小学数学 百分数应用题的分类及方法题目解析过程

合集下载

小学奥数必考知识点:百分数应用题知识点题例详解

小学奥数必考知识点:百分数应用题知识点题例详解

《小学奥数必考知识点:百分数应用题知识点题例详解》在小学奥数的学习中,百分数应用题是一个重要的知识点,也是各类考试中经常出现的题型。

掌握百分数应用题的解题方法,不仅能够提高学生的数学思维能力,还能为今后的学习打下坚实的基础。

一、百分数的概念百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。

百分数通常用“%”来表示。

例如,45%表示 45 是 100 的百分之四十五。

二、百分数应用题的类型1. 求一个数是另一个数的百分之几这类问题的关键是找准单位“1”。

一般情况下,“是”“占”“比”后面的量就是单位“1”。

例如:小明有 20 本书,小红有 30 本书,小明的书是小红的百分之几?解:20÷30×100%≈66.7%。

2. 求一个数的百分之几是多少用这个数乘以对应的百分数即可。

例如:一个数是 50,它的 40%是多少?解:50×40% = 20。

3. 已知一个数的百分之几是多少,求这个数这类问题可以用除法或方程来解决。

例如:一个数的 30%是 15,这个数是多少?解法一:15÷30% = 50。

解法二:设这个数为 x,则 30%x = 15,解得 x = 50。

三、典型题例详解1. 折扣问题商店里的商品有时会进行打折销售。

折扣是指商品按原价的百分之几出售。

例如:一件衣服原价 200 元,现在打八折出售,现在的售价是多少?解:八折就是 80%,200×80% = 160(元)。

2. 利润问题利润问题涉及成本、售价和利润三个量。

利润 = 售价 - 成本,利润率 = 利润÷成本×100%。

例如:某商品的成本是 80 元,售价是 100 元,求利润和利润率。

解:利润 = 100 - 80 = 20(元),利润率= 20÷80×100% = 25%。

3. 浓度问题浓度问题主要涉及溶质、溶剂和溶液三个量。

浓度 = 溶质÷溶液×100%。

百分数解题技巧

百分数解题技巧

百分数解题技巧一、常见题型分析1、表示一个数是另一个数的百分之几的数.百分数也叫做百分率或百分比.百分数通常不写成分数的形式,而采用符号“%”(叫做百分号)来表示。

百分数在进行调查统计、分析比较时,经常要用到百分数。

2、百分数应用题有下列三种计算问题:①求一个数是另一个数的百分之几:例:求45是225的百分之几,即45÷225=20%.②求一个数的百分之几是多少.例:求 2.2的 75%是多少.即2.2×75%=1.65.③已知一个数的百分之几是多少,求这个数.例:已知一个数的75%是165,求这个数.即165÷75%=220。

3、求一个数比另一个数多(或少)百分之几实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

4、公式:求甲比乙多百分之几:(甲-乙)÷乙;求乙比甲少百分之几:(甲-乙)÷甲。

二、所用识点归纳1、求常见的百分率如:达标率、及格率、成活率、发芽率、出勤率等 a率=a的数量÷总量×100%2、求一个数比另一个数多(或少)百分之几技巧:“一减一除”(1)求甲比乙多百分之几(甲-乙)÷乙×100%(2)求乙比甲少百分之几(甲-乙)÷甲×100%( 3 )、求一个数的百分之几是多少方法:一个数(单位“1”)×百分率4、已知一个数的百分之几是多少,求这个数。

方法:部分量÷百分率=一个数(单位“1”)例1 练一练 1、解方程60%x+25%x=7 x–72%x=8.42、公明中小学生去游玩欢乐园,小学生的票价比中学生少25%。

(1)如果中学生票价12.4元,小学生的票价是多少元?(2)如果小学生票价12.4元,中学生的票价是多少元?例2 :林场春季植树,成活了24570棵,死了630棵,求成活率。

例3 学校图书室有图书1400册,今年图书册数增加了12%。

百分数应用题123例题解析和解题技巧

百分数应用题123例题解析和解题技巧

分数、百分数乘除法应用题解题技巧及例题解析类型一:求两个量之间的百分比关系:1、求一个数是另一个数的百分之几。

比较量÷单位一=对应百分率2、求一个数比另一个数多百分之几。

多的部分÷单位一=对应百分率3、求一个数比另一个数少百分之几。

少的部分÷单位一=对应百分率例1:实验小学现有男生500人,女生400人,①男生是女生的几(百)分之几?②女生是男生的几(百)分之几?【方法】:比较量÷标准量=对应分率【分析与解】实际生活中,经常需要比较两个数量的倍数关系,当它们的倍数等于1或大于1的时候,通常称为“几倍”;当它们的倍数小于1的时候,通常表示为一个数是另一个数的“几分之几”。

这类问题的数量关系跟整数里求一个数是另一个数的几倍是致的,要求学生掌握谁与谁相比较。

如:甲是乙的几(百)分之几,甲与乙进行比较,乙就作为标准,乙是甲的几(百)分之几,乙与甲进行比较,就把甲作为标准。

在问题①中男生为单位“1”的量,即为“标准量”,女生是与男生进行比较的量,暂称为“比较量”。

“女生是男生的几(百)分之几?”用整数方法表示则为“女生是男生的几倍?”故用男生的量除以女生的量便为女生是男生的几(百)分之几。

问题②中女生与男生进行比较,男生为“标准量”,女生为“比较量”所以要用女生的人数除以男生的人数。

解:①列式:500÷400=5/4 (125%)②列式:400÷500=4/5 (80%)例2、向阳客车厂原计划生产客车5000辆,实际生产5500辆。

实际比计划多生产百分之几?分析与解:要求“实际比计划多生产百分之几”,就是求实际比计划多生产的辆数占计划产量的百分之几,把原计划产量看作单位“1”。

两者之间的关系可用线段图表示。

计划产量辆实际比计划多的实际产量辆解答:方法1:5500 – 5000 = 500(辆)……实际比计划多生产500辆500 ÷ 5000 = 0.1 = 10%……实际比计划多生产百分之几方法2:5500 ÷ 5000 = 110%……实际产量相当于原计划的110%110% - 100% = 10%……实际比计划多生产百分之几答:实际比计划多生产10%。

