最新飞行控制系统课件

合集下载

《飞机飞行控制》课件

《飞机飞行控制》课件

02
人机界面必须设计得简单、直观、易操作,使飞行员能够快速
地获取飞行状态信息并发出控制指令。
人机界面也是飞行员紧急情况下进行人工操纵的通道,必须保
03
证在任何情况下都能迅速有效地发挥作用。
飞行控制系统的基
03
本原理
飞行动力学基础
飞行动力学是研究飞 行器在气动力作用下 的运动规律的科学。
飞行动力学主要研究 飞行器的飞行性能, 包括稳定性和操纵性 。
飞行控制系统硬件
飞行控制系统硬件是实现飞行控制功能的物理设备,包括传感器、控制 器、执行器等。
传感器用于检测飞机的状态参数,如姿态、速度、高度和角速度等;控 制器用于处理传感器信号并计算出控制指令;执行器用于接收控制指令
并操纵飞行控制面。
飞行控制系统硬件必须具有高可靠性和高精度性,以确保飞行的安全和 稳定。
调查结论
调查报告认为,波音公司在MCAS的设计和认证过程中存在严重失误,
同时美国联邦航空局(FAA)也未能有效监管。
波音737 MAX的飞行控制系统简介
飞行控制系统
波音737 MAX的飞行控制系统包括自动驾驶系统、飞行指引系统、机动特性增强系统等 。
MCAS系统
MCAS系统是一种自动防失速系统,旨在防止飞机机翼上的失速。当传感器检测到机翼上 的气流分离时,MCAS会自动调整机头的角度以减少机翼的失速。
它以空气动力学为基 础,研究飞行器在空 气中运动的力学规律 及其应用。
飞行控制系统的工作原理
飞行控制系
它通过接收飞行员输入的指 令,经过处理后发送控制指 令给执行机构,使飞行器按 照预定的轨迹和姿态飞行。
飞行控制系统通常由传感器、 控制器和执行机构三部分组成
飞行控制系统的历史与发展

飞机结构与系统(飞行操纵系统)课件

飞机结构与系统(飞行操纵系统)课件
器、控制器和作动器等电子设备实现飞行员输入的信号转换和翼面控制。
飞行操纵系统的历史与发展
历史
早期的飞机采用简单的机械式操纵系统,通过钢索、连杆等机械部件实现飞行员对翼面和舵面的直接控制。随着 技术的发展,液压式操纵系统和电传式操纵系统逐渐取代了机械式操纵系统。电传式操纵系统是目前最先进的飞 行操纵系统,具有更高的可靠性和灵活性。
可靠性预计与分配
根据系统各组成部分的可靠性数据,预计整个飞行操纵系统的可靠性,并根据需要将可靠 性指标分配给各个组件。这有助于确保系统整体性能达到预期要求。
可靠性试验与验证
通过进行各种可靠性试验和验证,如环境试验、寿命试验和功能试验等,评估飞行操纵系 统的可靠性。这些试验有助于发现潜在的问题和改进空间,从而提高系统的可靠性。
飞行操纵系统
飞机上用于传输飞行员操纵指令 并驱动飞行操纵面运动的整套装 置,包括机械、液压或电动系统 。
飞行操纵的力学原理
力矩平衡
飞机受到重力和气动力作用,通过调 整飞行操纵面,使飞机获得所需的俯 仰、偏航和滚转力矩,以保持或改变 飞行姿态。
稳定性与操纵性
飞机具有稳定性,即受到扰动后能够 恢复原姿态的趋势;同时具有操纵性 ,即通过操纵指令改变飞行姿态的能 力。
构;执行机构包括各翼面和舵面,根据传动机构的运动改变飞行姿态和轨迹。
分类
根据设计理念和实现方式的不同,飞行操纵系统可分为机械式操纵系统、液压式操纵系 统和电传式操纵系统。机械式操纵系统通过钢索、连杆等机械部件传递飞行员输入的力 或运动;液压式操纵系统通过液压传动方式传递力或运动;电传式操纵系统则通过传感
飞机结构与系统(飞行操纵系 统)课件
• 飞行操纵系统概述 • 飞行操纵系统的基本原理 • 现代飞行操纵系统的技术特点 • 飞行操纵系统的维护与检修 • 飞行操纵系统的安全与可靠性

