轨道球阀扭矩计算--公式编辑,下载就能使用
固定球阀扭矩计算
![固定球阀扭矩计算](https://img.taocdn.com/s3/m/89f85fdd6f1aff00bed51ef5.png)
固定球阀扭矩和比压计算阀前阀座密封的固定球阀的扭矩计算总扭矩M:M=M m+M t+M u+M c (N·mm)式中M m—球体与阀座密封圈间的摩擦扭矩(N·mm);M t—阀杆与填料间的摩擦扭矩(N·mm);M u—阀杆台肩与止推垫的摩擦扭矩(N·mm);M c—轴承的摩擦扭矩(N·mm);(1)M m的计算M m=QR(1+cosφ)μt/2cosφ;Q—固定球阀的密封力(N),Q=(Q MJ-Q J)+2Q1-Q2;Q MJ—流体静压力在阀座密封面上引起的作用力(N),Q MJ=πp(d12-D12)/4;d1—浮动支座外径(mm);D1—浮动支座内径,近似等于阀座密封圈内径(mm);P—流体压力(MPa);Q J—流体静压力在阀座密封面余隙中的作用力(N),Q J=πP J (D22-D12)/4;P J—余隙中的平均压力,当余隙中压力呈线性分布时,可近似地取P J=P/2 (N);D2—阀座密封圈外径(mm);Q1—预紧密封力(N),Q1=πq min (D22-D12)/4;q min—预紧所必需的最小比压,q min=0.1P (MPa),并应保证q min≥2MPa,弹性元件应根据Q1值的大小进行设计;Q2—阀座滑动的摩擦力(N);Q2=πd1(0.33+0.92μ0d0P)d0—阀座O型圈的横截面直径(mm);μ0—橡胶对金属的摩擦系数,μ0=0.3~0.4;有润滑时,μ0=0.15;R—球体半径(mm);φ—密封面对中心斜角(°);μt—球体与密封圈之间的摩擦系数,F-4:μt=0.05;填充F-4:μt=0.05~0.08;尼龙:μt=0.15;填充尼龙:μt=0.32~0.37;(2)M t的计算M t=M t1+ M t2M t1—V型填料及圆形片状填料的摩擦转矩M t1=0.6πμt Zhd T2P(N.mm)Z—填料个数;h—单个填料高度;d T—阀杆直径(mm);M t2—O型圈的摩擦转矩M t2=0.5πd T2(0.33+0.92μ0d0 P)(N.mm);d 0—阀杆O型圈的横截面直径(mm);(3) M u的计算M u={πμt(D T+ d T)3P}/64(N.mm)D T—止推垫外径(mm);(4) M C的计算M C={πμC d T d12P}/8(N.mm)μc—轴承与阀杆之间的摩擦系数,复合轴承:μt=0.05~0.1;阀前阀座密封的固定球阀的设计比压计算q—设计比压,必须保证q b<q<[q]q=4Q/π(D22-D12)(MPa)q b—必须比压;[q]—许用比压,F-4:[q]=15MPa;尼龙:[q]=30MPa;浮球阀扭矩和比压计算浮动球阀的扭矩计算总扭矩M(N·mm)为:M=M m+M t+M u式中M m—球体与阀座密封圈间的摩擦扭矩(N·mm);M t—阀杆与填料间的摩擦扭矩(N·mm);M u—阀杆台肩与止推垫的摩擦扭矩(N·mm);(1)M m的计算M m=QR(1+cosφ)μt/2cosφ;Q—浮动球阀的密封力(N);Q= Q MJ+Q1Q MJ—流体静压力在阀座密封面上引起的作用力(N);Q MJ=π(D1+D2)2P /16D1—阀座内径,近似等于阀座密封面内径(mm);D2—阀座外径,近似等于阀座密封面外径(mm);P—流体压力(MPa);Q1—预紧密封力(N);Q1=2δ1EF MJ/ (D1+D2) (tgφ-2μt) (N);φ—密封面对中心斜角(°);δ1—阀座预压紧的压缩量(mm);E—阀座材料的弹性模量(MPa),F-4:E=470~800 MPa;尼龙:E =1500 MPa;F MJ—阀座的横截面积(mm);μt—球体与密封圈之间的摩擦系数,F-4:μt=0.05;填充F-4:μt=0.05~0.08尼龙:μt=0.15;填充尼龙:μt=0.32~0.37;R—球体半径(mm);φ—密封面对中心斜角(°);(2)M t的计算M t=M t1+ M t2M t1—V型填料及圆形片状填料的摩擦转矩M t1=0.6πμt Zhd T2P/2 (N.mm)Z—填料个数;h—单个填料高度;d F—阀杆直径(mm);M t2—O型圈的摩擦转矩M t2=0.6πd T2(0.33+0.92μ0d 01 P)/2 (N.mm);d 01—阀杆O型圈的横截面直径(mm);(5) M u的计算M u=πμt(D T+ d F)3P/64 (N.mm)D T—止推垫外径(mm);浮动球阀的设计比压计算q—设计比压,必须保证q b<q<[q]q=4Q/π(D22-D12)(MPa)q b—必须比压;[q]—许用比压,F-4:[q]=15MPa;尼龙:[q]=30MPa;。
阀门扭矩计算
