):其中C是⽤来定义相应点颜⾊等属性的数组例:求x^2+y^2=z的空间曲⾯x=-4:4;y=x;[X,Y]=meshgrid(x,y);%⽣成x,y坐标Z=X.^2+Y.^2;mesh(X,Y,Z)曲⾯图[x,y]=meshgrid(xa,ya) 当xa,ya分别为m维和n维⾏向量,得到x和y均为n⾏m列矩阵。
Matlab中的图像融合和多模态图像分析技术

Matlab中的图像融合和多模态图像分析技术图像处理是一项非常重要的技术,在许多领域都有广泛的应用,如医学影像分析、计算机视觉、遥感图像处理等。
在图像处理中,图像融合和多模态图像分析技术是两个非常重要的方面。
本文将介绍在Matlab中实现图像融合和多模态图像分析的方法和技术。
一、图像融合技术图像融合是指将多个不同模态或不同源的图像融合为一个具有更丰富信息的图像。
在图像融合技术中,常用的方法有像素级融合和特征级融合。
1.1 像素级融合像素级融合是指将多幅图像的像素按照一定的规则进行融合。
在Matlab中,可以使用imfuse函数来实现像素级融合。
该函数可以通过设置不同的融合模式来实现不同的效果,如加权平均、最大值、最小值等。
通过调整各个模态的权重,可以获得不同的融合效果。
1.2 特征级融合特征级融合是指将多幅图像的特征进行融合。
在Matlab中,可以使用特征提取和特征匹配的方法来实现特征级融合。
首先,使用不同的特征提取方法,如SIFT、SURF等,提取多幅图像的特征点。
然后,使用特征匹配的方法,如RANSAC算法,将多幅图像的特征点进行匹配和融合。
最后,根据匹配结果,可以生成一幅具有更丰富信息的图像。
二、多模态图像分析技术多模态图像分析是指对多模态图像进行分析和处理,以获得更全面和准确的信息。
在Matlab中,可以使用多种方法和技术来实现多模态图像分析。
2.1 图像配准图像配准是多模态图像分析的基础,它是将多幅图像进行准确的空间或特征对齐。
在Matlab中,可以使用imregister函数来实现图像配准。
该函数可以通过设置不同的配准方法和参数,如相位相关、归一化互相关等,来实现不同的配准效果。
2.2 图像分割图像分割是将图像中的目标或区域进行划分和提取的过程。
在多模态图像分析中,图像分割可以用来提取不同模态之间的特征。
在Matlab中,可以使用多种图像分割算法,如阈值分割、区域生长、边缘检测等,来实现图像分割。
如何使用Matlab进行图像拼接和图像融合技术实现

如何使用Matlab进行图像拼接和图像融合技术实现引言:随着数字图像处理的快速发展,图像拼接和融合技术在许多领域中得到了广泛应用,如航空摄影、医学影像和虚拟现实等。
在本文中,我们将探讨如何使用Matlab软件来实现图像拼接和图像融合的技术。
通过学习这些技术,您将能够将多个图像合并为一个大的全景图像,并且可以通过融合不同曝光或不同焦距拍摄的图像来得到一个更高质量的图像。
一、图像拼接技术图像拼接是将多幅图像无缝合并为一个更大的全景图像的过程。
在Matlab中,可以通过以下步骤进行图像拼接:1. 加载图像:使用imread函数加载所有待拼接的图像。
确保拼接的图像具有重叠区域。
2. 检测特征点:使用SURF(Speeded-Up Robust Features)等特征检测算法在每个图像中找到相应的特征点。
Matlab中提供了现成的函数,如detectSURFFeatures和extractFeatures等。
3. 匹配特征点:使用特征描述符算法(如SURF)比较两幅图像的特征点,并找到相似的特征点。
Matlab中提供了matchFeatures函数来实现。
4. 估计变换矩阵:使用RANSAC算法估计两幅图像之间的单应性变换矩阵,该矩阵描述了如何将一个图像变换到另一个图像中。
Matlab中的estimateGeometricTransform函数可以实现这一步骤。
5. 图像拼接:使用warping技术将所有图像根据变换矩阵进行变换,并将它们拼接在一起。
Matlab提供了warp函数来实现这一过程。
6. 调整拼接后的图像:根据需求,使用imcrop函数对拼接图像进行裁剪,并使用imresize函数调整尺寸。
通过以上步骤,您可以使用Matlab实现图像拼接技术,并得到一个无缝连接的全景图像。
二、图像融合技术图像融合是将不同曝光或不同焦距下拍摄的图像进行融合,以得到更高质量的图像。
在Matlab中,可以通过以下步骤实现图像融合:1. 加载图像:使用imread函数加载待融合的图像。
基于MATLAB算法的遥感图像融合

与空间地理信息,0 8 3 ( ) 18—19 20 ,14 :0 0. 朱朝 杰 , 礼 , 广 军. T A 王仁 董 MA L B环 境 下遥 感 影 像 配 准
与融 合技术 研究 []测绘 工 程 , O , ( )5 5 J. 2 61 6 : O 5 7— 9 张 德 丰 . a a 波 分 析 与 工 程 应 用 [ . 京 : 防 M t b小 l M] 北 国
郝 文 化 . A L B 图形 图 像 处 理 [ . 京 : 国水 利 M TA M] 北 中
水 电 出版 社 ,04 20.
