2020年江苏省中考数学分类汇编专题15 概率

合集下载

中考数学 专题15 概率统计问题(含解析)

中考数学 专题15 概率统计问题(含解析)

专题15 概率统计问题中考压轴题中概率统计问题,有些难度的题目主要是概率问题。

1.四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片既不是轴对称图形也不是中心对称图形的概率为【】A. 12B.14C.34D.1【答案】B。

【考点】概率,轴对称图形也不是中心对称图形的判断。

2.向一个图案如下图所示的正六边形靶子上随意抛一枚飞镖,则飞镖插不落在阴影区域的概率为【】A.231π- B.16C.331- D.232π-【答案】D。

【考点】正六边形的性质,等边三角形的判定和性质,锐角三角函数定义,特殊角的三角函数值,扇形的计算,几何概率。

【分析】如图,设正六边形的边长为a,则正六边形可由六个与△ABO全等的等边三角形组成,△ABO的边长也为a,高BH=3a,面积为23a。

正六边形的面积为233a。

故选D。

3.如图,某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:(2)请估计,当n很大时,频率将会接近多少?(3)假如你去转动转盘一次,你获得铅笔的概率是多少?【答案】(1)0.68,0.74,0.68,0.69,0.705,0.701;(2)接近0.7;(3)0.7【解析】考点:本题考查的是利用频率估计概率点评:解答此类题目需掌握大量反复试验下频率稳定值即概率.解本题的关键是根据红球的频率得到相应的等量关系.4.如图是9×7的正方形点阵,其水平方向和竖起直方向的两格点间的长度都为1个单位,以这些点为顶点的三角形称为格点三角形.请通过画图分析、探究回答下列问题:(1)请在图中画出以AB为边且面积为2的一个网格三角形;(2)任取该网格中能与A、B构成三角形的一点M,求以A、B、M为顶点的三角形的面积为2的概率;(3)任取该网格中能与A、B构成三角形的一点M,求以A、B、M为顶点的三角形为直角三角形的概率. 【答案】(1)图形略,共12个三角形;(2);(3).【解析】本题考查的是概率公式121236375614==-121236375614==-BA(2)由分析可知:只要M 不再AB 上或者AB 的延长线上,ABM 都可以构成三角形,共有9×7-7=63-7=56个,5. 有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,不放回卡片洗匀,再从余下的两张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为(x ,y )。

2020年中考数学试题《概率》试题精编含答案

2020年中考数学试题《概率》试题精编含答案

2020年中考数学试题《概率》试题精编含答案1.(2020•兰州)某学校组织了以“纪念革命先烈,激发爱国热情”为主题的爱国主义教育研学活动,参加活动的学生可从学校提供的四个研学地点中任选一个,地点如下:A:陇南市宕昌县哈达铺红军长征纪念馆;B:陇南市两当兵变纪念馆;C:甘南州迭部县腊子口战役纪念馆;D:张掖市高台县中国工农红军西路军纪念馆.小宁和小丽决定通过抽签的方式确定本次研学活动目的地,请你用树状图或列表的方法求出小宁和小丽抽到同一地点的概率.2.(2020•日照)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是;众数是;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.3.(2020•西藏)某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目A),800米中长跑(记为项目B),跳远(记为项目C),跳高(记为项目D),即从A,B,C,D四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.4.(2020•锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.5.(2020•朝阳)某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.6.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.7.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.8.(2020•鞍山)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.9.(2020•德阳)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格;D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.10.(2020•赤峰)如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形ABC的三个顶点处各有一个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率为;(2)丫丫和甲甲一起玩跳圈游戏:丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈A为胜者.这个游戏规则公平吗?请说明理由.11.(2020•呼伦贝尔)一个不透明的口袋中装有三个完全相同的小球,上面分别标有数字,,5.(1)从口袋中随机摸出一个小球,求摸出小球上的数字是无理数的概率(直接写出结果);(2)先从口袋中随机摸出一个小球,将小球上的数字记为x,把小球放回口袋中并搅匀,再从口袋中随机摸出一个小球,将小球上的数字记为y.请用列表法或画树状图法求出x 与y的乘积是有理数的概率.12.(2020•眉山)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是部,中位数是部;(2)扇形统计图中“4部”所在扇形的圆心角为度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.13.(2020•沈阳)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A 表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).14.(2020•南通)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.15.(2020•镇江)智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“”有刚毅的含义,符号“”有愉快的含义.符号中的“”表示“阴”,“”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.(1)所有这些三行符号共有种;(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.16.(2020•长春)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为A1、A2,图案为“保卫和平”的卡片记为B)17.(2020•鄂尔多斯)“学而时习之,不亦说乎?”古人把经常复习当作是一种乐趣.某校为了解九年级(一)班学生每周的复习情况,班长对该班学生每周的复习时间进行了调查,复习时间四舍五入后只有4种:1小时,2小时,3小时,4小时,已知该班共有50人,根据调查结果,制作了两幅不完整的统计图表,该班女生一周的复习时间数据(单位:小时)如下:1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4九年级(一)班女生一周复习时间频数分布表复习时间频数(学生人数)1小时32小时a3小时44小时6(1)统计表中a=,该班女生一周复习时间的中位数为小时;(2)扇形统计图中,该班男生一周复习时间为4小时所对应圆心角的度数为°;(3)该校九年级共有600名学生,通过计算估计一周复习时间为4小时的学生有多少名?(4)在该班复习时间为4小时的女生中,选择其中四名分别记为A,B,C,D,为了培养更多学生对复习的兴趣,随机从该四名女生中选取两名进行班会演讲,请用树状图或者列表法求恰好选中B和D的概率.18.(2020•宿迁)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).19.(2020•永州)今年6月份,永州市某中学开展“六城同创”知识竞赛活动.赛后,随机抽取了部分参赛学生的成绩,按得分划为A,B,C,D四个等级,A:90<S≤100,B:80<S≤90,C:70<S≤80,D:S≤70.并绘制了如图两幅不完整的统计图,请结合图中所给信息,解答下列问题:(1)请把条形统计图补充完整.(2)扇形统计图中m=,n=,B等级所占扇形的圆心角度数为.(3)该校准备从上述获得A等级的四名学生中选取两人参加永州市举行的“六城同创”知识竞赛,已知这四人中有两名男生(用A1,A2表示),两名女生(用B1,B2表示),请利用树状图法或列表法,求恰好抽到1名男生和1名女生的概率.20.(2020•雅安)从某校初三年级中随机抽查若干名学生摸底检测的数学成绩(满分为120分),制成如图的统计直方图,已知成绩在80~90分(含80分,不含90分)的学生为抽查人数的15%,且规定成绩大于或等于100分为优秀.(1)求被抽查学生人数及成绩在100~110分的学生人数m;(2)在被抽查的学生中任意抽取1名学生,则这名学生成绩为优秀的概率;(3)若该校初三年级共有300名学生,请你估计本次检测中该校初三年级数学成绩为优秀的人数.21.(2020•吉林)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.22.(2020•河北)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.23.(2020•威海)小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.(1)请利用表格分别求出小伟、小梅获胜的概率;(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.24.(2020•东营)东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.作业情况频数频率非常好0.22较好68一般不好40请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少名学生?(2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.25.(2020•丹东)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是偶数的概率.26.(2020•毕节市)我国新冠疫情防控取得了阶段性胜利.学生们返校学习后,某数学兴趣小组对本校同学周末参加体有运动的情况进行抽样调查,在校园内随机抽取男女生各25人,调查情况如下表:是否参加体育运动男生女生总数是2119m否46n对男女生是否参加体育运动的人数绘制了条形统计图如图(1),在这次调查中,对于参加体育运动的同学,同时对其参加的主要运动项目也进行了调查,并绘制了扇形统计图如图(2).根据以上信息解答下列问题:(1)m=,n=,a=;(2)将图(1)所示的条形统计图补全;(3)这次调查中,参加体育运动,且主要运动项目是球类的共有人;(4)在这次调查中,共有4名男生未参加体育运动,分别是甲、乙、丙、丁四位同学,现在从他们中选出两位同学参加“我运动我健康”的知识讲座,求恰好选出甲和乙去参加讲座的概率.(用列表或树状图解答)27.(2020•昆明)有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;(2)若得到的两数字之和是3的倍数,则小杰赢;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?28.(2020•海南)新冠疫情防控期间,全国中小学开展“停课不停学”活动.某市为了解初中生每日线上学习时长t(单位:小时)的情况,在全市范围内随机抽取了n名初中生进行调查,并将所收集的数据分组整理,绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是(填写“全面调查”或“抽样调查”),n=;(2)从该样本中随机抽取一名初中生每日线上学习时长,其恰好在“3≤t<4”范围的概率是;(3)若该市有15000名初中生,请你估计该市每日线上学习时长在“4≤t<5”范围的初中生有名.29.(2020•山西)2020年国家提出并部署了“新基建”项目,主要包含“特高压,城际高速铁路和城市轨道交通,5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩”等.《2020新基建中高端人才市场就业吸引力报告》重点刻画了“新基建”中五大细分领域(5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩)总体的人才与就业机会.如图是其中的一个统计图.请根据图中信息,解答下列问题:(1)填空:图中2020年“新基建”七大领域预计投资规模的中位数是亿元;(2)甲,乙两位待业人员,仅根据上面统计图中的数据,从五大细分领域中分别选择了“5G基站建设”和“人工智能”作为自己的就业方向.请简要说明他们选择就业方向的理由各是什么;(3)小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,依次制成编号为W,G,D,R,X的五张卡片(除编号和内容外,其余完全相同),将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是编号为W(5G基站建设)和R(人工智能)的概率.30.(2020•广州)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.31.(2020•黄石)我市将面向全市中小学开展“经典诵读”比赛.某中学要从2名男生2名女生共4名学生中选派2名学生参赛.(1)请列举所有可能出现的选派结果;(2)求选派的2名学生中,恰好为1名男生1名女生的概率.32.(2020•云南)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.33.(2020•十堰)某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.34.(2020•烟台)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E 表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.35.(2020•盐城)生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数;(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为2×2的网格图,它可表示不同信息的总个数为;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示个人身份信息,若该校师生共492人,则n的最小值为.36.(2020•潍坊)在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.37.(2020•郴州)疫情期间,我市积极开展“停课不停学”线上教学活动,并通过电视、手机APP等平台进行教学视频推送.某校随机抽取部分学生进行线上学习效果自我评价的调查(学习效果分为:A.效果很好;B.效果较好;C.效果一般;D.效果不理想),并根据调查结果绘制了如图两幅不完整的统计图:(1)此次调查中,共抽查了名学生;(2)补全条形统计图,并求出扇形统计图中∠α的度数;(3)某班4人学习小组,甲、乙2人认为效果很好,丙认为效果较好,丁认为效果一般.从学习小组中随机抽取2人,则“1人认为效果很好,1人认为效果较好”的概率是多少?(要求画树状图或列表求概率)38.(2020•宜昌)宜昌景色宜人,其中三峡大坝、清江画廊、三峡人家景点的景色更是美不胜收.某民营单位为兼顾生产和业余生活,决定在下设的A,B,C三部门利用转盘游戏确定参观的景点.两转盘各部分圆心角大小以及选派部门、旅游景点等信息如图.(1)若规定老同志相对偏多的部门选中的可能性大,试判断这个部门是哪个部门?请说。