![阀门扭矩计算](https://img.taocdn.com/s3/m/79f31c525022aaea998f0fd4.png)
(1)阀杆总力矩 MF=MQF+MFT
(2)球与阀座的摩擦力矩MQF
MQC=MQF1+MQF2
MQF1阀座对球预紧力产生的摩擦力矩
MQF1=0.3925(D2JH–D2MN)*(1+COSθ)*qM*fM*R
MQF2介质工作压力产生的摩擦力矩
MQF2=π*P* fM*R(D2JH-0.5 D2MN-0.5 D2MW)(1+COSθ)/8COSθ
MQF=72235Nmm
(3)填料与阀杆间摩擦力矩 MFT
MFT=0.5*FT*dF
FT=ψ*dF*bT*P
阀杆与填料摩擦力
FT
N
系数
ψ
查表
阀杆直径
dF
设计给定
mm
填料宽度
bT
设计给定
mm
填料深度
hT
设计给定
mm
计算结果: MFL=840Nmm
计算结果: MF=78075Nmm
密封带接触面外径
DMW
设计选定
mm
球与座接触面内径
DMN
设计选定
mm
球体最小预紧比压
qM
0.1P
MPa
体球与密封面的摩擦系数
fM
查表
球体半径
R
设计选定
mm
阀座外径
DJH
设计选定
Mm1
球体与密封面接触点与流道轴法向角
θ
设计选定
(°)
计算压力
P
取公称压力
MPa
计算结果:MQF1=9043Nmm
MQF2=63192Nmm
闸阀截止阀球阀扭矩计算
![闸阀截止阀球阀扭矩计算](https://img.taocdn.com/s3/m/f1db365155270722182ef720.png)
闸阀截止阀操作转矩计算法(热工所/罗托克经验公式)此计算方法,比“三化”使用的计算方法要简便得多,计算结果接近实际转矩,已由对电厂实测结果证实。
此计算方法主要由以下几个部分组成:1、计算介质压力对阀门闸板或阀芯施加的推力乘阀门系数,即:P1=F×P×K式中:F=阀门的通径面积(cm2);P =介质的工作压力(kg/cm2);K =阀门系数,视介质种类、温度及阀门行驶而定。
阀门通径面积表阀门系数表2、计算填料的摩擦推力和转矩,以及阀杆的活塞效应所产生的推力总和P2。
压紧填料压盖,会给明杆闸阀的阀杆增加摩擦力,给旋转杆阀门的阀杆增加转矩。
管道压力作用于阀杆(通过填料压盖处)的截面积上,为开启阀门的趋势。
当道压力在64kgf/cm2以上时介质对明杆闸阀阀杆的推力是很大的,即所谓活塞效应。
故当介质压力≥64kgf/cm2时,对于明杆闸阀应予考虑。
而对截止阀,其阀杆面积已包括在阀芯面积中,所以活塞效应可忽略。
对于暗杆阀,以上3项均应计算。
填料的摩擦推力和转矩以及阀杆的活塞效应表3、计算阀门阀杆的总推力(Kgf),即ΣP=P1+P2,再将此推力乘以下表中的阀杆系数,获得阀门操作转矩Kgf.M梯形螺纹的阀杆系数(kgf.m/kgf)表 (阀杆尺寸=直径×螺距,单位:mm)采用此方法计算,应知道以下参数,即:阀门前后的压差(最小用 2.5kgf/cm2,如果管道压力高,则采用管道压力),阀门形式、介质的种类、阀杆直径与螺距。
现以下列示例来说明计算的方法与步骤。
有一明杆楔式闸阀,公称直径为 100mm,管道压力为 40kgf/cm2,阀杆为 Tr28*5mm,介质为 520℃蒸汽,求阀门的操作转矩。
1.由表 1查得阀门通道面积:78.540cm2;2.取压差,阀门工作恶劣情况是在管道压力下开启,故,压差:40kgf/cm2;3.由表 2查得阀门系数:0.45;4.净推力为:P1=F×P×K=(1)×(2)(×3)=78.540×40×0.45=1413.72 kgf;5.由表 3查得摩擦推力 P2:680kgf;6.如管道压力为 64 kgf/cm2以上,应加入介质对阀杆的推力,即活塞效应,因此例管道压力为 40 kgf/cm2,故不加。
阀杆力矩
![阀杆力矩](https://img.taocdn.com/s3/m/1a7c657702768e9951e73870.png)
600 600 282600 0.15
700 700 384650 0.15
800 800 502400 0.15
900 900 635850 0.15
1000 1000 785000 0.15
1200 1200 1130400 0.15
MC 20 11775 20 18398.4 25 33117.2 25 45076.2 25 58875 28 148365 30 216366 30 282600 35 515156 40 847800 45 1298194 45 1695600 45 2145994 50 2943750 50 4239000
80 130
99 42.78 0.7343
80 96.5 88.25 469288 70.39
100 160 122 45.85 0.6969 105 124.5 114.75 1006765 151.01