度 都 大 于相 应 的多 光 谱 影像 的平 均梯 度 , 中 的 P A变 其 C 换法 对应 的 平 均 梯 度 最 大 , 次 是 小 波 变换 法 。表 明 融 其 合 影像 都 比多 光 谱 影像 清 晰 , 用 主 分 量 变 换 融 合 法 所 采
t e i d c tr . x e i n a r s lss o h tt e MAT AB i g u i n a g rt m a b an b t ref cs a d i i r v s t e e i i n ia o s E p rme t e u t h w ta h v l L ma e f so l o h c n o ti e t f t , n t mp o e h f — i e e
收 稿 日期 :0 1~ 2—1 21 O 1
评价中运用 M T A A L B程序对信息熵 , 平均梯度, 相关系数,
扭 曲程度进行 计算 , 得了 比较好 的效 果 。 取
1 MA L B 环 境 下 高 分 辨 率 影 像 与 多 光 谱 T A
影像融合
1 1 遥感 图像 融合的预处理 .
最新MATLAB图像拼接算法及实现

M A T L A B图像拼接算法及实现图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。
图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。
一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。
本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。
在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。
首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。
然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。
最后用正确的特征点匹配对实现图像的配准。
本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。
Abstract:Image mosaic is a technology that carries on the spatial matching to aseries of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensingimage processing, medical image analysis, computer graphic and so on. 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于MATLAB的图像融合算法摘要图像融合能够将不同类型传感器获取的同一对象的图像数据进行空间配准。
并且采用一定的算法将各图像数据所含的信息优势或互补性有机的结合起来产生新的图像数据。
这种新数据具有描述所研究对象的较优化的信息表征,同单一信息源相比,能减少或抑制对被感知对象或环境解释中可能存在的多义性、不完全性、不确定性和误差,最大限度的利用各种信息源提供的信息。
图像融合分为像素级、特征级、决策级三个层次,其中像素级图像融合能够提供其它层次上的融合处理所不具有的更丰富、更精确、更可靠的细节信息,有利于图像的进一步分析、处理和理解,它在整个图像融合技术中是最为复杂、实施难度最大的融合处理技术。
本文的研究工作是围绕像素级图像融合展开的,针对像素级图像融合技术中需要解决的关键问题,研究了多种像素级图像融合方法。
本论文的主要的研究内容有:首先介绍了图像信息融合的概念、优势、发展历史和应用领域,并介绍了图像融合的三个层次及常用的空域图像融合方法,空域融合方法有像素平均法、像素最大最小法、像素加权平均法,频域融合方法包括图像的多尺度分解、图像的小波变换、基于小波变换的图像融合方法。
图像的预处理有滤波(邻域平均滤波法、中值滤波法)和图像配准。
最后,对于图像融合系统来说,融合图像质量的评价显得特别重要,本文探讨了图像融合质量的评价问题,总结了融合效果的主、客观评价标准,作为本课题性能分析的判断标准。
关键词:图像配准;图像融合;空域融合法;小波变换;评价标准MATLAB-based image fusion algorithmAbstractThe same object gotten from different sensors can be registered spatially by mage fusion. The information advantages or the complements of all the image data can be combined to produce new image data using some fusion algorithms. The new data can describe the optimized information of the studied object. Compared with single information source, the new data can reduce or restrain the ambiguity, the incompleteness, the uncertainty and the error, which may appears in the explanation of the studied object or the environment, and make full use of the information provided by all kinds of resources.Image fusion consists of such three levels as the Pixel level,the feature level and the decision level,among which the Pixel level image fusion can Provide moreabundant, accurate and reliable detailed information that doesn’t exist o n the other levels and It is the most complicated in the whole image fusion techniques and also is the most difficult to implement in the fusion Processing techniques. this