2020 中考数学复习---概率, 统计专项练习题含答案

2020 中考数学复习---概率, 统计专项练习题含答案

2020概率专题训练一、填空题:(每题3分,共36分)1、数 102030 中的 0 出现的频数为_____。

2、在一个装有 2 个红球,2 个白球的袋子里任意摸出一个球,摸出红球的可能性为__。

3、不可能发生是指事件发生的机会为_____。

4、“明天会下雨”,这个事件是_____事件。

(填“确定”或“不确定”)5、写出一个必然事件:_______________。

6、10把钥匙中有 3 把能打开门,今任取出一把,能打开门的概率为_____。

7、抛掷两枚骰子,则P(出现 2 个 6)=_____。

8、小射手为练习射击,共射击60次,其中36依次击中靶子的概率为_____。

9、小红随意在如图所示的地板上踢键子,则键子恰落在黑色方砖上的概率为_____。

10、足球场上,往往用抛硬币的方式来决定哪方先发球,吗?_____11、小明有两件上衣,三条长裤,则他有几种不同的穿法_____。

12、小红、小张,在一起做游戏,需要确定的游戏的先后顺序,他们约定用“剪子,包袱,锤子”的方式确定,小红取胜的概率是_____。

二、选择题:(每题 4 分,共 24 分)1、下列事件是必然发生的是()A、明天是星期一B、十五的月亮象细钩C、早上太阳从东方升起D、上街遇上朋友2、有五只灯泡,其中两只是次品,从中任取一只恰为合格品的概率为()A、20%B、40%C、50%D、60%3、抛掷一枚普遍的硬币三次,则下列等式成立的是()A、P(正正正)=P(反反反)B、P(正正正)=20%C、P(两正一反)=P(正正反)D、P(两反一正)=50%4、一个口袋里有1个红球,2个白球,3个黑球,从中取出一个球,该球是黑色的。

这个事件是()A、不确定事件B、必然事件C、不可能事件D、以上都不对5、在“石头、剪子、布”的游戏中,当你出“石头”时,对手与你打平的概率为()A、12B、13C、23D、146、从A、B、C、D四人中用抽筌的方式,选取二人打扫卫生,那么能选中A、B的概率为()A、14B、112C、12D、16三、解答题:(每题 9 分,共 54 分)1、一布袋中放有红、黄、白三种颜色的球各一,它们除颜色处其他都一个样,小明从中摸出一个球后放回摇匀,再摸出一个球,请你利用树状图分析可能出现的情况。

2020年全国中考数学试题分类(16)——统计和概率(含答案)

2020年全国中考数学试题分类(16)——统计和概率(含答案)

2020年全国中考数学试题分类(16)——统计和概率一.频数(率)分布表(共1小题)1.(2020•赤峰)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30 b合格9 15%不合格 3 5%合计60 60 100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为人.二.扇形统计图(共2小题)2.(2020•阜新)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<90 4B90≤x<110 15C110≤x<130 18D130≤x<150 12E150≤x<170 mF170≤x<190 5(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.3.(2020•盘锦)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.5 2nB0.5≤t<1 20C1≤t<1.5 n+10D t≥1.5 5请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.三.条形统计图(共5小题)4.(2020•广州)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四5.(2020•贵港)某校对九年级学生进行“综合素质”评价,评价的结果分为A(优秀)、B(良好)、C(合格)、D(不合格)四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制以下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)B(良好)等级人数所占百分比是;(2)在扇形统计图中,C(合格)等级所在扇形的圆心角度数是;(3)请补充完整条形统计图;(4)若该校九年级学生共1000名,请根据以上调查结果估算:评价结果为A(优秀)等级或B(良好)等级的学生共有多少名?6.(2020•兰州)为培养学生正确的劳动价值观和良好劳动品质,加强新时代中学生劳动教育,某校八年级(1)班对本班35名学生进行了劳动能力量化评估和近一周家务劳动总时间调查,并对相关数据进行了收集、整理和分析,研究过程中的部分数据如下:信息一:劳动能力量化评估的成绩采用十分制,得分均为整数;信息二:信息三:近一周家务劳动时间分布表时间/小时t≤1 1<t≤2 2<t≤3 3<t≤4 t>4人数/人 5 8 12 7 3信息四:劳动能力量化成绩与近一周家务劳动总时间统计表6 7 8 9 10成绩/分人数时间/小时t≤1 4 1 0 0 01<t≤2 0 6 1 1 02<t≤3 0 0 9 3 03<t≤4 0 1 1 3 2t>4 0 0 0 1 2根据以上信息,解决下列问题:(1)直接从信息二的统计图中“读”出八年级(1)班劳动能力量化成绩的平均分为分;(2)请你判断下列说法合理吗?(请在横线上填写“合理”或“不合理”)①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:.②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:.③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在2<t≤3的时间段:.(3)结合以上信息,你认为普遍情况下参加家务劳动的时间与劳动能力之间具有怎样的关系?7.(2020•朝阳)由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,m的值是,D对应的扇形圆心角的度数是;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.8.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)此次共抽查了名学生;(2)请通过计算补全条形统计图;(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.四.折线统计图(共4小题)9.(2020•济南)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多4510.(2020•广西)如图是A,B两市去年四季平均气温的折线统计图.观察图形,四季平均气温波动较小的城市是.(填“A”或“B”)11.(2020•德阳)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是.12.(2020•台州)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为S甲2与S乙2,则S甲2S乙2.(填“>”、“=”、“<”中的一个)五.加权平均数(共2小题)13.(2020•德阳)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元14.(2020•眉山)某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:项目学习卫生纪律活动参与所占比例40% 25% 25% 10%八年级2班这四项得分依次为80,90,84,70,则该班四项综合得分(满分100)为()A.81.5 B.82.5 C.84 D.86六.中位数(共2小题)15.(2020•雅安)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数 5 7 8 9 10人数 2 3 3 1 1则这10人投中次数的平均数和中位数分别是()A.3.9,7 B.6.4,7.5 C.7.4,8 D.7.4,7.516.(2020•乐山)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.七.众数(共6小题)17.(2020•西藏)格桑同学一周的体温监测结果如下表:星期一二三四五六日体温(单位:℃)36.6 35.9 36.5 36.2 36.1 36.5 36.3分析上表中的数据,众数、中位数、平均数分别是()A.35.9,36.2,36.3 B.35.9,36.3,36.6C.36.5,36.3,36.3 D.36.5,36.2,36.618.(2020•朝阳)某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A.300,150,300 B.300,200,200C.600,300,200 D.300,300,30019.(2020•鞍山)我市某一周内每天的最高气温如下表所示:最高气温(℃)25 26 27 28天数 1 1 2 3则这组数据的中位数和众数分别是()A.26.5和28 B.27和28 C.1.5和3 D.2和320.(2020•河池)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是()A.85,85 B.85,88 C.88,85 D.88,8821.(2020•毕节市)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,将他们投中的次数进行统计,制成下表:投中次数 3 5 6 7 8 9人数 1 3 2 2 1 1则这10名队员投中次数组成的一组数据中,众数和中位数分别为()A.5,6 B.2,6 C.5,5 D.6,522.(2020•包头)两组数据:3,a,b,5与a,4,2b的平均数都是3.若将这两组数据合并为一组新数据,则这组新数据的众数为()A.2 B.3 C.4 D.5八.极差(共1小题)23.(2020•巴中)某地区一周内每天的平均气温如下:25℃,27.3℃,21℃,21.4℃,28℃,33.6℃,30℃.这组数据的极差为()A.8.6 B.9 C.12.2 D.12.6九.方差(共4小题)24.(2020•盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁25.(2020•赤峰)学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是()A.平均数B.中位数C.众数D.方差26.(2020•永州)已知一组数据1,2,8,6,8,对这组数据描述正确的是()A.众数是8 B.平均数是6 C.中位数是8 D.方差是927.(2020•玉林)在对一组样本数据进行分析时,小华列出了方差的计算公式:s2= (2−x)2+(3−x)2+(3−x)2+(4−x)2x,由公式提供的信息,则下列说法错误的是()A.样本的容量是4 B.样本的中位数是3C.样本的众数是3 D.样本的平均数是3.5一十.统计量的选择(共1小题)28.(2020•大庆)在一次青年歌手比赛中,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0(单位:分).若去掉一个最高分和一个最低分.则去掉前与去掉后没有改变的一个统计量是()A.平均分B.方差C.中位数D.极差一十一.随机事件(共1小题)29.(2020•呼伦贝尔)下列事件是必然事件的是()A.任意一个五边形的外角和为540°B.抛掷一枚均匀的硬币100次,正面朝上的次数为50次C .13个人参加一个集会,他们中至少有两个人的出生月份是相同的D .太阳从西方升起一十二.概率公式(共4小题) 30.(2020•阜新)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是( ) A .1B .25C .35D .1231.(2020•大连)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .4732.(2020•葫芦岛)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是( ) A .16B .13C .12D .2333.(2020•鄂尔多斯)下列说法正确的是( ) ①√5−12的值大于12; ②正六边形的内角和是720°,它的边长等于半径; ③从一副扑克牌中随机抽取一张,它是黑桃的概率是14;④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s 2甲=1.3,s 2乙=1.1,则乙的射击成绩比甲稳定. A .①②③④ B .①②④ C .①④ D .②③ 一十三.列表法与树状图法(共13小题) 34.(2020•广西)九(1)班从小华、小琪、小明、小伟四人中随机抽出2人参加学校举行的乒乓球双打比赛,每人被抽到的可能性相等,则恰好抽到小华和小明的概率是( ) A .14B .15C .16D .11235.(2020•临沂)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是( ) A .112B .18C .16D .1236.(2020•广西)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A .16B .14C .13D .1237.(2020•杭州)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是 . 38.(2020•西宁)随着手机APP 技术的迅猛发展,人们的沟通方式更便捷、多样.某校数学兴趣小组为了解某社区20~60岁居民最喜欢的沟通方式,针对给出的四种APP (A 微信、BQQ 、C 钉钉、D 其他)的使用情况,对社区内该年龄段的部分居民展开了随机问卷调查(每人必选且只能选择其中一项).根据调查结果绘制了如图不完整的统计图,请你根据图中信息解答下列问题:(1)参与问卷调查的总人数是;(2)补全条形统计图;(3)若小强和他爸爸要在各自的手机里安装A,B,C三种APP中的一种,求他俩选择同一种APP的概率,并列出所有等可能的结果.39.(2020•广安)2020年6月26日是第33个国际禁毒日,为了解同学们对禁毒知识的掌握情况,从广安市某校800名学生中随机抽取部分学生进行调查,调查分为“不了解”“了解较少”“比较了解”“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有人,估计该校800名学生中“比较了解”的学生有人.(2)请补全条形统计图.(3)“不了解”的4人中有3名男生A1,A2,A3,1名女生B,为了提高学生对禁毒知识的了解,对这4人进行了培训,然后随机抽取2人对禁毒知识的掌握情况进行检测,请用画树状图或列表的方法,求恰好抽到2名男生的概率.40.(2020•兰州)某学校组织了以“纪念革命先烈,激发爱国热情”为主题的爱国主义教育研学活动,参加活动的学生可从学校提供的四个研学地点中任选一个,地点如下:A:陇南市宕昌县哈达铺红军长征纪念馆;B:陇南市两当兵变纪念馆;C:甘南州迭部县腊子口战役纪念馆;D:张掖市高台县中国工农红军西路军纪念馆.小宁和小丽决定通过抽签的方式确定本次研学活动目的地,请你用树状图或列表的方法求出小宁和小丽抽到同一地点的概率.41.(2020•日照)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是;众数是;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.42.(2020•锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.43.(2020•朝阳)某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.44.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.45.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.46.(2020•鞍山)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.一十四.利用频率估计概率(共4小题)47.(2020•邵阳)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m248.(2020•盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160 160≤x<170 170≤x<180 x≥180人数60 260 550 130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32 B.0.55 C.0.68 D.0.8749.(2020•鞍山)在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球搅匀后随机摸出一个球,记下颜色后放回,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为.50.(2020•呼和浩特)公司以3元/kg的成本价购进10000kg柑橘,并希望出售这些柑橘能够获得12000元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,如表是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为(精确到0.1);从而可大约估计每千克柑橘的实际售价为元时(精确到0.1),可获得12000元利润.柑橘总质量n/kg损坏柑橘质量m/kg柑橘损坏的频率xx(精确到0.001)………250 24.75 0.099 300 30.93 0.103 350 35.12 0.100 450 44.54 0.099 500 50.62 0.1012020年全国中考数学试题分类(16)——统计和概率参考答案与试题解析一.频数(率)分布表(共1小题) 1.【解答】解:根据频数分布表可知: 9÷15%=60,∴a =60×30%=18,b =1﹣30%﹣15%﹣5%=50%, ∴300×(30%+50%)=240(人).答:估计该校七年级学生身体素质良好及以上的人数为240人. 故答案为:240.二.扇形统计图(共2小题) 2.【解答】解:(1)15÷25%=60(人), m =60﹣4﹣15﹣18﹣12﹣5=6;答:本次测试随机抽取的人数是60人, 故答案为60,6; (2)C 等级所在扇形的圆心角的度数=360°×1860=108°,(3)该校七年级学生能够达到优秀的人数为 300×12+6+560=115(人). 故答案为:60,6. 3.【解答】解:(1)m =20÷40%=50, 2n +(n +10)=50﹣20﹣5, 解得,n =5,A 组所占的百分比为:2×5÷50×100%=20%, C 组所占的百分比为:(5+10)÷50×100%=30%, 补全的扇形统计图如右图所示; (2)∵A 组有2×5=10(人),B 组有20人,抽查的学生一共有50人, ∴所抽取的m 名学生平均每天课外阅读时间的中位数落在B 组; (3)1500×5+10+550=600(名), 答:该校有600名学生平均每天课外阅读时间不少于1小时.三.条形统计图(共5小题) 4.【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一, 故选:A . 5.【解答】解:(1)∵被调查的人数为4÷10%=40(人), ∴B 等级人数为40﹣(18+8+4)=10(人), 则B (良好)等级人数所占百分比是1040×100%=25%,故答案为:25%;(2)在扇形统计图中,C (合格)等级所在扇形的圆心角度数是360°×840=72°,故答案为:72°;(3)补全条形统计图如下:(4)估计评价结果为A (优秀)等级或B (良好)等级的学生共有1000×18+1040=700(人). 6.【解答】解:(1)平均成绩=4×6+8×7+11×8+8×9+4×1035=8(分),故答案为8.(2)①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:合理.②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:不合理.③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在2<t ≤3的时间段:合理. 故答案为合理,不合理,合理.(3)参加家务劳动的时间越长,劳动能力的成绩得分越大. 7.【解答】解:(1)20÷40%=50(名); 故答案为:50; (2)15÷50×100%=30%,即m =30;1050×360°=72°;故答案为:30,72°;(3)50﹣20﹣15﹣10=5(名);(4)2000×1050=400(名).答:该校最喜欢方式D 的学生约有400名.8.【解答】解:(1)这次学校抽查的学生人数是40÷80360=180(名), 故答案为:180名;(2)C 项目的人数为180﹣46﹣34﹣40=60(名) 条形统计图补充为:(3)估计全校选择C课程的学生有900×60180=300(名).四.折线统计图(共4小题)9.【解答】解:因为58出现了两次,其他数据都出现了一次,所以每月阅读课外书本数的众数是58,故选项A错误;每月阅读课外书本数从小到大的顺序为:28、33、45、58、58、72、78,最中间的数字为58,所以该组数据的中位数为58,故选项B正确;从折线图可以看出,从2月到4月阅读课外书的本数下降,4月到5月阅读课外书的本数上升,故选项C 错误;从1到7月份每月阅读课外书本数的最大值78比最小值多28多50,故选项D错误.故选:B.10.【解答】解:由折线图可知,A城市的年平均气温=14(15+26+23+12)=19℃,B城市的年平均气温=14(6+20+9+2)=9.25℃,所以A城市的方差为:S A2=14×[(15﹣19)2+(26﹣19)2+(23﹣19)2+(12﹣19)2]=32.5,B城市的方差为:S B2=14×[(6﹣9.25)2+(20﹣9.25)2+(9﹣9.25)2+(2﹣9.25)2]≈44.7,所以S A2<S B2,所以四季平均气温波动较小的城市是A.故答案为:A.11.【解答】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:9.7+9.82=9.75.故答案为:9.75. 12.【解答】解:由折线统计图得乙同学的成绩波动较大, 所以S 甲2<S 乙2. 故答案为:<.五.加权平均数(共2小题) 13.【解答】解:这天销售的四种商品的平均单价是: 50×10%+30×15%+20×55%+10×20%=22.5(元), 故选:C . 14.【解答】解:80×40%+90×25%+84×25%+70×10%=82.5(分), 即八年级2班四项综合得分(满分100)为82.5分, 故选:B .六.中位数(共2小题)15.【解答】解:这10人投中次数的平均数为5×2+7×3+8×3+9+1010=7.4,中位数为7+82=7.5,故选:D . 16.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40, 其中第四个数据为39,所以这组数据的中位数为39. 故答案为39.七.众数(共6小题) 17.【解答】解:这组数据中36.5出现了2次,次数最多,所以众数是36.5;将数据按照从小到大(或从大到小)的顺序排列为35.9,36.1,36.2,36.3,36.5,36.5,36.6,处于中间的数据是36.3,所以中位数是36.3; 平均数是x =17×(36.6+35.9+36.5+36.2+36.1+36.5+36.3)=36.3.故选:C . 18.【解答】解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,所以中位数是300+3002=300;平均数是x =16(200+200+300+300+300+500)=300,故选:D . 19.【解答】解:共7天,中位数应该是排序后的第4天, 则中位数为:27, 28℃的有3天,最多, 所以众数为:28. 故选:B . 20.【解答】解:将数据85,90,89,85,98,88,80按照从小到大排列是:80,85,85,88,89,90,98,故这组数据的众数是85,中位数是88, 故选:B . 21.【解答】解:由表可知,这10个数据中数据5出现次数最多,所以众数为5, ∵上从小到大排序后中位数为第5、6个数据的平均数,且第5、6个数据均为6, ∴这组数据的中位数为6+62=6,故选:A .。