125 200 125 44.85 0.7092 130 152 141 1880613 282.09 150 240 182 44.52 0.7133 155 181.4 168.2 3200554 480.08
注: MFT-----填料与阀杆间的摩擦力矩(N.mm) 忽略不计 MFC-----阀杆头部的摩擦力矩(N.mm)
忽略不计
二.蝶阀阀杆力矩
MD=MM+MC+MT+Mj+Md 式中:MD--------蝶阀阀杆力矩 (N.mm)
MM-----------密封面间摩擦力矩(N.mm)
MC--------阀杆轴承的摩擦力矩(N.mm) MT------------密封填料的摩擦力矩 (N.mm) Mj---------静水力矩(N.mm),阀杆垂直安装时 Mj=0
阀门扭矩计算公式
![阀门扭矩计算公式](https://img.taocdn.com/s3/m/603eadc02cc58bd63186bd58.png)
阀门扭矩计算具体是:二分之一阀门口径的平方×3.14得出是阀板的面积,再乘以所承压力(即阀门工作压力)得出轴所承受的静压力,乘以磨擦系数(去查表一般钢铁的磨擦系数取0.1,钢对橡胶的磨擦系数取0.15),乘以轴径除以1000即得阀门的扭矩数,单位为牛·米,电动装置和气动执行器参考安全值取阀门扭矩的1.5倍。
阀门在设计时,选用执行器是靠估算,基本分为三部分:
1、密封件见的摩擦力矩(球体与阀座)
2、填料对阀杆的摩擦力矩
3、轴承对阀杆的摩擦力矩
故计算压力一般取公称压力的0.6倍(约为工作压力),摩擦系数根据材料定。
计算的力矩乘1.3~1.5倍以选执行器。
阀门扭矩计算要兼顾阀板与阀座的摩擦,阀轴与填料的摩擦,介质不同压差下对阀板的推力。
因为阀板、阀座和填料的种类太多了,每一种都有着不同的摩擦力,还有接触面的大小,压紧的程度等等。
所以一般都是用仪表实测而不是计算。
阀门扭矩计算出的数值有很大的参考意义,但并不能完全照搬。
在很多因素的影响下,阀门扭矩计算并没有实验得出的结果更精确。
球阀设计编程
![球阀设计编程](https://img.taocdn.com/s3/m/0b7e0b7b31b765ce05081474.png)
计算机编程固定球球阀转矩的计算:球阀的转矩计算是选择驱动装置的功率、结构及球阀主要零件强度计算的基础,在固定球球阀中,球体受到的密封作用力完全传递到轴承上。
作用力的大小取决于阀前和阀后阀座的密封结构,弹性元件的预紧力等。
转矩计算的相关公式如下:总的转矩:Mc Mu Mt Mm M +++=rr d D d aPUtR Mm 8)1)(27.023.01(222+--= P dT aUtZh Mt 2)(6.0=64)(3P dT DT aUt Mu += P aUcdFd Mc 812= 式中:Mm —球体与阀座密封圈间的摩擦转矩(N ·mm ); Mt ——阀杆与填料间的摩擦转矩(N ·mm );Mu ——阀杆台肩与止推垫的摩擦转矩(N ·mm ); Mc ——轴承的摩擦转矩(N ·mm )。
a=π=3.14; 填料圈数Z=4; 阀杆直径dT=70mm; 轴颈直径dF=90mm; 浮动支座外径d1=370mm; 阀座内径D1=324mm ; 浮动支座内径d2=300mm; 阀座外径D2=348mm ; 球体直径R=240mm; 台肩外径DT=90; 公称压力P1=6.3MPa; 填料与阀杆的摩擦系数Ut=0.05; 摩擦系数Uc=0.05;r=cosa=cos45°=0.707;单圈填料高度h=6;球阀转矩计算的C语言编程如下:#include"stdio.h"#include"math.h"main(){float Z,dT,dF,d1,D1,d2,D2,R,DT;float P,P1,Ut,Uc,r,a,h,M,Mm,Mt,Mc,Mu ;a=3.14 ;scanf("%f%f%f%f%f%f%f%f%f%f%f%f%f%f",&Z,&dT,&dF,&d1,&D1,&d2,&D2, &R,&DT,&P1,&Ut,&Uc,&r,&h);P=P1*1.05 ;Mm=(a*P*Ut*R*(d1*d1-0.3*D2*D2-0.7*d2*d2))*(1+r)/(8*r);Mc=a*Uc*dF*d1*d1*P/8;Mt=0.6*a*Ut*Z*h*dT*dT*P;Mu=a*Ut*(DT+dT)*(DT+dT)*(DT+dT)*P/64;M=Mm+Mt+Mc+Mu;printf("%f\n",Mm);printf("%f\n",Mt);printf("%f\n",Mc);printf("%f\n",Mu);printf("%f\n",M);}。
扭矩如何计算
![扭矩如何计算](https://img.taocdn.com/s3/m/03b9bac36c175f0e7dd13703.png)
扭矩如何计算
的减速机,速比1: 30,算出来的扭力是多大?单位是什么?