六年级百分数应用题的类型讲解

六年级百分数应用题的类型讲解

六年级百分数应用题的类型讲解六年级百分数应用题是数学中的一个重要题型,它主要考察的是学生对百分数概念的理解和应用。

以下是对几种常见的百分数应用题类型的讲解:一、百分数的概念和意义百分数是一种表达比例的数学形式,它表示某个数是另一个数的多少百分之几。

例如,50%表示一个数是另一个数的50%。

百分数在日常生活、商业和科学研究中都有广泛的应用。

二、百分数应用题的常见类型1.求一个数的百分之几:这类问题通常会给出两个数,一个是基数,另一个是百分数,要求找出第一个数的百分之几是多少。

例如,如果一个公司完成了计划的50%,那么这个计划的完成量是多少?解题方法:首先确定基数,然后乘以百分数。

例如,如果一个公司完成了计划的50%,那么完成量就是计划总量的50%。

2.求一个数是另一个数的百分之几:这类问题会给出两个数,要求找出第一个数是第二个数的百分之几。

例如,如果一个公司的销售额是另一个公司的75%,那么这个公司的销售额是另一个公司的多少百分之几?解题方法:首先确定被比较的两个数,然后计算第一个数占第二个数的比例,最后转换为百分数。

例如,如果A公司的销售额是B公司的75%,那么A公司的销售额是B公司的75%(或3/4)。

3.折扣和原价的关系:这类问题通常涉及到商品的打折销售,要求找出打折后的价格与原价的关系。

例如,如果一个商品打9折销售,那么打折后的价格是原价的多少百分之几?解题方法:首先确定原价和折扣率,然后将原价乘以折扣率得到打折后的价格。

例如,如果一个商品打9折销售,原价为100元,那么打折后的价格就是100元的90%(或9/10)。

4.利息和本金的关系:这类问题通常涉及到存款或贷款的利息计算,要求根据给定的利率和时间计算利息金额。

例如,如果一个存款的年利率为5%,存款时间为2年,本金为100元,那么利息是多少?解题方法:首先确定本金、利率和时间,然后将本金乘以利率再乘以时间得到利息。

例如,如果一个存款的年利率为5%,存款时间为2年,本金为100元,那么利息就是100元×5%×2年=10元。

精强烈推荐六类百分数应用题的解题方法及练习

精强烈推荐六类百分数应用题的解题方法及练习

【精】六类百分数应用题的解题方法及练习类型一 求一个数的百分之几是多少(用乘法)【例】六(1)班有40人,男生占全班的 65 % ,男生有多少人? 【方法】单位“1”× 对应分率 = 对应数量 【解析】40×65%=26(人) 【练习】1. 某食油批发店,上午卖出花生油96箱,下午卖出的是上午的125,下午卖出多少箱?2. 小红体重42千克,小方体重38千克,小明的体重相当于小红和小方体重总和的50%,小明体重多少千克?3. 一根钢管长8米,用去一部分,还剩下全长的20%,还剩下多少米?4. 海象的寿命大约是40年,海狮的寿命是海象的43,海豹的寿命是海狮的32。

海豹的寿命大约是多少年?5. 一本故事书有1000页,小明第一天读了这本书的51,第二天又读了这本书的41,两天共读了多少页? 还剩多少页没有读?类型二求甲数是/占/相当于乙数的百分之几(用除法)【例】实验小学现有男生500人,女生400人,男生是女生的百分之几?女生是男生的百分之几?【方法】对应数量÷单位“1”=对应分率【解析】①500÷400=125%②400÷500=80%【练习】1.100千克的花生,能榨出65千克的花生油,花生的出油率是多少?2.科技小组进行玉米种子发芽试验。

用500粒种子进行试验,有15粒没有发芽,求发芽率。

3.某村响应“植树造林”政策,计划种树250棵,实际种树200棵。

(1)计划种树的棵树是实际的百分之几?(2)实际种树的棵树是计划的百分之几?类型三 已知甲数的百分之几是多少,求甲数(用除法或方程解)【例】六(2)班男生有20人,男生是全班的40 %,全班有多少人? 【方法】对应数量÷对应分率=单位“1” 【解析】20÷40%=50(人) 【练习】1. 工地运来的水泥有24吨,运来的水泥是黄沙的5/6,运来的黄沙有多少吨?2. 一辆客车从甲地开往乙地,已行240千米,占全长的30%,甲乙两地相距多少千米?3. 一条公路,已经修了60 %,还剩下20千米,这条公路有多长?4. 一辆汽车从甲地开往乙地,已经行了全程的75,这是离乙地还有80千米。