2020中考数学专题复习---统计与概率的综合

2020中考数学专题复习---统计与概率的综合

[分析](1)用D组的人数除以它所占的百分比得到 调查的总人数,然后计算C组的人数所占的百分比得到 m的值; (2)先计算出B组人数,然后补全条形统计图; (3)画树状图展示所有12种等可能的结果数,找出所 选的两人恰好是一名男生和一名女生的结果数,然后 利用概率公式求解.
[解答]解:(1)50 32[10÷20%=50(名),所以本次
解:(1)n=5÷10%=50. (2)样本中喜爱看电视的人数为50-15-20-5=10(人),1200× 即估计该校喜爱看电视的学生人数为240人. (3)画树状图为:
共有12种等可能的结果数,其中恰好抽到2名男生的结果数 所以恰好抽到2名男生的概率为162=12.
2019年 3.某市气象局统计了5月1日至8日中午12时的气温(单位: ℃),整理后分别绘制成如图所示的两幅统计图.根据图 中给出的信息,解答下列问题:
共有12种等可能的结果数,其中所选出的两人中既有七 同学的结果数为4,所以所选出的两人中既有七年级又有 率为142=13.
取法,因此恰好抽到2天中午12时的气温均低于20℃的概率
二、考情分析与预测 近三年的考题相当稳定,要求学生能正确读懂统
计图表,弄清图表中的数量关系,并能用样本特征去 估计总体特征或根据题干要求计算随机事件的概率.试 题的起点低(有的问题甚至小学生都能回答),与生活紧 密联系(以学生熟知的问题为背景),学生的得分率高.
解:(1)捐D类书的人数为30-4-6-9-3=8(人),补全条形统计 (2)这30名职工捐书本数的众数为6本、中位数为6本;
平均数为xത=310×(4×4+5×6+6×9+7×8+8×3)=6(本). (3)750×6=4500(本), 即估计该单位750名职工共捐书4500本.

2020年中考数学考点提分专题十五 概率初步(解析版)

2020年中考数学考点提分专题十五 概率初步(解析版)

2020年中考数学考点提分专题十五概率初步(解析版)必考点1 确定事件和随机事件。

(1)“必然事件”是指事先可以肯定一定会发生的事件。

P(A)=1(2)“不可能事件”是指事先可以肯定一定不会发生的事件。

P(A)=0(3)“不确定事件”或“随机事件”是指结果的发生与否具有随机性的事件。

0<P(A)<1【典例1】(2008·吉林中考真题)下列成语所描述的事件是必然发生的是()A.水中捞月B.拔苗助长C.守株待兔D.瓮中捉鳖【举一反三】1.(2019·湖北中考真题)下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得2.(2011·四川中考真题)下列说法正确的是()A.随机抛掷一枚均匀的硬币,落地后反面一定朝上。

B.从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。

C.某彩票中奖率为36%,说明买100张彩票,有36张中奖。

D.打开电视,中央一套正在播放新闻联播。

3.(2019·湖北中考真题)下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式必考点2 用频率估计概率(1)事件的频数、频率。

设总共做n次重复实验,而事件A发生了m次,则称事件A发生的次数m为频数。

称比值m/n为A发生的频率。

(3)概率:一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。

【典例2】(2019·江苏中考真题)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表: 抛掷次数 100 200 300 400 500 正面朝上的频数 5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近( ) A .20B .300C .500D .800【举一反三】1.(2019·湖北初三期末)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )A .袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B .掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C .先后两次掷一枚质地均匀的硬币,两次都出现反面D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过92.(2019·广东初三期末)一个不透明的袋子装有除颜色外其余均相同的2个白球和n 个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在0.2附近,则n 的值为( )A .2B .4C .8D .103.(2019·辽宁初三期末)一个不透明的袋子中装有20个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于0.4,则小英估计袋子中白球的个数约为( ) A .50B .30C .12D .8必考点3 树状图与列表法求解概率列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.【典例3】(2019·辽宁中考真题)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( ) A .23B .12C .13D .14【举一反三】(2019·广西中考真题)小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A .1325B .1225C .425D .1214.(2019·广西中考真题)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( ) A .13B .23C .19D .2915.(2019·湖北中考真题)从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程240ax x c ++=有实数解的概率为( ) A .14B .13C .12D .231.(2019·湖北初三期末)“射击运动员射击一次,命中靶心”这个事件是( ) A .确定事件 B .必然事件 C .不可能事件 D .不确定事件 2.(2019·山东中考真题)下列事件中,是必然事件的是( )A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯3.(2019·四川中考真题)小强同学从1-,0,1,2,3,4这六个数中任选一个数,满足不等式12x+<的概率是()A.15B.14C.13D.124.(2013·山东中考真题)有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为A.16B.13C.12D.235.(2019·海南中考模拟)从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是()A.23B.12C.13D.146.(2019·山东中考真题)从1,2,3,4中任取两个不同的数,分别记为a和b,则2219a b+>的概率是()A.12B.512C.712D.137.(2019·山东中考真题)一个盒子中装有标号为1,2,3,4,5,的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为()A.15B.25C.35D.458.(2019·江苏中考真题)如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针落在阴影部分的概率为________.9.(2019·江苏中考模拟)如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.10.(2019·天津中考真题)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是___________.11.(2019·辽宁中考真题)一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是__.12.(2019·辽宁中考真题)一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为( ) A .12B .10C .8D .613.(2019·湖南中考真题)在一个不透明布袋里装有3个白球、2个红球和a 个黄球,这些球除颜色不同其它没有任何区别.若从该布袋里任意摸出1个球,该球是黄球的概率为12,则a 等于_____. 14.(2019·江苏中考真题)在一个不透明的布袋中,有2个红球,1个白球,这些球除颜色外都相同. (1)搅匀后从中任意摸出1个球,摸到红球的概率是________;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球.求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果)15.(2019·甘肃中考真题)2019年5月,以“寻根国学,传承文明”为主题的兰州市第三届“国学少年强一国学知识挑战赛”总决赛拉开帷幕,小明晋级了总决赛.比赛过程分两个环节,参赛选手须在每个环节中各选择一道题目.第一环节:写字注音、成语故事、国学常识、成语接龙(分别用1234, , , A A A A 表示); 第二环节:成语听写、诗词对句、经典通读(分别用123,,B B B 表示) (1)请用树状图或列表的方法表示小明参加总决赛抽取题目的所有可能结果(2)求小明参加总决赛抽取题目都是成语题目(成语故事、成语接龙、成语听写)的概率。