自动飞行控制系统PPT课件

自动飞行控制系统PPT课件

远前方的大。若迎面气流速度逐渐增大,则翼面上流速的最大值也会增大,该处的温度则要降低,因而音
速也降低。当迎面气流的速度达到某一值时,翼面上最大速度处的流速等于当地音速,此时我们把远前方的
迎面气流速度 与远前方的空气音速
M

cr
比 ,定义为该机的临界马赫数

a
18
V
第18页/共92页
Mcr
第二节 空气动力学的基本知识
路;其作用是稳定与控制飞机姿态。 • 控制(制导)回路:由稳定回路加上飞机轨迹反馈元件、放大计算装置组成飞机轨迹自动驾驶仪,并与飞
机形成的回路;其作用是稳定与控制飞机轨迹。
8
第8页/共92页
第一章 飞行原理
• 飞机控制系统的核心问题是研究由控制系统和飞行器组成的闭合回路的静、动态性能,为此必须建立控制 系统和飞行器的数学模型,其形式可以是微分方程、传递函数或状态空间表达式等。
4
第4页/共92页
第一节 飞行器的自动飞行
二、控制面 1、控制飞行器的目的是改变飞行器的姿态或空间位置,并在受干扰情况下保持飞行器的
姿态或位置。因而必须对飞行器施加力和(或)力矩,飞行器则按牛顿力学定律产生运动。 2、作用于飞行器而与控制有关的力和力矩主要是偏转控制面(即操纵面)产生的空气动
力和力矩。一般飞机有三个控制面:升降舵、方向舵和副翼。 3、由于航空技术的发展,仅靠改善飞机的气动布局和发动机的性能难以达到对飞机性能
V a
19
Vmax a
第19页/共92页
第二节 空气动力学的基本知识
• 飞机飞行速度的范围划分如下:
• 飞行马赫数 为飞行速度与远前方空气音速之比,
时为低速飞行;
为亚音速飞行;

飞机飞行控制课件

飞机飞行控制课件

特点:智能化、自动化、高 精度、高可靠性
应用场景:无人机在军事、 农业、物流、救援等领域的 应用
发展趋势:智能化、网络化、 小型化、低成本化
航天飞行控制系统
航天飞行控制系 统是飞机飞行控 制系统的重要组 成部分
航天飞行控制系 统主要用于控制 航天器的姿态、 轨道和速度
航天飞行控制系 统可以保证航天 器在太空中的稳 定飞行和精确定 位
计算机技术
飞行控制计算机: 负责处理飞行控 制指令和传感器 数据
飞行控制算法: 实现飞行控制功 能,如姿态控制、 导航控制等
传感器技术:提供 飞行状态和外部环 境信息,如加速度 计、陀螺仪等
通信技术:实现飞 行控制计算机与传 感器、执行器之间 的数据传输和通信
导航技术
惯性导航系统(INS):利用陀 螺仪和加速度计等传感器测量飞 机的加速度和角速度,计算飞机 的位置和姿态。
法规限制:技术创新需要遵守相关法规 和标准,确保产品的合法性和安全性
合作与交流:加强与行业内外的合作 与交流,共同应对技术创新的挑战和 应对策略
安全保障的挑战和应对策略
挑战:飞机飞行控制系统的安全性要求 越来越高
应对策略:加强飞机飞行控制系统的测 试和验证,确保系统的稳定性和可靠性
应对策略:加强飞机飞行控制系统的安 全性设计,提高系统的可靠性和稳定性
早期的飞行控制系统20世纪源自,飞机开始使用 机械式飞行控制系统,如操 纵杆、舵面等
20世纪30年代,飞机开始 使用液压式飞行控制系统,
提高了控制精度和稳定性
19世纪末,莱特兄弟发明 了飞机,开启了飞行控制系 统的发展历程
20世纪50年代,飞机开始 使用电动式飞行控制系统,
实现了自动化控制
现代的飞行控制系统