百分数应用题类型

百分数应用题类型

百分数应用题类型一、什么是百分数应用题百分数应用题是指在实际问题中运用百分数进行计算和分析的题目。

百分数是以100为基数的比例,常用于表示比例关系、增减比例、百分比等。

在日常生活和工作中,我们经常会遇到各种百分数应用题,比如折扣计算、利率计算、增长率计算等。

二、百分数的计算方法1. 百分数的定义百分数是指以100为基数的比例。

用百分号(%)表示,百分号前的数字称为百分数。

2. 百分数的计算方法将所求数值除以总数,再乘以100,即可得到百分数。

例如,某商品原价为200元,打8折后的价格是多少?解:打8折即为原价的80%,所以打折后的价格为200 × 80% = 160元。

3. 百分数的计算技巧•将百分数转化为小数进行计算,可以简化计算过程。

例如,计算80%的5倍是多少,可以将80%转化为0.8,然后再乘以5。

•在计算折扣或利润率时,可以先计算出打折或利润的金额,然后再计算百分数。

三、百分数应用题的类型1. 折扣计算题折扣计算题是指在购物或销售中,根据商品的折扣率计算折扣金额或折后价格的题目。

例如,某商品原价为500元,打6折后的价格是多少?解:打6折即为原价的60%,所以打折后的价格为500 × 60% = 300元。

2. 利率计算题利率计算题是指根据利率计算利息或利润的题目。

常见的利率计算题包括银行存款利息、贷款利息、投资收益等。

例如,某银行定期存款年利率为3%,存款10000元一年后的利息是多少?解:利息等于存款金额乘以利率,即10000 × 3% = 300元。

3. 增长率计算题增长率计算题是指根据增长率计算增长量或增长后的总数的题目。

常见的增长率计算题包括人口增长率、经济增长率等。

例如,某城市去年的人口为100万,今年的人口为120万,计算人口的增长率是多少?解:人口的增长率等于增长量除以去年的人口,再乘以100%,即(120-100)/100 × 100% = 20%。

六年级数学期末复习重点之用百分数解决问题

六年级数学期末复习重点之用百分数解决问题

六年级数学期末复习重点之用百分数解决问题1、一般应用题常见的百分率的计算方法:一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。

(一般出粉率在70、80%,出油率在30、40%。

)已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。

解法:(建议:用方程解答)(1)方程:依据数量关系式设未知量为X,用方程解答。

(2)算术(用除法):分率对应量÷对应分率= 单位“1”的量求一个数比另一个数多(少)百分之几的问题:两个数的相差量÷单位“1”的量× 100%或:①求多百分之几:(大数÷小数– 1)× 100%②求少百分之几:(1 -小数÷大数)× 100%2、折扣折扣:商品按原定价格的百分之几出售,叫做折扣。

通称“打折”。

几折就表示非常之几,也就是百分之几十。

例如八折==80﹪,六折五=0.65=65﹪一成是非常之一,也就是10%。

三成五就是非常之三点五,也就是35%几成”就是非常之几,也就是百分之几十。

如:五成表示()%“折扣”表示某种商品降价的幅度。

如:75折就表示现价是原价()% 3、纳税纳税:纳税是依据国家税法的有关规定,根据肯定的比率把集体或个人收入的一部分缴纳给国家。

纳税的意义:税收是国家财政收入的主要来源之一。

国家用收来的税款进展经济、科技、教育、文化和国防平安等事业。

应纳税额:缴纳的税款叫做应纳税额。

税率:应纳税额与各种收入的比率叫做税率。

应纳税额的计算方法:应纳税额= 总收入×税率4、利息存款分为活期、整存整取和零存整取等方法。

小学数学---百分数的应用题型讲解与解析

小学数学---百分数的应用题型讲解与解析

小学数学---百分数的应用题型讲解与解析一、百分数的基本知识百分数的定义(1)分母是100的分数叫做百分数。

这种定义着眼于形式,将百分数作为分数的一种特殊形式。

(2)表示一个数(比较数)是另一个数(标准数)的百分之几的数叫做百分数。

这种定义着眼于应用,用来表示两个数的比。

所以百分数又叫百分比或百分率。

注意:百分数通常不写成分数形式,而采用符号“%”来表示,叫做百分号。

在第二种定义中,比较数、标准数、分率(百分数),这三者的关系如下:比较数÷标准数=分率(百分数);标准数×分率=比较数;比较数÷分率=标准数。

二、百分数解应用题的常用公式1、求分率、百分率问题增长数÷标准数=增长率;减少数÷标准数=减少率。

或者是两数差÷较小数=多几(百)分之几(增加);两数差÷较大数=少几(百)分之几(减少)。

【示例1】某商品降价1200元后,售价为4800元,该商品打了几折出售?【解析】求打了几折,就是先要求降低的价格是原价的百分之几,我们把原价看做单位“1”,降低的价格和原价比,关系为:降价÷原价,知道了降低了百分之几,就可以求出现价是原价的百分之几,最后再折算成折扣就可以了。

【答案】1200÷(1200+4800)=1200÷6000=20%1-20%=80%=8折答:该商品打了8折。

2、求比较数应用题标准数×分(百分)率=与分率对应的比较数;标准数×增长率=增长数;标准数×减少率=减少数;标准数×(两分率之和)=两个数之和;标准数×(两分率之差)=两个数之差。

【示例2】有两堆煤共136吨,从甲堆中取走30%,从一堆中取走25%,这时乙剩下的比原来总数的5/8少13吨,原来甲堆有多少吨煤?【解析】根据乙剩下的比原来总数的5/8少13吨,可以求出乙堆剩下多少吨煤:136×5/8-13=72(吨);根据从乙堆中取走25%剩下72吨,可求出乙堆原有多少吨煤:72÷(1-25%)=96(吨);最后再求出甲堆原有多少吨煤:136-96=40(吨)答:甲堆原有40吨煤。

百分数应用题解题技巧

百分数应用题解题技巧

百分数应用题解题技巧百分数应用题和以前学习的应用题没有什么本质上的区别,尤其是和前面学过的分数乘除法应用题的解题思路是一致的,只不过以前应用题题设条件中的整数、小数(分数)换成了百分数而已。