2019年江苏省中考数学真题分类汇编 专题15 图形的变化之解答题(解析版)

2019年江苏省中考数学真题分类汇编 专题15 图形的变化之解答题(解析版)

专题15 图形的变化之解答题参考答案与试题解析一.解答题(共13小题)1.(2019•徐州)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.【答案】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).【点睛】本题主要考查了平行四边形的性质,平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.2.(2019•常州)如图,把平行四边形纸片ABCD沿BD折叠,点C落在点C′处,BC′与AD相交于点E.(1)连接AC′,则AC′与BD的位置关系是AC′∥BD;(2)EB与ED相等吗?证明你的结论.【答案】解:(1)连接AC′,则AC′与BD的位置关系是AC′∥BD,故答案为:AC′∥BD;(2)EB与ED相等.由折叠可得,∠CBD=∠C'BD,∵AD∥BC,∴∠ADB=∠CBD,∴∠EDB=∠EBD,∴BE=DE.【点睛】本题主要考查了折叠问题以及平行四边形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3.(2019•淮安)如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点).(1)将线段AB向上平移两个单位长度,点A的对应点为点A1,点B的对应点为点B1,请画出平移后的线段A1B1;(2)将线段A1B1绕点A1按逆时针方向旋转90°,点B1的对应点为点B2,请画出旋转后的线段A1B2;(3)连接AB2、BB2,求△ABB2的面积.【答案】解:(1)线段A1B1如图所示;(2)线段A1B2如图所示;(3)S4×42×22×42×4=6.【点睛】本题考查了平移变换和旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.4.(2019•常州)将图中的A型(正方形)、B型(菱形)、C型(等腰直角三角形)纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的2个盒子中摸出1个盒子,把摸出的2个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率.(不重叠无缝隙拼接)【答案】解:(1)搅匀后从中摸出1个盒子,可能为A型(正方形)、B型(菱形)或C型(等腰直角三角形)这3种情况,其中既是轴对称图形又是中心对称图形的有2种,∴盒中的纸片既是轴对称图形又是中心对称图形的概率是;故答案为:;(2)画树状图为:共有6种等可能的情况,其中拼成的图形是轴对称图形的情况有2种:A和C,C和A,∴拼成的图形是轴对称图形的概率为.【点睛】本题主要考查了概率公式,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.5.(2019•淮安)如图①,在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到△BPE.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.①∠BEP=50°;②连接CE,直线CE与直线AB的位置关系是EC∥AB.(2)请在图③中画出△BPE,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.【答案】解:(1)①如图②中,∵∠BPE=80°,PB=PE,∴∠PEB=∠PBE=50°,②结论:AB∥EC.理由:∵AB=AC,BD=DC,∴AD⊥BC,∴∠BDE=90°,∴∠EBD=90°﹣50°=40°,∵AE垂直平分线段BC,∴EB=EC,∴∠ECB=∠EBC=40°,∵AB=AC,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ABC=∠ECB,∴AB∥EC.故答案为50,AB∥EC.(2)如图③中,以P为圆心,PB为半径作⊙P.∵AD垂直平分线段BC,∴PB=PC,∴∠BCE∠BPE=40°,∵∠ABC=40°,∴AB∥EC.(3)如图④中,作AH⊥CE于H,∵点E在射线CE上运动,点P在线段AD上运动,∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值=AB=3.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,平行线的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,学会利用辅助圆解决问题,属于中考压轴题.6.(2019•苏州)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.【答案】(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC=65°,∴∠BAE=180°﹣65°×2=50°,∴∠F AG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠F AG+∠F=50°+28°=78°.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明△ABC≌△AEF是解题的关键.7.(2019•扬州)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把△ABC沿直线1折叠,点B的对应点是点B′.(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为4;(2)如图2,当PB=5时,若直线1∥AC,则BB′的长度为5;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,△ACB′的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线1变化过程中,求△ACB′面积的最大值.【答案】解:(1)如图1中,∵△ABC是等边三角形,∴∠A=60°,AB=BC=AC=8,∵PB=4,∴PB′=PB=P A=4,∵∠A=60°,∴△APB′是等边三角形,∴AB′=AP=4.故答案为4.(2)如图2中,设直线l交BC于点E.连接BB′交PE于O.∵PE∥AC,∴∠BPE=∠A=60°,∠BEP=∠C=60°,∴△PEB是等边三角形,∵PB=5,∴∵B,B′关于PE对称,∴BB′⊥PE,BB′=2OB∴OB=PB•sin60°,∴BB′=5.故答案为5.(3)如图3中,结论:面积不变.∵B,B′关于直线l对称,∴BB′⊥直线l,∵直线l⊥AC,∴AC∥BB′,∴S△ACB′=S△ACB•82=16.(4)如图4中,当B′P⊥AC时,△ACB′的面积最大,设直线PB′交AC于E,在Rt△APE中,∵P A=2,∠P AE=60°,∴PE=P A•sin60°,∴B′E=6,∴S△ACB′的最大值8×(6)=424.【点睛】本题属于几何变换综合题,考查了等边三角形的性质和判定,轴对称变换,解直角三角形,平行线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.8.(2019•宿迁)如图①,在钝角△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将△BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将△BDE从图①位置绕点B逆时针方向旋转180°,求点G的运动路程.【答案】解:(1)如图②中,由图①,∵点D为边AB中点,点E为边BC中点,∴DE∥AC,∴,∴,∵∠DBE=∠ABC,∴∠DBA=∠EBC,∴△DBA∽△EBC.(2)∠AGC的大小不发生变化,∠AGC=30°.理由:如图③中,设AB交CG于点O.∵△DBA∽△EBC,∴∠DAB=∠ECB,∵∠DAB+∠AOG+∠G=180°,∠ECB+∠COB+∠ABC=180°,∠AOG=∠COB,∴∠G=∠ABC=30°.(3)如图③﹣1中.设AB的中点为K,连接DK,以AC为边向右作等边△ACO,连接OG,OB.以O为圆心,OA为半径作⊙O,∵∠AGC=30°,∠AOC=60°,∴∠AGC∠AOC,∴点G在⊙O上运动,以B为圆心,BD为半径作⊙B,当直线与⊙B相切时,BD⊥AD,∴∠ADB=90°,∵BK=AK,∴DK=BK=AK,∵BD=BK,∴BD=DK=BK,∴△BDK是等边三角形,∴∠DBK=60°,∴∠DAB=30°,∴∠DOG=2∠DAB=60°,∴的长,观察图象可知,点G的运动路程是的长的两倍.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,弧长公式,等边三角形的判定和性质,圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题,学会正确寻找点的运动轨迹,属于中考压轴题.9.(2019•南京)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC 上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.【答案】(1)证明:∵DE=DG,EF=DE,∴DG=EF,∵DG∥EF,∴四边形DEFG是平行四边形,∵DG=DE,∴四边形DEFG是菱形.(2)如图1中,当四边形DEFG是正方形时,设正方形的边长为x.在Rt△ABC中,∵∠C=90°,AC=3,BC=4,∴AB5,则CD x,AD x,∵AD+CD=AC,∴x=3,∴x,∴CD x,观察图象可知:0≤CD时,菱形的个数为0.如图2中,当四边形DAEG是菱形时,设菱形的边长为m.∵DG∥AB,∴,∴,解得m,∴CD=3,如图3中,当四边形DEBG是菱形时,设菱形的边长为n.∵DG∥AB,∴,∴,∴n,∴CG=4,∴CD,观察图象可知:当0≤CD或CD≤3时,菱形的个数为0,当CD或CD时,菱形的个数为1,当CD时,菱形的个数为2.【点睛】本题考查相似三角形的判定和性质,菱形的判定和性质,作图﹣复杂作图等知识,解题的关键是学会寻找特殊位置解决问题,属于中考常考题型,题目有一定难度.10.(2019•宿迁)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)【答案】解:(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=EC sin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm);(2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C71,1,∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.11.(2019•泰州)某体育看台侧面的示意图如图所示,观众区AC的坡度i为1:2,顶端C离水平地面AB 的高度为10m,从顶棚的D处看E处的仰角α=18°30′,竖直的立杆上C、D两点间的距离为4m,E 处到观众区底端A处的水平距离AF为3m.求:(1)观众区的水平宽度AB;(2)顶棚的E处离地面的高度EF.(sin18°30′≈0.32,tan l8°30′≈0.33,结果精确到0.1m)【答案】解:(1)∵观众区AC的坡度i为1:2,顶端C离水平地面AB的高度为10m,∴AB=2BC=20(m),答:观众区的水平宽度AB为20m;(2)作CM⊥EF于M,DN⊥EF于N,则四边形MFBC、MCDN为矩形,∴MF=BC=10,MN=CD=4,DN=MC=BF=23,在Rt△END中,tan∠EDN,则EN=DN•tan∠EDN≈7.59,∴EF=EN+MN+MF=7.59+4+10≈21.6(m),答:顶棚的E处离地面的高度EF约为21.6m.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.12.(2019•连云港)如图,海上观察哨所B位于观察哨所A正北方向,距离为25海里.在某时刻,哨所A 与哨所B同时发现一走私船,其位置C位于哨所A北偏东53°的方向上,位于哨所B南偏东37°的方向上.(1)求观察哨所A与走私船所在的位置C的距离;(2)若观察哨所A发现走私船从C处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截,求缉私艇的速度为多少时,恰好在D处成功拦截.(结果保留根号)(参考数据:sin37°=cos53°,cos37°=sin53°,tan37°,tan76°≈4)【答案】解:(1)在△ABC中,∠ACB=180°﹣∠B﹣∠BAC=180°﹣37°﹣53°=90°.在Rt△ABC中,sin B,∴AC=AB•sin37°=2515(海里).答:观察哨所A与走私船所在的位置C的距离为15海里;(2)过点C作CM⊥AB于点M,由题意易知,D、C、M在一条直线上.在Rt△AMC中,CM=AC•sin∠CAM=1512,AM=AC•cos∠CAM=159.在Rt△AMD中,tan∠DAM,∴DM=AM•tan76°=9×4=36,∴AD9,CD=DM﹣CM=36﹣12=24.设缉私艇的速度为x海里/小时,则有,解得x=6.经检验,x=6是原方程的解.答:当缉私艇的速度为6海里/小时时,恰好在D处成功拦截.【点睛】此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.13.(2019•南京)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)【答案】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH,∴AH=CH•tan∠ACH≈0.51CH,在Rt△BHC中,tan∠BCH,∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH﹣0.4CH=33,解得,CH=300,∴EH=CH﹣CE=220,BH=120,∴AH=AB+BH=153,∴DH=AH=153,∴HF=DH﹣DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.。