能带动多重的东西?
(减速电机功率)x9550x减速机传动效率x30/输入转速=扭矩
如果电机为四级电机:1380转/分即:
1380=
若求扭矩,只需代入转动效率、输入转速的参数值。
扭矩的单位是牛顿•米(N - m或公斤•米(Kg - m。
减速机扭矩=9550*电机功率/减速机输出转数*减速机效率
这是扭矩的公式
电机功率二扭矩十9550X电机功率输入转数十速比十使用系数
你要理解kg*m的意思。
22.6kg*m是指在直径为2米的圆(半径1米)的边缘上可以承受22.6KG力如果你弄个200mm勺皮带轮(半径100mm,皮带就可以拉动226KG 如果把它装在吊车上,用钢丝绳吊东西,它的力量取决于轮子的直径。
通常,在我们需要大扭力的情况下,我们会通过减速器来实现,如果你将
15 00转的电机减
速到150转,扭力会增加10倍,再打9折(功率损耗)。
在半径100MM勺轮子上,再减速10倍。
你就可以吊起 2 吨重的物体了。
阀杆力矩
![阀杆力矩](https://img.taocdn.com/s3/m/1a7c657702768e9951e73870.png)
一.球阀阀杆力矩 MF=MQF+MFT+MFC 式中:MF-----球阀阀杆力矩(N.mm)
注: MFT-----填料与阀杆间的摩擦力矩(N.mm) 忽略不计 MFC-----阀杆头部的摩擦力矩(N.mm)
忽略不计
二.蝶阀阀杆力矩
MD=MM+MC+MT+Mj+Md 式中:MD--------蝶阀阀杆力矩 (N.mm)
MM-----------密封面间摩擦力矩(N.mm)
MC--------阀杆轴承的摩擦力矩(N.mm) MT------------密封填料的摩擦力矩 (N.mm) Mj---------静水力矩(N.mm),阀杆垂直安装时 Mj=0
MM偏心 MC
MD中心对
称
MD偏置 N*M
N.M最 终数据
100 29577 34492.4 11775 41352 46267.4 46.2674 62.461
125 46214.1 51262.2 18398.4 64612.5 69660.7 69.6607 94.0419
150 66548.3 71674.7 33117.2 99665.5 104792 104.792 141.469
125 125 12265.6 0.15
150 150 17662.5 0.15
175 175 24040.6 0.15
200 200 31400 0.15
阀门扭矩计算公式
![阀门扭矩计算公式](https://img.taocdn.com/s3/m/806461f759f5f61fb7360b4c2e3f5727a5e924ee.png)
阀门扭矩计算公式
阀门扭矩是指在阀门关闭或打开时需要施加的旋转力矩。
正确计算阀门扭矩非常重要,因为过小的扭矩可能导致阀门未能完全关闭,而过大的扭矩则可能损坏阀门。
阀门扭矩的计算公式如下:
T = F × L
其中,T是阀门扭矩,单位为牛·米(N·m);F是阀门作用力,单位为牛(N);L是阀门操作杆长度,单位为米(m)。
阀门作用力可以通过测量阀门所受的最大压力来计算。
如果阀门工作在液体介质中,则阀门作用力等于液体压力乘以阀门作用面积。
如果阀门工作在气体介质中,则阀门作用力等于气体压力乘以阀门作用面积。
阀门操作杆长度是指从阀门轴心到操作手柄末端的距离。
这个距离必须在计算扭矩时考虑到。
在实际应用中,还需要考虑其他因素,例如阀门的摩擦力、阀门材质的强度等。
因此,在计算阀门扭矩时,应该根据具体情况进行调整。
- 1 -。
阀门扭矩计算方法
![阀门扭矩计算方法](https://img.taocdn.com/s3/m/bfd61dd9db38376baf1ffc4ffe4733687e21fc9d.png)
阀门扭矩计算方法
阀门扭矩是阀门一个重要参数,因此不少朋友都很关注阀门扭矩计算的问题。
如下为阀门扭矩计算方法
阀门扭矩计算具体是:二分之一阀门口径(D)的平方×3.14得出阀板的面积(A),再乘以所承压力(P)(即阀门工作压力)得出轴所承受的静压力,乘以磨擦系数(钢铁的磨擦系数取0.1,钢对橡胶的磨擦系数取0.15),乘以轴径(d)除以1000即为阀门的扭矩数,单位为牛·米(N.m),
注:电动装置和气动执行器参考安全值取阀门扭矩的1.5倍。
阀门在设计时,选用执行器是靠估算,基本分为三部分:
1、密封件的摩擦力矩(球体与阀座)
2、填料对阀杆的摩擦力矩
3、轴承对阀杆的摩擦力矩
故计算压力一般取公称压力的0.6倍(约为工作压力),摩擦系数根据材料定。
计算的力矩乘1.3~1.5倍以选执行器。
阀门扭矩计算要兼顾阀板与阀座的摩擦,阀轴与填料的摩擦,介质不同压差下对阀板的推力。
因为阀板、阀座和填料的种类很多,每一种都有不同的摩擦力,及接触面的大小,压紧的程度等等。
一般是用仪表实测而不是计算。
阀门扭矩计算出的数值有很大的参考意义,但并不能完全照搬。
在很多因素的影响下,阀门扭矩计算并没有实验得出的结果更精确。
什么是扭矩?
