小波变换图像融合的MATLAB实现

合集下载

MATLAB中的图像融合与增强技术指南

MATLAB中的图像融合与增强技术指南

MATLAB中的图像融合与增强技术指南介绍图像处理是计算机科学与技术领域的核心研究方向之一,而MATLAB作为一种功能强大的科学计算软件,提供了许多图像融合与增强的工具和函数。

本文将深入探讨MATLAB中的图像融合与增强技术,并为读者提供一份详尽的技术指南。

一、图像融合技术1.1 像素级融合图像融合的一种常用方式是像素级融合,即将两幅或多幅图像的像素值进行组合,生成一幅新的图像。

MATLAB中的`imfuse`函数可以实现像素级融合,可以选择使用不同的融合方式,如加权平均、最大值、最小值等。

1.2 尺度级融合尺度级融合是一种多尺度图像处理技术,它将不同尺度空间中的图像进行融合,以获得更全面的信息。

MATLAB中的`waveletFusion`函数可用于尺度级融合,该函数使用小波变换对输入图像进行分解和重建,从而实现图像融合。

二、图像增强技术2.1 灰度变换灰度变换是一种常见的图像增强技术,它通过调整图像的灰度级别来改善图像的质量。

MATLAB中的`imadjust`函数可以实现灰度变换,可以通过调整参数来实现图像的对比度增强、亮度调整等效果。

2.2 直方图均衡化直方图均衡化是一种常用的图像增强技术,它通过重新分布图像的灰度级别,使得图像的直方图在整个灰度范围内更均匀。

MATLAB中的`histeq`函数可以实现直方图均衡化,可以使图像的对比度得到显著提高。

2.3 空间滤波空间滤波是一种用于图像增强的重要技术,它基于图像的局部邻域信息来对图像进行处理。

MATLAB中的`imfilter`函数可以实现各种空间滤波操作,如平滑、锐化、边缘检测等。

三、图像融合与增强实例3.1 多传感器图像融合多传感器图像融合是一种将来自不同传感器的图像信息进行融合的技术,旨在提高图像的质量和信息丰富度。

MATLAB中的`multisensorFusion`函数可以实现多传感器图像融合,可以选择使用不同的融合算法和技术。

小波 matlab 代码

小波 matlab 代码

小波matlab 代码[x,map]=imread('MUCS_新建文件夹_32603.ptl_208.bmp');subplot(1,2,1);imshow(x);[c,s]=wavedec2(x,3,'sym4');Csize=size(c);for i=1:Csize(2)if(c(i)>100) %低频分量----s中第一维的长度c(i)=1*c(i);elsec(i)=0.9*c(i); %高频分量endendx1=waverec2(c,s,'sym4');im=uint8(x1);subplot(1,2,2);imshow(im);[c,s]=wavedec2(X,2,'bior3.7');%对图像用小波进行层分解cal=appcoef2(c,s,'bior3.7',1);%提取小波分解结构中的一层的低频系数和高频系数ch1=detcoef2('h',c,s,1);%水平方向cv1=detcoef2('v',c,s,1);%垂直方向cd1=detcoef2('d',c,s,1);%斜线方向a1=wrcoef2('a',c,s,'bior3.7',1);%各频率成份重构[c,s]=wavedec2(X,1,'sym4');a1=appcoef2(c,s,'sym4',1);%小波分解结构中的一层的低频系数,下面是3个高频系数a1=2*a1;h1=detcoef2('h',c,s,1);v1=detcoef2('v',c,s,1);d1=detcoef2('d',c,s,1);h1=0.5*h1;v1=0.5*v1;d1=0.5*d1;y=idwt2(a1,h1,v1,d1,'sym4');load wbarb;X1=X;map1=map;subplot(2,2,1);image(X1);colormap(map1);title('图像wbarb');load woman;X2=X;map2=map;subplot(2,2,2);image(X2);colormap(map2);title('图像woman');%===================================== %对上述二图像进行分解[c1,l1]=wavedec2(X1,2,'sym4');[c2,l2]=wavedec2(X2,2,'sym4');%对分解系数进行融合c=c1+c2;%===================================== %应用融合系数进行图像重构并显示XX=waverec2(c,l1,'sym4');subplot(2,2,3);image(XX);title('融合图像1');Csize1=size(c1);%=====================================%对图像进行增强处理for i=1:Csize1(2)c1(i)=1.2*c1(i);endCsize2=size(c2);for j=1:Csize2(2)c2(j)=0.8*c2(j);end%===================================== %通过减小融合系数以减小图像的亮度c=0.5*(c1+c2);%===================================== %对融合系数进行图像重构XXX=waverec2(c,l2,'sym4');%===================================== %显示重构结果subplot(2,2,4);image(XXX);title('融合图像2');%本程序实现下述功能:首先读入原始图像,并对它使用db3小波进行2层分解,%然后对分解系数进行处理突出所需,弱化不需要的部分%装载并显示原始图像clear