2020年全国中考数学分类解析汇编专题含答案4:概率统计问题

2020年全国中考数学分类解析汇编专题含答案4:概率统计问题

D、为了解我市学校“阳光体育”活动开展情况,易采用抽样调查的方法,故本选项错误。
故选C。
3. (2020湖南郴州3分)为了解某校2020名师生对我市“三创”工作(创国家园林城市、国家卫生城市、全
国文明城市)的知晓情况,从中随机抽取了100名师生进行问卷调查,这项调查中的样本是【 】
A.2020名师生对“三创”工作的知晓情况
保证原创精品 已受版权保护
摸出一个小球(不放回)其数字记为p
程 x2 px q 0 有实数根的概率是【 】
1
1
2
5
A. 2 B. 3 C. 3 D. 6
,再随机摸出另一个小球其数字记为q ,则满足关于的方
【答案】A。 【考点】画树状图法或列表法,概率,一元二次方程根的判别式。 【分析】画树状图:
60+90+60 = 7 ∴指示灯发光的概率为: 360 12 。故选D。
二、填空题 1. (2020湖南郴州3分)元旦晚会上,九年级(1)班43名同学和7名老师每人写了一张同种型号的新年贺 卡,放进一个纸箱里充分摇匀后,小红从纸箱里任意摸出一张贺卡,恰好是老师写的贺卡的概率是
. 7
【答案】 50 。
(1)请你用画树形图或列表的方法列举出可能出现的所有结果; (2)如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形能构成平面镶嵌的概率; (3)若两种正多边形构成平面镶嵌,p、q表示这两种正多边形的个数,x、y表示对应正多边形的每个内 角的度数,则有方程px+qy=360,求每种平面镶嵌中p、q的值. 【答案】解:(1)画树形图如下:
的平均温度是
C .
保证原创精品 已受版权保护
温度( C )
天数
26