也就是说,今天分享的百分数解题公式和技巧,同样适用于分数应用题,期末复习的时候各位同学和家长都可以参考。

一、求一个数是另一个数的百分之几?方法:把“是”字(或者占、相当于)看作“÷”直接计算公式:一个数÷另一个数×100%如:求甲数是乙数的百分之几?甲数÷乙数×100%例1:甲数是8,乙数是10,甲数是乙数的百分之几?解:8÷10x100%=80%二、求一个数比另一个数多(少)百分之几?方法:用较大数-较小数求出两数差;找到“比”的后面、“多(少)”的前面是单位“1”;用两数差÷单位“1”。

公式:(较大数-较小数)÷单位“1”×100%或者:两数差÷单位“1”×100% 。

如:求甲数比乙数多百分之几?(甲数-乙数)÷乙数×100%例2:甲数是5,乙数是4,甲数比乙数多百分之几?解:(5-4)÷4x100%=25%。

例3:甲数是5,乙数是4,乙数比甲数少百分之几?(5-4)÷5x100%=20%。

三、百分数应用题通用解题思路1、找出题目中百分率,找到百分率对应的单位“1”;2、判断单位“1”是否已知;如果单位“1”已知,用乘法计算;例4:甲数是乙数的20%,已知乙数是25,求甲数是多少?解:25x20%=5单位“1”未知,用除法计算;例5:甲数是乙数的20%,已知甲数是25,求乙数是多少?25÷20%=1253、乘法计算通用公式:单位“1”×百分率=对应的量;单位“1”×(1±百分率)=对应的量;例6:甲数比乙数多(少)20%,乙数是25,求甲数是多少?25x(1±20%)=30(或20)4、除法计算通用公式:对应的量÷百分率=单位“1”对应的量÷(1±百分率)=单位“1”例7:甲数比乙数多(少)20%,已知甲数是12,求乙数是多少?12÷(1±20%)=10(或15)单位“1”未知:在实际的解决问题中,多加少减,1+多的百分率,或者1-少的百分率。

小学六年级数学--百分数应用题--归纳总结

小学六年级数学--百分数应用题--归纳总结

百分数应用题注:“是”“比”“占”字后都是单位 1,什么“的”几%,的字前是单位1【题型一】A是B的百分之几? A占B的百分之几?【解题方法】①找单位“1”;②其它量÷单位“1”;因为上面两个问题的单位“1”都是B,所以解法是:A÷B【例题】某班男生有20人,女生有25人。

(1)男生人数是女生的百分之几?(2)女生人数是男生的百分之几?(3)男生人数占全班的百分之几?【练习】1、小红家二月份计划支出1500元,实际支出1200元,请求:实际支出是计划的百分之几?计划支出是实际的百分之几?2、把30克盐加入到120克水中,盐占盐水的百分之几?【题型二】求常见的百分率。

比如:合格率、及格率、出油率、出勤率、发芽率、成活率等。

【解题方法】××率=××数÷总数【例题】新华小学在校园里植树,48棵成活了,2棵没有活,成活率是多少?【练习】1、六年级有学生160人,已达到《国家体育炼标准》(儿童组)的有 120人。

六年级学生的达标率是多少?2、榨油厂的李叔叔告诉小静:“2000kg花生仁能榨出花生油760kg。

”这些花生的出油率是多少?【题型三】已知一个数,求它的百分之几是多少?比如:A是60,求A的20%是多少? 60*20%=60*0.2=12【解题方法】①找单位“1”;②单位“1”已知,所以用乘法;③用单位“1”×对应的百分率。

总结:已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,解析:数量关系式和分数乘法解决问题中的关系式相同(1) 百分率前是“的”:单位“1”的量×百分率=百分率对应量(2) 百分率前是“多或少”的数量关系:单位“1”的量×(1±百分率)=百分率对应量【例题】1、新城市中小学校开展回收废纸活,共回收废纸87.5吨。

用废纸生产再生纸的再生率为80%,这些回收的废纸能生立多少吨再生纸?2、一个果园共有果树480棵,其中苹果树占17%,梨树占25%,桃树占28%。

常见的百分数应用题有以下几种类型

常见的百分数应用题有以下几种类型

常见的百分数应用题有以下几种类型百分数在日常生活中应用广泛,可以用来表示比例、增减率、利率等。

在解决实际问题时,我们经常会遇到各种各样的百分数应用题。

本文将介绍一些常见的百分数应用题类型,并通过实例来解释相关的解题方法。

1. 比例题比例题是最常见的一种百分数应用题。

它通常描述了两个事物之间的比例关系,并要求求解其中一个未知量。

解决比例题的方法是设置一个方程,通过代入已知信息,求解未知量。

下面是一个例子:例题:某班级男生与女生的比例为3:5,共有40名学生,求男生的人数。

解析:设男生人数为3x,女生人数为5x,则男生人数加女生人数等于总人数,即3x+5x=40。

解得x=4,所以男生人数为3x=12。

2. 增减率题增减率题描述了某个数量相对于原始数量的增长或减少比例,并要求求解变化后的数量。

解决增减率题的方法是使用百分数计算公式,即变化量除以原始量再乘以100%。

下面是一个例子:例题:某商品原价100元,打8折出售,求实际售价。

解析:打8折意味着价格打了80%折扣,所以实际售价为100元乘以80%,即80元。

3. 利率题利率题描述了某个金额在一段时间内利息的增长情况,并要求求解利息或最终金额。

解决利率题的方法是使用利率计算公式,即利率乘以本金和时间的乘积。

下面是一个例子:例题:某银行定期存款年利率为4%,小明存了10000元,求一年后的本息和。

解析:本息和=本金+利息,利息=本金乘以利率乘以时间。

所以一年后的本息和为10000元加上10000元乘以4%乘以1年,即10000 + 10000 × 4% × 1 = 10400元。

4. 百分数转化题百分数转化题描述了将一个百分数转化为分数、小数或整数的过程。

解决百分数转化题的方法是根据百分数的定义进行转化。

下面是一个例子:例题:将60%转化为分数和小数。

解析:60%表示60/100,所以60%可以转化为分数6/10和小数0.6。

总结:在解决常见的百分数应用题时,我们需要根据题目的要求选择合适的解题方法,例如比例题需要设置方程,增减率题需要使用百分数计算公式,利率题需要使用利率计算公式,百分数转化题需要根据定义进行转化。