《飞行操纵系统》课件

《飞行操纵系统》课件

THANKS
感谢观看
飞行员通过Байду номын сангаас纵杆、脚蹬等输入装置 ,将控制指令传递给飞行操纵系统, 以改变飞机的飞行姿态和轨迹。
它包括主操纵系统和辅助操纵系统, 主操纵系统包括升降舵、方向舵和副 翼,辅助操纵系统包括襟翼、缝翼和 起落架收放机构等。
飞行操纵系统的动力学基础
飞行操纵系统的动力学基础包 括空气动力学和飞行力学。
空气动力学是研究气体流动和 物体在气体中运动的科学,它 为飞行操纵系统的设计和性能 提供了理论基础。
分类
根据飞行器类型和设计需求的不同,飞行操纵系统有多种分类方式。例如,按照传力介质的不同,可以分为机械 式操纵系统、液压式操纵系统和电气式操纵系统等;按照控制方式的不同,可以分为助力操纵系统和主动控制系 统等。
发展历程与趋势
发展历程
飞行操纵系统的发展经历了多个阶段,从早期的机械操纵系统到现代的电传操纵系统和 主动控制系统。随着科技的不断进步,飞行操纵系统的性能和安全性得到了极大的提升
权限管理与安全认证
限制飞行员对系统的操作权限,防止误操作或 恶意干扰。
自适应容错控制
在系统发生故障时,自动调整控制策略,降低故障对飞行安全的影响。
05
飞行操纵系统的应用与案例分析
飞行操纵系统在无人机中的应用
1 2 3
无人机飞行操纵系统概述
无人机飞行操纵系统是无人机控制的重要组成部 分,负责无人机的起飞、巡航、降落等操作。
飞行操纵系统的传感器
01
02
03
04
角位移传感器
检测飞行员的操纵角度,转换 为电信号。
力矩传感器
检测飞行员施加在操纵杆上的 力矩,转换为电信号。
侧杆传感器

飞机飞行控制课件

飞机飞行控制课件

添加标题
添加标题
控制过程:通过传感器获取数据, 计算控制量,输出到执行机构,实 现对飞机的控制
飞机飞行控制系统的硬件组成
飞行控制系统的主要硬件设备
飞行控制计算机:负责处 理飞行控制指令和飞行数 据
传感器:包括加速度计、 陀螺仪、高度计等,用于 测量飞机的姿态、速度、 高度等参数
执行机构:包括舵机、电 动机、液压泵等,用于执 行飞行控制指令
飞行控制系统的功能
控制飞机的飞行姿态和速度
确保飞机的安全性和舒适性
添加标题
添加标题
保持飞机的稳定性和操纵性
添加标题
添加标题
提高飞机的飞行效率和性能
飞机飞行控制系统的工作原理
飞行控制系统的基本原理
飞机飞行控制系统主要由传感 器、执行器和控制器组成
传感器负责收集飞机的各种飞 行参数,如速度、高度、姿态 等
环境适应性:设计 适应各种恶劣环境 的硬件,如高温、 低温、振动等
维护与升级:定期 维护和升级硬件, 确保系统始终处于 最佳工作状态
飞机飞行控制系统的软件设计
飞行控制系统软件的功能和特点
飞行控制系统软 件是飞机飞行控 制的核心部分, 负责控制飞机的 飞行姿态、速度 和高度等参数。
飞行控制系统软 件具有高度的可 靠性和稳定性, 能够保证飞机在 各种飞行条件下 的安全飞行。
通信设备:包括无线电、 卫星通信等,用于传输飞 行控制指令和飞行数据
显示设备:包括显示器、 指示灯等,用于显示飞行 状态电力支持
飞行控制系统硬件的连接方式
传感器:用于检测 飞机的飞行状态和 参数
计算机:用于处理 传感器数据,生成 控制指令
飞行控制系统包括自动驾驶仪、飞行控制计算机、传感器、执行机构等 部分。 飞行控制系统的主要功能包括姿态控制、航向控制、高度控制、速度控 制等。 飞行控制系统是飞机安全飞行的重要保障,也是现代飞机的重要标志之 一。