2023年江苏中考数学一轮复习专题训练第15讲 圆

2023年江苏中考数学一轮复习专题训练第15讲 圆

第15讲圆 2023年中考数学一轮复习专题训练(江苏专用)一、单选题1.(2022·无锡)如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD =25°,则下列结论错误的是()fA.AE⊥DE B.AE//OD C.DE=OD D.∠BOD=50°2.(2022·无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为()A.12πB.15πC.20πD.24π3.(2022·苏州)如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是()A.π12B.π24C.√10π60D.√5π604.(2022·连云港)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为()A.23π−√32B.23π−√3C.43π−2√3D.43π−√35.(2022·泗洪模拟)若一个圆锥的侧面展开图是半径为9cm、圆心角为240°的扇形,则这个圆锥的底面半径长是()A.6cm B.9cm C.12cm D.18cm 6.(2022·泗洪模拟)已知△ABC的内心为P,则下列说法错误的是()A.PA=PB=PCB.P在△ABC的内部C.P为△ABC三个内角平分线的交点D.P到三边距离相等7.(2022·惠山模拟)下列命题中,是真命题的是()A.长度相等的弧是等弧B.如果|a|=1,那么a=1C.两直线平行,同位角相等D.如果x>y ,那么-2x>-2y 8.(2022·惠山模拟)如图,在平面直角坐标系中,A(0,3)、B(3,0),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为()A.1B.2√2﹣1C.√2D.3√22﹣1 9.(2022·锡山模拟)若圆锥的底面半径为3cm,母线长为4cm,则这个圆锥的侧面积为()A.2cm2B.24cm2C.12πcm2D.24πcm2 10.(2022·江苏模拟)如图,点A的坐标是(−2,0),点C是以OA为直径的⊙B上的一动点,点A 关于点C的对称点为点P.当点C在⊙B上运动时,所有这样的点P组成的图形与直线y=kx-3k(k>0)有且只有一个公共点,则k的值为().A .23B .√53C .2√55D .6√5511.(2021·常州模拟)如图,△ABC 内接于⊙O ,弦AB =6,sinC =35,则⊙O 的半径为( )A .5B .10C .154D .95二、填空题12.(2022·徐州)如图,A 、B 、C 点在圆O 上, 若∠ACB=36°, 则∠AOB= .13.(2022·盐城)如图,在矩形ABCD 中,AB =2BC =2,将线段AB 绕点A 按逆时针方向旋转,使得点B 落在边CD 上的点B ′处,线段AB 扫过的面积为 .14.(2022·盐城)如图,AB 、AC 是⊙O 的弦,过点A 的切线交CB 的延长线于点D ,若∠BAD =35°,则∠C = °.15.(2022·常州)如图,△ABC是⊙O的内接三角形.若∠ABC=45°,AC=√2,则⊙O的半径是.⌢上,且与点A,16.(2022·泰州)如图,PA与⊙O相切于点A,PO与⊙O相交于点B,点C在AmBB 不重合,若∠P=26°,则∠C的度数为°.17.(2022·苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D=°18.(2022·连云港)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC,与⊙O交于点D,连接OD.若∠AOD=82°,则∠C=°.19.(2022九下·沭阳模拟)如图,在平面直角坐标系中,点A (-1,0),点B (1,0),点M (3,4),以M 为圆心,2为半径作⊙M.若点P 是⊙M 上一个动点,则PA 2+PB 2的最大值为20.(2022·泗洪模拟)如图,大圆的弦AB 切小圆于点C ,且大圆的半径为5cm ,小圆的半径为3cm ,则弦AB 的长为 cm.三、综合题21.(2022·徐州)如图,点A 、B 、C 在圆O 上,∠ABC=60°,直线AD ∥BC ,AB=AD ,点O 在BD上.(1)判断直线AD 与圆O 的位置关系,并说明理由; (2)若圆的半径为6,求图中阴影部分的面积.22.(2022·镇江)操作探究题(1)已知AC 是半圆O 的直径,∠AOB =(180n)°(n 是正整数,且n 不是3的倍数)是半圆O 的一个圆心角.操作:如图1,分别将半圆O 的圆心角∠AOB =(180n)°(n 取1、4、5、10)所对的弧三等分(要求:仅用圆规作图,不写作法,保留作图痕迹);交流:当n =11时,可以仅用圆规将半圆O 的圆心角∠AOB =(180n)°所对的弧三等分吗?探究:你认为当n 满足什么条件时,就可以仅用圆规将半圆O 的圆心角∠AOB =(180n)°所对的弧三等分?说说你的理由.(2)如图2,⊙o 的圆周角∠PMQ =(2707)°.为了将这个圆的圆周......14等分,请作出它的一条14等分弧CD ⌢(要求:仅用圆规作图,不写作法,保留作图痕迹).23.(2022·南通)如图,四边形ABCD内接于⊙O,BD为⊙O的直径,AC平分∠BAD,CD=2√2,点E在BC的延长线上,连接DE.(1)求直径BD的长;(2)若BE=5√2,计算图中阴影部分的面积.24.(2022·无锡)如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.(1)求证△CED∽△BAD;(2)当DC=2AD时,求CE的长.25.(2022·泗洪模拟)定义:若一个圆内接四边形的两条对角线互相垂直,则称这个四边形为圆美四边形.(1)选择:下列四边形中,一定是圆美四边形的是()A .平行四边形B .矩形C .菱形D .正方形(2)如图1,在等腰Rt △ABC 中,∠BAC =90°,AB =1,经过点A ,B 的⊙O 交AC 边于点D ,交BC 于点E ,连接DE ,若四边形ABED 为圆美四边形,求DE 的长;(3)如图2,AD 是△ABC 外接圆⊙O 的直径,交BC 于点E ,点P 在AD 上,延长BP 交⊙O 于点F ,已知PB 2=PE ⋅PA .问四边形ABFC 是圆美四边形吗?为什么?26.(2022·宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A 、B 、C 、D 、M 均为格点.(1)【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段AB 、CD ,相交于点P 并给出部分说理过程,请你补充完整: 解:在网格中取格点E ,构建两个直角三角形,分别是△ABC 和△CDE.在Rt △ABC 中,tan∠BAC =12在Rt △CDE 中, , 所以tan∠BAC =tan∠DCE . 所以∠BAC =∠DCE .因为∠ACP +∠DCE =∠ACB =90°, 所以∠ACP +∠BAC =90°, 所以∠APC =90°, 即AB ⊥CD .(2)【拓展应用】如图②是以格点O 为圆心,AB 为直径的圆,请你只用无刻度的直尺,在BM ⌢上找出一点P ,使PM⌢=AM ⌢,写出作法,并给出证明: (3)【拓展应用】如图③是以格点O 为圆心的圆,请你只用无刻度的直尺,在弦AB 上找出一点P.使AM 2=AP ·AB ,写出作法,不用证明.27.(2022·连云港)如图【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB=∠DEB=90°,∠B=30°,BE=AC=3.【问题探究】小昕同学将三角板DEB绕点B按顺时针方向旋转.(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上(如图3),求点G所经过的路径长.(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是.答案解析部分1.【答案】C【解析】【解答】解:∵DE是⊙O的切线,∴OD⊥DE,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠EAD,∴∠EAD=∠ODA,∴OD∥AE,∴AE⊥DE,故选项A、B都正确;∵∠OAD=∠EAD=∠ODA=25°,∴∠BOD=2∠OAD=50°,故选项D正确;如图:过点D作DF⊥AB于点F∵AD平分∠BAC,AE⊥DE,DF⊥AB,∴DE=DF<OD,故选项C不正确;故答案为:C.【分析】根据切线的性质可得OD⊥DE,根据等腰三角形的性质得∠OAD=∠ODA,根据角平分线的概念得∠OAD=∠EAD,则∠EAD=∠ODA,推出OD∥AE,据此判断A、B;根据等腰三角形的性质以及角平分线概念得∠OAD=∠EAD=∠ODA=25°,由圆周角定理得∠BOD=2∠OAD=50°,据此判断D;根据角平分线的性质可得DE=DF,据此判断C.2.【答案】C【解析】【解答】解:∵∠C=90°,AC=3,BC=4,∴AB= √32+42=5,以直线AC 为轴,把△ABC 旋转一周得到的圆锥的侧面积= 12×2π×4×5=20π. 故答案为:C.【分析】首先利用勾股定理求出AB 的值,然后根据S 圆锥的侧面积=12×2π·BC·AB 进行计算. 3.【答案】A【解析】【解答】解:由图可知,总面积为:5×6=30, OB =√32+12=√10 ,∴阴影部分面积为: 90·π×10360=5π2, ∴飞镖击中扇形OAB (阴影部分)的概率是 5π230=π12. 故答案为:A.【分析】首先求出长方形网格的面积,利用勾股定理求出OB ,结合扇形的面积公式求出阴影部分的面积,然后用扇形的面积除以整个矩形的面积进行计算.4.【答案】B【解析】【解答】解:如图所示,连接OA 、OB ,再过点O 作OC ⊥AB ,由题意得A 、B 分别为圆的十二等分点,∴∠AOB=212×360°=60°, ∵OA =OB ,∴△AOB 为等边三角形,∴AB =OA =OB =2,∴S 阴影=S 扇OAB -S △AOB =60·π·22360-12×2×√3=2π3-√3. 故答案为:B.【分析】如图所示,连接OA 、OB ,再过点O 作OC ⊥AB ,由题意得A 、B 分别为圆的十二等分点,可求得∠AOB=60°,从而推出△AOB 为等边三角形,即得AB =OA =OB =2,再分别计算出扇形OAB 和三角形AOB 的面积,最后由S 阴影=S 扇OAB -S △AOB 代入数据计算即可求解.5.【答案】A【解析】【解答】解:设这个圆锥的底面半径为rcm,根据题意得2πr=240π×9180,解得r=6,所以这个圆锥的底面半径长为6cm.故答案为:A.【分析】设这个圆锥的底面半径为rcm,根据圆锥底面圆的周长为侧面展开扇形的弧长,结合圆的周长公式以及弧长公式进行计算即可.6.【答案】A【解析】【解答】解:A、三角形内心到三角形三条边的距离相等,并不是到三个顶点的距离相等,故符合题意;B、三角形的内心是三个内角的角平分线的交点,所以P在△ABC的内部,故不符合题意;C、三角形的内心是三个内角的角平分线的交点,故不符合题意;D、三角形内心到三角形三条边的距离相等,故不符合题意.故答案为:A.【分析】三角形的内心是三个内角的角平分线的交点,内心到三角形三条边的距离相等,据此判断. 7.【答案】C【解析】【解答】解:在同圆或等圆中,能够互相重合的弧叫等弧,故A选项是假命题;如果|a|=1,那么a=±1,故B选项是假命题;根据平行线的性质,两直线平行,同位角相等,故C选项是真命题;如果x>y,那么-2x<-2y,故D选项是假命题.故答案为:C.【分析】在同圆或等圆中,能够互相重合的弧叫等弧,依此判断A;绝对值就是数轴上的点所表示的数,离开原点的距离,据此判断B;根据平行线的性质,两直线平行,同位角相等,判断C;不等式的两边同时除以一个负数,不等号的方向改变,据此判断D.8.【答案】D【解析】【解答】解:当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,C2是中点,取C1C2的中点为D,点C的运动路径是以D为圆心,以DC1为半径的圆,(CA:PA=1 :2 ,则点C轨迹和点P轨迹相似,所以点C的轨迹就是圆) ,当O、C、D共线时,OC的长最小,设线段AB交⊙B于Q,RtΔAOB中,OA=3,OB=3,∴AB=3√2.∵⊙B半径为2,∴BP1=2,AP1=3√2+2,∵C1是AP1的中点,∴AC1=32√2+1,AQ=3√2−2,∵C2是AQ的中点,∴AC2=C2Q=32√2−1,C1C2=32√2+1−(32√2−1)=2,即⊙D半径为1,∵AD=32√2−1+1=32√2=12AB,∴OD=12AB=32√2,∴OC=32√2−1.故答案为:D.【分析】当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,当点P在线段AB上时,C2是中点,取C1C2的中点为D,确定出点C的运动路径是以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,先求⊙D的半径,说明D是AB的中点,设线段AB交⊙B于Q,根据直角三角形斜边中线是斜边中线的性质求出OD长,则可求出OC 的最小值.9.【答案】C【解析】【解答】解:∵圆锥底面半径为3cm,母线长为4cm,∴圆锥的侧面积为π×3×4=12πcm2.故答案为:C.【分析】利用圆锥的侧面积等于πRr(R是展开扇形的半径,r是底面圆的半径),代入计算可求解. 10.【答案】C【解析】【解答】解:如图,连接OP,作过点P作PE⊥x轴于点E,∵点P和点A关于点C对称,点C的运动轨迹是以点B为圆心,半径为1的圆,∴点P的运动轨迹是以O为圆心,以AO为半径的圆.∵当点C在⊙B上运动时,所有这样的点P组成的图形与直线y=kx-3k(k>0)有且只有一个公共点,直线y=kx-3k(k>0)过定点D(3,0),∴OP⊥PD,∴∠OPD=90°,在Rt△OPD中,OP=OA=2,OD=3,由勾股定理得:PD= √OD2−OP2= √5由等积法,可得:OD•PE=OP•PD,即:3×PE=2× √5,解得:PE= 2√53在Rt△OPE中,OE= √OP2−PE2= 43∴点P的坐标为( 43,−2√53)把点P的坐标代入y=kx-3k,得:−2√53=43k−3k,解得:k= 2√55.故答案为:C.【分析】连接OP,作过点P作PE⊥x轴于点E,由题意可得:点P的运动轨迹是以O为圆心,AO 为半径的圆,直线y=kx-3k(k>0)过定点D(3,0),利用勾股定理可得PD,根据△OPD的面积公式可得PE,然后利用勾股定理求出OE,进而可得点P的坐标,接下来将点P的坐标代入y=kx-3k中进行计算就可得到k的值.11.【答案】A【解析】【解答】解:过B作直径BD,连接AD,∵BD 为直径,∴∠BAD =90°,∵∠D =∠C ,∴sinD =sinC =AB BD =35, ∵AB =6,∴BD =10,∴⊙O 的半径为5.故答案为:A.【分析】过B 作直径BD ,连接AD ,根据圆周角定理可得∠BAD =90°,∠D =∠C ,然后根据正弦函数的概念可得BD 的值,进而可得半径.12.【答案】72°【解析】【解答】解:∵∠ACB=12∠AOB ,∠ACB=36°, ∴∠AOB=2×∠ACB=72°.故答案为:72°.【分析】根据同弧所对的圆心角等于圆周角的2倍可得∠AOB=2∠ACB ,据此计算.13.【答案】π3【解析】【解答】解:∵AB =2BC =2,∴BC =1,∵矩形ABCD 中,∴AD =BC =1,∠D =∠DAB =90°,由旋转可知AB =AB ′,∵AB =2BC =2,∴AB ′=AB =2,∵cos∠DAB ′=ADAB ′=12, ∴∠DAB ′=60°,∴∠BAB ′=30°,∴线段AB 扫过的面积=30°×π×22360°=π3. 故答案为:π3.【分析】根据已知条件可得BC=1,根据矩形的性质可得AD=BC=1,∠D=∠DAB=90°,由旋转的性质可得AB=AB′=2,求出cos ∠DAB′的值,得到∠DAB′、∠BAB′的度数,然后结合扇形的面积公式进行计算.14.【答案】35【解析】【解答】解:如图,连接AO 并延长,交⊙O 于点E ,连接BE .∵AE 为⊙O 的直径,∴∠ABE =90°,∴∠E +∠BAE =90°,∵AD 为⊙O 的切线,∴∠DAE =90°,∴∠BAE +∠BAD =90°,∴∠E =∠BAD =35°,∴∠C =∠E =35°.故答案为:35.【分析】连接AO 并延长,交⊙O 于点E ,连接BE ,根据圆周角定理可得∠C=∠E ,∠ABE=90°,根据切线的性质可得∠DAE=90°,由同角的余角相等可得∠E=∠BAD=35°,据此解答.15.【答案】1【解析】【解答】解:连接OA 、OC ,∵∠ABC =45°,∴∠AOC =2∠ABC =90°,∴OA 2+OC 2=AC 2,即2OA 2=2,解得:OA =1,故答案为:1.【分析】连接OA 、OC ,根据同弧所对的圆心角等于圆周角的2倍可得∠AOC=2∠ABC=90°,然后利用勾股定理进行计算即可.16.【答案】32【解析】【解答】解:连接OA ,∵PA 与⊙O 相切于点A ,∴∠PAO=90°,∴∠O=90°-∠P ,∵∠P=26°,∴∠O=64°,∴∠C=12∠O=32°. 故答案为:32.【分析】连接OA ,根据切线的性质可得∠PAO=90°,则根据三角形的内角和求出∠O 的度数,由同弧所对的圆周角等于圆心角的一半即可求出∠C 的度数.17.【答案】62【解析】【解答】解:连接 BD ,∵AB 是 ⊙O 的直径,∴∠ADB =90° ,∵CB⌢=CB ⌢ , ∴∠BAC =∠BDC =28° ,∴∠ADC =90°−∠BDC =62°故答案为:62.【分析】连接BD ,根据圆周角定理可得∠ADB=90°,∠BAC=∠BDC=28°,然后根据∠ADC=∠ADB-∠BDC 进行计算.18.【答案】49【解析】【解答】解:∵AB 是直径,AC 是切线,∴∠A=90°,∵∠AOD=82°,∴∠B=41°,∴∠C=90°-41°=49°.故答案为:49.【分析】根据切线的性质得出∠A=90°,根据圆周角定理得出∠B=12∠AOD=41°,即可得出∠C=90°-41°=49°.19.【答案】100【解析】【解答】解:设P (x ,y ),∵PA 2=(x +1)2+y 2,PB 2=(x−1)2+y 2,∴PA 2+PB 2=2x 2+2y 2+2=2(x 2+y 2)+2,∵OP 2=x 2+y 2,∴PA 2+PB 2=2OP 2+2,当点P 处于OM 与圆的交点P'处时,OP 取得最大值,如图,∴OP 的最大值为OP'=OM +P ′M =√42+32+2=7,∴PA 2+PB 2最大值为2×72+2=100.故答案为:100.【分析】设P (x ,y ),根据两点间距离公式表示出PA 2、PB 2,结合OP 2=x 2+y 2可得PA 2+PB 2=2OP2+2,当点P处于OM与圆的交点P'处时,OP取得最大值,最大值为OP'=OM+P′M,据此计算.20.【答案】8【解析】【解答】解:连接OA,OC,∵AB与小圆相切,∴OC⊥AB,∴C为AB的中点,即AC=BC=12 AB,在Rt△AOC中,OA=5cm,OC=3cm,根据勾股定理得:AC=√OA2−OC2=4cm,则AB=2AC=8cm.故答案为:8.【分析】连接OA,OC,根据切线的性质可得OC⊥AB,根据垂径定理可得AC=BC=12AB,利用勾股定理求出AC,进而可得AB.21.【答案】(1)解:直线AD与圆O相切,理由如下:如图,连接OA,∵AD∥BC,∴∠D=∠DBC,∵AB=AD,∴∠D=∠ABD,∵∠ABC=60°,∴∠DBC=∠ABD=∠D=30°,∴∠BAD=120°,∵OA=OB ,∴∠BAO=∠ABD=30°,∴∠OAD=90°,∴OA ⊥AD ,∵OA 是圆的半径,∴直线AD 与园O 相切,(2)解:如图,连接OC ,作OH ⊥BC 于H ,∵OB=OC=6,∴∠OCB=∠OBC=30°,∴∠BOC=120°,∴OH =12OB =3, ∴BH =√BO 2−OH 2=3√3,∴BC =2BH =6√3,∴扇形BOC 的面积为120×62×π360=12π, ∵S ΔOBC =12BC ⋅OH =12×6√3×3=9√3, ∴阴影部分的面积为S 扇形BOC −S △BOC =12π−9√3.【解析】【分析】(1)连接OA ,根据平行线的性质得∠D=∠DBC ,根据等腰三角形的性质得∠D=∠ABD ,则∠DBC=∠ABD=∠D=30°,∠BAO=∠ABD=30°,推出∠OAD=90°,据此证明;(2)连接OC ,作OH ⊥BC 于H ,由等腰三角形的性质“等边对等角”得∠OCB=∠OBC=30°,则∠BOC=120°,OH=12OB=3,利用勾股定理可得BH ,由垂径定理可得BC=2BH ,然后根据S 阴影=S 扇形BOC -S △BOC 进行计算.22.【答案】(1)解:操作:交流: 60°−9×(18028)°=(6028)° ,或 19×(18028)°−2×60°=(6028)° ; 探究:设 60°−k(180n )°=(60n)° ,解得 n =3k +1 ( k 为非负整数). 或设 k(180n )°−60°=(60n)° ,解得 n =3k −1 ( k 为正整数). 所以对于正整数 n ( n 不是3的倍数),都可以仅用圆规将半圆 O 的圆心角 ∠AOB =(180n)° 所对的弧三等分;(2)解:如图【解析】【分析】(1)操作:分别构造60°弧、15°弧、12°弧、6°弧即可解决问题;交流:当n=28时,三者之间的数量关系为60°−9×(18028)°=(6028)°; 探究:设 60°−k(180n )°=(60n )° 或设k(180n )°−60°=(60n)°,用含k 的式子表示出n 即可; (2)以P 为端点,用半径去截圆,与圆交于一点,再以该点为端点,重复上述步骤,得到点D ,以Q 为圆心,QP 为半径画弧,与圆交于一点C ,则弧CD⌢即为所作. 23.【答案】(1)解:解:(1)∵BD 为⊙O 的直径,∴∠BCD =∠DCE =90°,∵AC 平分∠BAD ,∴∠BAC =∠DAC=45°,∴BC ⏜=DC ⏜,∴BC=DC=2√2,∴BD =CD sin45°=√2√22=4. 答:直径BD 的长为4.(2)解:∵在圆O 中,BC ⏜=DC ⏜,∴弓形BC 的面积等于弓形DC 的面积,∴阴影部分的面积等于△DCE 的面积∵CE =BE −BC =5√2−2√2=3√2,∴S阴影部分=S△DCE=12CD·CE=12×3√2×2√2=6.答:阴影部分的面积为6.【解析】【分析】(1)利用直径所对的圆周角是直角,可证得∠BCD=∠DCE=90°,利用角平分线的定义可证得∠BAC=∠DAC=45°,利用圆周角定理可推出BC=DC;再利用解直角三角形求出BD的长.(2)利用在圆O中,BC⏜=DC⏜,可证得阴影部分的面积等于△DCE的面积;再求出CE的长;然后利用三角形的面积公式求出阴影部分的面积.24.【答案】(1)证明:∵BC⌢所对的圆周角是∠A,∠E,∴∠A=∠E,又∠BDA=∠CDE,∴△CED∽△BAD(2)解:∵△ABC是等边三角形,∴AC=AB=BC=6∵DC=2AD,∴AC=3AD,∴AD=2,DC=4,∵ΔCED~ΔBAD,∴ADDE=BDCD=ABCE,∴2DE=BD4,∴BD⋅DE=8;连接AE,如图,∵AB=BC,∴AB⌢=BC⌢∴∠BAC=∠BEA,又∠ABD=∠EBA,∴△ABD~ΔEBA,∴ABBE=PDAB,∴AB2=BD⋅BE=BD⋅(BD+DE)=BD2+BD⋅DE,∴62=BD2+8,∴BD=2√7(负值舍去)∴6 CE=2√74,解得,CE=127√7【解析】【分析】(1)根据圆周角定理可得∠A=∠E,由对顶角的性质可得∠BDA=∠CDE,然后根据相似三角形的判定定理进行证明;(2)根据等边三角形的性质得AC=AB=BC=6,结合已知条件可得AC=3AD,则AD=2,DC=4,然后根据相似三角形的性质可得BD·DE=8,连接AE,由圆周角定理可得∠BAC=∠BEA,证明△ABD ∽△EBA,根据相似三角形的性质可得BD、CE的值.25.【答案】(1)D(2)解:连接AE,BD,∵等腰Rt△ABC中,∠BAC=90°,∴BD是⊙O的直径,∠BED=∠BAD =90°,∵AC=AB=1,∴BC=√AB2+AC2=√2,∠C=12(180°−∠BAC)=45°,∵四边形ABED为圆美四边形,∴BD⊥AE,∴AD⌢=ED⌢,∴AD=ED,∵BD=BD,∴Rt△ABD≌Rt△EBD(HL),∴BE=AB=1,∴CE=BC-BE= √2−1,∵∠CED=180°-∠BED=90°,∴∠CDE=90°−∠C=45°,∴DE=CE=√2−1;(3)解:四边形ABFC是圆美四边形,理由:连接BD,AF,设AF与BC交点为G,则∠ACB=∠ADB,∠CAF=∠CBF,∵AD是⊙O的直径,∴∠ABD=90°,∴∠BAD+∠ADB=90°,∵PB2=PE⋅PA,∴PBPA=PEPB,∵∠APB=∠BPE,∴△APB∽△BPE,∴∠BAD=∠CBF,∴∠CAF=∠BAD,∴∠ACB+∠CAF=∠ADB+∠BAD=90°,∴∠AGC=180-(∠ACB+∠CAF)=90°,∴AF⊥BC,∴四边形ABFC是圆美四边形.【解析】【解答】解:(1)∵圆美四边形满足对角互补,对角线互相垂直两个条件,∴正方形是圆美四边形,故答案为:D;【分析】(1)根据圆内接四边形的对角互补可排除A、C,根据对角线互相垂直排除B,从而即可得出答案;(2)连接AE,BD,先判断出∠BED=∠BAD =90°,根据等腰直角三角形的性质求出BC=√2,∠C=45°,由圆美四边形可得BD⊥AE,由垂径定理及弧、弦、圆心角的关系可得AD=ED,证明Rt△ABD≌Rt△EBD,可得BE=AB=1,从而求出CE=BC-BE= √2−1,再根据等腰直角三角形,可得DE的长;(3)四边形ABFC是圆美四边形,理由:连接BD,AF,设AF与BC交点为G,证明△APB∽△BPE ,可得∠BAD=∠CBF ,从而求出∠AGC=90°,根据圆美四边形的定义即证.26.【答案】(1)tan ∠DCE=12(2)解:如图中,点P 即为所求,作法:取个点T ,连接AT 交⊙O 于点P ,点P 即为所求;证明:由作图可知,OM ⊥AP ,OM 是半径,∴PM⌢=AM ⌢. (3)解:如图中,点P 即为所求,作法:取各店J 、K ,连接JK 交AB 于点P ,点P 即为所求。