dissertation Progresses mainly around the Pixel level image fusion and proposes a variety of Pixel level image fusion techniques according to the key Problems in the Pixel level image fusion techniques.The major research and findings are as follows:First we introduce the concepts,advantages,developments and applications. Three levels of image fusion and image fusion techniques in common use are also reviewed. Airspace Image Fusion such as simple fusion method (pixel average, maximal or minimal pixel selection), Frequency-domain image fusion methods include the multiresolution image fusion techniques based on multi-scale pyramid decomposition, and the image fusion method based on wavelet transform Image Pre-processing like Filter processing (neighborhood average filter, median filtering method) and Image Registration. in the end, evaluation for fusion image is vital to fusion system. This dissertation probes into the image fusion quality assessment and deduces a set of indexes as the criteria to analyze the performances of this discussion.Keywords: Image Registration;Image Fusion;Airspace integration method;Wavelet Transform;Evaluation criteria目录第一章绪论 (6)1.1 图像融合的概念 (6)1.2图像融合的主要研究内容 (7)1.2.1 图像融合的层次 (7)1.2.2 图像融合算法的发展 (9)1.2.3图像融合的步骤 (9)1.3 图像融合技术的发展现状 (10)1.4 本文的研究工作 (10)第二章图像预处理 (11)2.1 图像的校正 (11)2.2 图像滤波技术 (11)2.2.1 邻域平均法 (12)2.2.2 中值滤波 (12)2.3 图像配准 (13)2.3.1 图像配准概述 (13)2.3.2 手动图像配准 (14)2.3.3 基于图像特征的匹配算法 (15)3.1 加权平均融合法 (16)3.2 像素灰度值选大/小融合方法 (16)3.3 主分量融合法 (17)3.4 IHS变换法 (19)3.5 小波变换融合法 (20)3.5.1 小波的定义及特点 (20)3.5.2 基于小波变换的图像融合方法原理 (25)3.5.3 图像融合规则及融合因子 (26)第四章图像融合效果评价 (27)4.1 主观评价 (27)4.2 客观评价 (27)4.2.1 基于光谱特征的评价 (27)4.2.2 基于信息量的评价 (28)4.2.3 基于统计特性的评价 (29)4.2.4 基于信噪比的评价 (30)谢辞 (32)参考文献 (33)第一章绪论图像融合技术(Image Fusion Technology)作为多传感器信息融合的一个非常重要的分支—可视信息的融合,近20年来,引起了世界范围内的广泛关注和研究热潮。
图像融合就是通过多幅图像冗余数据互补得到一幅新的图像,在这幅图像中能反应多重原始图像中的信息。
图像融合的目的是充分利用多个待融合源图像中包含的冗余信息和互补信息,融合后的图像应该更适合于人类视觉感知或计算机后续处理,减少不确定性。
图像融合技术在遥感、医学、自然资源勘探、海洋资源管理、生物学等领域占有极其重要的地位,对于国防安全和经济建设具有十分重要的战略意义。
图像融合的方法与具体的处理对象类型、处理等级有关。
这主要是各类图像的解析度不同、表现的内容不同,相应的处理方法也要根据具体情况而定。
本章首先介绍了多传感器图像融合的基础理论及发展现状,在此基础上介绍了像素级图像融合方法的原理及应用,最后,给出论文的内容安排。
1.1 图像融合的概念图像融合是二十世纪70年代后期提出的新概念,是多传感器信息中可视信息部分的融合,是将多源信道所采集的关于同一目标图像经过一定的图像处理,提取各自信道的信息,最后综合成统一图像或综合图像特性以供观察或进一步处理。
它是一门综合了传感器、图像处理、信号处理、显示、计算机和人工智能等技术的现代高新技术。
由于图像融合系统具有突出的探测优越性(时空覆盖宽、目标分辨力与测量维数高、重构能力好、兀余性、互补性、时间优越性及相对低成本性等),在技术先进国家受到高度重视并己取得相当的进展。
图像融合的形式大致可分为以下3种:(l)多传感器不同时获取的图像的融合;(2)多传感器同时获取的图像的融合;(3)单一传感器不同时间,或者不同环境条件下获取的图像的融合。
图像融合能够充分利用这些时间或空间上冗余或互补的图像信息,依据一定的融合算法合成一幅满足某种需要的新图像,从而获得对场景的进一步分析、理解以及目标的检测、识别或跟踪。
以两个传感器A、B为例,其信息构成的示意图如图1-1所示。
图1-1 多源图像的信息构成通过图像融合可以强化图像中的有用信息、增加图像理解的可靠性、获得更为精确的结果,使系统变得更加实用。
同时,使系统具有良好的鲁棒性,例如,可以增加置信度、减少模糊性、改善分类性等。
图像融合的层次可分为:像素级、特征级和决策级。
目前,将图像融合技术应用于数字图像处理的主要目的有以下几种:(1)增加图像中有用信息的含量,改善图像的清晰度,增强在单一传感器图像中无法看见/看清的特性;(2)改善图像的空间分辨率,增加光谱信息的含量,为改善检测/分类/理解/识别性能获取补充的图像信息;(3)通过不同时刻的图像序列融合来检测场景/目标的变化情况;(4)通过融合多个二维图像产生具有立体视觉的三维图像,可用于三维重构或立体投影,测量等;(5)利用来自其它传感器的图像来代替/弥补某一传感器图像中的丢失/故障信息。