第一章自动飞行控制系统概述ppt课件

第一章自动飞行控制系统概述ppt课件
数字式AFCS和计算机技术的高速发展为电传飞行控制(FBW)创 造了条件。
事实上,波音737飞机上AFCS的驾驶盘操纵(CWS)方式也是一种 电传操纵。
电传操纵又是以主动增稳控制技术发展起来的。如果不从余度和 备份手段方面去考虑,当今的自动飞行控制系统、电传操纵或电 传飞行控制系统之间很难找出明确的界限。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
1.1.2 从自动驾驶仪到自动飞行控制系统
自动飞行控制系统是在20世纪60年代中逐步发展起来的,70年 代是模拟式AFCS盛行的时代,80年代开始了AFCS从模拟式向数 字式过渡。
1.1
自动飞行控制系统的发展 在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么
1.1.2 从自动驾驶仪到自动飞行控制系统
20世纪60年代以前的自动驾驶仪均以舵机回路(舵机是指在自动驾驶仪中 操纵飞机舵面(操纵面)转动的一种执行部件)的稳定系统为主,配合较 少的输入指令(如转弯、升降、高度保持等)去操纵飞机。
随着计算机技术和信息综合化技术的发展,数字式的AFCS开始 和飞行管理计算机系统(FMCS)结合工作。在飞行管理计算机 统一管理下的自动飞行控制系统和自动油门配合,实现对飞机 的自动控制和对发动机推力的自动控制。
1.1.2 从自动驾驶仪到自动飞行控制系统 在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么
为了防止电磁干扰传输电缆,FBW(电传飞行控制)采用双绞线 和屏蔽接地等技术,但尚不能完全抑制意外的电磁和电击干扰, 在此问题上光传输具有极好的防护性能。用于光传输的辅助操纵 系统和发动机控制系统都已研制成功并投入实践应用。

《自动飞行控制系统》说课PPT

《自动飞行控制系统》说课PPT
Title in here
飞行的稳定性与安全性的要求
主要内容
1 课程性质与目标
12
课程设计
3 教学内容与方法
4
教学对象分析
5
教学条件
6
课程改革
一、课程性质与目标
1、课程性质
A B C
D
课程类型 课程编码
课程设置及教学计划进程表
教学时数
学期/教学周数/周学时数
考核方式
课程名称






总学 课堂 课内实
方式控制板 自动油门系统 自动着陆系统:原理和分类、操作方式、进近、下滑道、着陆、复飞、系统检测和
故障状况
ME-TA AV 等级 等级
1


3

3

3

3

3

3

3

3

3
内容处理:
在原教学内容基础上增加第 一章内容“自动控制理论基 础”。
第二章内容为回顾先修课程 《空气动力学基础与飞行原 理》的知识点,不做详细讲 解。
11.4.10
M11. 涡轮发动机飞机的结构和系统 内容
自动飞行(ATA22) 自动飞行系统布局和基础理论(系统布局、工作原理和相关术语)
自动驾驶:指令信号的处理 工作方式:横滚、俯仰和偏航
飞行指引系统 偏航阻尼器的作用与原理
直升机自动增稳系统 自动配平:马赫配平、自动驾驶仪配平、速度配平、迎角配平等
教材
1.高职高专教材和行业培训 教材合理搭配,适应本专业 人才培养需要; 2.积极与企业合作开发符合 民航机务维修培训标准的高 职高专教材。

飞机结构飞行操纵系统课件

飞机结构飞行操纵系统课件
可维护性原则
要求飞行操纵系统易于维护和 检修,降低维护成本,提高系
统的使用寿命。
飞行操纵系统的设计流程
需求分析 明确飞行操纵系统的功能需求,分析 系统的关键性能指标。
方案设计
根据需求分析结果,设计飞行操纵系 统的整体方案,包括系统架构、硬件 组成、软件功能等。
详细设计
对飞行操纵系统的各个组成部分进行 详细设计,包括操纵器件、传感器、 控制器等。
飞行操纵系统的控制方式
直接控制方式
飞行员通过驾驶杆和脚蹬直接控 制飞机的舵面,实现飞机姿态的
改变。
增稳系统
通过传感器检测飞机的姿态和角速 度,将信号传递给控制系统,自动 调整舵面的偏转,以保持飞机的稳 定。
主动控制技术
利用现代控制理论和方法,通过改 变飞机的气动布局或产生附加的力 矩,实现飞机姿态的主动控制。
飞行操纵系统在起飞、巡航、降落等各个阶段都发挥着至关重要的作用, 确保飞机的安全和稳定飞行。
飞行操纵系统的维护和保养
01
为确保飞行操纵系统的 正常工作,需要定期进 行维护和保养。
02
维护和保养包括检查舵 面的完整性、润滑系统、 连接件等,确保其正常 工作。
03
还需要定期校准飞行操 纵系统,以确保其响应 的准确性和可靠性。
飞行操纵系统的控制策略
线性化控制策略
将飞行操纵系统简化为线性模型, 通过线性控制系统理论进行设计。
非线性控制策略
考虑到飞行操纵系统的非线性特 性,采用非线性控制系统理论进 行设计,以提高系统的性能和鲁
棒性。
自适应控制策略
根据飞行条件的变化,自动调整 控制参数,以适应不同的飞行环
境和工况。
飞机飞行操纵系统的设计