all;clc;load flujet;subplot(1,2,1);image(X);colormap(map);title('原始图像');%=====================================%对图像X用小波db3进行2层分解[c,l]=wavedec2(X,2,'db3');Csize=size(c);%=====================================%对分解系数作处理以突出所需部分并弱化不需要部分for i=1:Csize(2)if(c(i)>300) %低频分量c(i)=2*c(i);elsec(i)=0.5*c(i); %高频分量endend%===================================== %重构图像并显示X1=waverec2(c,l,'db3');subplot(1,2,2);image(X1);colormap(map);title('增强图像');[c,s]=wavedec2(x,2,'sym4');Csize=size(c);for i=1:Csize(2)if(c(i)>169) %低频分量----s中第一维的长度c(i)=2*c(i);elsec(i)=0.3*c(i); %高频分量endendx1=waverec2(c,s,'sym4');im=uint8(x1);imshow(im);二维小波变换的Matlab 实现y j v z w %o u n\ { K*Y二维小波变换的函数a r T Q3Y r -------------------------------------------------5B Y0x!Z9a9] 函数名函数功能h$H9q ` \ ---------------------------------------------------'d3d t Be'x6gdwt2 二维离散小波变换!t2B!I9L5S;q:r X wavedec2 二维信号的多层小波分解!D o4B @2U Y,o!H#M l idwt2 二维离散小波反变换o l!R H N_ G4M waverec2 二维信号的多层小波重构z H!f6~)}-P _wrcoef2 由多层小波分解重构某一层的分解信号0E,\ |.o | D T2@2b2K$Uupcoef2 由多层小波分解重构近似分量或细节分量*^ Y4? T3R x(k3v detcoef2 提取二维信号小波分解的细节分量2~ U W L8V appcoef2 提取二维信号小波分解的近似分量0q l N7p a @ i Y C ] c b upwlev2 二维小波分解的单层重构2y W_ ] h-i~ m(~ dwtpet2 二维周期小波变换4Y/aN&G q ] E B"H)Widwtper2 二维周期小波反变换7h"| Iv e -------------------------------------------------------------9O d7D ` b y&lX { I g u s I `(1) wcodemat 函数` T f ?-[ c*e$M c d 功能:对数据矩阵进行伪彩色编码|4X C i5R$x6g 格式:Y=wcodemat(X,NB,OPT,ABSOL)'k#e C a I%HY=wcodemat(X,NB,OPT) i)E)p _!O-k j J ^Y=wcodemat(X,NB)A2z,q D'u'z*_.~/U Y=wcodemat(X)Z5D"^ e5i |L'^4` 说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为0~NB,缺省值NB=16;@ N6C Y p Y E OPT 指定了编码的方式(缺省值为'mat'),即:r(o ? L j(y e f NOPT='row' ,按行编码-y q i H { o5e OPT='col' ,按列编码8X N*\.Z/c @ OPT='mat' ,按整个矩阵编码e j!l W b L ABSOL 是函数的控制参数(缺省值为'1'),即:i x"^:| ~5{ABSOL=0 时,返回编码矩阵2z x;^ l$q | _ Z ABSOL=1 时,返回数据矩阵的绝对值ABS(X)V l U1e r g3x'O%I9z&c,A ]!T%y d s \.s (2) dwt2 函数D J ~0D/m S:O S"I 功能:二维离散小波变换 B c t _)h O X I格式:[cA,cH,cV,cD]=dwt2(X,'wname')3A N _ W F[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)m(E j"[ _ @ 说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分.g(R @ E E Y'n 量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器Lo_D 和Hi_D 分j4F2} ~ Q e W 解信号X 。