六年级数学百分数的应用试题答案及解析

六年级数学百分数的应用试题答案及解析

六年级数学百分数的应用试题答案及解析1.九月份用电82度,比八月份节约18%,八月份用电多少度?【答案】100度【解析】节约就减:1-18%=82%82÷82%=100(度)答:八月份用电100度。

【考点】百分数的应用。

2.一件100元的商品,先提价10%,再降价10%,现价是多少钱?【答案】99元【解析】提价就加:1+10%=110%提价后的价格:100×110%=110(元)降价就减:1-10%=90%降价后的价格:110×90%=99(元)答:现价是99元。

【考点】百分数、商品问题。

3.科技小组进行玉米种子发芽实验,结果有500粒种子发芽了,25粒种子未发芽,求这批种子的发芽率。

【答案】95.2%【解析】首先理解发芽率,发芽率是指发芽的种子粒数占种子总粒数的百分之几,先求出种子的总粒数,进而用:×100%=发芽率,由此列式解答即可。

解:实验种子的总粒数:500+25=525(粒)发芽率:×100%≈0.952=95.2%。

答:这批种子的发芽率是95.2%。

【考点】百分率应用题。

4.一种电脑原价每台5000元,现在每台降价800元.降价百分之几?现在每台价钱是原价的百分之几?【答案】800÷5000=16%(5000-800)÷5000=84%答:降价16%,现在每台价钱是原价的84%。

【解析】求降价百分之几,就是求降低的占原价的百分之几,用降低的除以原价,现在每台价钱除以原价的价钱即可。

5.一堆煤,第一次用去总量的15%,第二次用去总量的40%,两次一共用去总量的百分之几?还剩百分之几?【答案】15%+40%=55%1-55%=45%答:两次一共用去总量的55%,还剩45%。

【解析】第一次用去总量的15%,第二次用去总量的40%,根据分数加法的意义,两次共用去总量的15%+40%;用单位“1”减去两次用去的占总数的分率,即得还剩百分之几。

六年级上册分数百分数应用题类型及解题方法

六年级上册分数百分数应用题类型及解题方法

2Hale Waihona Puke 多/少百分之几六年级举行“小发明”比赛,六(1)班交了 32件作品,六(2)班交了40件作品。六(1) 班的作品比六(2)班的作品少几分之几? 分析:已知:六(1)班作品32件,六(2) 班作品40件 求:六(1)班作品比六(2)班作品 少几分之几
分析:少几分之几,即是求少的部分占单 位“1”的几分之几,就是少的部分÷单位 “1” 寻找单位“1”:比谁多,比谁少,即与谁相 比,谁就是单位“1”
小结:求谁占谁的几分之几,就用谁÷谁,
即:前一个量÷后一个量
六年级举行“小发明”比赛,六(1)班交 了 32件作品,六(2)班交了40件作品。六(1) 班的作品占六(2)班的百分之几? 分析:已知:六(1)班作品32件,六(2) 班作品40件 求:六(1)班作品占六(2)班作品 的百分之几
六(1)班作品÷六(2)班作品×100%
分数、百分数 应用题
1、占几分之几/百分之几
六年级举行“小发明”比赛,六(1)班交了 32件作品,六(2)班交了40件作品。六(1) 班的作品占六(2)班的几分之几? 分析:已知:六(1)班作品32件,六(2) 班作品40件 求:六(1)班作品占六(2)班作品 的几分之几
六(1)班作品÷六(2)班作品
小结:已知比较量,比较量比标准量多或少几分之 几,求标准量 即 :已知比较量,求单位“1”的量,用除法 解题步骤:1、先找出单位“1”,单位“1”未知,用 除法 2、再找出比较量对应的分率,多几分之 几,就是(1+几分之几),少几分之几,就是 (1-几分之几) 3、列式:比较量÷比较量对应的分率
小结:已知一个量,另一个量比已知量多或少几分 之几,求另一个量 即 :已知单位“1”的量,求比较量,用乘法 解题步骤:1、先找出单位“1”,单位“1”已知,用 乘法 2、再找出比较量对应的分率,多几分之 几,就是(1+几分之几),少几分之几,就是 (1-几分之几) 3、列式:比较量=单位“1”的量×比较 量对应的分率

六年级数学百分数应用题ppt课件

六年级数学百分数应用题ppt课件

六年级数学百分数应用题ppt课件目录•百分数基本概念与性质•百分数应用题类型及解题思路•典型例题解析与讨论•学生自主练习与互动环节•课堂小结与拓展延伸CONTENTSCHAPTER01百分数基本概念与性质百分数定义及表示方法百分数的定义表示一个数是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。

百分数的表示方法通常不写成分数的形式,而是在原来的分子后面加上百分号“%”来表示。

百分数与小数、分数关系百分数与小数的互化把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

百分数与分数的互化把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数;把百分数化成分数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。