典型飞行控制系统分析NEWPPT课件

典型飞行控制系统分析NEWPPT课件

函数简化为:
S

仪,
e
可消除静
Me (S Z* )

S 2 C1d S C2d
ef
1
M I
* y
M
e
ef
。1
S
K
系统g工=0作时在,稳e 定 L状 态 将,上 式0两则t 边积e 分 K,iK且 令(初g 始条) 当件指令0 输0 入
则 e (t) L ( )d
即:升降舵偏角与俯仰角偏0差的积分成比例,当系统进入稳 态后,靠Δ的积分去提供舵偏角,从而消除俯仰角的静差。
• 工作原理:
当飞机在进行等速水平直线飞行状态时,受到紊流干扰
后,出现俯仰角偏差=-00,假定初始俯仰角0=0,
则垂直陀螺仪测出俯仰角偏差后,输出电压信号K1。
如 按
果照外控加制控规制律信驱号动升U降舵g=向0,下则偏通转过信e=号K
综 K
合与舵回路后, 10,使飞机
产生低头力矩,减小俯仰角偏差,最后实现姿态保持
第16页/共84页
当自动驾驶仪参与工作后,舵面偏转Δδz对方程
的影响: I y Cmq Cm Cme e
e L L A/P
A/

P















I y (Cmq Cme L ) (Cm Cme L ) 0
第17页/共84页
5.4.1 姿态控制系统的构成与工作原理
• (4)一阶微分信号在比例 式控制规律中的作用
Δ
t1 t2
t3
为了抑制振荡,在 控制律中 0
t
引入俯仰角速度 ,对飞机 Δe

飞机飞行操纵系统课件

飞机飞行操纵系统课件

01 02
飞行控制系统计算机功能
飞行控制系统计算机整飞行操纵系统核心,负责接收自传感器飞行员输 入信号,根据预设控制算法计算出控制指令,驱动执行机构完成飞机操 纵。
计算机硬件组成
飞行控制系统计算机由高性能处理器、存储器、输入输出接口等组成, 确保快速、准确处理各种信息指令。
03
软件与算法ห้องสมุดไป่ตู้
飞行控制系统计算机运行着各种软件算法,如控制律设计、传感器融合
导航与制导功能
01
自动导航
接收面导航台信号,自动计算飞 机位置航向,引导飞机沿着预定 航路飞行。
02
雷达与卫星导航
03
任务规划与制导
利雷达卫星信号,提供精确飞机 位置、速度时间信息,支持飞机 自动着陆等功能。
根据飞行任务求,规划飞行轨迹 ,引导飞机按预定路线执行任务 。
飞机状态监测与故障诊断
传感器数据采集
飞机飞行操纵系统工作原理
飞行员通过驾驶舱内操纵器件(如驾驶杆、脚蹬等)发出操作指令,指令通过传动 装置传递给控制机构(如舵机、调整片驱动机构等)。
控制机构进一步将指令转换相应机械或液压动作,驱动执行机构(如升降舵、副翼 、方向舵等)运动。
执行机构根据控制机构动作产生相应力矩位移,改变飞机翼面形状舵面偏转角度, 进而影响空气动力力矩,实现飞机操纵。
法规与标准
未飞行操纵系统需符合更加严格法规标准求,确保飞行安全性可靠性。也需制定完善相 关法规标准体系,适应技术发展变化。
传感器与测量装置检测飞机各种参数,如姿态、速度、高 度等,并将些参数转换可处理信号,供飞行控制系统使。
常见传感器类型
包括陀螺仪、加速度计、空速管、高度表等,它能够提供 飞机姿态、速度、位置等关键信息。