2020年江苏省中考数学分类汇编解析版

2020年江苏省中考数学分类汇编解析版

93480000 有 8 位,所以可以确定 n=8﹣1=7.
2Hale Waihona Puke .【解析】【解答】解:故答案为:
【分析】科学记数法的形式是:
,其中
<10, 为整数.所以
, 取决于原数小
数点的移动位数与移动方向, 是小数点的移动位数,往左移动, 为正整数,往右移动, 为负整数。
本题小数点往左移动到 4 的后面,所以
三、计算题
8.【解析】【解答】4 的倒数为 .
故答案为:A . 【分析】根据倒数的定义进行解答即可. 9.【解析】【解答】解:2 的相反数是-2. 故答案为:B.
【分析】只有符号不同的两个数叫做互为相反数,从而根据定义解答即可.
10.【解析】【解答】由图可得

故答案为:C.
【分析】由实数的数轴表示和大小比较及绝对值的几何意义结合本题实数 在数轴上表示的位置可知:
B.
C.
D.
4.计算
的结果是( )
A.
B.
C.
D.
5.下列计算正确的是( ).
A.
B.
C.
D.
6.计算
的结果是( )
A.
B. t
C.
D.
7.如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是( )
A. 205
B. 250
C. 502
D. 520
8.计算
的结果是( )
a<0,b>0,b>a,|a|<|b|,从而可以判断.
11.【解析】【解答】解:由题意可知,将 400000 用科学记数法表示为:

故答案为:D.
【分析】科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数

2024年中考数学真题分类汇编(全国通用)专题30概率(38题)(解析版)

2024年中考数学真题分类汇编(全国通用)专题30概率(38题)(解析版)

专题30概率(38题)一、单选题1.(2024-广西•中考真题)不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是()A.1B.-C.」D.-323【答案】D【分析】本题考查求概率,直接利用概率公式进行计算即可.【详解】解:从袋子中随机取出1个球,有2+1=3种等可能的结果,其中取出白球的情况有2种,:.p=--,3故选D.2.(2024-广东•中考真题)长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是()A.-B.-C.;D.-4324【答案】A【分析】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.直接根据概率公式求解即可.【详解】解:根据题意,选中“巴蜀文化”的概率是;,4故选:A.3.(2024-内蒙古呼伦贝尔•中考真题)下列说法正确的是()A.任意画一个三角形,其内角和是360。

是必然事件B.调查某批次汽车的抗撞击能力,适宜全面调查.C.一组数据2,4,6,x,7,4,6,9的众数是4,则这组数据的中位数是4D.在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,两团女演员的身高平均数相同,方差分别为^=1.5,5|=2.5,则甲芭蕾舞团的女演员身高更整齐【答案】D【分析】本题考查了必然事件,方差的意义,抽样调查与普查,中位数,根据必然事件,中位数,方差的意义,抽样调查与普查逐项分析判断即可.【详解】A.任意画一个三角形,其内角和是360。

是不可能事件,故原说法错误;B.调查某批次汽车的抗撞击能力,适宜抽样调查.故原说法错误;C.一组数据2,4,6,x,7,4,6,9的众数是4,则这组数据的中位数是5,故原说法错误D.在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,两团女演员的身高平均数相同,方差分别为S言=1.5,S]=2.5,则甲芭蕾舞团的女演员身高更整齐,故正确,故选:D.4.(2024-内蒙古通辽•中考真题)不透明的袋子中装有1个红球,2个白球,这些球除颜色外无其他差别,从中随机摸出一个球,放回并摇匀,再从中随机摸出一个球,那么两次都摸出白球的概率是()A.-B.-C.-D.-9393【答案】C【分析】本题主要考查了列表法或树状图法求概率.根据题意,列出表格,可得一共有9种等可能结果,其中两次都摸出白球的有4种,再由概率公式计算,即可求解.【详解】解:根据题意,列出表格如下:红白1白2红(红,红)(白1,红)(白2,红)白1(红,白1)(白1,白1)(白2,白1)白2(红,白2)(白1,白2)(白2,白2)一共有9种等可能结果,其中两次都摸出白球的有4种,4所以两次都摸出白球的概率是§.故选:C5.(2024-河南•中考真题)豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为()豫剧•花木兰豫剧•七品芝麻官豫剧•朝阳沟2【答案】D【分析】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图得到所有的等可能的结果数.根据题意,利用树状图法将所有结果都列举出来,然后根据概率公式计算解决即可.【详解】解:把3张卡片分别记为A、B、C,画树状图如下:共有9种等可能的结果,其中两次抽取的卡片正面相同的结果有3种,31・.・两次抽取的卡片图案相同的概率为-=故选:D.6.(2024-山东•中考真题)某校课外活动期间开展跳绳、踢犍子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是()A.-B.-C.-D.-9933【答案】C【分析】本题考查了用列表法或画树状图法求概率.首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及甲与乙恰好选择同一项活动的情况,再利用概率公式求解即可求得答案.【详解】解:设跳绳、踢犍子、韵律操分别为A、B、C,画树状图如下,ABC ABC ABC共有9种等可能的结果,甲、乙恰好选择同一项活动的有3种情况,31故他们选择同一项活动的概率是3=-,故选:C.7.(2024.贵州.中考真题)小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是()A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次【分析】本题主要考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,据此求解即可.【详解】解:小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,则由概率的意义可知,小星定点投篮1次,不一定能投中,故选项A正确,选项B错误;小星定点投篮10次,不一定投中4次,故选项C错误;小星定点投篮4次,不一定投中1次,故选项D错误故选;A.8.(2024.湖北武汉•中考真题)小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A.随机事件B.不可能事件C.必然事件D.确定性事件【答案】A【分析】本题考查的是必然事件、不可能事件、随机事件的概念.根据事件发生的可能性大小判断即可.【详解】解:两人同时出相同的手势,,这个事件是随机事件,故选:A.9.(2024.湖北武汉•中考真题)经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是()A.-B.-C.-D.-9399【答案】D【分析】本题考查的是运用树状图求概率,运用树状图法确定所有情况数和符合题意情况数是解答本题的关键.运用树状图法确定所有情况数和符合题意情况数,然后用概率公式解答即可.【详解】解:列树状图如图所示,开始1车左右直行2车左右直行左右直行左右直行共有9种情况,至少一辆车向右转有5种,.••至少一辆车向右转的概率是:,9410.(2024-黑龙江齐齐哈尔•中考真题)六月份,在邛日光大课间”活动中,某校设计了“篮球、足球、排球、羽毛球”四种球类运动项目,且每名学生在一个大课间只能选择参加一种运动项目,则甲、乙两名学生在一个大课间参加同种球类运动项目的概率是()A.—B.—C.—D.—2346【答案】C【分析】本题考查了列表法或画树状图法求概率,分别用A、B,C、。