扭矩是使物体发生转动的力。
发动机的扭矩就是指发动机从曲轴端输出的力矩。
在功率固定的条件下它与发动机转速成反比关系,转速越快扭矩越小,反之越大,它反映了汽车在一定范围内的负载能力。
球阀扭矩表
![球阀扭矩表](https://img.taocdn.com/s3/m/cd88abd8eff9aef8951e0698.png)
球阀扭矩表Ball Valve Torque Charts美国尼伯科有限公司球阀扭矩要求Ball Valve Torque Requirements操作扭矩单位:英寸/磅Operating Torque in Inch/Pounds型号# Figure#通径Size0-100 PSI 101-500 PSI 501-600 PSIT-560-BR-R/Y 一件式青铜缩径端口One-PieceBronze Reduced Port 1/4"3/8"1/2"3/4"1"11/4"11/2"2"35353570130175225370656565100175230265510656565100175230265510580-70两件式青铜普通端口Two-PieceBronze ConventionalPort 1/4"3/8"1/2"3/4"1"11/4"11/2"2"21/2"3"N/AN/AN/AN/AN/A120185220250370N/AN/AN/AN/AN/A185240300410540N/AN/AN/AN/AN/A185240300410540585-70 两件式青铜不缩径端口Two-Piece Bronze Full Port 1/4"3/8"1/2"3/4"1"11/4"11/2"2"21/2"3"3030305590120185220N/AN/A50505075130185240300N/AN/A50505075130185240300N/AN/A型号#Figure#通径Size0-100 PSI 101-500 PSI 501-600 PSI585-70-W3三通青铜不缩径端口最大额定压力是400 PSI CWPThree-WayBronzeFull PortMaximum Ratingis 400 PSI CWP1/2"3/4"1"11/4"11/2"2"42671141592182684267114159218268N/AN/AN/AN/AN/AN/ATM-585-70-66两件式配置安装座青铜不缩径端口Two-Piecew/PadBronzeFull Port1/2"3/4"1"11/4"11/2"2"21/2"3"305590120185220——————3075130185240300590-Y三件式青铜普通端口Three-PieceBronzeConventionalPort1/4"3/8"1/2"3/4"1"11/4"11/2"2"21/2"3"N/AN/AN/AN/AN/A125150170250370N/AN/AN/AN/AN/A230275300410540N/AN/AN/AN/AN/A230275300410540595-Y三件式青铜1/4"3/8"1/2"454545656565656565不缩径端口Three-Piece Bronze Full Port3/4"1"11/4"11/2"2"21/2"3"50125150170250370N/A80230275300410540N/A80230275300410540N/A型号# Figure#通径Size0-100 PSI 101-500 PSI 501-600 PSI 601-1000 PSI 1001-1500 PSI 1501-2000 PSIT-560-CS/S6-R 一件式碳钢/不锈钢缩径端口One-PieceCS/SS Reduced Port1/4"3/8"1/2"3/4"1"11/4"11/2"2"40404075135180225370707070100190240300460757580105200250310490808085110215270330580858590125245290365685100100110140275330410790T-570-CS-R一件式棒材碳钢缩径端口One-Piece Bar StockCS Reduced Port1/2"3/4"1"11/4"11/2"2"40701251702103506595180230285440701001902402954708010520526032056090120240285355665105135270320395770T-580-CS-R两件式碳钢普通端口Two-PieceCS