百分数运算规则百分数的加减法百分数的加减法同整数的加减法相同,但要注意在计算结果中加上百分号。

百分数的乘法一个数与百分数相乘,可以先把这个数与百分数的分母100相约分,再把约分后的数与分子相乘,最后在积的后面添上百分号。

百分数的除法一个数除以一个百分数,等于这个数乘以这个百分数的倒数。

CHAPTER02百分数应用题类型及解题思路找准单位“1”,求出比较量占单位“1”的百分之几。

解题关键解题步骤举例(1)确定单位“1”;(2)用比较量除以单位“1”;(3)将结果乘以100%,并化简。

小明家养了20只鸡,15只鸭。

鸡是鸭的百分之几?030201求一个数是另一个数百分之几找准单位“1”,求出比较量比单位“1”多(或少)百分之几。

解题关键(1)确定单位“1”;(2)求出比较量与单位“1”的差;(3)将差除以单位“1”;(4)将结果乘以100%,并化简。

解题步骤小明家养了20只鸡,15只鸭。

鸡比鸭多百分之几?举例求一个数比另一个数多(或少)百分之几找准单位“1”,用已知量除以它所对应的百分率。

百分数应用题类型

百分数应用题类型

百分数应用题类型一、概述百分数是我们日常生活中经常使用的一种数字表示方式,它可以用来描述某种现象在总体中所占的比例或数量。

例如,我们经常听到某个城市的失业率达到了10%,这就是一个百分数。

在实际应用中,百分数可以用于各种领域,如经济、教育、医疗等。

本文将介绍几种常见的百分数应用题类型,并提供详细的解题方法和实例。

二、比例问题1. 比例问题概述比例问题是指给定两个量之间的比值,求其中一个量所占总量的百分比。

例如,某班级男生人数占总人数的三分之二,求男生人数所占总人数的百分比。

2. 解题方法设总量为x,已知其中一个量为y,则另一个量为x-y。

设已知比值为a:b,则有a/b=y/x-y。

解出y后,即可得到所求百分比。

3. 实例某班级共有50名学生,其中男生人数占总人数的三分之二,请问男生人数所占总人数的百分比是多少?解:设男生人数为y,则女生人数为50-y。

根据已知条件可得:2/3 = y / (50-y)解得y=30,即男生人数为30。

所求百分比为:30/50 × 100% = 60%三、增长率问题1. 增长率问题概述增长率问题是指给定两个量之间的变化比值,求其中一个量的百分增长率或百分减少率。

例如,某公司去年销售额为100万元,今年销售额为120万元,求今年销售额相比去年增长了多少百分比。

2. 解题方法设原始量为x,变化量为y,则有变化比值为y/x。

若变化量为正数,则所求百分增长率为变化量除以原始量再乘以100%;若变化量为负数,则所求百分减少率为变化量除以原始量再乘以100%的相反数。

3. 实例某公司去年销售额为100万元,今年销售额为120万元,请问今年销售额相比去年增长了多少百分比?解:设去年销售额为x,则今年销售额为x+20。

根据已知条件可得:20/100 = y/100解得y=20,即今年销售额相比去年增长了20万元。

所求百分增长率为:20/100 × 100% = 20%四、利润率问题1. 利润率问题概述利润率是指某项业务或产品的利润占销售额的百分比。

百分数应用题知识点归纳

百分数应用题知识点归纳

百分数应用题知识点归纳百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。

百分数在生活中的应用非常广泛,从购物折扣、增长率、利润率到人口统计、环境保护等等,几乎无处不在。

而百分数应用题则是将百分数的概念与实际问题相结合,通过数学运算来解决各种实际情境中的问题。

下面,我们就来归纳一下百分数应用题的常见知识点。

一、百分数的基本概念1、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。

百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

2、百分数与分数、小数的互化:百分数化小数:去掉百分号,小数点向左移动两位。

小数化百分数:小数点向右移动两位,加上百分号。

百分数化分数:先把百分数写成分母是 100 的分数,再约分。

分数化百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

二、常见的百分数应用题类型1、求一个数是另一个数的百分之几这类问题的关键是找准单位“1”,用比较量除以单位“1”的量,再乘以 100%。

例如:某班有男生 25 人,女生 20 人,男生人数是女生人数的百分之几?单位“1”是女生人数,列式为:(25÷20)×100% = 125%2、求一个数的百分之几是多少用这个数乘以百分数即可。

比如:一本书原价 50 元,现在打八折出售,现价是多少元?八折就是 80%,列式为:50×80% = 40(元)3、已知一个数的百分之几是多少,求这个数这类问题用除法计算,用已知的数量除以对应的百分数。

例如:某工厂去年的产量是 300 吨,今年比去年增产 20%,今年的产量是多少吨?单位“1”是去年的产量,已知去年产量,求今年产量,用乘法。

列式为:300×(1 + 20%)= 360(吨)4、百分率问题常见的百分率有及格率、合格率、出勤率、发芽率等等。

计算方法是:百分率=(部分量÷总量)×100%例如:某班有 50 人,今天出勤 48 人,出勤率是多少?列式为:(48÷50)×100% = 96%5、折扣问题几折就是十分之几,也就是百分之几十。

百分数应用题及答案

百分数应用题及答案

百分数应用题及答案百分数在我们的日常生活和学习中经常会遇到,下面就为大家带来一些常见的百分数应用题及详细的答案解析。

一、折扣问题例题 1:一件衣服原价 200 元,现在打八折出售,现在的价格是多少?答案:八折就是 80%,所以现在的价格为 200×80% = 160(元)解析:打几折就是按原价的百分之几十出售,原价乘以折扣率就是现在的价格。

例题 2:一双鞋子原价 150 元,现在打七五折出售,比原价便宜了多少元?答案:打七五折后的价格为 150×75% = 1125(元),比原价便宜了 150 1125 = 375(元)解析:先算出打折后的价格,再用原价减去打折后的价格就是便宜的金额。