飞行控制系统典型飞行控制系统工作原理课件PPT

飞行控制系统典型飞行控制系统工作原理课件PPT

L
e
*
me
mV I 不太大时,修正高度过程中,俯仰运动也不会剧烈,所以速度相对变化
飞机上采用助力器,飞机超音速飞行时,舵机控制不受铰链力矩的影响。
也不会太大y,为此可用短周期运动方程。
❖ 为便于操纵飞机,有必要增加阻尼器。
飞机操纵机构
升降舵偏角e:平尾后缘下偏为正 e〉0 产生纵向低头力矩M<0 副翼偏转角a:右翼后缘下偏(右下左上)为正 a〉0 产生滚转力矩L<0 方向舵偏转角r:方向舵后缘向左偏为正 r〉0 产生偏航力矩N<0 油门杆位置T: 向前推杆为正 T〉0 加大油门、加大推力
飞机结构特点及受空气动力影响情况
为满足大包线,及良好的飞行性能要求,飞机设 ❖ 再由力、力矩平衡:
起削弱 作用, 向上转变慢,当
时,纵轴不再转q=0,动态过程结束。
计时采用薄的翼型,小的展弦比和具有上反效应 平飞迎角
这个等级是按能见度条件分类的,(包括垂直方向上指允许的最小云雾底部的高度;
阻尼器由角速率陀螺,放大器和舵回路
L K
)
其中:L K K K Ke 为角速率到舵偏角传动比
❖ 简化闭环传函:
q(s) pe (s)
K j KeKd (T S 1)
Td2eS 2 2deTdeS 1
式中:
Kd
K 1 L K
Tde
Td 1 L K
de
d
( K T L ) 2Td
1 L K
❖ 适当选择 L 可增大 de ,即增大了阻尼,
❖ 保持升降速度 H 0 ―必使飞机沿法线方
向力平衡,即 L cos G mg
❖ 保证飞机在水平面内盘旋―向心力等于惯
性力 L sin mu

《飞机飞行控制》课件

《飞机飞行控制》课件

导航控制
飞行控制系统集成了先进的导航 技术,如惯性导航、卫星导航等 ,能够实时确定飞机位置和航向 ,确保飞机沿着预定航线飞行。
防碰撞警告系统
飞行控制系统通过与空中交通管 制系统的交互,实时监测周围空 域的飞机,当存在碰撞风险时, 及时发出警告,避免空中交通事
故的发生。
飞行控制系统在军事航空领域的应用
飞行控制系统的发展趋势与未来展望
智能化控制
随着人工智能技术的发展,未来的飞行控制系统将更加智能化,能 够自适应地处理各种复杂情况,提高飞行的安全性与效率。
集成化与模块化设计
为了降低成本和提高可靠性,未来的飞行控制系统将采用集成化与 模块化设计,便于维护和升级。
自主可控技术
随着航空工业的发展,未来的飞行控制系统将更加注重自主可控技术 的研发和应用,以提高我国航空工业的竞争力。
融合技术
传感器融合技术是指将多个传感器的信息进行综合处理,以 获得更加准确和可靠的数据。在飞行控制系统中,传感器融 合技术能够提高飞机的导航精度和稳定性。
舵机与舵面
舵机
舵机是飞行控制系统中的执行机构, 能够根据控制系统的指令,精确地调 整舵面的角度,从而控制飞机的姿态 和轨迹。
舵面
舵面是飞机机翼和尾翼上的可动翼面 ,包括副翼、升降舵和方向舵等。通 过调整舵面的角度,可以改变飞机的 气动性能,实现飞机的姿态和轨迹控 制。
飞机飞行控制系统
03
的控制算法
线性控制算法
PID控制算法
通过比例、积分和微分三个环节 ,对飞机飞行过程中的误差进行 调节,以减小误差。
线性回归算法
通过对飞机飞行数据的线性回归 分析,预测飞行状态,为控制算 法提供参考。
非线性控制算法