ConventionalPort1/4"3/8"1/2"3/4"1"11/4"11/2"240407510012016520029040407510013017520030050508511014018522032055559512015020025035065651051301702503004008080125150215300350450 球阀扭矩表(2)Ball Valve Torque Charts (2)美国尼伯科有限公司球阀扭矩要求Ball Valve Torque Requirements操作扭矩单位:英寸/磅Operating Torque in Inch/Pounds浮动球阀的操作扭矩软密封浮动式球阀的操作扭矩是基于常温、清洁介质计算的。
阀门用紧固件的选用和预紧扭矩的计算
![阀门用紧固件的选用和预紧扭矩的计算](https://img.taocdn.com/s3/m/88c108af2af90242a995e557.png)
阀门承压件用紧固件的选用和预紧扭矩的计算一、阀门常用紧固件的结构⑴承压件用螺纹紧固件的螺距米制普通螺纹是阀门使用最多的机械紧固螺纹,一般每个公称直径的米制普通螺纹具有多个螺距,有粗牙、细牙、超细牙之分,在HG/T 20613《钢制管法兰用紧固件 PN系列》、HG/T 20634《钢制管法兰用紧固件 CLASS系列》、DL-439《火力发电厂高温紧固件技术导则》、GB/T 12234 《石油、天然气工业用螺柱连接阀盖的钢制闸阀》等阀门设计标准和紧固件技术导则中,均对紧固件螺距进行了规定。
通过对这些标准的分析后得出,一般公称直径≤M27的紧固件采用粗牙螺距,公称直径>M27的紧固件采用螺距为3的细牙螺距,从中可以得出在螺纹公称直径较大时候,一般都选用较小螺距(细牙),这是因为细牙螺纹具有螺纹升角小,自锁能力强、拧紧时扭应力小和拧紧螺母时转动角大易控制等特点,但是螺距也不是越小越好,超细牙的螺距一般造价较高,常用于精密配合上。
(2)承压件用六角螺母的选择和螺柱配合的六角螺母一般分为I型六角螺母和Ⅱ型六角螺母,I型六角螺母的厚度m约为0.8d,Ⅱ型六角螺母的厚度约为1d,d为螺纹公称直径(见图1)。
在HG/T 20613《钢制管法兰用紧固件 PN系列》、HG/T 20634《钢制管法兰用紧固件 CLASS系列》中规定,与全螺纹螺柱配合使用的螺母,其形式和尺寸符合GB/T 6175、和GB/T 6176的规定,这两个标准均为Ⅱ型六角螺母,也就是通常所说的重型螺母。
因此承压件用六角螺母一般均为重型六角螺母。
图1 六角螺母(3)承压件用螺柱的选择螺柱是机械紧固件工作过程中的主要受力部件,在螺柱、螺母预紧状态下,螺柱会发生微量的弹性拉伸变形,通过拉伸变形量保证螺纹载荷的持续稳定性。
固件的载荷失效、或螺纹损坏的危险性。
行器的连接、支架与阀盖的连接。
d2:螺纹小径图4 全螺纹螺柱二、常用紧固件的材料选择常用紧固件材料按照材料的不同通常分为碳钢、低合金钢、不锈钢三种类别;按照使用工况的温度不同分为常温,低温、高温用紧固件。
阀门扭矩计算
![阀门扭矩计算](https://img.taocdn.com/s3/m/79f31c525022aaea998f0fd4.png)
(3)填料与阀杆间摩擦力矩 MFT
MFT=0.5*FT*dF
FT=ψ*dF*bT*P
阀杆与填料摩擦力
FT
N
系数
ψ
查表
阀杆直径
dF
设计给定
mm
填料宽度
bT
设计给定
mm
填料深度
hT
设计给定
mm
计算结果: MFL=5840Nmm
计算结果: MF=78075Nmm
密封带接触面外径
DMW
设计选定
mm
球与座接触面内径
DMN
设计选定
mm
球体最小预紧比压
qM
0.1P
MPa
体球与密封面的摩擦系数
fM
查表
球体半径
R
设计选定
mm
阀座外径
DJH
设计选定
Mm1
球体与密封面接触点与流道轴法向角
θ
设计选定
(°)
计算压力
P
取公称压力
MP192Nmm
1″-600LB阀杆扭矩计算
(1)阀杆总力矩 MF=MQF+MFT
(2)球与阀座的摩擦力矩MQF
MQC=MQF1+MQF2
MQF1阀座对球预紧力产生的摩擦力矩
MQF1=0.3925(D2JH–D2MN)*(1+COSθ)*qM*fM*R
MQF2介质工作压力产生的摩擦力矩
MQF2=π*P* fM*R(D2JH-0.5 D2MN-0.5 D2MW)(1+COSθ)/8COSθ
API球阀理论计算扭矩
![API球阀理论计算扭矩](https://img.taocdn.com/s3/m/2cc592ebaeaad1f346933f19.png)
Cl 300
Cl 400
Cl 600
Cl 900
Cl 1500