二、增长率问题例题 3:某工厂去年的产量是 500 吨,今年的产量比去年增长了20%,今年的产量是多少?答案:今年比去年增长了 20%,则今年的产量是去年的(1 +20%),所以今年的产量为 500×(1 + 20%)= 600(吨)解析:增长了百分之几就是在原来的基础上增加了百分之几,用原来的量乘以(1 +增长率)就是增长后的量。

例题 4:一家公司第一季度的利润是 10 万元,第二季度的利润比第一季度增长了 15%,第二季度的利润是多少?答案:第二季度的利润是 10×(1 + 15%)= 115(万元)解析:同理,用第一季度的利润乘以(1 +增长率)得到第二季度的利润。

三、税率问题例题 5:王叔叔月工资 5000 元,个人所得税起征点是 3500 元,超过部分按 3%缴纳个人所得税,王叔叔每月应缴纳个人所得税多少元?答案:超过起征点的部分是 5000 3500 = 1500(元),所得税为1500×3% = 45(元)解析:先算出超过起征点的金额,再乘以税率就是应缴纳的税额。

例题 6:某商店上个月的营业额是 8000 元,按 5%缴纳营业税,应缴纳营业税多少元?答案:应缴纳的营业税为 8000×5% = 400(元)解析:营业额乘以税率就是应缴纳的营业税。

百分数应用题七种类型

百分数应用题七种类型

百分数应用题七种类型在数学学科中,百分数应用题是重要的学习内容之一。

掌握百分数应用题的解题方法和技巧对于提高数学成绩至关重要。

在本文中,我们将介绍七种常见的百分数应用题类型,并演示解题过程。

一、百分数增减问题百分数增减问题是最基本的百分数应用题类型之一。

该类型的问题通常涉及到一个数值根据一定比例的增加或减少后的结果。

解决这类问题的方法一般是根据百分数的定义进行计算。

例如:例题:小明的工资比去年增加了20%,他去年的工资是3000元,那么今年的工资是多少?解题过程:根据题意,我们可以采用以下步骤进行计算:1. 先计算出增加的数值:3000元× 20% = 600元2. 再计算出今年的工资:3000元 + 600元 = 3600元所以,小明今年的工资是3600元。

二、百分数与实际问题的联系这种类型的百分数应用题与实际生活中的问题紧密相关,需要将百分数概念应用到具体情境中。

解决这类问题的方法是将实际情况转化为数学模型进行计算。

例如:例题:某超市打折促销,所有商品降价20%,小明购买了一件原价为120元的商品,请问他需要支付多少钱?解题过程:根据题意,我们可以采用以下步骤进行计算:1. 计算出降价的数值:120元× 20% = 24元2. 计算出实际需要支付的金额:120元 - 24元 = 96元所以,小明需要支付96元。

三、百分数换算问题百分数换算问题是指将百分数互相转换的问题,例如将百分数转化为小数或将小数转化为百分数。

解决这类问题需要掌握百分数与小数之间的转化方法。

例如:例题:将0.3转化为百分数。

解题过程:根据题意,我们可以采用以下步骤进行计算:1. 将0.3乘以100%:0.3 × 100% = 30%所以,0.3转化为百分数为30%。

四、百分数比较问题百分数比较问题是指将两个或多个百分数进行比较的问题。

解决这类问题时,可以将百分数转化为小数进行比较,或者根据百分数的定义直接进行比较。

小学数学百分数应用题分类及方法题目解析过程

小学数学百分数应用题分类及方法题目解析过程

把百分数应用题分为以下六种主要种类:一、求一个数的百分之几是多少?1、 60 的 40 %是多少?提示 :重申分数乘法的意义 :把 60(即单位“ 1”),均匀分红 100 份,取此中的 40 份。

2、五( 1)班有 40 人,男生占全班的 65 % ,男生有多少人?3、五( 1)班男生有 25 人,女生是男生的80 %,女生多少人?4、一条公路 60 千米,已经修了60%, 还剩下多少千米?“单位“1”x 对应分率 = 对应数目“:公路全长 x 60%= 已经修的部分,公路全长 x 40%= 剩下的部分二、已知一个数的百分之几是多少,求这个数。

1、()的30%是30。

2、五( 1)班男生有 20 人,男生是全班的40 %,全班有多少人?3、五( 1)班男生有 16 人,男生是女生的80 %,女生有多少人?4、一条公路,已经修了60 %,还剩下 20 千米,这条公路有多长?5、五( 1)班男生占全班的60 %,男生比女生多了10 人,全班有多少人?三、求比一个数多(或少)百分之几是多少?1、五( 1)班男生有 20 人,女生比男生多了10 %,女生有多少人?如“女生比男生多了10 %”,完好的句子是“女生比男生多了男生的10%”。

“比”相当于“等于”,转变成数学语言“男生人数 +男生的 10%=女生人数”2、五( 2)班男生有 20 人,女生比男生少了10 %,女生有多少人?四、已知比一个数多(或少)百分之几是多少,求这个数。

1、五( 1)班男生有 22 人,男生比女生多10 %,女生有多少人?单位“ 1”不知道,“单位“ 1”对应分率=对应数目”或许对应数目÷对应分率 = 单位“ 1”2、五( 1)班男生有 27 人,男生比女生少10 %,女生有多少人?五、求一个数是另一个数的百分之几?把另一个数分红100 份,即是单位“ 1”。

单位“ 1”可能是标准量或整体量,在出油率、正确率、成活率、出勤率、含盐率等题目中,单位“1”是总数,即整体量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

把百分数应用题分为以下六种主要类型:
一、求一个数的百分之几是多少?
1、 60的40 %是多少?提示:
强调分数乘法的意义:把60(即单位“1”),平均分成100份,取其中的40份。