小波变换-图像融合matlab代码

小波变换-图像融合matlab代码

%对图像进行放大算子的运算
PIC3 = conv2(conv2(Y, 2*fw, 'valid'),2*fw','valid');
%第i1级图像重构;
PIC1 = PIC3 + L{i};
%选取图像范围
PIC1 = PIC1(1:k1(i),1:k2(i));
% %end;
% %end;
% %%
% %for k=1:256,
% % p1(k)=p1(k)/(d);
% % p2(k)=p2(k)/(d);
% %end;
%
% %for i=1:256
% % for j=1:256
% % p3(i,j) =p3(i,j)/(d);
%图像隔行隔列插值扩展恢复到原尺寸图像
[c d] = size(Y4);
Y6 = zeros(2*c, 2*d);
Y6(1:2:2*c,1:2:2*d) = Y4;
Y7 = zeros(2*c, 2*d);
%PIC2 = X2;
X1 = PIC1;
X2 = PIC2;
%定义滤波窗口;
fw = 1/16.*[1 4 6 4 1];
z =3;
L = cell(1,z);
L1 = cell(1,z);
for i = 1:z % N1
G3 = conv2(conv2(Y3, fw, 'valid'),fw', 'valid');
%将图像进行隔行隔列减半
[a b] = size(G2);
Y4 = G2(1:2:a, 1:2:b);

基于MATLAB的小波分析应用(第二版)(周伟)5-13章 (2)

基于MATLAB的小波分析应用(第二版)(周伟)5-13章 (2)

第6章 小波变换与图像处理
2. 图像的小波分解实例 下面通过两个例子说明如何对图像进行单尺度分解和多 尺度分解,并提取多尺度分解的小波系数。 【例6-1】 对图像进行单尺度分解。 在本例中说明如何对图像进行单尺度分解。程序中调用 函数dwt2对图像进行分解,并画出图像分解的低频分量和水 平、垂直和斜线方向的三个高频分量,可以看出低频分量表 现了图像的轮廓,而高频分量表现了图像的细节。 程序代码如下:
第6章 小波变换与图像处理 subplot(231);image(wcodemat(chd2,nbc)); title('尺度2水平方向的高频系数'); subplot(232);image(wcodemat(cvd2,nbc)); title('尺度2垂直方向的高频系数'); subplot(233);image(wcodemat(cdd2,nbc)); title('尺度2斜线方向的高频系数');
第6章 小波变换与图像处理
2. 图像的平稳小波变换实例 下面举例说明函数swt2的用法。 程序代码如下:
%加载图像 load tire; nbc = size(map,1); colormap(pink(nbc)); cod_X = wcodemat(X,nbc); subplot(221)
第6章 小波变换与图像处理
第6章 小波变换与图像处理
C = [ A(N) | H(N) | V(N) | D(N) | ... H(N-1) | V(N-1) | D(N-1) | ... | H(1) | V(1) | D(1) ]
式中,A为低频系数;H为水平高频系数;V为垂直高频系 数;D为斜线高频系数;所有向量均以列向量存储在矩阵C中。

小波变换的matlab实现

小波变换的matlab实现
*
举例: A1=upcoef('a','cA1','db1',1,ls); D1=upcoef('d','cD1','db1',1,ls);
subplot(1,2,1);plot(A1);title('Approximation A1')
subplot(1,2,2);plot(D1);title('Detail D1')
重构原始信号
*
2D图形接口
*
显示
*
小波分析用于信号处理
01
信号的特征提取
信号处理
常用信号的小波分析
GUI进行信号处理
*
正弦波的线性组合
S(t)=sin(2t)+sin(20t)+sin(200t)
*
2019
间断点检测
01
2020
波形未来预测
02
2021
各分信号的频率识别
03
2022
信号从近似到细节的迁移
*
多尺度二维小波
命令:wavedec2
格式: [C, S]=wavedec2(X,N,’wname’) [C, S]=wavedec2(X,N,Lo_D,Hi_D)
*
[C,S] = wavedec2(X,2,'bior3.7'); %图像的多尺度二维小波分解
提取低频系数
命令:appcoef2 格式: 1. A=appcoef2(C,S,’wname’,N) 2. A=appcoef2(C,S,’wname’) 3. A=appcoef2(C,S,Lo_R,Hi_R) 4. A=appcoef2(C,S,Lo_R,Hi_R,N) cA2 = appcoef2(C,S,'bior3.7',2); %从上面的C中提取第二层的低频系数