2020中考数学试题含答案 (15)

2020中考数学试题含答案  (15)

2020中考数学试题一、选择题1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。

计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。

任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若,则B. 若,则C. 若,则D. 若,则二、填空题11.计算:a-3a=________。

12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。

13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E 两点,过点D作直径DF,连结AF,则∠DEA=________。

2020年中考数学考点复习:概率

2020年中考数学考点复习:概率

概 率中考如何考察概率1、了解学习概率的意义,能理解判断“必然事件、不可能事件、随机事件”;2、会运用列举法(包括列表、画树状图)计算等可能性事件发生的概率;3、能用概率解决一些实际问题(中奖率、游戏的公平性等);4、理解实验中的频率与事件发生的概率之间的关系。

相关概念(必记)1、事件发生的 的大小,叫做概率;2、 叫做必然事件(P必然事件= );叫做不可能事件(P 不可能事件= ); 叫做随机事件( <P 随机事件< )。

3、计算等可能性事件发生概率的公式为NMP 中,M 表示 ,N 表示 。

考点分析考点一、概率的意义(一个事件发生的可能性的大小)与用试验估算概率 (理解实验中的频率与事件发生的概率之间的关系)例题1、下列说法正确的是( )A.在10次抛图钉的实验中,有3次钉尖向上,所以钉尖向上的概率是30%。

B.掷一枚正六面体骰子,出现6的概率为61的意思是每6次就有1次掷得6。

C.某彩票的中奖机会是2%,那么买100张彩票就会有2张中奖。

D.在一次抛硬币的实验中,某同学得出正面向上的概率为48%。

例题的是;针对练习:1⑴某人今年50岁,他当年去世的概率是多少?他活到80岁的概率是多少?(保留三个有效数字)⑵如果有20000个50岁的人参加人寿保险,当年死亡的人均赔偿金为10万元,预计保险公司需付赔偿的总额为多少?考点二、判断“必然事件、不可能事件、随机事件”典型例题:例题1、下列一定为必然事件的是()A.北京人都爱吃饺子;B.在20名学生的血型中,必有A型;C.内错角相等,两直线平行;D.在数轴上,到原点相等的点所表示的数相同。

例题2、下列四种说法中:①了解某一天出入北京的人口流量用普查方式最容易;②在52 张扑面牌中,随机抽取5张,必有2张同色;③打开体育频道,到此正在播放体育新闻是随机事件;④“有一个班全是男生”是可能事件。

其中正确的说法有。

例题3、抛掷两枚分别标有1、2、3、4、5、6的正六面体骰子,写出一个随机事件是;写出一个必然事件是;写出一个不可能事件是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年江苏省中考数学分类汇编专题15 概率一、单选题(共2题;共4分)1.(2020·徐州)在一个不透明的袋子里装有红球、黄球共个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在左右,则袋子中红球的个数最有可能是()A. 5B. 10C. 12D. 152.(2020·泰州)如图,电路图上有个开关、、、和个小灯泡,同时闭合开关、或同时闭合开关、都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是()A. 只闭合1个开关B. 只闭合2个开关C. 只闭合3个开关D. 闭合4个开关二、填空题(共4题;共4分)3.(2020·镇江)一只不透明的袋子中装有5个红球和1个黄球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸出红球的概率等于________.4.(2020·盐城)一个不透明的袋中装有3个黑球和2个白球,这些球除颜色外都相同,从这个袋中任意摸出一个球为白球的概率是________.5.(2020·苏州)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是________.6.(2020·扬州)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的苏康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为________ .三、解答题(共12题;共78分)7.(2020·徐州)小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排志愿者被随机分到组(体温检测)、组(便民代购)、组(环境消杀).(1)小红的爸爸被分到组的概率是________;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)8.(2020·镇江)智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“ ”有刚毅的含义,符号“ ”有愉快的含义.符号中的“ ”表示“阴”,“ ”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同. (1)所有这些三行符号共有________种;(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.9.(2020·泰州)一只不透明袋子中装有个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是________(精确到0.01),由此估出红球有________个.(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.10.(2020·宿迁)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为________.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).11.(2020·南通)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.12.(2020·扬州)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从A测温通道通过的概率是________;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.13.(2020·无锡)现有4张正面分别写有数字1、2、3、4的卡片,将4张卡片的背面朝上,洗匀.(1)若从中任意抽取1张,抽的卡片上的数字恰好为3的概率是________;(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程)14.(2020·南京)甲、乙两人分别从A、B、C这3个景点随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率.(2)甲、乙两人选择的2个景点恰好相同的概率是________.15.(2020·连云港)从2021年起,江苏省高考采用“ ”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选科,“2”是指在化学、生物、思想政治、地理4科中任选2科. (1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是________;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2中选化学、生物的概率.16.(2020·淮安)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K,搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母的概率为________;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“ ”的概率.17.(2020·常州)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是________;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.18.(2020·盐城)生活在数字时代的我们,很多场合用二维码(如图)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂加色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图,通过涂器色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图可表示不同信息的总个数:(图中标号表示两个不同位置的小方格,下同)(2)图为的网格图.它可表示不同信息的总个数为________;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用的网格图来表示各人身份信息,若该校师生共人,则n的最小值为________;答案解析部分一、单选题1.【解析】【解答】解:设袋子中红球有x个,根据题意,得:解得答:袋子中红球有5个.故答案为:A.【分析】设袋子中红球有x个,根据摸出红球的频率稳定在0.25左右列出关于x的方程,求出x的值即可得答案.2.【解析】【解答】解:由小灯泡要发光,则电路一定是一个闭合的回路,只闭合1个开关,小灯泡不发光,所以是一个不可能事件,所以A不符合题意;闭合4个开关,小灯泡发光是必然事件,所以D不符合题意;只闭合2个开关,小灯泡有可能发光,也有可能不发光,所以B符合题意;只闭合3个开关,小灯泡一定发光,是必然事件,所以C不符合题意.故答案为:B.【分析】观察电路发现,闭合或闭合或闭合三个或四个,则小灯泡一定发光,从而可得答案.二、填空题3.【解析】【解答】解:∵袋子中共有5+1=6个小球,其中红球有5个,∴搅匀后从中任意摸出1个球,摸出红球的概率等于,故答案为:.【分析】根据概率计算公式,用红球的个数除以球的总个数即可得.4.【解析】【解答】解:根据题意可得:不透明的袋子里共有将5个球,其中2个白球,∴任意摸出一个球为白球的概率是:,故答案为:.【分析】根据概率的求法,找准两点:①全部的情况数;②符合条件的情况数;二者的比值就是其发生的概率.5.【解析】【解答】解:∵由图可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个区域中所占的比值= ,∴小球停在黑色区域的概率是;故答案为:【分析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论.6.【解析】【解答】∵正方形的二维码的边长为2cm,∴正方形二维码的面积为,∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,∴黑色部分的面积占正方形二维码面积得60%,∴黑色部分的面积约为:,故答案为.【分析】求出正方形二维码的面积,根据题意得到黑色部分的面积占正方形面积得60%计算即可;三、解答题7.【解析】【解答】(1)共有3种可能出现的结果,被分到“B组”的有1种,因此被分到“B组”的概率为,故答案为:;【分析】(1)共有3种可能出现的结果,被分到“B组”的有1中,可求出概率.(2)用列表法表示所有可能出现的结果,进而计算“他与小红的爸爸”分到同一组的概率.8.【解析】解:(1)共有8种等可能的情况数,分别是:阴,阴,阴;阴,阳,阴;阴,阴,阳;阳,阴,阴;阳,阳,阴;阳,阴,阳;阴,阳,阳;阳、阳、阳;故答案为:8;【分析】(1)用列举法举出所有等可能的结果数即可;(2)根据(1)列举的结果数和概率公式即可得出答案.9.【解析】【解答】解:(1)随着摸球次数的越来越多,频率越来越靠近0.33,因此接近的常数就是0.33;设红球由个,由题意得:,解得:,经检验:是分式方程的解;故答案为:0.33,2;【分析】(1)通过表格中的数据,随着次数的增多,摸到白球的频率越稳定在0.33左右,进而得出答案;利用频率估计概率,摸到白球的概率0.33,利用概率的计算公式即可得出红球的个数;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸到一个白球一个红球的情况,再利用概率公式即可求得答案.10.【解析】【解答】解:(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为,故答案为:;【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.11.【解析】【分析】(1)假定甲车先出发,乙车后出发,丙车最后出发,用简单的列举法可列举出三辆车按先后顺序出发的所有等可能的结果数;(2)分别求出两人坐到甲车的概率,然后进行比较即可得出答案.12.【解析】【解答】解:(1) 因为共开设了A、B、C三个测温通道,小明从A测温通道通过的概率是,故答案为:.【分析】(1) 因为共开设了A、B、C三个测温通道,小明从A测温通道通过的概率是.(2)根据题意画出树状图,再根据所得结果算出概率即可.13.【解析】【解答】解:从中任意抽取1张,抽的卡片上的数字恰好为3的概率为;故答案为:【分析】(1)根据概率公式计算即可;(2)画树状图展示所有12种等可能的结果,可得抽得的2张卡片上的数字之和为3的倍数的结果数,根据概率公式计算即可.14.【解析】【解答】解:(2)共有9种可能出现的结果,其中选择A、B的有2种,∴P(A、B)= ;故答案为:.【分析】(1)列举出所有可能出现的结果,利用概率公式求解即可;(2)根据树状图求得恰好只有两人选择相同的情况,再根据概率公式求解即可.15.【解析】【分析】(1)小丽在“2”中已经选择了地理,还需要从剩下三科中进行选择一科生物,根据概率公式计算即可.(2)小明在“1”中已经选择了物理,可直接根据画树状图判断在4科中选择化学,生物的可能情况有2种,再根据一共有12种情况,通过概率公式求出答案即可.16.【解析】【解答】解:(1)第一次摸到字母的概率= .故答案为:;【分析】(1)用标有字母A的情况数除以总的情况数解答即可;(2)先画出树状图求出所有等可能的情况数,然后找出两个方格中的字母从左往右恰好组成“ ”的情况数,再根据概率公式解答.17.【解析】【解答】解:(1)∵共有3个号码,∴抽到1号签的概率是,故答案为:;【分析】(1)由概率公式即可得出答案;(2)画出树状图,由图可知:所有等可能的情况有6种,其中抽到的2支签上签号的和为奇数的有4种,从而再利用概率公式求解即可.18.【解析】【解答】解:(2)画树状图如图所示:图④2×2的网格图可以表示不同信息的总数个数有16=24个,故答案为:16.( 3 )依题意可得3×3网格图表示不同信息的总数个数有29=512>,故则n的最小值为3,故答案为:3.【分析】(1)根据题意画出树状图即可求解;(2)根据题意画出树状图即可求解;(3)根据(1)(2)得到规律即可求出n的值.。

相关文档
最新文档