2、五(1)班有40人,男生占全班的 65 % ,男生有多少人?
3、五(1)班男生有25人,女生是男生的80 %,女生多少人?
4、一条公路60千米,已经修了60%, 还剩下多少千米?
“单位“1”x对应分率=对应数量“:公路全长x60%=已经修的部分,公路全长x40%=剩下的部分
二、已知一个数的百分之几是多少,求这个数。

1、()的30%是30。

2、五(1)班男生有20人,男生是全班的40 %,全班有多少人?
3、五(1)班男生有16人,男生是女生的80 %,女生有多少人?
4、一条公路,已经修了60 %,还剩下20千米,这条公路有多长?
5、五(1)班男生占全班的60 %,男生比女生多了10人,全班有多少人?
三、求比一个数多(或少)百分之几是多少?
1、五(1)班男生有20人,女生比男生多了10 %,女生有多少人?
如“女生比男生多了10%”,完整的句子是“女生比男生多了男生的10%”。

“比”相当于“等于”,转化成数学语言“男生人数+男生的10%=女生人数”
2、五(2)班男生有20人,女生比男生少了10 %,女生有多少人?
四、已知比一个数多(或少)百分之几是多少,求这个数。

1、五(1)班男生有22人,男生比女生多10 %,女生有多少人?
单位“1”不知道,“单位“1”对应分率=对应数量”或者对应数量÷对应分率=单位“1”
2、五(1)班男生有27人,男生比女生少10 %,女生有多少人?
五、求一个数是另一个数的百分之几?
把另一个数分成100份,即是单位“1”。

单位“1”可能是标准量或整体量,在出油率、正确率、成活率、出勤率、含盐率等题目中,单位“1”是总数,即整体量。

1、五(1)班有50人,男生有20人,男生占全班的百分之几?
2、男生有20人,女生有30人,男生是女生的百分之几?
3、 100千克的花生,能榨出65千克的花生油,花生的出油率是多少?
六、求一个数比另一个数多(或少)百分之几?
1、男生有30人,女生有20人,男生比女生多了百分之几?女生比男生少了百分之几?
2、电饭锅的原价是220元,现价是160元,电饭锅的价格降低了百分之几?补充完整“男生比女生多了女生的百分之几”.方法:先算多(或少)的部分,用多(或少)出来的部分除以单位“1”。

或者先求出一个数是另一个数的百分之几,然后再跟单位“1”(即另一个数)比较大小。

百分数应用题通常会有以下几种题型。

针对不同的题型进行分析,采用不同的解题规律,做到这两点
一、求比一个数多(或少)百分之几的数是多少。

解题规律:把一个数看作单位“1”,
一个数+一个数×百分之几或一个数×(1+百分之几)
二、求一个数比另一个数多(或少)百分之几。

(1)甲比乙多百分之几的问题的解题规律:
(甲-乙)÷乙=百分之几或甲÷(乙-1)=百分之几
(2)乙比甲少百分之几的问题的解题规律:
(甲-乙)÷甲=百分之几或(1-乙)÷甲=百分之几
二、已知比甲数多(或少)百分之几的乙数,求甲数是多少。

解题规律:把甲数看作单位“1”,单位“1”未知,列方程解答。

甲数×(1+乙数比甲数多或少的百分率)=乙数或是列式:
乙数÷(1+乙数比甲数多或少的百分率)=甲数
百分数在生活中的应用:
1.水上公园湖面的面积是2800平方米,计划扩大35%,扩大后的湖面面积是多少平方米?
2.某地去年退耕还林630公顷,超过计划还林面积的20%,去年计划退耕还林多少公顷?
(1) 1、一个电饭锅原价是240元,现价是180元,电饭锅的价格降低了百分之几
2、一项工程,计划投资100万元,实际投资70万元,节约了百分之几?
3、红星小学去年植树节植树9000棵,今年植树比去年多植树1200棵,今年植树的棵树是去年的百分之几?今年植树的棵树比去年多百分之几?
4、新丰电器公司去年计划创利税198万,实际创利税216万元,超过原计划的百分之几?
5、电冰箱:2500元电视机:1600元洗衣机1200元
1)电视机比洗衣机贵百分之几?(
2)洗衣机是电冰箱的百分之几,洗衣机比电冰箱便宜百分之几?
百分数应用题(2)
1、李奶奶六月份用电80千瓦时,七月份比六月份多用电25%,七月份用电多少千瓦时?
2、一种数码相机原价2480元,商场打7折优惠,如果你买一台这样的数码相机,可以便宜多少钱?
3、爱联小学去年毕业的人数是200人,今年的毕业的人数比去年增加了20%,今年有多少人毕业?
4、龙城公园的总面积是15万平方米,其中草地占地35%,建筑用地用去5%,其余的为大理石广场,大理石广场的面积是多少?
5、某试验田2000年新品种水稻的种植面积是3万公顷,2001年的种植面积比2000年增加了15%,2001年新品种水稻的种植面积是多少?
6.一套儿童服装打八折后的售价比原价便宜了13元,这套儿童服装的原价是多少元?
百分数应用题(3)
1、2005年,淘气家庭食品支出占总支出的50%,旅游支出占总支出的10%,两项支出一共是5400元,这个家庭的总支出是多少元?
2、东山乡今年苹果大丰收,产量达到306万吨,比去年增产了二成,东山乡去年的产量是多少?
3、参加田径的有54人,比参加球类的人数少25%,参加球类的有多少人?
4、学校进行体育达标测试,达标的男生占全校学生总人数的53%,达标女生
占全校的人数的45%,已知达标的男生比达标女生人数多160人,求全校的人数?
5、压路机压一段路,第一天压了全长的40%,第二天压了全场的60%,第二天比第一天多压20米,这段马路长多少米?两天各压了多少?。

相关文档
最新文档