Cl 2500
1 1/2
2
2 1/2
3
4
5
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
硬密封铸钢固定轴结构球阀的理论计算扭矩(单位:N·m)
NPS(in)
Cl 150
NPS(in)
Cl 150
Cl 300
Cl 400
Cl 600
Cl 900
Cl 1500
Cl 2500
1 1/2
2
2 1/2
3
4
5
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
硬密封锻钢固定板结构球阀的理论计算扭矩(单位:N·m)
NPS(in)
Cl 300
Cl 400
Cl 600
Cl 900
Cl 1500
Cl 2500
1 1/2
2
2 1/2
3
4
5
6
8
10
12
14
球阀计算公式自动计算
![球阀计算公式自动计算](https://img.taocdn.com/s3/m/735236a669dc5022aaea00bb.png)
MZC=fZ*dqJ*QZJ
轴承的摩擦系数 对塑料制的滑动轴承 对滚动轴承
615.5028
fZ按f选取 fz= dZJ=轴承中径
0.002 45
dZJ QZJ QZJ MMJ MMJ
5.1阀杆强度计算 5.1.1浮动球阀杆 强度的计算
球体轴颈直径 对滚动轴承
设计给定
介质作用球体轴颈上的总作用力
QZJ=∏*DJH2*P/8
球阀计算公式
计算项目 说 明 球体通道直径分为不缩径和缩径二种: 不缩径:d等于相关标准规定的阀体通道直径 缩径:一般d=0.78相关标准规定的阀体通道直径,此时,其过渡段最好设计为 锥角过渡,以确保流阻不会增大。 球体半径一般按R=(0.75~0.95)d计算 1.1确定球体直径 对小口径R取相对大值,反之取较小值 为了保证球体表面能完全覆盖阀座密封面,选定球径后,须按下式校核 (mm),应满足D>Dmin 式中:Dmin :球体最小计算直径(mm),D2:阀座接触面外径(mm),d:球径通道 孔直径(mm)D:球体实际直径(mm) Q341F-10C-DN100
1395.699073
MQZ2
8875.469247
MQZ2 MFT
(1)对聚四氟乙 烯成型填料
MQZ2=∏*P*f*R*(DJH2-0.5*DMN2-0.5*DMW2)*(1+COSφ )/8*cosφ
填料与阀杆的摩擦力矩
MFT=0.6*П *f*z*h*dF*P
f:阀杆与填料的摩擦系数 h:单圈填料与阀杆的接触高度 Z:填料圈数 f= 设计给定 设计给定 设计给定 设计给定 0.05 10 5 40 1.0
2.1 壁厚的确定
Dmin=
2 D2 d
2
电动阀门扭矩计算公式
![电动阀门扭矩计算公式](https://img.taocdn.com/s3/m/452ca5770812a21614791711cc7931b765ce7bc3.png)
电动阀门扭矩计算公式在工业生产中,阀门是一种常见的控制装置,用于调节流体的流量、压力和方向。
而电动阀门作为一种自动化控制装置,其扭矩计算公式是非常重要的,可以帮助工程师和技术人员准确地设计和选择电动阀门。
本文将介绍电动阀门扭矩计算公式的原理和应用。
电动阀门扭矩计算公式的原理。
电动阀门的扭矩是指在阀门关闭或打开时所需的扭矩大小,它是电动阀门设计和选择的重要参数之一。
扭矩的大小直接影响了电动阀门的驱动系统的选择和设计,也影响了阀门的使用寿命和性能。
因此,准确地计算电动阀门的扭矩是非常重要的。
电动阀门扭矩的计算公式通常包括以下几个参数,阀门的开启或关闭角度、阀门的工作压力、阀门的阻力矩和阀门的摩擦力。
这些参数都会对电动阀门的扭矩产生影响,因此需要综合考虑这些参数来计算电动阀门的扭矩。
电动阀门扭矩计算公式的应用。
电动阀门扭矩计算公式可以帮助工程师和技术人员准确地选择和设计电动阀门的驱动系统,以确保其能够正常工作并具有良好的性能。
在实际应用中,工程师和技术人员可以根据电动阀门的具体工况和参数,使用扭矩计算公式来计算电动阀门的扭矩大小。
以阀门的开启或关闭角度为例,电动阀门的扭矩与阀门的开启或关闭角度成正比,即扭矩随着角度的增大而增大。
因此,工程师和技术人员可以通过扭矩计算公式来计算不同开启或关闭角度下的电动阀门扭矩大小,从而选择合适的驱动系统和电机。
另外,阀门的工作压力也会对电动阀门的扭矩产生影响。
当阀门的工作压力增大时,扭矩也会相应增大。
因此,在实际应用中,工程师和技术人员需要考虑阀门的工作压力,并使用扭矩计算公式来计算不同工作压力下的电动阀门扭矩大小。
此外,阀门的阻力矩和摩擦力也是影响电动阀门扭矩的重要参数。