MATLAB环境下小波变换处理图像设计

MATLAB环境下小波变换处理图像设计

tl ’ ie 第二次压缩 图像 ’ t( ) ;
程 序 2 基 于 二 维 小 波 分 析 的 图 像 边 缘提 取程 序 :
c e ral l a l ;
作 者 简 介 :张 俊 , , 南 开 封 人 , 科 , 理 工 程 师 。 主 要研 究 方 向 : 算 机 应 用 。 女 河 本 助 计
边缘提取 。一个 图像作小波分解后 , 可得 到… 系列不 同分辨率
的子 图像 , 同 分 辨 率 的 子 图像 对应 的频 率 是 不 相 同 的 。高 分 不 辨 率 ( 高 频 ) 图像 上 大 部 分 点 部 接 近 于 0 越 是 高 频 这 种 现 即 子 , 象 越 明 显 。对 一 个 图像 来 说 , 现 图 像 最 主要 的部 分 是低 频 部 表 分 , 以 一 个 最 简 单 的压 缩 方 法 是 利用 小 波 分 解 , 掉 图像 的 所 去
C= { R
lo 。 <。 d ( JI ‘ )J
h = ro f( ,Ssm8 1; lw ce2 C ,y ’) h ,’ , v = rof( c ,y ’) lw ce2V,Ssm8 1; ,’ , d -vce2 ,Ssm8 1; l rof( c ,y ’)  ̄ d , , c=a,l l 1; l [l ; , ] h vd sb l (2 )maec) u po 2 2; g (1; t i
c 2 . c 2; a =025 a
高频部分而只保 留低频部分 。 程序 1基于二维小波分析 的图像压缩处理程序 :
cc; l
sb lt 2 )maec2; lr pga(5 ) upo( 4; g(a) ooma(r 2 6) 2 i c y ;
a ss ua e; xi q r

小波变换matlab

小波变换matlab

小波变换是一种在信号和图像处理中广泛应用的工具。

在Matlab 中,你可以使用内置的函数来进行小波变换。

以下是一个基本的示例,显示了如何在Matlab中使用小波变换:
```matlab
首先,我们需要导入图像或者信号
I = imread('lena.bmp'); 导入图像
转换为灰度图像
I = rgb2gray(I);
使用'sym4'小波基进行小波分解
[C, S] = wavedec2(I, 1, 'sym4');
显示小波分解的结果
figure, wave2gray(C, S, -6);
```
在这个例子中,我们首先导入了图像,然后将其转换为灰度图像。

接着,我们使用`wavedec2`函数和`'sym4'`小波基进行小波分解。

最后,我们使用`wave2gray`函数显示小波分解的结果。

这只是使用Matlab进行小波变换的一个基本示例。

实际上,你
可以根据你的需求来选择不同的小波基(例如'haar'、'Daubechies'、'Symlet'、'Coiflet'等)以及进行不同级别的小波分解。

同时,Matlab也提供了其他的小波变换函数,例如`wavelet`和`wfilters`等,可以满足不同的需求。

在Matlab中进行图像融合与图像叠加的方法与技巧

在Matlab中进行图像融合与图像叠加的方法与技巧

在Matlab中进行图像融合与图像叠加的方法与技巧引言:随着数字图像处理和计算机视觉领域的发展,图像融合和图像叠加变得越来越重要。

图像融合是指将多幅图像合成为一幅具有更清晰、更丰富信息的图像,而图像叠加则是在保留所叠加图像的原始信息的同时,使图像更加丰富和易于理解。

Matlab作为一种强大的科学计算工具,提供了丰富的图像处理函数和工具箱,可以很方便地进行图像融合与图像叠加。

一、图像融合的方法与技巧1. 融合算法图像融合的基本方法有加权平均法、空间域融合法、频域融合法、小波融合法等。

加权平均法是最简单的方法,通过计算图像像素的平均值来融合。

空间域融合法是通过对直接融合的图像进行空间域操作来提取融合结果。

频域融合法则是通过将图像转换到频域,然后进行频域操作来实现融合。

小波融合法是基于小波变换的方法,利用小波分析的多尺度分解能力对图像进行分析和融合。

根据具体需求和图像的特点,选择合适的融合算法是非常重要的。

2. 图像预处理在进行图像融合之前,通常需要进行图像预处理,以提高融合结果的质量。

常用的图像预处理方法包括灰度拉伸、直方图均衡化、滤波等。

灰度拉伸是通过对图像的像素值进行线性变换,将图像像素值的范围拉伸到合适的范围内,从而增加图像的对比度。

直方图均衡化则是将图像的像素值在灰度直方图上均匀分布,以增强图像的细节。

滤波是通过对图像进行滤波操作,如低通滤波、高通滤波等,以去除图像中的噪声和不需要的细节。

3. 图像融合的策略图像融合的策略可以根据具体需求来选择。

常见的策略包括全局融合和局部融合。

全局融合是将所有图像的信息进行融合,得到整体的融合结果。

而局部融合则是将不同图像的不同区域进行融合,以保留更多的细节和纹理。

根据具体应用和需求,选择合适的融合策略可以使融合结果更加符合实际需求。

4. 参数设置与调整在进行图像融合过程中,不同的算法和方法有各自的参数,根据不同的图像和具体应用,需要适时地进行参数的设置和调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档