飞机飞行操纵系统课件

飞机飞行操纵系统课件
功能
飞行控制软件的主要功能是接收飞行 员的操作指令,通过算法计算出控制 飞机的舵面动作,实现飞机的姿态、 高度、速度等参数的控制和调整。
飞行控制软件的算法与实现
算法
飞行控制软件的核心是算法,它通过一系列复杂的数学模型和计算方法,实现对 飞机姿态、高度、速度等参数的精确控制。
实现
飞行控制软件的实现通常采用模块化设计,将不同的功能模块化,便于开发和维 护。同时,为了确保软件的可靠性和安全性,还需要进行严格的质量控制和测试 。
常见的舵机有升降舵机、副翼 舵机、方向舵机和襟翼舵机等 。
飞行员通过操作舵机,可以改 变飞机各部分的姿态,从而实 现飞机的各种飞行动作。
传感器与测量设备
传感器与测量设备用于监测飞机的状态和参数,并将数据传输给飞行控制面板。
常见的传感器有陀螺仪、加速度计、气压计和高度计等。
这些设备能够提供飞机姿态、速度、位置等重要信息,帮助飞行员更好地掌握飞机 状态。
定期检查
按照规定的周期对操纵系统进行全面的检查,包 括电气线路、机械部件和液压元件等。
更换磨损件
对磨损严重的部件进行更换,如磨损的钢索、轴 承等,确保系统的正常工作。
校准测试
对操纵系统进行校准和测试,确保其性能符合标 准。
飞机飞行操纵系统的故障诊断与排除
故障识别
通过观察仪表指示、听取异常声音或感觉异常振动等方式,识别出 操纵系统存在的故障。
飞机飞行操纵系统的发展趋势与未来展望
1 2
智能化与自动化
随着技术的发展,飞行操纵系统将更加智能化和 自动化,减轻飞行员负担并提高飞行安全性。
复合材料与轻量化
采用复合材料和轻量化技术,优化飞行操纵系统 的结构和性能,提高飞机整体性能。

飞行操纵飞机结构与系统(1).ppt

飞行操纵飞机结构与系统(1).ppt
名义直径相同,股数相同,钢丝数越多,柔性就 越好。
钢索预紧
ΔT
M铰
+ΔT’ T0 T0 -ΔT’
M铰
固有缺陷——弹性间隙
弹性间隙
❖ 钢索承受拉力时,容易伸长;由于操纵系统的弹性变形而产生的 “间隙”称为弹性间隙
❖ 危害:弹性间隙太大,会降低操纵的灵敏性
❖ 解决措施:钢索预紧
常见故障——断丝(滑轮、导向器部位)
D
舵回路 A
舵回路 B
舵回路 C
舵回路 D
助力器
❖ 余度系统的工作特点
对组成系统的各个部分具有故障监控、信号表决的能力
一旦系统或系统中某部分出现故障后,必须具有故障隔离的能力。 即在发生故障时,系统应具有第一次故障能工作,第二次故障还 能工作的能力
当系统中出现一个或数个故障时,它具有重新组织余下的完好部 分,使系统具有故障安全或双故障安全的能力,即在性能指标稍 有降低情况下,系统仍能继续承担任务
液压助力 电助力
飞行操纵系统组成
操纵系统
主操纵系统
辅助操纵系统 警告系统
副翼 升降舵 方向舵
前缘襟翼缝翼 后缘襟翼 扰流板
水平安定面
失速警告 起飞警告
简单机械操纵系统
❖ 简单机械操纵系统是一种人力操纵系统, 由于其构造简单,工作可靠,使用了30余 年,才出现助力操纵系统
❖ 简单机械操纵系统现在仍广泛应用于低速 飞机和一些运输机上
❖ 光传操纵系统
操纵信号为在光缆中的光信号。
飞行操纵系统分类——驱动方式
❖ 简单机械操纵系统
简单机械操纵系统依靠驾驶员体力克服铰链力 矩驱动舵面运动,又被称为简单机械操纵系统。
❖软式操纵系统 ❖硬式操纵系统 ❖简单机械操纵系统构造比较简单,主要由驾驶杆、脚
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档