阀门的阻力矩是由阀门本身的结构和工作原理决定的,而阀门的摩擦力则是由阀门的密封件和摩擦副产生的。
工程师和技术人员可以通过扭矩计算公式来计算阀门的阻力矩和摩擦力,从而综合考虑这些参数对电动阀门扭矩的影响。
球阀扭矩计算书
![球阀扭矩计算书](https://img.taocdn.com/s3/m/e48107bdaef8941ea76e05ce.png)
MT
MT=
1 2
FT
dT
DT
输入数据
U ZT
输入数据
FU
F U=
16 (DT
dT
)2UZT P
MU
MU=
1 2
FU ( DT
dT 2
)
FC
F
C=
4
DJ2H
P
DF
输入数据
UC
输入数据
MC
MC=
1 2
FC d FU C
mm N N.mm mm
N N.mm
N mm
N.mm
5 4 1688.92 27022.72 38 0.15 721.58 12627.73 64339.82 47 0.05 75599.29
单位 黄色需输入数据
全压差下启闭扭矩 M
M=M M +M T +M U +M C
N.mm
688182.55
全压差下启闭扭矩 M
M=M M +M T +M U +M C
N.m
688.18
活塞筒外径
D JH
输入数据
mm
128
阀座密封面内径
D MN
输入数据
mm
104
阀座密封面外径
D MW
输入数据
mm
112
设计压力
阀座预紧密封最小 比压
球体半径
密封面对球体中心 夹角 密封面对球体中心 夹角余弦值 密封面对球体摩擦 系数 进口端阀座密封圈 对球体的作用力 介质经阀座压在球 体上的力
阀座密封圈预紧力
阀座密封圈摩擦力
进口端阀座密封圈 对球体的摩擦力矩 出口端阀座密封圈 对球体的摩擦力矩 阀座密封圈对球体 的摩擦力矩 填料对阀杆的摩擦 系数 阀杆与填料接触部 分直径
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代号计算参数说明
参数类型L A 销轴到球心距离(mm)如图给定L B 球体中心至下支承距离(mm)如图给定Lr 阀杆轴心至销轴轴心距离(mm)如图给定d B 下支承半径(mm)如图给定f B 下支承摩擦系数设计给定L A '计算力臂(mm)计算输出L B '计算力臂(mm)
计算输出P 流体介质压力=公称压力(MPa)设计给定D N 阀座内径尺寸(mm)
设计给定b m 密封面在垂直于阀门通道轴线的平面上的投影宽度(mm)设计给定q mf 密封所需比压(MPa)计算输出Pd 低压密封试验压力(MPa)设计给定F P 流体介质压力(N)计算输出Fm 密封面上所需密封力(N)计算输出m p 比例系数
计算输出球形密封表面的外切面与阀门通道轴线夹角(°)设计给定角度换成弧度(⌒)计算输出SR 球形密封面表面半径(mm)
设计给定阀杆扁头斜面与阀杆轴线的夹角(°)设计给定角度换成弧度(⌒)计算输出fm 阀座密封材料摩擦系数设计给定Km 关闭时销轴的滚动摩擦系数计算输出K A 关闭时力臂系数
计算输出N AG 阀杆头部斜边作用于销轴上的作用力(N)计算输出N BG
球体下支承轴上的作用力(N)计算输出f L 关闭时阀杆摩擦系数点击给定ρL 关闭时螺纹摩擦角(°)计算输出ρL
关闭时螺纹摩擦角(︿)计算输出d 2
梯形螺纹中径(mm)点击给定αL 梯形螺纹升角(°)点击给定α
L
梯形螺纹升角(︿)计算输出R FM
关闭时螺纹摩擦半径(mm)
计算输出M FL
关闭时阀杆与阀杆螺母螺纹摩擦力矩(N.mm)计算输出M c
关闭时球体下支承产生的扭矩(N.m)
计算输出
ψα
fc球体下支承与阀体的摩擦系数点击给定M T阀杆与填料的摩擦转矩(N.mm)计算输出F T阀杆与填料的摩擦力(N)计算输出μt填料的摩擦系数:F4=0.05~0.15,N=0.1~0.15设计给定Z填料的圈数设计给定h单圈填料的高度(mm)设计给定d T阀杆直径(与填料接触处)(mm)设计给定M阀门总操作力矩(N.mm)计算输出
输入/输出
59
53
18
18
0.25 61.68468205
55.25
2.5
48
3
7.485541619
0.6 5104.4625 3598.027952 0.704878908
58
1.012290966
48
10
0.174532925
0.25
9.577954968 0.993224954 2016.407755 1616.21591
0.15
8.53
0.148876585
25.5
3.5
0.061086524 2.717074441 5478.729974 8727.565914
0.3 9771.60979 542.8672105
0.08
4
5
36 23977.90568。